YSLS: Pseudo-Label Selection: Some Insights From Decision Theory

joint work with Jann Goschenhofer, Emilio Dorigatti, Thomas Nagler, Thomas Augustin, Christoph Jansen, Georg Schollmeyer

Julian Rodemann

April 18, 2023

- Weakly Supervised Learning
- Pseudo-Labeling
- Pseudo Label Selection (PSL)
- Bayesian PLS!
- Approximate Bayes Optimal PLS
- 6 Results
- Extensions
 - 8 Discussion

Literature

Weakly Supervised Learning

Classification

- Consider labeled data D = {(x_i, y_i)}ⁿ_{i=1} and unlabeled data
 U = {(x_i, U)}^m_{i=n+1} from the same data generation process, where X is the feature space and U is the categorical target space.
- Aim: Use unlabeled data for training
- Applications
 - image classification
 - genomics
 - ranking search results https://ai.googleblog.com/2021/07/ from-vision-to-language-semi-supervised.html

Pseudo-Labeling

Figure: Sketch of Pseudo-Labeling for Binary Classification. Credits: Jann G.

Pseudo Label Selection (PSL)

PLS is a decision problem! [5]

Definition (PLS as Decision Problem)

Consider the decision-theoretic triple (A_U, Θ, u(·)) with
an action space of unlabeled data to be selected,
a space of unknown states of nature (parameters) Θ
and a utility function u : A_U × Θ → ℝ.

- Weakly Supervised Learning
- Pseudo-Labeling
- Pseudo Label Selection (PSL)
- Bayesian PLS!
- Approximate Bayes Optimal PLS
- 6 Results
- Extension
- 8 Discussion
 - Literature

Why Bayesian?

Figure: Sketch of Pseudo-Labeling for Binary Classification. Credits: Jann G.

Bayesian PLS! [5]

Theorem

In the decision problem $(\mathbb{A}_{\mathcal{U}}, \Theta, u(\cdot))$ with pseudo-label likelihood $p(\mathcal{D} \cup (x_i, \hat{y}_i) | \theta)$ as utility and an updated prior $\pi(\theta) = p(\theta | \mathcal{D})$ on Θ , the standard Bayes criterion

$$\Phi(\cdot,\pi) \colon \mathbb{A}_{\mathcal{U}} \to \mathbb{R}$$
$$a \mapsto \Phi(a,\pi) = \mathbb{E}_{\pi}(u(a,\theta))$$

corresponds to the pseudo posterior predictive $p(\mathcal{D} \cup (x_i, \hat{y}_i) \mid \mathcal{D})$.

Bayesian PLS!

Bayesian PLS!

Theorem (tl;dr)

If the likelihood $p(\mathcal{D} \cup (x_i, \hat{y}_i) | \theta)$ is our utility, the pseudo posterior predictive (PPP) $p(\mathcal{D} \cup (x_i, \hat{y}_i) | \mathcal{D})$ is our Bayes criterion.

Bayesian PLS!

Bayesian PLS!

"First, be Bayesian. Then worry about how well you're doing it."

- Philipp Hennig

Bayesian PLS!

Bayesian PLS!

Problem: $p(\mathcal{D} \cup (x_i, \hat{y}_i) \mid \mathcal{D})$ is expensive to evaluate! \longrightarrow Approximate it!

- Weakly Supervised Learning
- Pseudo-Labeling
- Pseudo Label Selection (PSL)
- Bayesian PLS
- Approximate Bayes Optimal PLS
- 6 Result
- // Extension
- 8 Discussion

Literature

Approximate Bayes Optimal PLS

Approximate Bayes Optimal PLS [5]

Selection Criterion:

uninformative case

where $\tilde{\theta} \approx \arg \max \ell_{\mathcal{D} \cup (x_i, \hat{y}_i)}(\theta)$

- Weakly Supervised Learning
- Pseudo-Labeling
- Pseudo Label Selection (PSL)
- Bayesian PLS
- Approximate Bayes Optimal PLS

Literature

Results

Results (Uninformative Prior)

Results on Simulated Data with q = 60

Figure: Complete Results on Simulated Data for q = 60. R = 100; $\frac{n_{unlabeled}}{n_{train}} = 0.8$.

Results

Results (Uninformative Prior)

Results on Real Data

Figure: Results from 8 classification tasks based on real-world data [2] in descending difficulty (measured by supervised test accuracy), where p denotes the number of features here and the share of unlabeled data is 0.8. Accuracy averaged over 100 repetitions.

Results

Results (Informative Prior)

Results on Simulated Data

Figure: Results of PPP with informative priors on simulated data with different shares of unlabeled data. Accuracy averaged over 100 repetitions.

- Weakly Supervised Learning
- Pseudo-Labeling
- Pseudo Label Selection (PSL)
- Bayesian PLS
- Approximate Bayes Optimal PLS

Results

Literature

Extensions

- Extensions: Decision-theoretic embedding paves the way for various extensions [6]
 - multi-objective utility accounting for
 - model selection
 - covariate shift
 - accumulation of errors
 - ...
 - Generalized Bayes via Credal Sets
 - \blacksquare α -cut updating

Extensions

- Consider any M_1, \ldots, M_K , $K < \infty$, different parametric models specified on respective parameter spaces $\Theta_1, \ldots, \Theta_K$.¹
- We can easily extend the pseudo-label likelihood utility (definition ??) to account for several models, inducing a multiobjective decision problem.

¹Further denote by $\tilde{\Theta} = \times_{k=1}^{K} \Theta_k$ their Cartesian product and by $f_k : \tilde{\Theta} \to \Theta_k$, $k \in \{1, \dots, K\}$ the projections from the Cartesian product to each Θ_k . (Dep. of Stats, LMU) 16/20 April 18, 2023

Extensions

Definition (Multi-Model Likelihood Utility)

Consider labeled data \mathcal{D} and pseudo-labels $\hat{y} \in \mathcal{Y}$ from $\hat{y} : \mathcal{X} \to \mathcal{Y}$ as given. The *K*-dimensional utility function

$$u: \mathbb{A}_{\mathcal{U}} \times \tilde{\Theta} \to \mathbb{R}^{K}$$
$$((x_{i}, \mathcal{Y})_{i}, \theta) \mapsto (\ell(i, 1), \dots, \ell(i, K))'$$

shall be called multi-model likelihood. We write $\ell(i,k) = p(i | f_k(\theta), M_k) = p(\mathcal{D} \cup (z, \hat{y}(z)) | f_k(\theta), M_k)$ with $\theta_k \in \Theta_k$ for brevity.

Extensions: Generalized Bayes

Idea: (convex) set of priors

 $\Pi \subseteq \{\pi(\theta) \mid \pi(\cdot) \text{ a probability measure on } (\Theta, \sigma(\Theta))\}$

with Θ compact as above and $\sigma(\cdot)$ an appropriate σ -algebra. • Γ -maximin, e.g. [7, 1, 3, 8, 4]: $\underline{\mathbb{E}}_{\Pi}(u(a, \theta)) = \inf_{\pi \in \Pi} \mathbb{E}(u(a, \theta))$ • How to update Π ?

 $\{\pi \in \Pi \mid m(\pi) \ge \alpha \cdot \max_{\pi} m(\pi)\}\$

with $m(\ell, \pi) = \int_{\Theta} \ell(\theta) \pi(\theta) d\theta$ the marginal likelihood.

- Weakly Supervised Learning
- Pseudo-Labeling
- Pseudo Label Selection (PSL)
- Bayesian PLS
- Approximate Bayes Optimal PLS
- 6 Result
- Extensions

Literature

Discussion

Approximate Bayes optimal PLS ...

- ... is more robust towards the initial fit than classical PLS
- ... can be applied to any kind of predictive model whose likelihood and Fisher-information are accessible
- … allows to include prior information
- ... does not require an *i.i.d.* assumption

Discussion

Discussion

Limitations

- With $|\mathcal{U}| = m$ unlabeled data points and no stopping criterion, $m + (m - 1) + \dots + 1 = \frac{m^2 + m}{2}$ PPPs have to approximated.
- Overfitting scenarios might be hard to identify

- Weakly Supervised Learning
- Pseudo-Labeling
- Pseudo Label Selection (PSL)
- Bayesian PLS
- Approximate Bayes Optimal PLS
- 6 Result
- Extensions
- Discussion

Literature I

- James O. Berger. Statistical decision theory and Bayesian analysis. 2nd. Springer, Berlin., 1985.
- [2] Dheeru Dua and Casey Graff. UCI Machine Learning Repository. http://archive.ics.uci.edu/ml. 2017.
- [3] Itzhak Gilboa and David Schmeidler. "Maxmin expected utility with non-unique prior". In: *Journal of Mathematical Economics* 18.2 (1989), pp. 141–153.
- [4] Peijun Guo and Hideo Tanaka. "Decision making with interval probabilities". In: *European Journal of Operational Research* 203.2 (2010), pp. 444–454.

Literature II

- [5] Julian Rodemann, Jann Goschenhofer, Emilio Dorigatti, Thomas Nagler, and Thomas Augustin. Bayesian PLS! Approximate Bayes Optimal Pseudo-Label Selection (PLS). arXiv preprint https://arxiv.org/pdf/2302.08883v2.pdf. 2023.
- [6] Julian Rodemann, Christoph Jansen, Georg Schollmeyer, and Thomas Augustin. In all Likelihoods: How to Reliably Select Pseudo-Labeled Data for Self-Training in Semi-Supervised Learning. under review. 2023.
- [7] Teddy Seidenfeld. "A contrast between two decision rules for use with (convex) sets of probabilities: Γ-maximin versus E-admissibility". In: Synthese 140.1/2 (2004), pp. 69–88.
- [8] Matthias C.M. Troffaes. "Decision making under uncertainty using imprecise probabilities". In: *International Journal of Approximate Reasoning* 45.1 (2007), pp. 17–29.