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Weakly Supervised Learning

Weakly Supervised Learning

Classification

Consider labeled data D = {(𝑥𝑖 , 𝑦𝑖)}𝑛𝑖=1 and unlabeled data
U = {(𝑥𝑖 ,Y)}𝑚𝑖=𝑛+1 from the same data generation process, where X

is the feature space and Y is the categorical target space.

Aim: Use unlabeled data for training

Applications

image classification
genomics
ranking search results https://ai.googleblog.com/2021/07/
from-vision-to-language-semi-supervised.html
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Pseudo-Labeling

Pseudo-Labeling
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Figure: Sketch of Pseudo-Labeling for Binary Classification. Credits: Jann G.
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Pseudo Label Selection (PSL)

PLS is a decision problem! [5]

Definition (PLS as Decision Problem)

Consider the decision-theoretic triple (AU,Θ, 𝑢(·)) with
an action space of unlabeled data to be selected,

a space of unknown states of nature (parameters) Θ

and a utility function 𝑢 : AU × Θ → R.
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Bayesian PLS!

Why Bayesian?
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Figure: Sketch of Pseudo-Labeling for Binary Classification. Credits: Jann G.
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Bayesian PLS!

Bayesian PLS! [5]

Theorem

In the decision problem (AU,Θ, 𝑢(·)) with pseudo-label likelihood
𝑝(D ∪ (𝑥𝑖 , 𝑦𝑖) | 𝜃) as utility and an updated prior 𝜋(𝜃) = 𝑝(𝜃 | D) on Θ,
the standard Bayes criterion

Φ(·, 𝜋) : AU → R
𝑎 ↦→ Φ(𝑎, 𝜋) = E𝜋 (𝑢(𝑎, 𝜃))

corresponds to the pseudo posterior predictive 𝑝(D ∪ (𝑥𝑖 , 𝑦𝑖) | D).
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Bayesian PLS!

Bayesian PLS!

Theorem (tl;dr)

If the likelihood 𝑝(D ∪ (𝑥𝑖 , 𝑦𝑖) | 𝜃) is our utility, the pseudo posterior
predictive (PPP) 𝑝(D ∪ (𝑥𝑖 , 𝑦𝑖) | D) is our Bayes criterion.
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Bayesian PLS!

Bayesian PLS!

“First, be Bayesian. Then worry about how well you’re doing it.”
– Philipp Hennig
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Bayesian PLS!

Bayesian PLS!

Problem: 𝑝(D ∪ (𝑥𝑖 , 𝑦𝑖) | D) is expensive to evaluate! −→ Approximate it!
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Approximate Bayes Optimal PLS

Approximate Bayes Optimal PLS [5]

Selection Criterion:

ℓD∪(𝑥𝑖 ,𝑦𝑖 ) (𝜃)︸          ︷︷          ︸
Likelihood of pseudo-sample
in light of fitted parameter

−1
2
log |𝐼 (𝜃) |︸          ︷︷          ︸

Flatness of likelihood at
this fitted parameter (argmax)︸                                                          ︷︷                                                          ︸

uninformative case

+ log 𝜋(𝜃),︸       ︷︷       ︸
Prior likelihood

of fitted parameter

where 𝜃 ≈ argmax ℓD∪(𝑥𝑖 ,𝑦𝑖 ) (𝜃)
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Results

Results (Uninformative Prior)

Results on Simulated Data with 𝑞 = 60

Figure: Complete Results on Simulated Data for 𝑞 = 60. 𝑅 = 100; 𝑛𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑
𝑛𝑡𝑟𝑎𝑖𝑛

= 0.8.
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Results

Results (Uninformative Prior)

Results on Real Data

Figure: Results from 8 classification tasks based on real-world data [2] in
descending difficulty (measured by supervised test accuracy), where 𝑝 denotes the
number of features here and the share of unlabeled data is 0.8. Accuracy
averaged over 100 repetitions.
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Results

Results (Informative Prior)

Results on Simulated Data

Figure: Results of PPP with informative priors on simulated data with different
shares of unlabeled data. Accuracy averaged over 100 repetitions.
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Extensions

Extensions

Extensions: Decision-theoretic embedding paves the way for various
extensions [6]

multi-objective utility accounting for

model selection
covariate shift
accumulation of errors
...

Generalized Bayes via Credal Sets

𝛼-cut updating
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Extensions

Extensions

Consider any 𝑀1, . . . , 𝑀𝐾 , 𝐾 < ∞, different parametric models
specified on respective parameter spaces Θ1, . . . ,Θ𝐾 .

1

We can easily extend the pseudo-label likelihood utility (definition ??)
to account for several models, inducing a multiobjective decision
problem.

1Further denote by Θ̃ = ×𝐾
𝑘=1

Θ𝑘 their Cartesian product and by 𝑓𝑘 : Θ̃ → Θ𝑘 ,
𝑘 ∈ {1, . . . , 𝐾} the projections from the Cartesian product to each Θ𝑘 .
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Extensions

Extensions

Definition (Multi-Model Likelihood Utility)

Consider labeled data D and pseudo-labels 𝑦 ∈ Y from 𝑦 : X → Y as
given. The 𝐾-dimensional utility function

𝑢 : AU × Θ̃ → R𝐾

((𝑥𝑖 ,Y)𝑖 , 𝜃) ↦→ (ℓ(𝑖, 1), . . . , ℓ(𝑖, 𝐾))′

shall be called multi-model likelihood. We write
ℓ(𝑖, 𝑘) = 𝑝(𝑖 | 𝑓𝑘 (𝜃), 𝑀𝑘) = 𝑝(D ∪ (𝑧, 𝑦(𝑧)) | 𝑓𝑘 (𝜃), 𝑀𝑘) with 𝜃𝑘 ∈ Θ𝑘 for
brevity.
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Extensions

Extensions: Generalized Bayes

Idea: (convex) set of priors

Π ⊆ {𝜋(𝜃) | 𝜋(·) a probabilty measure on (Θ, 𝜎(Θ))}

with Θ compact as above and 𝜎(·) an appropriate 𝜎-algebra.

Γ-maximin, e.g. [7, 1, 3, 8, 4]: E
Π
(𝑢(𝑎, 𝜃)) = inf 𝜋∈Π E(𝑢(𝑎, 𝜃))

How to update Π?

{𝜋 ∈ Π | 𝑚(𝜋) ≥ 𝛼 ·max
𝜋
𝑚(𝜋)}

with 𝑚(ℓ, 𝜋) =
∫
Θ
ℓ(𝜃)𝜋(𝜃)𝑑𝜃 the marginal likelihood.
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Discussion

Discussion

Approximate Bayes optimal PLS ...

... is more robust towards the initial fit than classical PLS

... can be applied to any kind of predictive model whose likelihood and
Fisher-information are accessible
... allows to include prior information
... does not require an i.i.d. assumption
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Discussion

Discussion

Limitations

With |U | = 𝑚 unlabeled data points and no stopping criterion,
𝑚 + (𝑚 − 1) + · · · + 1 = 𝑚2+𝑚

2 PPPs have to approximated.
Overfitting scenarios might be hard to identify
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