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Weakly Supervised Learning

Weakly Supervised Learning

m Classification
m Consider labeled data @ = {(x;, y;)}i~; and unlabeled data
U ={(x;, Y)}L, .1 from the same data generation process, where X
is the feature space and U is the categorical target space.
m Aim: Use unlabeled data for training
m Applications
m image classification
B genomics

m ranking search results https://ai.googleblog.com/2021/07/
from-vision-to-language-semi-supervised.html
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Pseudo-Labeling

Pseudo-Labeling
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Figure: Sketch of Pseudo-Labeling for Binary Classification. Credits: Jann G.
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Pseudo Label Selection (PSL)

PLS is a decision problem! [5]

Definition (PLS as Decision Problem)

Consider the decision-theoretic triple (Ay, ®, u(-)) with
m an action space of unlabeled data to be selected,
m a space of unknown states of nature (parameters) ©
m and a utility function u : Ay X ® — R.
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Bayesian PLS!

Why Bayesian?
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Figure: Sketch of Pseudo-Labeling for Binary Classification. Credits: Jann G.
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Bayesian PLS!

Bayesian PLS! [5]

Theorem

In the decision problem (Ay,®, u(-)) with pseudo-label likelihood
p(D U (x;,9;) | 6) as utility and an updated prior 7(8) = p(6 | D) on B,
the standard Bayes criterion

O(,m): Ay >R
at O(a,n) =E;(u(a,b))

corresponds to the pseudo posterior predictive p(D U (x;, y;) | D).
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Bayesian PLS!

Bayesian PLS!

Theorem (tl;dr)

If the likelihood p(D U (x;, y;) | ) is our utility, the pseudo posterior
predictive (PPP) p(©D U (x;, ;) | D) is our Bayes criterion.
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Bayesian PLS!

Bayesian PLS!

“First, be Bayesian. Then worry about how well you're doing it.”
— Philipp Hennig
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Bayesian PLS!

Problem: p(® U (x;, y;) | @) is expensive to evaluate! — Approximate it!
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Approximate Bayes Optimal PLS

Approximate Bayes Optimal PLS [5]

Selection Criterion:

= 1 - -
f@U(x,',)A/i)(g) _5 10g |I(6)| +10g7T(0),
~—— —
Likelihood of pseudo-sample Prior likelihood

in light of fitted parameter of fitted parameter

uninformative case

where 6 ~ arg max oy (x;, ;) (6)
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Results

Results (Uninformative Prior)

Results on Simulated Data with ¢ = 60
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Figure: Complete Results on Simulated Data for g = 60. R = 100;
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Results

Results (Uninformative Prior)

Results on Real Data

PLS Method Likelihood (max-max) . PPP (bayes-optimal) Predictive Variance . Probability Score . Supervised Learning
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50
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Figure: Results from 8 classification tasks based on real-world data [2] in
descending difficulty (measured by supervised test accuracy), where p denotes the
number of features here and the share of unlabeled data is 0.8. Accuracy

averaged over 100 repetitions.
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Results

Results (Informative Prior)

Results on Simulated Data

PLS Method [

Figure: Results of PPP with informative priors on simulated data with different
shares of unlabeled data. Accuracy averaged over 100 repetitions.
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Extensions

Extensions

m Extensions: Decision-theoretic embedding paves the way for various
extensions [6]
m multi-objective utility accounting for

m model selection

m covariate shift

m accumulation of errors
[ |

m Generalized Bayes via Credal Sets
B a-cut updating
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Extensions

Extensions

m Consider any M1, ..., Mg, K < oo, different parametric models
specified on respective parameter spaces 01, ..., 0.1

m We can easily extend the pseudo-label likelihood utility (definition ?7?)
to account for several models, inducing a multiobjective decision
problem.

LFurther denote by 0= xfﬂ@k their Cartesian product and by fj : 0 — O,
k € {1,...,K} the projections from the Cartesian product to each ©y.

(Dep. of Stats, LMU) 16 /20 April 18, 2023



Extensions

Extensions

Definition (Multi-Model Likelihood Utility)

Consider labeled data @ and pseudo-labels y € Y from y : X' — U as
given. The K-dimensional utility function

u:AuXé—>RK

((X,', y)i’ 0) = (f(l’ ]-)’ oco ,f(i, K))/

shall be called multi-model likelihood. We write

€@, k) =p(i | fi(0), Mi) = p(D U (z,5(2)) | fi(6), Mi) with 6 € O for
brevity.
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Extensions

Extensions: Generalized Bayes

m Idea: (convex) set of priors
IT C {n(@) | n(-) a probabilty measure on (®,c(®))}

with ® compact as above and o (-) an appropriate o-algebra.
m [-maximin, e.g. [7, 1, 3, 8, 4]: E(u(a,)) = inf e E(u(a, 6))
m How to update I17

{mell | m(n) > a- mfrlxm(ﬂ)}

with m(¢,7r) = [ £()7(6)d6 the marginal likelihood.
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Discussion

Discussion

m Approximate Bayes optimal PLS ...

® ... is more robust towards the initial fit than classical PLS

m ... can be applied to any kind of predictive model whose likelihood and
Fisher-information are accessible

m ... allows to include prior information

m ... does not require an i.i.d. assumption
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Discussion

Discussion

m Limitations

m With |U| = m unlabeled data points and no stopping criterion,
2
m+(m—1)+---+1= 2" PPPs have to approximated.
m Overfitting scenarios might be hard to identify
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