
Studienabschlussarbeiten
Fakultät für Mathematik, Informatik

und Statistik

Jensen, Jan Alexander:

Enabling Efficient Serverless Federated Learning in

Heterogeneous Environments

Masterarbeit, Sommersemester 2023

Fakultät für Mathematik, Informatik und Statistik
Institut für Informatik

Ludwig-Maximilians-Universität München

https://doi.org/10.5282/ubm/epub.96273

DEPARTMENT OF INFORMATICS
LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Enabling Efficient Serverless Federated
Learning in Heterogeneous Environments

Effizientes serverloses föderiertes Lernen in
heterogenen Environments

Author: Jan Alexander Jensen
Supervisor: Prof. Dr. Michael Gerndt (TUM)
Advisor: M.Sc. Mohak Chadha (TUM)
Submission Date: 16.05.2023

DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Enabling Efficient Serverless Federated
Learning in Heterogeneous Environments

Effizientes serverloses föderiertes Lernen in
heterogenen Environments

Author: Jan Alexander Jensen (LMU)
Supervisor: Prof. Dr. Michael Gerndt
Advisor: M.Sc. Mohak Chadha
Submission Date: 16.05.2023

I confirm that this master’s thesis in informatics is my own work and I have documented
all sources and material used.

Munich, 16.05.2023 Jan Alexander Jensen

Acknowledgments

I am deeply grateful to Prof. Dr. Michael Gerndt, my supervisor, for giving me
the opportunity to work on such an exhilarating project and for creating a conducive
work atmosphere. I would like to extend my sincere appreciation and thanks to my
advisor, Mohak Chadha, for his unwavering guidance and patience during the thesis.
His support has been instrumental in bringing me to this point. I would also like to
acknowledge Mohamed Elzohairy for his previous contributions and help during the
early stages of the project.

Abstract

Federated Learning (FL) has emerged as a promising approach to distributed ma-
chine learning. It enables multiple clients to collaborate in training models without
compromising their data privacy by avoiding a centralized server. Previous research
has suggested that Function-as-a-Service (FaaS) platforms can effectively address cer-
tain challenges, thereby facilitating an efficient training process among heterogeneous
clients. However, the heterogeneous computational capabilities of clients may lead to
stragglers, impeding scalability and prolonging the runtime. In our work, we propose
an asynchronous score-based strategy, namely FedlesScore, which accommodates vari-
able client hardware and data sizes, thereby mitigating the impact of stragglers on the
system’s overall performance. We extensively evaluate our strategy and compare it to
novel FL approaches on four different datasets; FedlesScore achieves an average speedup
in training time of 2.75x while incurring only a minor increase in cost. Moreover, the
proposed strategy significantly reduces client cold starting, with an average reduction
factor of four.

iv

Contents

Acknowledgments iii

Abstract iv

1 Introduction 1

1.1 Problem Statement . 2
1.2 Research Objectives . 5
1.3 Thesis Overview . 5

2 Theoretical Background 7

2.1 Federated Learning (FL) . 7
2.1.1 Client Selection . 8
2.1.2 Model Aggregation . 9
2.1.3 Challenges . 9

2.2 Serverless Computing . 10
2.2.1 Function As a Service (FaaS) . 11
2.2.2 Kubernetes . 11

3 Related Work 13

3.1 Serverless Federated Learning . 13
3.2 Stragglers in Federated Learning . 14

3.2.1 Asynchronous Federated Learning 17
3.3 Stragglers in Serverless Federated Learning 19
3.4 Strategy Comparison . 20

4 System and Strategy Design 22

4.1 Fedless . 22
4.1.1 Enabling GPU on Fedless . 24
4.1.2 Mock Cold Start . 26

4.2 FedlesScore . 28
4.2.1 Asynchronous Aggregation . 29
4.2.2 Score-based selection . 30

v

Contents

5 Experiments 35

5.1 Experiment Setup . 35
5.1.1 Benchmarks and Datasets . 36
5.1.2 Model Configuration . 36
5.1.3 Evaluation Metrics . 38

5.2 Accuracy and Model Performance . 40
5.3 Client Selection Bias . 42
5.4 Cold Start Ratio . 45
5.5 Client Size . 46
5.6 Ablation Studies . 49
5.7 Time & Cost Analysis . 51
5.8 Discussion . 54

6 Conclusion and Future Work 55

List of Figures 56

List of Tables 57

Bibliography 58

vi

1 Introduction

In recent years, Federated learning (FL) has emerged as a promising approach to
distributed machine learning. It allows multiple clients to train a machine learning
model collaboratively without sharing their private data with a central server.

Instead of computing on large, centralized machines, federated learning (FL) dis-
tributes models over multiple devices for computation. Subsequently, it summarizes
the changes as a small update, typically containing the model parameters and corre-
sponding weights. This enables the devices to collaboratively learn a shared prediction
model while keeping all the training data on the device, decoupling the ability to do
machine learning from the need to store all the data on a central server. [1]

As federated learning provides privacy and evades using considerable bandwidth
for data transfer, it requires each party to manage their instance and network to train
and update the model. That is precisely where serverless computing comes into
play. Serverless computing is a model of cloud computing that provides a miniature
architecture where the end customer does not need to deploy, configure or manage
server services. Leveraging serverless environments can bring about advantages for FL
in terms of resource efficiency and cost-effectiveness in many settings. In conventional
FL, only a subset of clients participates in the training round, leaving the remaining
clients idle and consuming hardware resources. By contrast, a FaaS environment
ensures that clients only utilize hardware resources when participating in the current
training round, thereby reducing resource usage and associated costs. Additionally,
FaaS offers a solution to the challenges of rapid scaling and infrastructure management
for clients, which are core benefits of serverless architectures. This translates to a more
straightforward setup and maintenance of a serverless-based FL platform. Accordingly,
Chadha [2] and Grafberger [3] have composed a framework to migrate FL into serverless,
called Fedless. Furthermore, it also provides additional security to protect against
insecure serialization and injection attacks [3].

While providing multiple benefits, FL also brings its challenges. The heterogeneity
of client computation speed negatively affects the scalability and significantly slows
down its runtime due to the presence of stragglers. In previous work FedLesScan [4],
a clustering-based strategy has been proposed to mitigate the effect of stragglers in
serverless-based FL. We now want to incorporate GPU into the current system.

GPUs were designed from the beginning to be used almost exclusively for rendering

1

1 Introduction

high-resolution images and graphics, which does not require much context switching.
Instead, GPUs focus on concurrency or breaking down complex tasks into smaller
subtasks that can be executed continuously alongside each other. Since GPUs are good
at solving complex tasks and are widely used for machine learning, we would also like
to leverage them. To do so, we want to enable GPU usage for Fedless by migrating the
current function calls to assigning the task to the GPUs on the machine. Then, we want
to investigate the straggler effect further after enabling GPUs. Moreover, we would
like to extend the current strategy from FedLesScan to be even more resilient against
stragglers.

The next chapter will discuss the challenges and related works tackling these issues.
After that, we will present the possible approach to improve the current version of the
system and how to evaluate the difference.

1.1 Problem Statement

The straggler effect is one of the main bottlenecks in federated learning. All selected
clients who have completed their tasks must wait for the slowest client to end the
current round, significantly increasing training time and cost. A recently proposed
strategy, FedlesScan, has demonstrated effectiveness in mitigating the straggler effect,
which can significantly hinder the performance of federated learning systems. However,
FedlesScan primarily targets homogeneous clients and relies on clustering based on
training duration. This approach fails to accommodate the increasing heterogeneity in
client hardware and data size, leading to inadequate cluster sizes for sampling clients in
each round. Consequently, stragglers are inadvertently included in the round, negating
the benefits of FedlesScan.

Figure 1.1 illustrates the deficiency of FedlesScan in heterogeneous hardware and data
size settings. To demonstrate this drawback, we conducted experiments by deploying
100 client functions on OpenfaaS [5] and managed the experiment with Fedless [3]. 50
clients were selected per round in various hardware settings and ran the experiment
for 25 rounds. Specifically, we used clients with three different hardware resource
distributions with the same heterogeneous data distribution. Initially, we ran both
FedAvg and FedlesScan in a homogeneous hardware setting, where all 100 clients had 2
vCPUs. Subsequently, we added two scenarios, one with GPUs and one without, to test
the performance of FedlesScan in heterogeneous environments. In the first scenario, we
had a mix of 60 clients with 1 vCPU and 40 clients with 2 vCPUs, while in the second
scenario, we had a mix of 50 clients with 1 vCPU, 30 clients with 2 vCPUs, and 20
clients running on a GPU. These scenarios were designed to represent a more realistic
setting where clients have varying levels of computational resources. The experiments

2

1 Introduction

0 50 100 150 200 250
Training Duration (Min)

0.20

0.25

0.30

0.35

0.40

Te
st

 S
et

 A
cc

ur
ac

y
(%

)

Homogeneous clients

FedAvg
FedlesScan

0 50 100 150 200 250
Training Duration (Min)

0.20

0.25

0.30

0.35

0.40

Te
st

 S
et

 A
cc

ur
ac

y
(%

)

Heterogeneous clients

2 vCPU
1 vCPU + 2 vCPU
CPU + GPU2 vCPU
1 vCPU + 2 vCPU
CPU + GPU

(a) Accuracy comparison across different client hardware settings

0 5 10 15 20 25
Round Number

300

350

400

450

500

550

600

650

To
ta

l R
ou

nd
 D

ur
at

io
n

(S
ec

)

Homogeneous clients

FedAvg
FedlesScan

0 5 10 15 20 25
Round Number

300

350

400

450

500

550

600

650

To
ta

l R
ou

nd
 D

ur
at

io
n

(S
ec

)

Heterogeneous clients

2 vCPU
1 vCPU + 2 vCPU
CPU + GPU2 vCPU
1 vCPU + 2 vCPU
CPU + GPU

(b) Round Duration comparison across different client hardware settings

Figure 1.1: Training efficiency Comparison between FedAvg [1] and FedlesScan [4] in
different hardware settings on the Shakespeare dataset

were conducted to demonstrate the impact of heterogeneous hardware settings on the
performance of FedlesScan compared to FedAvg. These experiments provide insights
into the impact of heterogeneous hardware settings on FedlesScan performance and
highlight the importance of selecting appropriate hardware configurations to improve
system performance. As depicted in Figure 1.1a demonstrates that both FedAvg and
FedlesScan achieve an accuracy of 0.4, but FedlesScan requires 30% less time than FedAvg.
However, as client hardware becomes more heterogeneous, FedlesScan struggles and
falls behind FedAvg. For instance, when we add clients with 1 vCPU to the mixture,
FedlesScan requires 40% more training time than FedAvg to achieve an accuracy of 0.3.
Furthermore, with additional GPU clients, both strategies attain an accuracy of 0.4

3

1 Introduction

Fe
dA

vg

Fe
dl
es

Sc
an

2
4
6
8

10
12
14
16
18

In
vo

ca
tio

ns
/C
lie

nt

(a) 2 vCPU

Fe
dA

vg

Fe
dl
es

Sc
an

2
4
6
8

10
12
14
16

In
vo

ca
tio

ns
/C
lie

nt
(b) 1 vCPU + 2 vCPU

Fe
dA

vg

Fe
dl
es

Sc
an

2

4

6

8

10

12

In
vo

ca
tio

ns
/C
lie

nt

(c) 1 vCPU + 2 vCPU + GPU

Figure 1.2: Selection Bias across different client hardware settings

within 25 rounds, but FedAvg is 43% faster in terms of total training time. Figure 1.1b
provides a more detailed breakdown of the training duration for each round. In the
homogeneous setting, FedlesScan succeeds in clustering clients with sufficient cluster
size to select clients for each round and shows a high peak of round time only every few
rounds when stragglers are selected. However, in the heterogeneous setting displayed
on the right of Figure 1.1b, we see more rounds that max out and have similar round
durations as FedAvg. This is because the clustering approach fails due to insufficient
clients per cluster for selection in each round, and stragglers are selected as substitutes.

Figure 1.2 illustrates the distribution of invocations per client for FedAvg and FedlesS-

can on the Shakespeare dataset. In the first scenario (Figure 1.2a), with a homogeneous
hardware setup where all clients have 2 vCPU, the invocation is fairly distributed
among all clients, and it is also much more concentrated than in FedAvg with random
selection. However, as we increase the heterogeneity among clients’ hardware, as
shown in Figure 1.2b and Figure 1.2c, we observe that the invocations of clients on
FedAvg remain normally distributed. At the same time, a more substantial bias starts to
form with FedlesScan. FedlesScan favors clients with lower training duration, indicating
smaller data sizes and more powerful computational resources, as seen at the top of
the curve. Conversely, clients with higher training durations get penalized for missing
the round before the timeout. These clients have less powerful computational power
and more extensive data size, as seen at the bottom of the curve. These observations
motivate the need for a more effective client selection method in federated learning
systems with heterogeneous hardware settings and varying client data sizes, which we
address in our proposed research objectives.

4

1 Introduction

1.2 Research Objectives

The proposed research objectives aim to improve federated learning systems’ per-
formance by investigating the impact of heterogeneous client hardware on system
performance and the straggler effect and address the limitations of FedlesScan in the
context of heterogeneous hardware settings and varying client data sizes. The objectives
also aim to develop an asynchronous aggregation approach that can accommodate
varying client hardware capabilities and data sizes, minimize the impact of stragglers
on the overall system performance, propose a comprehensive client selection method
that accounts for hardware heterogeneity and data size differences, and evaluate the
effectiveness of the proposed asynchronous aggregation and client selection techniques
in mitigating the straggler effect. The research objectives aim to improve the efficiency
and effectiveness of federated learning systems, enabling their use in a broader range
of applications.

The research will focus mainly on the following points:

1. Investigate the impact of heterogeneous client hardware, such as GPUs, on the
performance of federated learning systems and the straggler effect.

2. Develop an asynchronous aggregation approach that can accommodate varying
client hardware capabilities and data sizes, minimizing the impact of stragglers
on the overall system performance.

3. Propose a comprehensive client selection method that accounts for hardware
heterogeneity and data size differences, ensuring more efficient and representative
sampling for each federated learning round.

4. Evaluate the effectiveness of the proposed asynchronous aggregation and client
selection techniques in mitigating the straggler effect in federated learning systems
with heterogeneous hardware settings.

5. Compare the performance of the proposed methods with existing strategies,
such as FedlesScan, to assess their potential benefits and drawbacks in real-world
federated learning scenarios.

1.3 Thesis Overview

This thesis explores the combination of two emerging technologies, FL and Serverless
computing, to improve the scalability and efficiency of FL. Chapter 2 provides the
theoretical background for FL and Serverless computing. It covers the core concepts

5

1 Introduction

of client selection and model aggregation in FL and the advantages and challenges of
Serverless computing, including FaaS and Kubernetes. Chapter 3 reviews related work
in FL and Serverless FL to provide a comprehensive overview of the current state-of-
the-art in the field. Chapter 4 presents the design of Fedless, a Serverless FL system
that addresses the limitations of traditional FL. It also introduces FedlesScore, a strategy
that uses an asynchronous aggregation method and a score-based selection approach to
optimize the performance of Fedless. Chapter 5 presents the experimental results of the
proposed system and strategy. It evaluates the accuracy and performance of the models,
examines the client selection bias, analyzes the impact of the client size, and conducts
ablation studies to understand the performance of the system components. Moreover,
it provides time and cost analyses of the Fedless system with different strategies.
Finally, Chapter 6 concludes the thesis by summarizing the research contributions
and suggesting further directions for future work to improve the performance and
applicability of Serverless FL.

6

2 Theoretical Background

2.1 Federated Learning (FL)

�� Central Server sends

the latest global model

to selected clients

&� Clients train models

with local data

<� Clients send the model

update back to the

central server

R� Server aggregates client

updates and stores the

latest global model

Figure 2.1: A schematic architecture of a general federated learning system

Federated learning (FL) is a distributed approach to machine learning that allows
multiple devices or servers to collaboratively train a shared model while keeping the
training data locally on each device. This approach preserves data privacy, as sensitive
data does not need to be transferred to a central server for model training. [1]

In FL, the global model’s training occurs through the following steps: A central
server initializes and shares a global model with the participating devices (clients). Each
client trains the model using its local data, generating model updates (e.g., gradients
or weights) without sharing the raw data itself. The clients send their model updates
to the central server. The central server aggregates the received updates and updates
the global model accordingly. The updated global model is sent back to the clients for
further training. This process is repeated until the model converges or a predetermined
stopping criterion is met. FL has several advantages, such as:

• Data privacy: It allows training models on sensitive data without exposing the

7

2 Theoretical Background

raw data to the central server or other devices.

• Reduced data transfer: By keeping data on local devices, FL minimizes the need
for data transmission, which can save bandwidth and reduce latency.

• Scalability: FL can scale to a large number of clients, leveraging the power of
distributed computing.

• Adaptability: The approach can be adapted to various scenarios, including mobile
devices, edge computing, and even leveraging cloud computing services like FaaS.

2.1.1 Client Selection

In federated learning, selecting clients to participate in model training is critical in
achieving high model accuracy and reducing communication costs. There are several
methods for client selection in FL, which can be broadly classified into three categories:

• Random Selection: The most straightforward approach is randomly selecting
clients to participate in model training. This method is easy to implement and
requires little computation. However, it may lead to suboptimal model accuracy
and communication inefficiency if the selected clients have significantly different
data distributions from the rest of the clients.

• Sampling-based on Data Characteristics: Another approach is to select clients
based on the characteristics of their data. For example, clients with similar data
distributions or data with a high degree of heterogeneity may be selected. This
approach can improve model accuracy and reduce communication costs, but it
requires prior knowledge of the data distribution, which may only sometimes be
available.

• Sampling-based on Hardware Characteristics: This approach involves selecting
clients based on their characteristics, such as computational capabilities or the
amount of data they possess. For example, clients with high computational
capabilities may be selected to reduce training time, or clients with a large
amount of data may be selected to improve model accuracy. This approach can
also improve model accuracy and reduce communication costs, but it requires
knowledge of client characteristics, which may only sometimes be available. The
selection method used in FL depends on the specific use case and available
resources.

8

2 Theoretical Background

2.1.2 Model Aggregation

There are two main types of federated learning: synchronous and asynchronous.

• Synchronous: In synchronous FL, clients simultaneously train the model and com-
municate with the central server during each round of training. In synchronous
FL, the central server must wait for all participating clients to complete their
training and send their updates before aggregating the updates and moving to
the next round. This means that the overall training process can be slowed down
by slower clients or "stragglers" who may have limited computational resources or
poor network connectivity. The straggler effect can lead to longer training times
and reduced overall efficiency in synchronous FL.

• Asynchronous: Asynchronous FL aims to address the stragglers effect by allowing
clients to train and communicate with the central server independently and
without waiting for other clients. While this approach improves training efficiency
by not waiting for slower clients, it also creates a scenario where different clients
are working with different versions of the global model. When a client sends its
update to the central server, the global model may have already been updated by
other clients, making the client’s update stale or out-of-date.

Straggling clients, which exhibit considerably slower processing compared to non-
stragglers, can severely impact the performance of synchronous FL. This issue is
particularly pronounced in cross-device settings, where clients vary significantly re-
garding computing power and data volume. As a result, synchronous FL is susceptible
to performance bottlenecks caused by the presence of slow clients. This highlights the
drawbacks of synchronous FL and underscores the advantages of asynchronous FL.

2.1.3 Challenges

However, federated learning also faces challenges, such as heterogeneity, communica-
tion overhead, privacy and security concerns, and resource constraints on participating
devices. [6]

• Expensive Communication: FL relies on frequent communication between local
devices and a centralized server to exchange model updates. This can lead to
high communication overhead and bandwidth consumption, especially when
dealing with large-scale networks and massive amounts of data. Consequently, it
can slow the learning process and increase overall system latency, making it less
efficient and practical for specific use cases.

9

2 Theoretical Background

• Systems Heterogeneity: In FL, participating devices often have varying hardware
capabilities, processing power, storage capacity, and battery life. This can lead to
imbalances in the learning process, as more powerful devices may contribute more
significantly to the global model than weaker ones. Moreover, device-specific
constraints limit their ability to participate in the learning process, affecting the
overall performance of the FL system.

• Statistical Heterogeneity: The data distribution across participating devices in
FL may be uneven or skewed, resulting in varying local model quality. This
can be due to different data collection processes, user behaviors, or regional
differences. Statistical heterogeneity can lead to challenges in model convergence
and negatively impact the performance of the global model, as it may need to
accurately represent the underlying data distribution.

• Privacy Concerns: While FL aims to maintain privacy by keeping raw data on
local devices, it can still be vulnerable to privacy risks. An attacker could infer
sensitive information about individual users during the model aggregation by
analyzing the model updates shared between devices and the central server.
Additionally, model inversion and membership inference attacks are possible,
posing significant privacy risks to the FL system. Various privacy-preserving
techniques, such as differential privacy and secure multi-party computation, can
be employed to mitigate these concerns.

2.2 Serverless Computing

Serverless computing has gained significant popularity and adoption in various do-
mains such as linear algebra [7], heterogeneous computing [8, 9, 10], high-performance
computing [11, 12], and edge computing [13]. It is a cloud computing execution model
where the infrastructure and servers needed to run an application or service are directly
provided by a cloud provider. The cloud provider handles the provisions for necessary
resources and scales them up or down as required to take the workload, making it
more cost-effective and scalable than traditional server-based approaches. Serverless
computing accelerates the development process by letting developers focus on devel-
oping applications rather than worrying about the supporting infrastructure. This
speeds up experimentation and iteration. It offers better cost-effectiveness, scalability,
and productivity and is becoming increasingly popular for various applications and
services.

10

2 Theoretical Background

2.2.1 Function As a Service (FaaS)

Functions as a Service (FaaS) is a cloud computing service that enables the execution
of code without worrying about building and maintaining the infrastructure required
for developing and launching an application. [14] The code is directly deployed with
FaaS, and the cloud provider automatically configures all the necessary resources to run
the code in response to specific events or triggers. One of the main benefits of FaaS is its
scalability. Because of the cloud provider’s automated resource adaption on demand,
the code can run concurrently on multiple servers, allowing it to scale up quickly
to handle heavy workloads. FaaS is frequently more cost-effective than traditional
server-based alternatives because you only pay for the computing resources required
for code execution. This increases the cost-effectiveness of FaaS for applications with
variable or unpredictable workloads. FaaS has numerous benefits, including scalability,
cost, and usability. Henceforth, it is getting more popular for various applications and
services.

Cold Start

A cold start is the delay or latency experienced when a function is called for the first
time or after it has been inactive for some time. Scaling to zero allows containers to
be run only when there is demand. Before starting the execution of a function, the
FaaS platform must allocate resources such as CPU, memory, and network and then
load the function’s code into those allocated resources. This can be a time-consuming
process, especially if the function’s codebase is large or complex or if the platform must
deploy additional infrastructure to support the function’s execution. If the function
has been inactive for an extended period of time, the platform may have reduced
the resources allocated to it in an effort to reduce costs. As a result, the following
invocation will require the platform to allocate resources and reload the function code,
resulting in another cold start. Cold starts can be a performance issue for functions
that require low latency or high throughput, as they can add significant overhead to
function invocations. [15] To mitigate the cold starts, pre-warming or keeping functions
warm involves keeping a function’s resources allocated and its code loaded in memory
to reduce the delay experienced on subsequent invocations. [16]

2.2.2 Kubernetes

Kubernetes is an adaptable, expandable, open-source container orchestration system
that manages containerized workloads and services. [17] Kubernetes simplifies con-
tainerized applications’ deployment, scaling, and management for organizations of
varying scopes. The platform operates on the principle of declarative configuration,

11

2 Theoretical Background

allowing developers to define their applications’ desired state while Kubernetes ensures
the attainment and maintenance of that state. This approach simplifies managing com-
plex, distributed applications, letting developers concentrate on coding rather than the
underlying infrastructure. In summary, Kubernetes is a robust platform for governing
containerized workloads and services, widely utilized by organizations of all sizes in
production environments.

OpenFaas

OpenFaaS [18][5] is a framework that enables the creation and deployment of server-
less functions utilizing Docker [19] containers. Designed for simplicity and a lightweight
experience, it empowers developers to promptly develop and deploy event-responsive
functions triggered by a broad spectrum of events. These functions can be crafted
in any programming language compatible with Docker containers and are built to be
highly scalable and efficient. [20]

By leveraging OpenFaaS, functions can be conveniently deployed as Docker containers
in any cloud or on-premises setting that supports Docker. [5] This demonstrates the
exceptional portability of OpenFaaS, making it suitable for various environments such
as public clouds, private clouds, and on-premises infrastructure [21].

12

3 Related Work

The existing body of research focuses on addressing the challenges stragglers pose in
traditional FL and serverless FL settings. This chapter explores the advancements
in serverless FL algorithms and architectures, emphasizing their scalability, cost-
effectiveness, and ease of deployment. Various techniques proposed to mitigate the
impact of stragglers in FL are discussed, including the introduction of Asynchronous
FL, which decouples the training process from synchronous execution to accelerate
convergence. Furthermore, the chapter examines the specific challenges encountered
in dealing with stragglers within the context of Serverless FL. It presents strategies
that are specifically designed to accommodate the resource constraints and scalability
features of serverless environments. This chapter establishes the foundation for the
proposed solutions presented in the subsequent chapters by providing a comprehensive
overview of the existing research.

3.1 Serverless Federated Learning

Utilizing serverless technologies for distributed ML training has been extensively
researched in the literature, but exploring FaaS functions for FL remains a relatively
new research direction. The first work in this domain was conducted by Chadha et
al., who proposed FedKeeper [2], a tool for orchestrating Deep Neural Network (DNN)
model training using FL for clients distributed across a combination of heterogeneous
FaaS platforms. Building on FedKeeper, Grafberger et al. introduced FedLess [3], a
system and framework for scalable FL using serverless computing technologies. FedLess

is cloud-agnostic, supports all major commercial and open-source FaaS platforms, and
enables the training of arbitrary DNN models using the TensorFlow library. Additionally,
it incorporates several important security features, such as authentication/authorization
of client functions using AWS Cognito, and supports privacy-preserving FL training
of models using Differential Privacy. Explicitly designed for serverless environments,
FedLess includes performance optimizations like global namespace caching, running
average model aggregation, and federated evaluation. This work also uses Fedless as a
system to perform FL on a FaaS environment, and the architecture and workflow will
be discussed in further detail in Chapter 4 (Figure 4.1, Figure 4.2).

13

3 Related Work

JIT [22] is an approach to FL aggregation called "just-in-time" aggregation proposed
by researchers at IBM Research AI. This approach maximizes the utilization of compute
resources by deferring the aggregation process, allowing for allocating resources to
other FL tasks or data center workloads. The authors demonstrate that using JIT
aggregation can reduce resource usage and does not increase the latency of FL jobs.

AdaFed [23] is an FL parameter aggregation mechanism that dynamically uses server-
less/cloud functions to scale aggregation resource-efficient and fault-tolerant manner.
AdaFed reduces state in aggregators, leverages serverless technologies, and is efficient
and expressive for programmers.

λ-FL [24] is an FL aggregation architecture that leverages serverless technology/cloud
functions to deploy and scale the aggregation process as necessary dynamically. λ-FL
reduces the state in aggregators and achieves fault tolerance with minimal effort. It uses
a message queue to record the presence of model updates and eliminates persistent
network connections between aggregators for increased reliability and fault tolerance.

3.2 Stragglers in Federated Learning

Resource and data heterogeneity pose challenges in large-scale FL systems. Maintain-
ing consistent performance and reliable communication across all clients throughout the
training process becomes impractical. In real-world scenarios, clients may experience
periods of offline status due to network limitations or resource constraints. Moreover,
the training speed of clients is influenced by the volume of data they possess and
their computational capabilities. Synchronous training mechanisms like FedAvg [1] are
susceptible to the presence of stragglers, where the slowest client dictates the overall
training pace. Additionally, offline clients that fail to respond in a timely manner can
lead to significant training delays.

Li et al. proposed a strategy called FedProx [25] to address the challenges of hetero-
geneity in FL. This algorithm builds upon FedAvg with two essential modifications.
Firstly, it introduces a customized loss function at the client level, incorporating a
proximal term to mitigate the impact of local updates’ fluctuations. This proximal term
helps regulate the deviation of the local model from the global model by considering
the squared difference in model weights during the loss computation, preventing them
from diverging significantly and enhancing the model’s robustness to heterogeneous
data distributions across devices. Secondly, FedProx introduces the concept of tolerating
partial work, allowing clients to adapt their workload based on hardware, network,
and battery constraints. This flexibility enables clients to perform a variable number of
local epochs to accommodate their resource limitations.

Karimireddy et al. proposed an FL strategy designed to address the challenges of

14

3 Related Work

varying local data distributions and the potential for biased updates, called SCAFFOLD

[26]. To mitigate the bias, they incorporate control variates, a method derived from
standard convex optimization literature that aims to reduce the variance of stochastic
gradients in finite sum minimization problems, thereby accelerating convergence [27].
By leveraging control variates, SCAFFOLD effectively diminishes the variance of local
updates, leading to a more stable aggregation process. Consequently, integrating
control variates enables identifying and eliminating device-specific biases from updates
prior to aggregation, resulting in improved accuracy and stability of global model
updates.

The SCAFFOLD algorithm utilizes a persistent state associated with each client,
known as a control variate, denoted as ci for client i. This control variate estimates
the gradient of the loss concerning the client’s local data. The server maintains all
client control variates’ averages as the global control variate, denoted as c, which
is communicated to the selected clients in each round. Clients undertake multiple
stochastic gradient descent (SGD) steps in each round, similar to the FedAvg approach
while incorporating an additional correction term, c− ci, to each stochastic gradient.
This correction term effectively reduces the bias of the update step on each client,
ensuring that the updates are much closer to the global update. This characteristic
enables SCAFFOLD to achieve provably faster convergence compared to vanilla FedAvg,
without imposing any assumptions on data heterogeneity.

When implementing SCAFFOLD, various options exist for selecting the control
variates. For instance as shown in Equation 3.1, one can choose to utilize the averaged
local gradients from the previous round as ci. Specifically, after performing local
updates, the local control variate is updated as follows:

c
(t+1)
i = c

(t)
i − c(t) +

1
Kηl

(x− yi) (3.1)

where the superscript t denotes the index of communication round, and K the
number of local updates, and ηl being the local learning rate. Compared with FedAvg,
intuitively, SCAFFOLD doubles the communication size per round due to the additional
control variates.

However, SCAFFOLD has several drawbacks. Firstly, it does not account for hetero-
geneous local progress, requiring clients to have the same number of local updates or
utilize dynamic batch sizes to maintain consistency. Secondly, it results in double the
communication size per round as both the local model weight and the local control
variates need to be transmitted. Moreover, SCAFFOLD relies on the participation of
all clients for optimal performance, and its effectiveness decreases as the client sample
ratio per round is reduced, as demonstrated in the work of Li and Diao [28].

Wang et al. [29] proposed a framework called FedNova for unifying FedAvg and

15

3 Related Work

FedProx. This showed that the computational heterogeneity across clients influences the
weighting scheme and argues that local updates should be normalized while averaging
to minimize heterogeneity induced by a different number of local update steps.

Similarly to FedProx [25], FedNova [29] addresses the non-IID data challenge by
combining FedAvg’s ideas with a momentum-based optimization technique. This
approach updates the global model using a weighted average of local models. It
incorporates a momentum term to improve convergence by maintaining a sense of
direction and reducing the effect of noisy local updates.

When clients perform varying local steps in vanilla FedAvg and other FL algorithms,
it leads to an implicit assignment of higher weights to clients with more local steps. To
address this inconsistency between the surrogate loss and the original loss, FedNova [29]
proposes a solution by normalizing the local updates with the number of local steps.
This normalization can be seen as a new weighting scheme that assigns lower weights
to clients with more local steps. However, FedNova’s method is specifically designed for
SGD, which limits its applicability. To address this limitation, Wang et al. [30] present a
generalized analysis that demonstrates the presence of inconsistency even when using
adaptive methods like Adagrad or Adam, even with the same number of local steps.

Chai, Ali, and Zawad proposed a Tier-based FL System called TiFL [31] to address
the impact of heterogeneity on training time and model accuracy in conventional FL
systems. TiFL employs a tier-based client selection approach to address the challenges
posed by heterogeneity in resource availability and data quantity. By dividing clients
into tiers and selecting clients from the same tier in each training round, TiFL mitigates
the impact of stragglers. Additionally, TiFL incorporates an adaptive tier selection
mechanism that dynamically updates the tiering based on observed training perfor-
mance and accuracy. This adaptive approach effectively manages the heterogeneity
arising from non-IID data and resource variations, improving the overall performance
of the FL system.

Cox, Chen, and Decouchant proposed a new approach to address slow clients in FL
called Aergia [32]. Unlike other approaches that use deadlines or send partially trained
models, Aergia freezes the computationally intensive part of the slow client’s model
and offloads it to a faster client that trains it using its own dataset. Aergia leverages
the spare computational capacity of strong clients and achieves high accuracy in low
training time by effectively matching clients’ performance profiles and data similarity.

Oort [33] is an FL strategy that enhances the efficiency of model training and testing
by employing a guided participant selection approach. It aims to identify and prioritize
valuable participants for FL training and testing, giving preference to clients whose data
can contribute the most to improving model accuracy and having the ability to perform
training quickly. The scoring mechanism in Oort evaluates clients based on two main
criteria: their utility in enhancing model accuracy and their capacity to execute training

16

3 Related Work

efficiently, all while maintaining privacy. To select high-utility clients, Oort employs an
online exploration-exploitation strategy that dynamically adapts the selection process
to account for outliers and achieve a balance between statistical and system efficiency.
The authors propose a practical approximation of statistical utility by utilizing the
gradient norm derived from the training loss. This statistical utility is then combined
with a global system utility, which considers the duration of each training round to
strike an optimal trade-off between statistical accuracy and system efficiency.

UOort
i = |Bi|

√

1
|Bi|

∑
k∈Bi

Loss(k)2

︸ ︷︷ ︸

Statistical utility U(i)

×

(
T

ti

)1(T<ti)×α

︸ ︷︷ ︸

Global sys utility

(3.2)

The clients are evaluated and selected based on the utility score shown in Equation
3.2. With Bi being the local data on client i, the aggregated training loss will be
multiplied by the local data size and the system utility, which is defined by the client’s
duration ti and the developer’s preferred duration T. α being the developer-specified
factor that the clients will be penalized by. Experimental results demonstrate that this
approach significantly improves both time-to-accuracy performance and final model
accuracy while respecting privacy constraints.

3.2.1 Asynchronous Federated Learning

Asynchronous online federated learning for edge devices with non-iid dataAsyn-
chronous FL has gained significant attention due to its potential to address the chal-
lenges of heterogeneity, scalability, and privacy in large-scale cross-device FL systems.
AFL combines the benefits of synchronous and asynchronous training mechanisms to
achieve improved efficiency and convergence. This section discusses several notable
approaches and their essential contributions.

SAFA [34], a semi-asynchronous protocol for fast FL with low overhead, is proposed
by Wu et al. The algorithm focused on low round efficiency and slow convergence in
scenarios where clients drop frequently. In order to mitigate the impact of stragglers,
the authors proposed novel designs for client selection and global aggregation. They
introduced a caching mechanism to prevent wasted contributions, storing a mapping
between clients and their updates in a cache maintained by the central server. Through
their experiments, they observed improvements in both accuracy and efficiency, albeit
at a slightly higher communication cost. While the custom client selection algorithm
proved effective in addressing the stragglers’ problem, it is worth noting that this
approach may encounter challenges when applied in a FaaS environment. One of
the drawbacks is overutilizing the clients, which could increase the experiment’s cost.

17

3 Related Work

Deprecated clients may persist throughout the training session, wasting contributions
and resource consumption. Additionally, their selection strategy does not leverage the
scale-to-zero capabilities of a serverless infrastructure, as it involves all clients in every
round without considering their current relevance or efficiency. Clients will always
run in some scenarios since they are called every round, increasing cost and resource
utilization.

FedAT [35] combines synchronous and asynchronous FL training using a tiering
mechanism. Clients are partitioned into logical tiers based on their response latency,
and each tier proceeds at its own pace. Faster tiers update the model synchronously,
while slower tiers asynchronously send model updates to the server. FedAT uses
a weighted aggregation heuristic to prevent bias toward faster tiers and a polyline
encoding compression algorithm to minimize communication costs.

Xie, Koyejo, and Gupta introduced FedAsync [36], an asynchronous federated opti-
mization algorithm. FedAsync leverages the parameter server architecture to coordinate
client invocations and synchronization. It employs a scheduler thread responsible for
periodically triggering clients to conduct training using the most latest global model.
Additionally, an updater thread is employed to receive client updates and perform
direct aggregation into the global model.

Chen et al. [37] proposed an Asynchronous Online FL framework ASO-Fed that
addresses the limitations of Federated Averaging in heterogeneous device environ-
ments. ASO-Fed enables continuous local data streaming by edge devices, allowing for
better model convergence than synchronous FL frameworks. The framework includes
regularization and a central feature learning module to learn inter-client relatedness
effectively. It also has a dynamic learning strategy for step-size adaptation on local
devices to mitigate the impact of stragglers.

To address scalability and privacy challenges in cross-device FL systems, FedBuff [38]
presents an asynchronous optimization framework. Utilizing buffered asynchronous
aggregation, FedBuff achieves scalability while maintaining compatibility with privacy-
preserving technologies such as Secure Aggregation and differential privacy. In FedBuff,
clients train and communicate asynchronously with the server, and client updates are
stored in a buffer. A server update occurs once a certain number of client updates
are in the buffer, allowing the server to choose the model update frequency instead
of coupling concurrency with the server model update as in synchronous FL. FedBuff

is compatible with privacy-preserving technologies such as Secure Aggregation and
differential privacy, with theoretical convergence guarantees in a smooth, non-convex
setting. The method outperforms synchronous and asynchronous FL approaches
and applies them in real-world settings. FedBuff provides further protection against
inference attacks on clients’ data using trusted execution environments.

Pisces is an asynchronous FL strategy that addresses the challenges of slow clients

18

3 Related Work

and data quality by conducting guided participant selection. It uses a novel participant
selection strategy that prioritizes clients with high-quality data and avoids stale compu-
tation. The algorithm also adopts an adaptive aggregation pace control that dynamically
adjusts the aggregation interval to match the running client’s speed. Pisces combines
techniques from FedBuff [38] for asynchronous FL and Oort [33] for client selection to
improve performance. However, unlike FedBuff, Pisces prioritizes participants with high
data quality as Oort does. By doing so, Pisces makes more efficient use of concurrency
quotas than FedBuff does.

Regarding scoring, Pisces measures the data quality of each participant by approxi-
mating its importance and weight using a loss function. The loss function estimates
the probability that a participant’s update will be selected for aggregation in each
round of FL training. In Equation 3.3, formulate the utility of a client, which is used as
scoring by respecting the roles that it is data quality and staleness play in improving
the global model. The first part for data quality remains the same as in Oort [33];
it uses the aggregated training loss. However, the second part does not include the
training duration in the scoring. It uses the estimated staleness of the client’s updates
τ̃i and moderates the penalty of the staleness with the factor of β. Based on the profiled
utilities, Pisces sorts clients and selects the clients with the highest utilities to train.

UPisces
i = |Bi|

√

1
|Bi|

∑
k∈Bi

Loss(k)2

︸ ︷︷ ︸

Data qualit y

×
1

(τ̃i + 1)β

︸ ︷︷ ︸

Staleness

(3.3)

Pisces demonstrates superior performance compared to Oort [33] and FedBuff [38],
achieving a 1.2x and 2.0x improvement in time-to-accuracy performance, respectively.
This significant advantage in training efficiency is achieved through an automated
participant selection and model aggregation process that is designed in a principled
manner.

3.3 Stragglers in Serverless Federated Learning

FedLesScan [4] proposed by Elzohairy, is an extension of the Fedless framework [3],
introduces a novel clustering-based semi-asynchronous training strategy designed
explicitly for serverless FL systems. Its primary objective is to mitigate the impact of
stragglers, which are slow clients characterized by resource and statistical heterogeneity,
on the overall system performance. The FedLesScan strategy consists of two key
components: an adaptive clustering-based client selection algorithm and a staleness-
aware aggregation scheme. FedLesScan employs the Density-Based Spatial Clustering of
Applications with Noise (DBSCAN) algorithm to enable efficient client selection. This

19

3 Related Work

algorithm partitions the behavioral data collected from clients into distinct clusters,
considering the ϵ parameter, which determines the maximum distance between two
samples for them to be considered in each other’s neighborhood. Outliers are separately
assigned to a single cluster. The clusters are then sorted based on their members’
average total Exponential Moving Average (EMA) in ascending order. By sampling
clients from the sorted clusters, FedLesScan ensures a gradual transition from faster
to slower clusters, considering both the client’s behavior and their current training
progress. An essential advantage of FedLesScan is that it does not require additional
computation on the client side. Clients are only required to be active during the training
process, making it well-suited for serverless environments. The strategy effectively
addresses the challenges posed by stragglers in FL systems, enhancing the overall
efficiency and robustness of the training process.

In Chapter 1.1, we extensively discussed the limitations and challenges associated
with FedlesScan. To address these issues, we present a novel asynchronous FL strategy
called FedlesScore. This new strategy is designed to overcome the difficulties encountered
with FedlesScan and provides an improved approach to asynchronous FL. By introducing
FedlesScore, we aim to enhance the performance and effectiveness of FL in challenging
environments.

3.4 Strategy Comparison

Table 3.1 provides a comprehensive comparison of various strategies aiming to
mitigate the impact of stragglers in synchronous and asynchronous FL approaches. We
listed the following features and compared the support of the strategies:

• FaaS Support: compatible with FaaS environments, leveraging the scalability and
cost-effectiveness of serverless computing

• Asynchronous Aggregation: decouples the training process from the synchroniza-
tion of client updates, allowing for more flexible and efficient communication.

• Performance-based Selection: Select clients based on their training duration.

• Client Efficiency Scoring: Takes the hardware heterogeneity into account during
selection, specifically, the relationship and inverse correlation between data size
and training time.

• Adaptive Penalty: Adjust the probability of selecting a client based on perfor-
mance and availability over time.

20

3 Related Work

FaaS
Support

Asynchronous
Aggregation

Performance
based

Selection

Client
Efficiency
Scoring

Adaptive
Penalty

FedProx [25]
FedNova [29]
SCAFFOLD [26]
TiFL [31] ✓ ✓

Aergia [32]
Oort [33] ✓

SAFA [34]
FedAT [35] ✓ ✓

FedAsync [36] ✓

FedBuff [38] ✓

Pisces [39] ✓ ✓ ✓

FedlesScan [4] ✓ ✓ ✓

FedlesScore ✓ ✓ ✓ ✓ ✓

Table 3.1: Strategies Feature Comparison

While FedProx [25], FedNova [29], SCAFFOLD [26], and Aergia [32] primarily focus on
optimizing the local training process and aggregation methods, they do not incorporate
intelligent client selection to optimize round performance as demonstrated in our work.
SAFA [34] tracks the status of clients’ local models to ensure their synchronization
with the global model but tends to overutilize clients and lacks suitability for the
FaaS environment. TiFL [31], FedAT [35], and FedlesScan [4] group clients based on
training duration tiers or clusters. However, they overlook the hardware and data
heterogeneity during the client selection process and lack full asynchrony regarding
aggregation. Oort [33] refines the client selection approach by considering both data size
and training duration but does not account for the correlation between these factors and
heterogeneous hardware and imposes a strict penalty on slow clients. FedAsync [36] and
FedBuff [38] focus on optimizing FL with asynchronous aggregation but adopt random
client selection. In contrast, Pisces [39] combines the methods from Oort and FedBuff,
refining the scoring approach, yet it still overlooks clients’ efficiency during scoring
and selection. Our proposed strategy overcomes these limitations by incorporating
comprehensive scoring metrics that account for both hardware and data heterogeneity,
ensuring intelligent client selection and efficient round performance.

21

4 System and Strategy Design

4.1 Fedless

Auth Server
AWS Cognito

Data / Model Transfer
Request/ Invocation

Aggregator Functionfn

FedLess Database
MongoDB

Parameter Server

Client Database

Client History

Client Registry

Mock Invoker

FedLess Controller
Stateful Process

Invoker

Client Selection Scheme

Aggregation Scheme

Strategy Manager

fe

Clients

Client Function

Client #1
AWS

Amazon
S3

Train Data

Train Data

Client Function Cloud Storage

Client #2
Google Cloud

Client #3
Azure

Train Data

Client Function Blob Storage

NFS

Client #N
Knative

Client Function
fnTrain Data

NFS

Client #N
Hosted On-Premise

Client Function
fnTrain Data

NFS

GPU Client #N
Hosted On-Premise

Client Function
fnTrain Data

Mock Client

Mock Aggregator

Figure 4.1: Modified Architecture of the FedLess platform. The highlighted components
shows the modified components and additions to the system.

FedLess [3] represents a significant improvement over its predecessor, FedKeeper [2],
in terms of both performance and security. As shown in Figure 4.2, the platform
architecture of FedLess consists of several components, including the client registry,

22

4 System and Strategy Design

 Load Global Model

2

4

6

Call Aggregator

FedLess Controller
Stateful Process

10

11

Fetch Invocation Token
1

FL Admin

Configure and
Start Round

Auth Server
AWS Cognito

5

Invoke Clients
with Tokens Validate Token

12 Invoke Clients
for Evaluation

Parameter Exchange

Request / Action

Param. Serv. Credentials

Cognito Auth Token

FedLess Database
MongoDB

Parameter Server

Client Database

Client History

Calculate and Upload
new Global Model

Aggregator Functionfn

Client #1

Calculate Local Update
(Optional) Add DP Noise

Client #N

7

 Update client behavior8.2

 Fetch/Update client behavior3/9

 Upload Client Update8.1

Client #2

Figure 4.2: The training workflow of a typical training round in FedLess

client invoker, parameter server, and aggregator. A crucial addition to the FedLess

architecture is an authentication entity powered by AWS Cognito [40], which ensures
that only the FedLess Controller can call the client functions and that functions are
verified before participating in the training. During a training round, the FedLess

Controller performs the necessary steps to prepare the training environment. The FL
admin configures the model, dataset, and hyperparameters before the start of training.
The controller fetches invocation tokens from the authentication server and invokes
the client function using these tokens. The client function contacts the authentication
server to validate the invocation token, and upon successful validation, the clients fetch
the latest global model from the parameter server and train locally. Once training is
complete, clients upload their new local models to the parameter server and notify the
controller. The controller invokes the local aggregation function, which combines the
clients’ results into a new global model. A subset of clients is selected for evaluation,
and the process repeats for subsequent rounds. FedAvg, FedProx, and FedlesScan are
currently the training strategies available for training client functions within FedLess.
Clients must submit a registration request to the authentication server to participate in
the training, which is approved by the FL admin who runs the FedLess Controller.

The fundamental concept of FedLess remained unchanged, but modifications were
made to the training workflow to support the asynchronous approach, as described in
detail in Section 4.2.1. The protocols for invoking and authenticating clients remain the

23

4 System and Strategy Design

same. In a typical training round, communication occurs among various components
of FedLess, as illustrated in Figure 4.2. Prior to training, the FL admin sets the model,
dataset, and hyperparameters. The controller obtains invocation tokens from the
authentication server and retrieves the clients’ behavioral data from the FedLess database
based on the selected training strategy. A subset of clients is then selected, and their
functions are invoked using the obtained tokens. The clients perform local training
using the latest global model from the parameter server. They upload their updated
local models and training progress information to the parameter server and client
history collection. After training completion, the client function signals the controller.
The controller updates the clients’ behavioral attributes based on the strategy and
invokes the aggregation function to create a new global model. Finally, the controller
invokes a subset of clients for evaluation, which is repeated for subsequent rounds.

4.1.1 Enabling GPU on Fedless

The default Kubernetes architecture does not support GPU splitting or fine-grained
allocation and sharing of GPU resources, which makes assigning GPU resources as
floating points challenging. [41] To address this issue, plugins like KubeShare [42]
and 4paradigm’s k8s vGPU scheduler [43] have been developed. KubeShare extends
Kubernetes to allow the allocation and sharing of GPUs as first-class resources for
scheduling. However, at the time of writing, KubeShare did not work, and we opted
for the 4paradigm k8s vGPU scheduler, which enables GPU sharing among tasks, device
memory control, virtual device memory, and GPU type specification. The vGPU
scheduler balances GPU usage across nodes and allows users to allocate resources
based on device memory and core usage, thereby increasing GPU utilization. Although
the vGPU scheduler is based on the NVIDIA device plugin and retains its official features,
it lacked proper limitations to GPU memory on pods at the time of writing. To address
this issue, we restricted memory allocation at the TensorFlow level, ensuring that one
client would not occupy all memory on the GPU.

After integrating 4paradigm’s k8s vGPU scheduler on the Kubernetes cluster, the
default setting splits the GPU into ten slots. This implies that despite only being
able to request one nvidia.com/gpu per pod, ten pods can utilize the GPU simul-
taneously. Without the vGPU scheduler from 4paradigm, this results in inadequate
GPU resources. Additionally, it is now possible to use GPUs directly on our pods and
OpenFaaS functions. Configuration files for different hardware settings for OpenFaaS

functions are provided in Listing 4.1, 4.2, and 4.3. For clients with one vCPU and
two vCPU, we simply request and limit the resources to the same amount to ensure
that the function has the exact amount of resources it needs without excess or deficit.
However, for GPU clients, specifying both the core percentage (nvidia.com/gpucores)

24

4 System and Strategy Design

0 5000 10000 15000 20000 25000 30000
Client Data Size

0

100

200

300

400

500

Cl
ie

nt
 D

ur
at

io
n

(S
ec

)

1 vCPU
2 vCPU
GPU

Figure 4.3: Training duration based on client hardware setting and Data size.

and memory percentage (nvidia.com/gpumem-percentage) is necessary if we do not
want the pod to utilize too many resources. Nevertheless, the GPU memory percentage
limit does not work as intended, so we use an additional environment variable called
gpu_memory_fraction to restrict the GPU memory usage at the TensorFlow level. It
is important to note that the vGPU scheduler is used solely to simulate GPU FaaS
functions and is not directly related to the study.

25

4 System and Strategy Design

Figure 4.3 illustrates the impact of data size on training duration across different
hardware settings on the Shakespeare dataset. The results were directly taken from
the experiments that will be described in detail in chapter 5, here the client data
size and average training time of each invocation across the whole experiment are
plotted in a scatterplot to visualize how the data size and hardware resources affect
the training duration. The results indicate that clients with only one virtual CPU
(vCPU) experience performance degradation as the data size increases. Similarly,
clients with two vCPUs can handle more data than their counterparts with one vCPU
but eventually face performance bottlenecks. However, clients equipped with GPUs
can handle larger data sizes with ease, even if they only leverage a fraction of the
GPU resources. Notably, utilizing two-fifths of the GPU resources is sufficient to
maintain the training duration and improve the efficiency of the training process. These
findings demonstrate the potential of GPUs to accelerate machine learning workloads
and highlight the importance of selecting appropriate hardware for data-intensive
workloads.

4.1.2 Mock Cold Start

The mock cold start feature for Fedless is a functionality that introduces an invocation
delay if a serverless function has not been invoked within a specified time. This delay
is designed to mimic the cold start time when a function is first invoked, and the
serverless platform needs to allocate resources to execute it. The cold start duration is
randomly sampled from a Gauss distribution [44], which is slightly different for each
invocation.

Since GPU is not available on any cloud provider’s FaaS to provide a baseline for
how long GPU cold start might take, we make the cold start behavior the same as
regular CPU clients. The primary purpose of this feature is to observe the cold starting
effect and provide a more realistic testing environment for serverless functions that may
not be invoked frequently. By introducing a synthetic delay for the first invocation after
a certain period has elapsed, we can better understand how the functions will perform
in a real-world scenario. When this feature is enabled, the controller will track the last
time each function was invoked. If a function has not been invoked for a specified
amount of time, Fedless will introduce a delay before executing the function on the
following invocation.

26

4 System and Strategy Design

version: 1.0
provider:

name: openfaas
gateway: http://127.0.0.1:8080

functions:
vcpu1−client:

lang: python3−http−debian
handler: ./client
image: fedless−cpu−client
limits:

cpu: 1000m
memory: 2048Mi

requests:
cpu: 1000m
memory: 2048Mi

Listing 4.1: YAML configuration for 1
vCPU client

version: 1.0
provider:

name: openfaas
gateway: http://127.0.0.1:8080

functions:
vcpu2−client:

lang: python3−http−debian
handler: ./client
image: fedless−cpu−client
limits:

cpu: 2000m
memory: 4096Mi

requests:
cpu: 2000m
memory: 4096Mi

Listing 4.2: YAML configuration for 2
vCPU client

version: 1.0
provider:

name: openfaas
gateway: http://127.0.0.1:8080

functions:
gpu−client:

lang: python3−http−debian
handler: ./client
image: fedless−gpu−client
limits:

cpu: 2000m
memory: 3000Mi
nvidia.com/gpu: 1
nvidia.com/gpucores: 18
nvidia.com/gpumem−percentage: 18

requests:
nvidia.com/gpu: 1
nvidia.com/gpucores: 18
nvidia.com/gpumem−percentage: 18

environment:
gpu_memory_fraction: 0.18

Listing 4.3: YAML configuration for GPU client

27

4 System and Strategy Design

Algorithm 1: Modifed FedLess [3] controller and client routines.

1 Fedless Controller:

2 Function ❚r❛✐♥❴●❧♦❜❛❧❴▼♦❞❡❧✭Clients, round✮:

3 selected = Select_Clients (clients, clientsPerRound)
4 Invoke_Clients (selected)
5 for each client in selected do

6 save invocation record to database (client, round, isColdStart)
7 set client invocation status to runnning ✴✴ ❇✉s② ❝❧✐❡♥t

8 end

9 while #results ≥ (clientsPerRound ∗ bu f f erRatio) do

10 sleep
11 end

12 Invoke_aggregator()
13 return

14 Fedless Client:

15 Function ❈❧✐❡♥t❴❯♣❞❛t❡✭hyperParameters, round✮:

16 Load model and dataset.
17 ❙t❛rt❴❚✐♠❡r✭✮

18 Train model
19 ❙t♦♣❴❚✐♠❡r✭✮

20 Save updated model to database. (results)
21 Add measured time to invocation record.
22 Update invocation status to complete. ✴✴ ❆✈❛✐❧❛❜❧❡ ❝❧✐❡♥t

23 return

4.2 FedlesScore

In the following sections, we will comprehensively describe our proposed asyn-
chronous strategy called FedlesScore for the Fedless framework, detailing the client
selection strategy and algorithm modifications necessary for effective asynchronous
communication. Furthermore, we will demonstrate the benefits of our approach
through a series of experiments and comparisons with existing synchronous federated
learning methods. By introducing an asynchronous strategy to FedLess, we hope to
contribute to the ongoing advancements in federated learning, ultimately enabling
more efficient and scalable distributed machine learning across diverse and dynamic
networks of devices.

We slightly modified the Fedless controller and client to implement our proposed

28

4 System and Strategy Design

strategy effectively. The resulting changes in the FedLess controller and FL client routines
are depicted in Algorithm 1, providing a comprehensive overview of the strategy’s
implementation. In the subsequent sections, we will delve into each aspect of the
strategy in detail.

4.2.1 Asynchronous Aggregation

To enhance the efficiency of the FedLess system, we aim to make the entire pro-
cess asynchronous. We propose a novel mechanism for triggering the global model
aggregation. Previously, FedLess invoked multiple clients and waited for them to com-
plete their local training before aggregating the global model. The only way to limit
the waiting time was to set a timeout on the sockets. However, slow clients might
push their updates to the parameter server after the round ends, and these updates
are considered valuable contributions. To address this issue, FedlesScan introduced a
staleness-aware aggregation scheme that allows delayed updates to be included during
the next aggregation function call, with a staleness weight based on how late the results
arrive.

We aim to aggregate delayed updates asynchronously without waiting for all results
to come in. To achieve this, we modify the trigger for aggregation to only wait for a
fraction of client results, known as the buffer ratio. The buffer ratio, a floating-point
value between 0 and 1, determines how many results we wait for before triggering
the aggregation process. For instance, if we select 100 clients per round and set the
buffer ratio to 0.6, we wait for only 60 client results, regardless of whether the result
is delayed or not. The client results can be from the current round, previous rounds,
or even further back in time. To prevent outdated results from contributing, we set a
threshold for the age of client results. In our experiments, we set the threshold to 5, but
we observed that most delayed results arrive within two rounds.

Staleness Weighting Function

weight =
ti

T
(4.1)

weight =
1

(T − ti + 1)0.5 (4.2)

Intuitively, larger staleness leads to an increased error in the global model updates
[36]. The weighting function should assign a weight of 1 to the current round’s results
and show a monotonically decreasing pattern with increasing round numbers. We have
experimented with different staleness weighting functions, including the one used in

29

4 System and Strategy Design

1 2 3 4 5 6 7 8 9 10
Result round index

1
2
3
4
5
6
7
8
9

10

Cu
rre

nt
 ro

un
d

in
de

x

1.0

0.5 1.0

0.33 0.67 1.0

0.25 0.5 0.75 1.0

0.2 0.4 0.6 0.8 1.0

0.17 0.33 0.5 0.67 0.83 1.0

0.14 0.29 0.43 0.57 0.71 0.86 1.0

0.12 0.25 0.38 0.5 0.62 0.75 0.88 1.0

0.11 0.22 0.33 0.44 0.56 0.67 0.78 0.89 1.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(a) Equation 4.1

1 2 3 4 5 6 7 8 9 10
Result round index

1
2
3
4
5
6
7
8
9

10

Cu
rre

nt
 ro

un
d

in
de

x

1.0

0.71 1.0

0.58 0.71 1.0

0.5 0.58 0.71 1.0

0.45 0.5 0.58 0.71 1.0

0.41 0.45 0.5 0.58 0.71 1.0

0.38 0.41 0.45 0.5 0.58 0.71 1.0

0.35 0.38 0.41 0.45 0.5 0.58 0.71 1.0

0.33 0.35 0.38 0.41 0.45 0.5 0.58 0.71 1.0

0.32 0.33 0.35 0.38 0.41 0.45 0.5 0.58 0.71 1.0

(b) Equation 4.2

Figure 4.4: Evaluation of staleness weights in the relationship between the current
round index and result round index

FedLesScan, as shown in Equation 4.1, with T being the current round index, and ti

round index of the client’s result. This function gradually increases the weight of one
round of late results as the round number increases. Therefore, we decided to adopt a
different weighting function proposed by Xie, Koyejo, and Gupta [36] (Equation 4.2).
As shown in Figure 4.4, we see the Staleness weighting in relationship to the current
and result round indexes. Here we can see that the weighting value from Equation 4.1
shown in Figure 4.4a is not consistent for the result with the same staleness, as we see
the values do not remain consistent in the diagonal axis like in Figure 4.4b for Equation
4.2.

In the next section, we will introduce an additional selection strategy to accompany
the asynchronous aggregation approach.

4.2.2 Score-based selection

In FedlesScan, clustering was performed solely based on training time, which is
appropriate in a homogeneous hardware setting where the training time is directly
proportional to the client’s data size, given that all clients share the same hardware and
model specifications. However, this assumption no longer holds true in a heterogeneous
environment, as illustrated in Figure 4.3, which shows that training duration can vary
across different hardware settings. Therefore, we want to do more than just sample and
select our clients based on one factor. We want to sample our clients based on both data

30

4 System and Strategy Design

and hardware characteristics (as mentioned in section 2.1.1). Therefore, we propose a
probabilistic client selection approach considering the client’s training duration and
data size.

Having made the process asynchronous, we are no longer directly impacted by the
presence of slow clients, often referred to as stragglers. Consequently, our focus shifts
to selecting clients that can contribute significantly within a reasonable timeframe.
Ideally, clients with large data sizes and access to powerful hardware resources should
be selected, as they can provide the most contributions in the shortest amount of time.
To this end, we introduce a scoring system for each client based on the size of their
data and hardware resources.

Gathering Behavioral Data

To score clients, information on their training behavior is necessary. We record and
collect the pure training time for each client’s invocation to evaluate the hardware
used. This only includes the duration of executing model.fit (Algorithm 1: Line 17-19),
excluding time spent on network communication and model initialization. To score
clients based on data cardinality, we also require the local data size for each client,
which is not a secret as it is required for aggregation with FedAvg. The batch size
and the number of epochs are also recorded to calculate the total number of local
updates on the clients during training, which remains static across all clients as listed
in Table 5.2. The booster value of each client is also recorded to determine the level of
promotion. This floating value is initialized to 1 and is updated each time the client is
not selected. When the client is finally selected again, the booster value is reset to 1. In
the next section, we will further describe the method of scoring and how we used the
collected information to select clients in more detail.

Client Scoring

Algorithm 2 presents the algorithm for scoring clients that would be used to select
clients each round to participate in the training round. It can be challenging to
determine a client’s machine learning performance based solely on their hardware
specifications (such as CPU model, frequency, and the number of cores), making it
necessary to conduct a benchmark to acquire a score. However, this approach can
be both expensive and inefficient. Alternatively, we use the training performance as
a hardware benchmark score (Client Efficiency Score). The algorithm calculates the
number of updates made by the client on the local model by multiplying the data size
Nc by the epoch size E and dividing the result by the batch size B. It then calculates
the number of updates per second by dividing the number of updates by the training

31

4 System and Strategy Design

Algorithm 2: Calculate Weighted Average Score: The β is the clients’ current
booster value, and T is the list of each training duration of the clients, and Nc is
the cardinality of the clients’ data; E is the number of epochs of the clients, B is
the client local batch size, and λ is the global defined decay rate

1 Function ❈❛❧❝✉❧❛t❡❴❙❝♦r❡✭β, T, N, E, B✮:

2 #updates← Nc×E
B

3 weighted_sum← ∑
k−1
i=0 (λ

i × (Nc
N ×

#updates
Ti

))

4 score← β× weighted_sum

∑
k−1
i=0 λi

✴✴ ♠✉❧t✐♣❧❡ ✇✐t❤ β t♦ ♣r♦♠♦t❡ ❝❧✐❡♥ts

5 return score

time (in seconds). A higher score indicates a more powerful hardware configuration.
To obtain a score that considers both client performance and training duration, we

record the duration of every training session and calculate an exponentially weighted
score. The exponentially weighted average uses exponentially decreasing weights as
the data point ages. The weights are assigned based on their relative recency in an
exponential decay fashion (λ0, λ1, λ2, ..., λi), meaning the weights decrease exponentially
as the data points move further into the past. λ is calculate with a smoothing factor α

1− α. The most recent data points are assigned higher weights, while older data points
receive lower weights. In terms of client scoring, we assign a higher weight to the most
recent invocations’ score and decrease the weight (λi, where i increases as the entry
gets older) for older entries.

However, we also want to promote slow clients and provide them an additional
opportunity to be selected. For this purpose, we introduce a booster value, which is
multiplied by the final score before sampling. The booster value is initially set to 1 for
all clients. Whenever a client is available (not busy training) but not selected for the
round, we increase its booster value by multiplying it with a promotion value greater
than 1; otherwise, the client will receive an unfavorable promotion, and the chances of
getting selected will have come even lower every time it did not get selected and got
the score got multiplied again by the promotion rate. This gradual increment of the
booster value ensures that the client’s score increases over time as it keeps being left
out of the selection. If the client is eventually selected, the booster value is reset to 1.

The decay rate λ and promotion rate β are determined by an adjustment rate ρ in the
range 0 < ρ ≤ 1. The adjustment rate controls the extent to which the score weight is
increased or decreased. Specifically, the decay rate is calculated as λ = 1− ρ, while the
promotion rate is calculated as β = 1 + ρ. By default, the value of ρ is set to 0.2, which
is also used in all of our experiments. If ρ is set to 1, both damping and promotion are

32

4 System and Strategy Design

disabled, resulting in equal weighting for all scoring and no promotion for clients that
have been consistently missing out.

Client Selection

Algorithm 3: Client selection

1 Function ❙❡❧❡❝t❴❈❧✐❡♥ts✭clients, clientsPerRound✮:

2 Characterize clients as uninvoked_clients and invoked_clients

3 Exclude busy clients from invoked_clients

4 if #uninvoked_clients ≥ clientsPerRound then

5 return Randomly sample clientsPerRound from uninvoked_clients.

6 end

7 Calculate #Scored_clients required from invoked_clients.
8 client_scores = []
9 for each client in invoked_clients do

10 Calculate Weighted Score for client.
11 Append Client Score to client_scores.
12 end

13 Calculate probability for all invoked_clients score
∑ client_scores

14 client_selection ← Sample invoked_clients based on probability
15 Reset booster value for all clients in client_selection

16 Increase booster value for all clients NOT in client_selection

(invoked_clients− client_selection)
17 return client_selection

The selection strategy is based on the score of each client, and it is described in
Algorithm 3. The goal is to sample a given number of clients (clientsPerRound) from
a list of available clients (clients). First, we distinguish clients who have already been
invoked from those who have not. Since clients must be invoked at least once to
calculate a score, we prioritize uninvoked clients first. If there are enough uninvoked
clients, we always choose them first. When we need more clients than the available
uninvoked ones, we have to sample based on the scoring system. Before selecting the
already-invoked clients, we exclude the busy clients still running (clients are marked as
busy in Algorithm 1 on Line 7, and marked available after completion on Line 22), as
we cannot assume that all functions autoscale when invoked again. We then calculate
the score for each remaining client as described in Algorithm 2 and append it to the
score list. After obtaining all scores, we need to normalize them into values between 0

33

4 System and Strategy Design

and 1; in Line 13, we convert them into the probability by summing up all the scores
and dividing each client’s score by the total score. (The sum of all clients’ probability
must equal 1.) The higher the client score, the higher the probability, and the more
likely the client will be selected for the next round. If a GPU has obtained a higher
score than a CPU client, the normalized probability would also be higher than the
CPU client and, therefore, have a higher chance of getting selected. After obtaining the
probability of each client, we randomly sample the required number of clients from the
list based on the probability. We reset the booster value to 1 for the selected clients so
that we do not keep promoting them. We increase the booster value for the available
but not selected clients by multiplying it with a promotion value.

Model Evaluation

To ensure a fair evaluation of the newest global model, we maintain a random
selection of clients during the evaluation process. The model’s performance is assessed
by testing it locally on each client’s data, and metric results such as accuracy and loss
are collected. To prevent bias in the evaluation metrics, we wait for all client results
until the timeout, even if some clients experience delays. Consequently, the presence of
stragglers may increase the total round duration, particularly for larger models.

34

5 Experiments

With the system improvements made to FedLess, we were able to implement additional
strategies and compare their performance to FedlesScore. Specifically, we compared
FedlesScore to three novel training strategies: FedAvg, FedProx, and SCAFFOLD, as well
as a previous work focused on serverless FL, FedlesScan. Through this evaluation, we
sought to gain insights into the performance expectations and limitations of FedLesScan.

5.1 Experiment Setup

To effectively scale our experiments and eliminate potential database bottlenecks,
we set up the FedLess parameter server with MongoDB [45] on a dedicated machine
equipped with 10 vCPUs and 45GB of RAM. This machine also hosts the file server,
providing 200GB of storage to accommodate the four datasets utilized in our study.

We deployed the aggregator function on a self-hosted, single-node Kubernetes cluster
with OpenFaaS deploy, which was configured with 45GB of RAM and 10 vCPUs to
ensure sufficient resources for efficient operation.

For the client functions, we aimed to simulate the environment of Google Cloud
Functions by configuring each client’s hardware based on the specifications provided
by Google Cloud. In total, we created 200 clients with varying resource allocations:

Client Type vCPU RAM vGPU # Clients Cost based on
Cost

Per 100 seconds

CPU 1 vCPU 2048MB - 130 1 vCPU GPC function 0.0029
CPU 2 vCPU 4096MB - 50 2 vCPU GPC function 0.0058
GPU - - 0.2 vGPU 20 NVIDIA Tesla P100 0.0406

Table 5.1: Client type distribution and cost estimate

As listed in Table 5.1, 130 clients were assigned 1 vCPU and a memory limit of
2048MB, mimicking the configuration of lower-end Google Cloud Functions. 50 clients
were allocated 2 vCPUs and a memory limit of 4096MB, representing mid-range con-
figurations. The remaining 20 clients were hosted on 5 GPU machines, each equipped
with a single Nvidia P100 GPU, to simulate higher-end hardware capabilities found in

35

5 Experiments

more demanding federated learning scenarios. This diverse range of client configu-
rations enabled us to study the behavior and performance of our proposed methods
under various hardware settings, thereby providing a comprehensive evaluation of
their effectiveness in real-world federated learning applications.

5.1.1 Benchmarks and Datasets

In our study, we utilized four datasets from various benchmarks to evaluate our
proposed strategy. These datasets are chosen from different domains, including image
classification, speech recognition, and language modeling, to provide a conclusive
evaluation of the new strategy’s effectiveness.

The first dataset we used is the widely known MNIST [46] Handwritten Image
Database, containing 60,000 training images and 10,000 central evaluation images.
These images are randomly distributed among 200 clients.

Two datasets were obtained from the LEAF [47] benchmarking framework for Fed-
erated Learning: FEMNIST for image classification and the Shakespeare dataset for
character prediction. The FEMNIST dataset is an extended version of the MNIST

dataset and contains over 800,000 images distributed among clients. The Shakespeare

dataset consists of sentences from the complete works of William Shakespeare [48], with
over 4 million samples, each of length 80 characters, distributed among clients.

The FedScale [49] benchmark, which includes various large-scale realistic benchmark
datasets for object detection, word prediction, and speech recognition, is also used in
our study. We chose the Google Speech Commands dataset [50] from this benchmark,
which focuses on real-world speech recognition. This dataset is designed to create
simple and useful voice interfaces for applications that use common words like "Yes,"
"No," and directions and comprises 105,000 1-second audio files distributed among
2,618 clients.

By employing these diverse datasets, we ensure that our evaluation is comprehensive
and can robustly assess the proposed strategy’s performance across different domains.

5.1.2 Model Configuration

The model architecture used for each experiment is tailored to match its correspond-
ing task. Table 5.2 provides a comprehensive overview of all configurations, such
as the number of epochs, batch size, learning rate, and optimizer employed in each
experiment. The MNIST [46], FEMNIST, and Shakespeare experiments all utilize the
same model architecture outlined in the original LEAF [47] benchmark paper. For the
MNIST experiment, we employ a 2-layer CNN with a 5x5 kernel, and a 2x2 max pooling
layer follows each convolutional layer. The model concludes with a fully connected

36

5 Experiments

Dataset
Hyper Parameters

Epochs Batch Size Optimizer Learning Rate

MNIST [46] 5 10 Adam 0.001
FEMNIST [47] 5 10 Adam 0.001
Shakespeare [47][48] 1 32 SGD 0.8
Speech Command [50] 5 5 Adam 0.001

Table 5.2: Model hyperparameters by Datasets

Benchmark Dataset # Clients
Clients

Per Round

Target

Accuracy

Training

Timeout

- MNIST 200 100 0.98 100
LEAF FEMNIST 200 100 0.7 150
LEAF Shakespeare 200 100 0.4 550
FedScale Speech Command 200 100 0.75 60

Table 5.3: Training configuration by Datasets

layer with 512 neurons and a ten-neuron output layer with softmax activation. In total,
the model contains 582,026 trainable parameters.

Two datasets were chosen from the LEAF benchmark, with FEMNIST employing a
2-layer CNN with a 5x5 kernel. Similar to MNIST, a 2x2 max-pooling layer is applied
to each convolutional layer. The model ends with a fully connected layer with 2048
neurons, followed by an output layer with 62 neurons and softmax activation. This
final model has 6,603,710 trainable parameters.

For the Shakespeare dataset, a Long Short Term Memory (LSTM) [51] recurrent neural
network is utilized. The model comprises an embedding layer with a size of eight,
followed by two LSTM layers with 256 units, and an output layer with a size of 82 and
softmax activation. The final model has 818,402 trainable parameters.

In contrast to replicating models from the FedScale benchmark, a simple CNN
is designed to compare different strategies for the FedScale benchmark experiment.
Although the designed model only serves to demonstrate any differences, it is as
accurate as the models from the original FedScale paper. The model architecture consists
of two identical blocks, followed by an average pooling layer and an output layer with
35 neurons and softmax activation. Each block consists of two convolutional layers with
a 3x3 kernel and a max-pooling layer. To prevent overfitting, a dropout layer follows
the max-pooling layer, with a rate of 0.25. The model has 67,267 trainable parameters.

We maintained consistency in the number of clients across all datasets and models
used in the experiment, with a total of 200 clients and 100 clients sampled per round.

37

5 Experiments

Additionally, we set different target accuracies and training timeouts for each model
since the training duration varies across models. Detailed specifications are provided
in Table 5.3.

5.1.3 Evaluation Metrics

This section provides an overview of the metrics and evaluation methodologies used
to assess FedlesScore and compares its results to those of FedAvg, FedProx, SCAFFOLD,
and FedlesScan. Our evaluation covers four aspects, namely:

• Model performance, which includes accuracy and loss.

• Selection bias, which measures the variation in client invocations during training.

• Cold start ratio, which assesses the proportion of client functions that have been
inactive for a given amount of time, must reinitialize its runtime.

• Strategy efficiency, which evaluates the total time and cost.

By examining these aspects, we aim to provide a comprehensive evaluation of the
effectiveness of FedlesScore in comparison to other federated learning strategies.

In order to evaluate the performance of our model, we utilize two key evaluation
metrics: final accuracy and accuracy progress throughout the training process. The
final accuracy is measured by the achieved accuracy of the model after a predetermined
number of training rounds or upon reaching the target accuracy. To ensure a realistic
evaluation in a highly scalable FL system, we adopt a distributed evaluation approach.
Randomly selected clients are chosen to evaluate the model on their respective test
datasets. The number of clients participating in the testing phase corresponds to the
number of clients called per round. Each client calculates its own accuracy using
Equation 5.1. To obtain a weighted average accuracy, we consider the clients’ relative
dataset cardinalities in relation to the total cardinality of the test dataset (N), as depicted
in Equation 5.2. This evaluation approach provides a comprehensive assessment of the
model’s performance, accounting for the varying sizes of client datasets.

Accuracy =
Number o f correct predictions

Number o f predictions
(5.1)

¯Accuracy = ∑
∀c∈C

(
nc

N
× Accuracy) (5.2)

In order to assess the potential bias of the client selection scheme, we make use of
variance plots to display the frequency with which each client is selected throughout

38

5 Experiments

the training session. To measure bias, we compute the difference between the frequency
of the least-called client and the most-called client [34]. In light-straggler scenarios,
low bias is ideal, while in straggler-heavy situations, it may be necessary to prioritize
reliable clients and thus increase bias. By examining the variance plots, we can gain
insights into the effectiveness of the client selection scheme and identify any potential
biases that may affect the performance of the system.

Cold Start Ratio =
∑∀c∈C #Cold invocations o f Client c

∑∀c∈C #Total invocations o f Client c
(5.3)

Given that our experiment was conducted on OpenFaaS on our own server, the cold
start issue was not a concern as the containers were always ready as a function due to
the absence of scale to zero (Only available with OpenFaaS Pro), which allows systems
to reduce resource allocation to minimize costs dynamically. To simulate the cold start
effect and compare it across different strategies, we implemented a mock cold start
in Fedless. For each client invocation, we included a boolean tag indicating whether
it was cold-started. Using the time of the last call, we calculated the total number
of cold-start invocations and divided it by the total number of invocations across all
clients, as shown in Equation 5.3. It is important to note that this metric allows us to
assess the impact of cold starting on the overall system performance and compare the
effectiveness of different strategies.

Finally, we conducted a comprehensive analysis of our experiments’ time and cost
to evaluate the system’s efficiency. Regarding time analysis, we measured the total
time each strategy took to reach the targeted accuracy from the beginning to the end
of the training process. For cost evaluation, we utilized OpenFaaS functions on our
own server. However, since the cost for this configuration is not directly calculable
using standard FaaS providers, we employed the Google Cloud Platform (GCP) cost
computation model [52][53] to obtain a more accurate cost estimate. To provide more
transparency and accuracy in our cost analysis, we created a table that lists the pricing
and hardware configurations for each type of client, which can be found in Table 5.1.
To ensure accurate cost evaluation, we measured the runtime for each client invocation
and used different cost plans for Tier 1 based on the hardware resources provided for
the client. Specifically, for clients with one vCPU, we configured them with identical
hardware and utilized the pricing of GCP functions with 1 vCPU and 2048MB Memory.
For clients with 2 vCPU, we employed pricing with the equivalent hardware resource
on GPC Function [52]. For GPU clients, we had to calculate the cost based on the
hourly cost for the GPU unit and the fraction of GPU resources utilized during training
[53]. The time and cost analyses provide valuable insights into the system’s efficiency,
especially in heterogeneous hardware and data size settings. These analyses help to
determine the most suitable strategy for the given scenario, which can significantly

39

5 Experiments

impact the overall cost of the system in real-world applications where resources are
limited.

5.2 Accuracy and Model Performance

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Training duration (Minutes)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

 (%
)

FedAvg
FedProx
FedlesScan
SCAFFOLD
FedlesScore

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Training duration (Minutes)

0.0

0.5

1.0

1.5

2.0

Lo
ss

(a) MNIST

0 10 20 30 40
Training duration (Minutes)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

 (%
)

FedAvg
FedProx
FedlesScan
FedlesScore

0 10 20 30 40
Training duration (Minutes)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Lo
ss

(b) FEMNIST

Figure 5.1: Comparison of perforamace metrics (Accuracy, Loss) between strategies on
different datasets.

40

5 Experiments

0 50 100 150 200 250
Training duration (Minutes)

0.20

0.25

0.30

0.35

0.40

Ac
cu

ra
cy

 (%
)

FedAvg
FedProx
FedlesScan
SCAFFOLD
FedlesScore

0 50 100 150 200 250
Training duration (Minutes)

2.2

2.4

2.6

2.8

3.0

3.2

Lo
ss

(c) Shakespeare

0 10 20 30 40
Training duration (Minutes)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

 (%
)

FedAvg
FedProx
FedlesScan
FedlesScore

0 10 20 30 40
Training duration (Minutes)

1.0

1.5

2.0

2.5

3.0

3.5

Lo
ss

(d) Speech Command

Figure 5.1: Comparison of performance metrics (Accuracy, Loss) between strategies on
different datasets.

In this section, we will assess the performance of different strategies by comparing
their model accuracy and loss across various datasets. We will analyze the convergence
of the models and how different strategies affect the overall performance. This analysis
will provide insights into the effectiveness of each strategy in achieving high-quality
models while maintaining low loss values.

41

5 Experiments

Figure 5.1a shows the performance of different strategies on the MNIST dataset,
where all strategies have similar results as the clients have only 300 samples of data
and the training iteration duration is relatively low. Among the strategies, FedlesScan
slightly outperforms others as the data is uniformly distributed, and clustering based
on training time makes sense. On the other hand, for the FEMNIST dataset shown
in Figure 5.1b, FedAvg performs better than FedlesScan as the data and hardware
distribution is heterogeneous, and clustering based solely on training time is no longer
appropriate. SCAFFOLD is intended explicitly for homogeneous local training steps,
where all clients have the same data size or the batch size is dynamically adjusted to
the data size to ensure consistent updates across all clients, which is not the case for our
setup; therefore, we excluded SCAFFOLD in the experiment on FEMNIST. FedlesScore

outperforms all other strategies and achieves the targeted accuracy with a speedup of
1.73x compared to FedAvg. There is a significant difference between strategies for the
Shakespeare dataset, as shown in Figure 5.1c. FedlesScore outperforms FedAvg with a
speedup of 7x, while FedlesScan slightly exceeds FedAvg with a speedup of only 1.06x.
In Figure 5.1d, we show the performance of different strategies on the Speech Command

dataset. SCAFFOLD is again excluded from the experiment due to the heterogeneous
number of local steps. FedlesScan is faster than FedAvg with a speedup of 1.87x, while
FedlesScore has a speedup of 6.19x, which is almost tripled compared to FedAvg. Overall,
the results show that FedlesScore outperforms other strategies in most cases, except for
MNIST where all strategies have similar performance. FedlesScan also performs well in
certain cases, especially when the data is uniformly distributed.

Compared to other strategies, FedlesScore consistently achieves the target accuracy
faster. This can be attributed to its asynchronous approach and intelligent selection
mechanism, which prioritizes clients with larger data sizes and more powerful compu-
tational resources, including GPUs.

5.3 Client Selection Bias

This subsection focuses on evaluating the client selection process within the strategies.
We will use violin plots to visualize the distribution of selected clients and identify
any potential biases or skewness in the selection process. The violin plots presented
in Figure 5.2 offer valuable insights into the bias encountered by our strategy. The
distribution depicted on the y-axis represents the number of invocations per client.
The height difference between the highest and lowest points in the distribution is a
measure of bias, with a greater height indicating a bias towards a specific subset of
clients. Conversely, a lower height indicates a minor difference between the most and
least invoked clients. Moreover, the plot’s width at a particular point X can be used to

42

5 Experiments

discern the proportion of clients called X times compared to an arbitrary point Y. If the
width at point X is more significant than at point Y, it indicates that more clients were
called X times than Y times. This explanation is instrumental in comprehending the
performance of our strategy on the four datasets.

Fe
dA

vg

Fe
dP

ro
x

Fe
dl
es

Sc
an

SC
AF

FO
LD

Fe
dl
es

Sc
or
e

0

5

10

15

20

25

In
vo

ca
tio

ns
/C
lie

nt

(a) MNIST
Fe

dA
vg

Fe
dP

ro
x

Fe
dl
es

Sc
an

Fe
dl
es

Sc
or
e

5

10

15

In
vo

ca
tio

ns
/C
lie

nt

(b) FEMNIST

Fe
dA

vg

Fe
dP

ro
x

Fe
dl
es

Sc
an

SC
AF

FO
LD

Fe
dl
es

Sc
or
e

5

10

15

20

In
vo

ca
tio

ns
/C
lie

nt

(c) Shakespeare

Fe
dA

vg

Fe
dP

ro
x

Fe
dl
es

Sc
an

Fe
dl
es

Sc
or
e

0

10

20

30

In
vo

ca
tio

ns
/C
lie

nt

(d) Speech Command

Figure 5.2: Comparison of client’s invocation frequency distribution between strategies

Figure 5.2a depicts the bias observed by our selection strategy for various federated
learning methods, including FedAvg, FedProx, SCAFFOLD, FedLesScan, and FedlesScore,
on the MNIST dataset. Random client selection is employed by FedAvg, FedProx,
and SCAFFOLD, resulting in similar behavior that does not differentiate between
stragglers and reliable clients. In contrast, FedLesScan is more concentrated in the
middle, indicating an equitable distribution of training among clients, with only a
few outliers at the top and bottom. The FedlesScore approach also shows a relatively
normal distribution of client invocations, with most clients being invoked between 5-15
times. However, the line stretches out more than other strategies, with some clients
receiving over 25 invocations and few with as little as 5. As the experiment with MNIST

involves the equal distribution of data among all clients, with each client possessing

43

5 Experiments

300 samples, the scoring primarily differentiates based on the training time, which
is mainly impacted by the hardware resources of the clients. Notably, the rise in the
curve’s upper region is more pronounced for GPU clients, as they are faster and receive
more frequent invocations than other clients. However, since MNIST is a relatively easy
dataset to train, performance is similar among different hardware configurations.

Figure 5.2b displays the distribution of clients based on the number of invocations
per client for various federated learning methods, including FedAvg, FedProx, and
FedlesScan, on the FEMNIST dataset. FedAvg and FedProx exhibit no clear bias as they
randomly select clients. In contrast, FedlesScan is concentrated in the middle. However,
it starts favoring clients with lower training durations, such as clients with smaller data
sizes or more computational resources, like GPU clients. Conversely, clients with more
extensive data sizes and fewer computational resources are treated as stragglers and are
not included as frequently. However, FedlesScore favors some clients at the top, mainly
GPU clients and clients with 2 vCPUs. Yet, the remaining plot is relatively smooth, as
the probabilistic approach ensures that clients always have a chance of being selected,
even with longer training times.

Figure 5.2c demonstrates the distribution of invocations per client for various fed-
erated learning methods on the Shakespeare dataset, which is similar to the previous
datasets analyzed. FedAvg, FedProx, and SCAFFOLD exhibit mostly normal distribu-
tions, while FedlesScan shows a distribution similar to that of the FEMNIST dataset.
In contrast, FedlesScore exhibits a slightly fatter end on the bottom compared to the
FEMNIST dataset due to the model’s relative difficulty and the noticeable impact of
data size. As shown in Figure 4.3, the relationship between training time and hardware
resources is significant, especially as the data size increases for clients with only one
CPU. Such clients may not complete training before the round ends and, consequently,
be available for selection again. In contrast, clients with more computational resources
complete training earlier and are available for selection again. This finding underscores
the importance of selecting appropriate hardware for data-intensive workloads and
optimizing the selection strategy to improve overall system performance.

Figure 5.2d highlights the differences in behavior across various scenarios for different
federated learning methods on the Speech Commands dataset. FedAvg and FedProx exhibit
a normal distribution, which is expected. FedlesScan also shows a normal distribution
but with lower variance compared to both FedAvg and FedProx. The results are similar
to those obtained with the MNIST dataset, as the model for the Speech Command dataset
requires relatively small computational resources to compute and optimize across
different data sizes. Interestingly, FedlesScore exhibits a distribution that differs from
that of the MNIST dataset. This is because the data is not equally distributed among
clients in this experiment, and training duration is one of many factors considered in
the selection process. The data size of the clients plays a more significant role, as the

44

5 Experiments

training duration is similar among clients compared to the experiment on Shakespeare.
These findings underscore the importance of selecting appropriate hardware and
optimizing the selection strategy to improve overall system performance, particularly
in scenarios with uneven data distributions.

5.4 Cold Start Ratio

Fe
dA

vg

Fe
dP

ro
x

Fe
dl
es
Sc

an

SC
AF

FO
LD

Fe
dl
es
Sc

or
e

0.0

0.2

0.4

0.6

0.8

1.0

R
at
io

7%

93%

6%

94%

7%

93%

7%

93%

4%

96%

warm
cold

(a) MNIST

Fe
dA

vg

Fe
dP

ro
x

Fe
dl
es
Sc

an

Fe
dl
es
Sc

or
e

0.0

0.2

0.4

0.6

0.8

1.0

R
at
io

12%

88%

18%

82%

12%

88%

7%

93%

warm
cold

(b) FEMNIST

Fe
dA

vg

Fe
dP

ro
x

Fe
dl
es
Sc

an

SC
AF

FO
LD

Fe
dl
es
Sc

or
e

0.0

0.2

0.4

0.6

0.8

1.0

R
at
io

78%

22%

78%

22%

81%

19%

77%

23%

7%

93%

warm
cold

(c) Shakespeare

Fe
dA

vg

Fe
dP

ro
x

Fe
dl
es
Sc

an

Fe
dl
es
Sc

or
e

0.0

0.2

0.4

0.6

0.8

1.0

R
at
io

5%

95%

6%

94%

6%

94%

3%

97%

warm
cold

(d) Speech Command

Figure 5.3: Cold start ratio between strategies

In this part, we will examine the cold start ratio of the serverless federated learning
strategies. The cold start ratio represents the proportion of invocations that occur after
a client has not been called for a certain period. We will evaluate the impact of this
phenomenon on model training and identify which strategies are more prone to cold
starts, which can affect the overall efficiency of the learning process.

45

5 Experiments

Figure 5.3 presents the effect of cold start on different strategies across various
datasets. The figure shows that the cold start ratio is minimal for MNIST and Speech
Command datasets, as the round duration is relatively short, and the time between
each round and client invocation is also short, resulting in a higher chance of a client
being invoked again within a short period. However, for FEMNIST, as shown in Figure
5.3b, the cold start ratio is more prominent, as the average round duration is longer
than the other datasets, as can also be seen in Figure 5.8. FedlesScore outperforms other
strategies, especially for FEMNIST, as it has a shorter average round duration than
other strategies.

Furthermore, Figure 5.8c shows a significant difference between FedlesScore and other
strategies, as the round duration remains lower than other methods. The client selection
approach in FedlesScore also promotes clients with a factor every round it is not selected,
contributing to the reduced round duration.

FedlesScore consistently achieves a low cold start ratio across all datasets in our exper-
iments, thanks to its asynchronous approach and well-designed promotion mechanism
that prevents clients from missing multiple rounds for an extended period of time.

5.5 Client Size

Here, we will evaluate the performance of strategies with different client sample
sizes per round (50, 100, 200). By analyzing the impact of client size on the model’s
performance, we can determine the optimal sample size for each strategy and dataset.

Figure 5.4 shows the accuracy and loss over time for three different sample sizes,
where FedAvg and FedProx perform similarly regardless of the client sample size.
FedLesScan performs better with a smaller sample size, as the cluster sizes in a hetero-
geneous hardware setting are smaller. It is more likely to have enough clients in the
same cluster to select for the training round. Increasing the sample size may include
clients outside the cluster, leading to potential stragglers in the round. In contrast,
as discussed in Chapter 3, SCAFFOLD performs better with a larger sample size as
the global variant becomes more accurate with more clients’ results. Li and Diao [28]
conducted a more in-depth comparison, revealing that SCAFFOLD fails to converge
when only 10% of the total clients are selected per round. FedlesScore, on the other
hand, shows no significant impact on convergence speed with different sample sizes,
as it only waits for a specific ratio of clients to complete the training before aggregating
results and invoking new clients from the pool.

46

5 Experiments

0 50 100 150 200 250
Training duration (Minutes)

0.20

0.25

0.30

0.35

0.40

Ac
cu

ra
cy

 (%
)

FedAvg
FedProx
FedlesScan
SCAFFOLD
FedlesScore

0 50 100 150 200 250
Training duration (Minutes)

2.2

2.4

2.6

2.8

3.0

3.2

Lo
ss

(a) 50 clients per round with a total of 200 clients.

0 50 100 150 200 250
Training duration (Minutes)

0.20

0.25

0.30

0.35

0.40

Ac
cu

ra
cy

 (%
)

FedAvg
FedProx
FedlesScan
SCAFFOLD
FedlesScore

0 50 100 150 200 250
Training duration (Minutes)

2.2

2.4

2.6

2.8

3.0

3.2

Lo
ss

(b) 100 clients per round with a total of 200 clients.

Figure 5.4: Comparison of performance metrics (Accuracy, Loss) between strategies on
Speech Command dataset with different client sampling per round.

47

5 Experiments

0 50 100 150 200 250
Training duration (Minutes)

0.20

0.25

0.30

0.35

0.40

Ac
cu

ra
cy

 (%
)

FedAvg
FedProx
FedlesScan
SCAFFOLD
FedlesScore

0 50 100 150 200 250
Training duration (Minutes)

2.2

2.4

2.6

2.8

3.0

3.2

Lo
ss

(c) 200 clients per round with a total of 200 clients.

Figure 5.4: Comparison of performance metrics (Accuracy, Loss) between strategies on
Speech Command dataset with different client sampling per round.

48

5 Experiments

5.6 Ablation Studies

0 2 4 6 8 10 12 14 16
Training duration (Minutes)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

 (%
)

FedlesScore - 0.3
FedlesScore - 0.6
FedlesScore - 0.7
FedlesScore - 0.8

0 2 4 6 8 10 12 14 16
Training duration (Minutes)

1.0

1.5

2.0

2.5

3.0

3.5

Lo
ss

Figure 5.5: Ablation Study: Performance metrics on Speech Command dataset

In this subsection, we will conduct ablation studies to compare the performance of
the newly proposed strategy with score-based selection and random selection. We will
examine various plots and metrics in depth to understand the strengths and weaknesses
of each approach. This comparison will allow us to identify the most effective strategy
and understand the key factors contributing to its success.

Due to the synchronous evaluation process, it takes considerable time to evaluate
the Shakespeare dataset, given some clients’ low computational resources and large
data sizes. This allows slower clients sufficient time to catch up, minimizing the
difference between score-based and random selection. Hence, we choose to use the
Speech Commands dataset for the ablation study. Before comparing the results of score-
based selection with random selection, we first examine the impact of varying buffer
ratios on FedlesScore. Figure 5.5 presents the performance of FedlesScore with score-based
selection for different buffer ratios. The best performance is achieved with a buffer ratio
of 0.3, outperforming the next best with a buffer ratio of 0.6, with a speedup of 1.7x.
The slowest experiment in FedlesScore (Buffer ratio = 0.8) has a speedup of 2.4x. Given
that 0.3 is the best buffer ratio for score-based selection, we use this ratio to compare
with the random selection method.

In Figure 5.6, we compare the performance of score-based and random selection. We
observe that FedlesScore outperforms all experiments with random selection, with a
speedup of 1.73x over the fastest result from random selection. Even when compared

49

5 Experiments

0 10 20 30 40
Training duration (Minutes)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

 (%
)

FedlesScore - 0.3
w/ Random
FedlesScore - 0.6
w/ Random
FedlesScore - 0.7
w/ Random
FedlesScore - 0.8
w/ Random
FedlesScore - 0.3

0 10 20 30 40
Training duration (Minutes)

1.0

1.5

2.0

2.5

3.0

3.5

Lo
ss

Figure 5.6: Ablation Study: Performance metrics on Speech Command dataset

Fe
dl

es
Sc

or
e

- 0
.3

w/
 R

an
do

m

Fe
dl

es
Sc

or
e

- 0
.6

w/
 R

an
do

m

Fe
dl

es
Sc

or
e

- 0
.7

w/
 R

an
do

m

Fe
dl

es
Sc

or
e

- 0
.8

w/
 R

an
do

m

0

10

20

30

In
vo

ca
tio

ns
/C

lie
nt

Fe
dl

es
Sc

or
e

- 0
.3

Fe
dl

es
Sc

or
e

- 0
.6

Fe
dl

es
Sc

or
e

- 0
.7

Fe
dl

es
Sc

or
e

- 0
.8

0

10

20

30

Figure 5.7: Ablation Study: Selection Bias on Speech Command dataset

to the best result from random selection with a buffer size of 0.8, FedlesScore with the
score-based selection still achieves a speedup of 1.87x. These findings indicate that
score-based selection outperforms random selection in all scenarios.

Figure 5.7 provides further insights into the selection bias of each experiment. In
the case of random selection, the experiments are consistent across different buffer
ratios. The shape is comparable to FedAvg in Figure 5.2d, as all client selections are
chosen randomly. As for score-based selection, the experiments also exhibit a similar
level of consistency across different buffer ratios. However, as depicted in Figure 5.2d,
FedlesScore displays a biased selection toward clients with more powerful computational

50

5 Experiments

resources and larger data sizes, resulting in less frequent invocations of clients with
smaller data sizes and slower hardware.

Based on our experimental results, it is evident that score-based selection is superior
to random selection in the asynchronous setting. FedlesScore outperformed all experi-
ments with random selection, even when compared to the best result obtained from
random selection. Hence, score-based selection is the preferred approach in this setting.

5.7 Time & Cost Analysis

The round duration distribution for different strategies on various datasets is dis-
played in Figure 5.8. Figure 5.8a illustrates that there is no significant difference between
strategies, with all round durations ranging from 10 to 30 seconds. SCAFFOLD appears
to be slightly slower than other strategies. It can be argued that the communication
overhead required for local and global variants in SCAFFOLD is more noticeable in
models with shorter training times. For the FEMNIST and Speech datasets, the round
durations for FedAvg and FedProx are comparable. FedlesScan shows slightly better
performance on the Speech dataset due to its clustering selection approach not includ-
ing stragglers in every round. FedlesScore consistently has shorter rounds than other
strategies, particularly for the Shakespeare dataset, where it outperforms FedAvg with a
total speedup of 6.19 (see Table 5.4).

Strategy
Dataset

MNIST FEMNIST Shakespeare Speech

FedAvg 10.98 (1.00x) 22.44 (1.00x) 245.98 (1.00x) 49.78 (1.00x)
FedProx 15.03 (0.73x) 39.46 (0.57x) 273.58 (0.90x) 53.20 (0.94x)

FedLesScan 9.69 (1.13x) 25.88 (0.87x) 232.18 (1.06x) 26.59 (1.87x)
SCAFFOLD 14.31 (0.77x) - 252.07 (0.98x) -

FedlesScore

0.3 11.83 (0.93x) 12.95 (1.73x) 34.98 (7.03x) 8.04 (6.19x)

0.6 11.65 (0.94x) 18.28 (1.23x) 69.04 (3.56x) 12.18 (4.09x)
0.7 12.21 (0.90x) 20.21 (1.11x) 51.28 (4.80x) 12.74 (3.91x)
0.8 10.92 (1.01x) 22.72 (0.99x) 72.66 (3.39x) 16.42 (3.03x)

Table 5.4: Full Experiment duration comparison between all strategies across all
datasets.

Lastly, we present two tables that provide a summary of the experiments conducted
in this study. Table 5.4 compares the duration of various federated learning strategies
across different datasets, while Table 5.5 compares their total training cost in USD.
Table 5.4 compares the speedup achieved by different federated learning strategies,

51

5 Experiments

Strategy
Dataset

MNIST FEMNIST Shakespeare Speech

FedAvg 1.13 2.74 8.86 2.14
FedProx 1.90 3.83 10.63 2.37

FedLesScan 1.11 3.68 10.28 1.85

SCAFFOLD 1.52 - 8.41 -

FedlesScore

0.3 11.97 5.99 6.68 2.72
0.6 7.65 9.05 8.91 4.05
0.7 7.35 4.92 9.47 3.91
0.8 5.94 9.71 11.11 3.14

Table 5.5: Total experiment cost (USD) comparison between all strategies across all
datasets.

including FedAvg, FedProx, FedLesScan, SCAFFOLD, and FedlesScore, using different
buffer values (0.3, 0.6, 0.7, and 0.8) across four datasets: MNIST, FEMNIST, Shakespeare,
and Speech. FedlesScore consistently outperforms other strategies regarding speed,
particularly when using a buffer ratio of 0.3. FedlesScore (buffer ratio = 0.3) achieves
a remarkable speedup of 7.03x for the Shakespeare dataset and 6.19x for the Speech
dataset. These results suggest that FedlesScore is an optimal choice when considering
the time efficiency of a federated learning strategy. Table 5.5 compares the total training
cost in USD for the same federated learning strategies and datasets. FedlesScore is not
the least expensive strategy; however, it still remains competitive with other methods.
For instance, FedlesScore (buffer ratio = 0.3) has a total training cost of 6.68 USD for
the Shakespeare dataset and 2.72 USD for the Speech dataset. In conclusion, the findings
from Tables 5.4 and 5.5 suggest that FedlesScore, especially with a buffer ratio of 0.3, is
a favorable federated learning strategy due to its superior speed compared to other
methods and a total training cost that remains competitive.

52

5 Experiments

(a) MNIST (b) FEMNIST

(c) Shakespeare (d) Speech Command

Figure 5.8: Round duration with different strategies on different datasets.

53

5 Experiments

5.8 Discussion

In this work, a series of experiments were conducted to evaluate and compare
the performance of various federated learning strategies, including FedAvg, FedProx,
SCAFFOLD, FedlesScan, and FedlesScore, in the context of accuracy, model performance,
potential bias in client selection, cold start effect, and time and cost analysis. The
experiments were conducted with 200 clients with diverse hardware and data sizes.
Overall, FedlesScore demonstrated superior performance in most cases, except for the
MNIST dataset, where all strategies exhibited similar results. Moreover, FedlesScore

consistently had shorter rounds than other strategies, making it an optimal time-efficient
choice. Although not the least expensive strategy, FedlesScore remained competitive in
total training cost. Furthermore, the cold start ratio was minimal for the MNIST and
Speech Command datasets while more prominent for FEMNIST. FedlesScore outperformed
other strategies by having a shorter average round duration, especially for the FEMNIST

dataset. FedlesScore also showed no significant impact on convergence speed with
different sample sizes, making it robust across various client sizes. The ablation
studies indicated that score-based selection outperformed random selection in all
scenarios, with FedlesScore proving superior to random selection in the asynchronous
setting. These results emphasize the importance of selecting appropriate hardware and
optimizing the selection strategy to improve overall system performance, particularly
in scenarios with uneven data distributions.

Although we did not directly implement and compare our FedlesScore strategy
with FedBuff [38], our ablation study in Section 5.6 reveals a significant performance
difference between our score-based selection method and the random selection method
employed by FedBuff [38] in our asynchronous approach. While Pisces [39] achieves a
training time speedup of 1.4x compared to FedBuff [38], the ablation study demonstrates
that our score-based selection approach consistently outperforms random selection,
yielding a training time speedup ranging from 1.7 to 2.4 across different buffer ratios.
These findings firmly establish the superiority of our scoring approach in improving
the training efficiency of asynchronous federated learning, surpassing both FedBuff and
Pisces in terms of performance.

In conclusion, the experiments demonstrate the advantages of FedlesScore in terms
of accuracy, model performance, and time and cost efficiency. The findings suggest
that FedlesScore is a favorable choice for federated learning applications in real-world
settings with limited resources and heterogeneous environments.

54

6 Conclusion and Future Work

In this study, we have significantly enhanced the FedLess platform by incorporat-
ing two significant advancements. First, we integrated support for the SCAFFOLD

framework [26] and introduced our novel strategy, FedlesScore, specifically designed for
heterogeneous environments. FedlesScore considers each client’s hardware capabilities
and data size to score and select clients for the training round. Our experiments on
various datasets demonstrate that FedlesScore achieves superior accuracy, time, and cost
efficiency by effectively leveraging participating clients based on their performance.

Second, we implemented support for simulating the cold start as in FaaS service
with major cloud providers, enabling us to evaluate FedLess’s performance under
realistic cloud provider conditions and assess the impact of a cold start on the training
process. As FedlesScore currently only factors in hardware and data size for client
scoring, potential enhancements could incorporate additional metrics such as data
distribution or variance. These metrics could help gauge the diversity of clients’ data
and determine its potential contribution to the global model without disclosing any
private information. Furthermore, an adaptive buffer ratio could be introduced to adjust
the waiting time based on the historical behavior of selected clients. This approach
would allow for the inclusion of more results in the aggregation round by extending
the waiting time by a few seconds, thus preventing results from becoming stale.

Deploying FedLess entails a one-time overhead, including setting up various com-
ponents such as Kubernetes clusters, parameter servers, file servers, and OpenFaaS.
Automating this process could significantly optimize deployment. Additionally, a GUI
dashboard for live-tracking the training process and issuing alerts if clients fail would
greatly simplify client management and large-scale experiments. This could be achieved
using the Grafana Stack [54, 55]. It is important to note that FedLess currently only
supports training with TensorFlow [56], while PyTorch is widely used in research (e.g.,
SCAFFOLD [26]). Consequently, adding PyTorch support to FedLess would facilitate
faster integration of new strategies, provide more flexible model selection, and enable
researchers to test their models in a serverless-based FL environment more rapidly. In
conclusion, our work underscores the potential advantages of serverless-based FL and
lays the groundwork for future research and refinements in this domain.

55

List of Figures

1.1 Training efficiency Comparison between FedAvg [1] and FedlesScan [4] in
different hardware settings on the Shakespeare dataset 3

1.2 Selection Bias across different client hardware settings 4

2.1 A schematic architecture of a general federated learning system 7

4.1 Modified Architecture of the FedLess platform. The highlighted compo-
nents shows the modified components and additions to the system. . . 22

4.2 The training workflow of a typical training round in FedLess 23
4.3 Training duration based on client hardware setting and Data size. . . . 25
4.4 Evaluation of staleness weights in the relationship between the current

round index and result round index . 30

5.1 Comparison of perforamace metrics (Accuracy, Loss) between strategies
on different datasets. 40

5.1 Comparison of performance metrics (Accuracy, Loss) between strategies
on different datasets. 41

5.2 Comparison of client’s invocation frequency distribution between strategies 43
5.3 Cold start ratio between strategies . 45
5.4 Comparison of performance metrics (Accuracy, Loss) between strategies

on Speech Command dataset with different client sampling per round. 47
5.4 Comparison of performance metrics (Accuracy, Loss) between strategies

on Speech Command dataset with different client sampling per round. 48
5.5 Ablation Study: Performance metrics on Speech Command dataset . . . 49
5.6 Ablation Study: Performance metrics on Speech Command dataset . . . 50
5.7 Ablation Study: Selection Bias on Speech Command dataset 50
5.8 Round duration with different strategies on different datasets. 53

56

List of Tables

3.1 Strategies Feature Comparison . 21

5.1 Client type distribution and cost estimate 35
5.2 Model hyperparameters by Datasets . 37
5.3 Training configuration by Datasets . 37
5.4 Full Experiment duration comparison between all strategies across all

datasets. 51
5.5 Total experiment cost (USD) comparison between all strategies across all

datasets. 52

57

Bibliography

[1] H. B. McMahan, E. Moore, D. Ramage, and B. A. y Arcas. “Federated Learning of
Deep Networks using Model Averaging”. In: CoRR abs/1602.05629 (2016). arXiv:
✶✻✵✷✳✵✺✻✷✾. url: ❤tt♣✿✴✴❛r①✐✈✳♦r❣✴❛❜s✴✶✻✵✷✳✵✺✻✷✾.

[2] M. Chadha, A. Jindal, and M. Gerndt. “Towards Federated Learning Using
FaaS Fabric”. In: Proceedings of the 2020 Sixth International Workshop on Serverless

Computing. WoSC’20. Delft, Netherlands: Association for Computing Machinery,
2020, pp. 49–54. isbn: 9781450382045. doi: ✶✵✳✶✶✹✺✴✸✹✷✾✽✽✵✳✸✹✸✵✶✵✵. url:
❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✶✹✺✴✸✹✷✾✽✽✵✳✸✹✸✵✶✵✵.

[3] A. Grafberger, M. Chadha, A. Jindal, J. Gu, and M. Gerndt. “FedLess: Secure
and Scalable Federated Learning Using Serverless Computing”. In: 2021 IEEE

International Conference on Big Data (Big Data). 2021, pp. 164–173. url: ❤tt♣s✿
✴✴❞♦✐✳♦r❣✴✶✵✳✶✶✵✾✴❇✐❣❉❛t❛✺✷✺✽✾✳✷✵✷✶✳✾✻✼✷✵✻✼.

[4] M. Elzohairy, M. Chadha, A. Jindal, A. Grafberger, J. Gu, M. Gerndt, and O.
Abboud. “FedLesScan: Mitigating Stragglers in Serverless Federated Learning”.
In: arXiv preprint arXiv:2211.05739 (2022). url: ❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✹✽✺✺✵✴
❛r❳✐✈✳✷✷✶✶✳✵✺✼✸✾.

[5] OpenFaaS Github. Apr. 1, 2023. url: ❤tt♣s✿✴✴❣✐t❤✉❜✳❝♦♠✴♦♣❡♥❢❛❛s✴❢❛❛s (visited
on 04/01/2023).

[6] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith. “Federated Learning: Challenges,
Methods, and Future Directions”. In: CoRR abs/1908.07873 (2019). arXiv: ✶✾✵✽✳
✵✼✽✼✸. url: ❤tt♣✿✴✴❛r①✐✈✳♦r❣✴❛❜s✴✶✾✵✽✳✵✼✽✼✸.

[7] V. Shankar, K. Krauth, K. Vodrahalli, Q. Pu, B. Recht, I. Stoica, J. Ragan-Kelley,
E. Jonas, and S. Venkataraman. “Serverless Linear Algebra”. In: Proceedings of

the 11th ACM Symposium on Cloud Computing. SoCC ’20. Virtual Event, USA:
Association for Computing Machinery, 2020, pp. 281–295. isbn: 9781450381376.
doi: ✶✵✳✶✶✹✺✴✸✹✶✾✶✶✶✳✸✹✷✶✷✽✼. url: ❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✶✹✺✴✸✹✶✾✶✶✶✳
✸✹✷✶✷✽✼.

58

https://arxiv.org/abs/1602.05629
http://arxiv.org/abs/1602.05629
https://doi.org/10.1145/3429880.3430100
https://doi.org/10.1145/3429880.3430100
https://doi.org/10.1109/BigData52589.2021.9672067
https://doi.org/10.1109/BigData52589.2021.9672067
https://doi.org/10.48550/arXiv.2211.05739
https://doi.org/10.48550/arXiv.2211.05739
https://github.com/openfaas/faas
https://arxiv.org/abs/1908.07873
https://arxiv.org/abs/1908.07873
http://arxiv.org/abs/1908.07873
https://doi.org/10.1145/3419111.3421287
https://doi.org/10.1145/3419111.3421287
https://doi.org/10.1145/3419111.3421287

Bibliography

[8] A. Jindal, M. Gerndt, M. Chadha, V. Podolskiy, and P. Chen. “Function delivery
network: Extending serverless computing for heterogeneous platforms”. In: Soft-

ware: Practice and Experience 51.9 (2021), pp. 1936–1963. doi: ❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳
✶✵✵✷✴s♣❡✳✷✾✻✻. url: ❤tt♣s✿✴✴♦♥❧✐♥❡❧✐❜r❛r②✳✇✐❧❡②✳❝♦♠✴❞♦✐✴❛❜s✴✶✵✳✶✵✵✷✴
s♣❡✳✷✾✻✻.

[9] A. Jindal, J. Frielinghaus, M. Chadha, and M. Gerndt. “Courier: Delivering Server-
less Functions Within Heterogeneous FaaS Deployments”. In: 2021 IEEE/ACM

14th International Conference on Utility and Cloud Computing (UCC’21). UCC ’21.
Leicester, United Kingdom: Association for Computing Machinery, 2021. isbn:
978-1-4503-8564-0/21/12. doi: ✶✵✳✶✶✹✺✴✸✹✻✽✼✸✼✳✸✹✾✹✵✾✼. url: ❤tt♣s✿✴✴❞♦✐✳
♦r❣✴✶✵✳✶✶✹✺✴✸✹✻✽✼✸✼✳✸✹✾✹✵✾✼.

[10] A. Jindal, M. Chadha, M. Gerndt, J. Frielinghaus, V. Podolskiy, and P. Chen.
“Poster: Function Delivery Network: Extending Serverless to Heterogeneous
Computing”. In: 2021 IEEE 41st International Conference on Distributed Computing

Systems (ICDCS). 2021, pp. 1128–1129. doi: ✶✵✳✶✶✵✾✴■❈❉❈❙✺✶✻✶✻✳✷✵✷✶✳✵✵✶✷✵.

[11] R. Chard, Y. Babuji, Z. Li, T. Skluzacek, A. Woodard, B. Blaiszik, I. Foster, and K.
Chard. “FuncX: A Federated Function Serving Fabric for Science”. In: Proceedings

of the 29th International Symposium on High-Performance Parallel and Distributed

Computing. HPDC ’20. Stockholm, Sweden: Association for Computing Machinery,
2020, pp. 65–76. isbn: 9781450370523. doi: ✶✵✳✶✶✹✺✴✸✸✻✾✺✽✸✳✸✸✾✷✻✽✸. url:
❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✶✹✺✴✸✸✻✾✺✽✸✳✸✸✾✷✻✽✸.

[12] M. Copik, K. Taranov, A. Calotoiu, and T. Hoefler. “rfaas: Rdma-enabled faas
platform for serverless high-performance computing”. In: (). url: ❤tt♣✿✴✴✇✇✳
✉♥✐①❡r✳❞❡✴♣✉❜❧✐❝❛t✐♦♥s✴✐♠❣✴✷✵✷✶❴❝♦♣✐❦❴r❢❛❛s❴♣r❡♣r✐♥t✳♣❞❢.

[13] C. P. Smith, A. Jindal, M. Chadha, M. Gerndt, and S. Benedict. “FaDO: FaaS
Functions and Data Orchestrator for Multiple Serverless Edge-Cloud Clusters”.
In: 2022 IEEE 6th International Conference on Fog and Edge Computing (ICFEC). 2022,
pp. 17–25. doi: ✶✵✳✶✶✵✾✴■❈❋❊❈✺✹✽✵✾✳✷✵✷✷✳✵✵✵✶✵. url: ❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳
✶✶✵✾✴■❈❋❊❈✺✹✽✵✾✳✷✵✷✷✳✵✵✵✶✵.

[14] M. Shahrad, J. Balkind, and D. Wentzlaff. “Architectural implications of function-
as-a-service computing”. In: Proceedings of the 52nd annual IEEE/ACM international

symposium on microarchitecture. 2019, pp. 1063–1075.

[15] J. Manner, M. Endreß, T. Heckel, and G. Wirtz. “Cold Start Influencing Factors in
Function as a Service”. In: 2018 IEEE/ACM International Conference on Utility and

Cloud Computing Companion (UCC Companion). 2018, pp. 181–188. doi: ✶✵✳✶✶✵✾✴
❯❈❈✲❈♦♠♣❛♥✐♦♥✳✷✵✶✽✳✵✵✵✺✹.

59

https://doi.org/https://doi.org/10.1002/spe.2966
https://doi.org/https://doi.org/10.1002/spe.2966
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2966
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2966
https://doi.org/10.1145/3468737.3494097
https://doi.org/10.1145/3468737.3494097
https://doi.org/10.1145/3468737.3494097
https://doi.org/10.1109/ICDCS51616.2021.00120
https://doi.org/10.1145/3369583.3392683
https://doi.org/10.1145/3369583.3392683
http://ww.unixer.de/publications/img/2021_copik_rfaas_preprint.pdf
http://ww.unixer.de/publications/img/2021_copik_rfaas_preprint.pdf
https://doi.org/10.1109/ICFEC54809.2022.00010
https://doi.org/10.1109/ICFEC54809.2022.00010
https://doi.org/10.1109/ICFEC54809.2022.00010
https://doi.org/10.1109/UCC-Companion.2018.00054
https://doi.org/10.1109/UCC-Companion.2018.00054

Bibliography

[16] D. Bermbach, A.-S. Karakaya, and S. Buchholz. “Using application knowledge
to reduce cold starts in FaaS services”. In: Proceedings of the 35th annual ACM

symposium on applied computing. 2020, pp. 134–143.

[17] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes. “Borg, omega, and
kubernetes”. In: Communications of the ACM 59.5 (2016), pp. 50–57.

[18] OpenFaaS: Serverless Functions Made Simple. Apr. 1, 2023. url: ❤tt♣s✿✴✴✇✇✇✳
♦♣❡♥❢❛❛s✳❝♦♠ (visited on 04/01/2023).

[19] D. Merkel. “Docker: Lightweight Linux Containers for Consistent Development
and Deployment”. In: Linux J. 2014.239 (Mar. 2014). issn: 1075-3583.

[20] OpenFaaS Templates. Apr. 1, 2023. url: ❤tt♣s✿✴✴❣✐t❤✉❜✳❝♦♠✴♦♣❡♥❢❛❛s✴t❡♠♣❧❛t❡s
(visited on 04/01/2023).

[21] D.-N. Le, S. Pal, and P. K. Pattnaik. “OpenFaaS”. In: Cloud Computing Solu-

tions. John Wiley & Sons, Ltd, 2022. Chap. 17, pp. 287–303. isbn: 9781119682318.
doi: ❤tt♣s ✿ ✴ ✴ ❞♦✐ ✳ ♦r❣ ✴ ✶✵ ✳ ✶✵✵✷ ✴ ✾✼✽✶✶✶✾✻✽✷✸✶✽ ✳ ❝❤✶✼. eprint: ❤tt♣s ✿ ✴ ✴

♦♥❧✐♥❡❧✐❜r❛r②✳✇✐❧❡②✳❝♦♠✴❞♦✐✴♣❞❢✴✶✵✳✶✵✵✷✴✾✼✽✶✶✶✾✻✽✷✸✶✽✳❝❤✶✼. url: ❤tt♣s✿
✴✴♦♥❧✐♥❡❧✐❜r❛r②✳✇✐❧❡②✳❝♦♠✴❞♦✐✴❛❜s✴✶✵✳✶✵✵✷✴✾✼✽✶✶✶✾✻✽✷✸✶✽✳❝❤✶✼.

[22] K. Jayaram, A. Verma, G. Thomas, and V. Muthusamy. “Just-in-Time Aggregation
for Federated Learning”. In: arXiv preprint arXiv:2208.09740 (2022).

[23] K. Jayaram, V. Muthusamy, G. Thomas, A. Verma, and M. Purcell. “Adaptive
Aggregation For Federated Learning”. In: arXiv preprint arXiv:2203.12163 (2022).

[24] K. Jayaram, V. Muthusamy, G. Thomas, A. Verma, and M. Purcell. “Lambda FL:
Serverless Aggregation For Federated Learning”. In: International Workshop on

Trustable, Verifiable and Auditable Federated Learning. 2022, p. 9.

[25] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith. Federated

Optimization in Heterogeneous Networks. 2020. arXiv: ✶✽✶✷✳✵✻✶✷✼ ❬❝s✳▲●❪.

[26] S. P. Karimireddy, S. Kale, M. Mohri, S. J. Reddi, S. U. Stich, and A. T. Suresh.
“SCAFFOLD: Stochastic Controlled Averaging for On-Device Federated Learning”.
In: CoRR abs/1910.06378 (2019). arXiv: ✶✾✶✵✳✵✻✸✼✽. url: ❤tt♣✿✴✴❛r①✐✈✳♦r❣✴
❛❜s✴✶✾✶✵✳✵✻✸✼✽.

[27] P. Glasserman. Monte Carlo methods in financial engineering. Vol. 53. Springer, 2004.

[28] Q. Li, Y. Diao, Q. Chen, and B. He. “Federated Learning on Non-IID Data Silos:
An Experimental Study”. In: IEEE International Conference on Data Engineering.
2022.

60

https://www.openfaas.com
https://www.openfaas.com
https://github.com/openfaas/templates
https://doi.org/https://doi.org/10.1002/9781119682318.ch17
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119682318.ch17
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119682318.ch17
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119682318.ch17
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119682318.ch17
https://arxiv.org/abs/1812.06127
https://arxiv.org/abs/1910.06378
http://arxiv.org/abs/1910.06378
http://arxiv.org/abs/1910.06378

Bibliography

[29] J. Wang, Q. Liu, H. Liang, G. Joshi, and H. V. Poor. Tackling the Objective Incon-

sistency Problem in Heterogeneous Federated Optimization. 2020. arXiv: ✷✵✵✼✳✵✼✹✽✶
❬❝s✳▲●❪.

[30] J. Wang, Z. Xu, Z. Garrett, Z. Charles, L. Liu, and G. Joshi. “Local adaptivity in fed-
erated learning: Convergence and consistency”. In: arXiv preprint arXiv:2106.02305

(2021).

[31] Z. Chai, A. Ali, S. Zawad, S. Truex, A. Anwar, N. Baracaldo, Y. Zhou, H. Ludwig,
F. Yan, and Y. Cheng. “Tifl: A tier-based federated learning system”. In: Proceed-

ings of the 29th international symposium on high-performance parallel and distributed

computing. 2020, pp. 125–136.

[32] B. Cox, L. Y. Chen, and J. Decouchant. “Aergia: leveraging heterogeneity in
federated learning systems”. In: Proceedings of the 23rd ACM/IFIP International

Middleware Conference. 2022, pp. 107–120.

[33] F. Lai, X. Zhu, H. V. Madhyastha, and M. Chowdhury. “Oort: Informed Participant
Selection for Scalable Federated Learning”. In: CoRR abs/2010.06081 (2020). arXiv:
✷✵✶✵✳✵✻✵✽✶. url: ❤tt♣s✿✴✴❛r①✐✈✳♦r❣✴❛❜s✴✷✵✶✵✳✵✻✵✽✶.

[34] W. Wu, L. He, W. Lin, R. Mao, C. Maple, and S. Jarvis. “SAFA: A semi-asynchronous
protocol for fast federated learning with low overhead”. In: IEEE Transactions on

Computers 70.5 (2020), pp. 655–668.

[35] Z. Chai, Y. Chen, A. Anwar, L. Zhao, Y. Cheng, and H. Rangwala. “FedAT: a
high-performance and communication-efficient federated learning system with
asynchronous tiers”. In: Proceedings of the International Conference for High Perfor-

mance Computing, Networking, Storage and Analysis. 2021, pp. 1–16.

[36] C. Xie, S. Koyejo, and I. Gupta. “Asynchronous Federated Optimization”. In:
CoRR abs/1903.03934 (2019). arXiv: ✶✾✵✸✳✵✸✾✸✹. url: ❤tt♣✿✴✴❛r①✐✈✳♦r❣✴❛❜s✴
✶✾✵✸✳✵✸✾✸✹.

[37] Y. Chen, Y. Ning, M. Slawski, and H. Rangwala. “Asynchronous online federated
learning for edge devices with non-iid data”. In: 2020 IEEE International Conference

on Big Data (Big Data). IEEE. 2020, pp. 15–24.

[38] J. Nguyen, K. Malik, H. Zhan, A. Yousefpour, M. Rabbat, M. Malek, and D.
Huba. “Federated Learning with Buffered Asynchronous Aggregation”. In: CoRR

abs/2106.06639 (2021). arXiv: ✷✶✵✻✳✵✻✻✸✾. url: ❤tt♣s✿✴✴❛r①✐✈✳♦r❣✴❛❜s✴✷✶✵✻✳
✵✻✻✸✾.

61

https://arxiv.org/abs/2007.07481
https://arxiv.org/abs/2007.07481
https://arxiv.org/abs/2010.06081
https://arxiv.org/abs/2010.06081
https://arxiv.org/abs/1903.03934
http://arxiv.org/abs/1903.03934
http://arxiv.org/abs/1903.03934
https://arxiv.org/abs/2106.06639
https://arxiv.org/abs/2106.06639
https://arxiv.org/abs/2106.06639

Bibliography

[39] Z. Jiang, W. Wang, B. Li, and B. Li. “Pisces: Efficient Federated Learning via
Guided Asynchronous Training”. In: Proceedings of the 13th Symposium on Cloud

Computing. SoCC ’22. San Francisco, California: Association for Computing Ma-
chinery, 2022, pp. 370–385. isbn: 9781450394147. doi: ✶✵✳✶✶✹✺✴✸✺✹✷✾✷✾✳✸✺✻✸✹✻✸.
url: ❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✶✹✺✴✸✺✹✷✾✷✾✳✸✺✻✸✹✻✸.

[40] Amazon Cognito - secure, frictionless customer identity and access management. Apr. 1,
2023. url: ❤tt♣s✿✴✴❛✇s✳❛♠❛③♦♥✳❝♦♠✴❝♦❣♥✐t♦✴ (visited on 04/01/2023).

[41] Schedule GPUs on Kubernetes. Apr. 1, 2023. url: ❤tt♣s✿✴✴❦✉❜❡r♥❡t❡s✳✐♦✴❞♦❝s✴
t❛s❦s✴♠❛♥❛❣❡✲❣♣✉s✴s❝❤❡❞✉❧✐♥❣✲❣♣✉s✴ (visited on 04/01/2023).

[42] T.-A. Yeh, H.-H. Chen, and J. Chou. “Kubeshare: A framework to manage gpus
as first-class and shared resources in container cloud”. In: Proceedings of the 29th

international symposium on high-performance parallel and distributed computing. 2020,
pp. 173–184.

[43] S. Li Pei and Zheng. 4paradigm/k8s-vgpu-scheduler: Open AIOS vGPU scheduler for

Kubernetes. 2022. url: ❤tt♣s✿✴✴❣✐t❤✉❜✳❝♦♠✴✹♣❛r❛❞✐❣♠✴❦✽s✲✈❣♣✉✲s❝❤❡❞✉❧❡r.

[44] D. G. Altman and J. M. Bland. “Statistics notes: the normal distribution”. In: Bmj

310.6975 (1995), p. 298.

[45] MongoDB: The Developer Data Platform. Apr. 1, 2023. url: ❤tt♣s✿✴✴✇✇✇✳♠♦♥❣♦❞❜✳
❝♦♠ (visited on 04/01/2023).

[46] L. Deng. “The MNIST Database of Handwritten Digit Images for Machine Learn-
ing Research [Best of the Web]”. In: IEEE Signal Processing Magazine 29.6 (2012),
pp. 141–142. doi: ✶✵✳✶✶✵✾✴▼❙P✳✷✵✶✷✳✷✷✶✶✹✼✼.

[47] S. Caldas, S. M. K. Duddu, P. Wu, T. Li, J. Konečný, H. B. McMahan, V. Smith, and
A. Talwalkar. LEAF: A Benchmark for Federated Settings. 2019. arXiv: ✶✽✶✷✳✵✶✵✾✼
❬❝s✳▲●❪.

[48] W. Shakespeare. The Complete Works of William Shakespeare. Jan. 1, 1994. url:
❤tt♣s✿✴✴✇✇✇✳❣✉t❡♥❜❡r❣✳♦r❣✴❡❜♦♦❦s✴✶✵✵.

[49] F. Lai, Y. Dai, S. Singapuram, J. Liu, X. Zhu, H. Madhyastha, and M. Chowdhury.
“FedScale: Benchmarking Model and System Performance of Federated Learning
at Scale”. In: Proceedings of the 39th International Conference on Machine Learning.
Ed. by K. Chaudhuri, S. Jegelka, L. Song, C. Szepesvari, G. Niu, and S. Sabato.
Vol. 162. Proceedings of Machine Learning Research. PMLR, July 2022, pp. 11814–
11827. url: ❤tt♣s✿✴✴♣r♦❝❡❡❞✐♥❣s✳♠❧r✳♣r❡ss✴✈✶✻✷✴❧❛✐✷✷❛✳❤t♠❧.

[50] P. Warden. Speech Commands: A Dataset for Limited-Vocabulary Speech Recognition.
2018. arXiv: ✶✽✵✹✳✵✸✷✵✾ ❬❝s✳❈▲❪.

62

https://doi.org/10.1145/3542929.3563463
https://doi.org/10.1145/3542929.3563463
https://aws.amazon.com/cognito/
https://kubernetes.io/docs/tasks/manage-gpus/scheduling-gpus/
https://kubernetes.io/docs/tasks/manage-gpus/scheduling-gpus/
https://github.com/4paradigm/k8s-vgpu-scheduler
https://www.mongodb.com
https://www.mongodb.com
https://doi.org/10.1109/MSP.2012.2211477
https://arxiv.org/abs/1812.01097
https://arxiv.org/abs/1812.01097
https://www.gutenberg.org/ebooks/100
https://proceedings.mlr.press/v162/lai22a.html
https://arxiv.org/abs/1804.03209

Bibliography

[51] S. Hochreiter and J. Schmidhuber. “Long short-term memory”. In: Neural compu-

tation 9.8 (1997), pp. 1735–1780.

[52] Pricing, Cloud Functions, Google Cloud. Apr. 1, 2023. url: ❤tt♣s✿✴✴❝❧♦✉❞✳❣♦♦❣❧❡✳
❝♦♠✴❢✉♥❝t✐♦♥s✴♣r✐❝✐♥❣ (visited on 04/01/2023).

[53] Pricing, Compute Engine: Virtual Machines (VMs), Google Cloud. Apr. 1, 2023. url:
❤tt♣s✿✴✴❝❧♦✉❞✳❣♦♦❣❧❡✳❝♦♠✴❝♦♠♣✉t❡✴❛❧❧✲♣r✐❝✐♥❣❄❛✉t❤✉s❡r❂✷★❣♣✉s (visited
on 04/01/2023).

[54] M. Chakraborty and A. P. Kundan. “Grafana”. In: Monitoring Cloud-Native Appli-

cations: Lead Agile Operations Confidently Using Open Source Software. Berkeley, CA:
Apress, 2021, pp. 187–240. isbn: 978-1-4842-6888-9. doi: ✶✵✳✶✵✵✼✴✾✼✽✲✶✲✹✽✹✷✲
✻✽✽✽✲✾❴✻. url: ❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✵✵✼✴✾✼✽✲✶✲✹✽✹✷✲✻✽✽✽✲✾❴✻.

[55] E. Betke and J. Kunkel. “Real-time I/O-monitoring of HPC applications with
SIOX, elasticsearch, Grafana and FUSE”. In: High Performance Computing: ISC

High Performance 2017 International Workshops, DRBSD, ExaComm, HCPM, HPC-

IODC, IWOPH, IXPUG, Pˆ 3MA, VHPC, Visualization at Scale, WOPSSS, Frankfurt,

Germany, June 18-22, 2017, Revised Selected Papers 32. Springer. 2017, pp. 174–186.

[56] TensorFlow: end-to-end open source machine learning platform. Apr. 1, 2023. url:
❤tt♣s✿✴✴✇✇✇✳t❡♥s♦r❢❧♦✇✳♦r❣✴ (visited on 04/01/2023).

63

https://cloud.google.com/functions/pricing
https://cloud.google.com/functions/pricing
https://cloud.google.com/compute/all-pricing?authuser=2#gpus
https://doi.org/10.1007/978-1-4842-6888-9_6
https://doi.org/10.1007/978-1-4842-6888-9_6
https://doi.org/10.1007/978-1-4842-6888-9_6
https://www.tensorflow.org/

	Acknowledgments
	Abstract
	Contents
	Introduction
	Problem Statement
	Research Objectives
	Thesis Overview

	Theoretical Background
	Federated Learning (FL)
	Client Selection
	Model Aggregation
	Challenges

	Serverless Computing
	Function As a Service (FaaS)
	Kubernetes

	Related Work
	Serverless Federated Learning
	Stragglers in Federated Learning
	Asynchronous Federated Learning

	Stragglers in Serverless Federated Learning
	Strategy Comparison

	System and Strategy Design
	Fedless
	Enabling GPU on Fedless
	Mock Cold Start

	FedlesScore
	Asynchronous Aggregation
	Score-based selection

	Experiments
	Experiment Setup
	Benchmarks and Datasets
	Model Configuration
	Evaluation Metrics

	Accuracy and Model Performance
	Client Selection Bias
	Cold Start Ratio
	Client Size
	Ablation Studies
	Time & Cost Analysis
	Discussion

	Conclusion and Future Work
	List of Figures
	List of Tables
	Bibliography

