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BACKGROUND: Targeting protein for Xenopus kinesin-like protein 2 (TPX2) overexpression in human tumours is associated with
increased malignancy. Its effect on gemcitabine resistance in pancreatic ductal adenocarcinoma (PDAC) has not been studied yet.
METHODS: The prognostic impact of TPX2 expression was examined in the tumour tissue of 139 patients with advanced PDAC
(aPDAC) treated within the AIO-PK0104 trial or translational trials and of 400 resected PDAC (rPDAC) patients. The findings were
validated using RNAseq data of 149 resected PDAC patients.
RESULTS: In the aPDAC cohorts, 13.7% of all samples showed high TPX2 expression, conferring significantly shorter progression-
free survival (PFS, HR 5.25, P < 0.001) and overall survival times (OS, HR 4.36, P < 0.001) restricted to gemcitabine-based treated
patients (n= 99). In the rPDAC cohort, 14.5% of all samples showed high TPX2 expression, conferring significantly shorter disease-
free survival times (DFS, HR 2.56, P < 0.001) and OS times (HR 1.56, P= 0.04) restricted to patients treated with adjuvant
gemcitabine. RNAseq data from the validation cohort confirmed the findings.
CONCLUSIONS: High TPX2 expression may serve as a negative predictor of gemcitabine-based palliative and adjuvant
chemotherapy in PDAC and could be used to inform clinical therapy decisions.
CLINICAL TRIAL REGISTRY: The clinical trial registry identifier is NCT00440167.
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BACKGROUND
Despite decades of basic and translational research pancreatic
ductal adenocarcinoma (PDAC) remains one of the epithelial
neoplasms with the poorest prognosis [1]. Even after potentially
curative resection, 5-year survival rates are about 20%, whereas in
the metastatic disease, which accounts for 80% of all cases,
median survival times range between 6.7 and 11.1 months,
depending on the applied palliative therapy [2]. In the operable
situation, the introduction of routine adjuvant chemotherapy
increased disease-free survival times (DFS) and overall survival
times (OS) significantly; first established with adjuvant gemcita-
bine [3] which has been partially replaced by more active
regimens like FOLFIRINOX only in clinically fit patients more
recently [4]. In the metastatic, or locally advanced situation,
palliative chemotherapy is nearly the only therapy option left, in
which FOLFIRINOX as the most active regimen offers the longest
survival times at the cost of high toxicities [5], precluding this
regimen for the many frail patients in routine practice. However, in
both clinical situations, a biomarker-based personalised medicine
approach may help to select the right therapy for the right patient
to improve outcomes and reduce side effects.

Targeting protein for Xenopus kinesin-like protein 2 (TPX2) is
one of the four Aurora cofactors and plays a pivotal role in the
formation of microtubules of the spindles in the process of mitosis
[6]. Thus its expression is strongest in the G1 and S phase of the
cell cycle [7]. Its increased expression may promote malignant
transformation by amplification of centrosomes, failures in
chromosome segregation and induction of DNA polyploidy [8].
Overexpression of TPX2 correlates with malignancy-associated
disease characteristics such as disease stage, lymph node
metastasis, vascular invasion and distant metastasis [9]. Thus, its
overexpression has been associated with poor patient prognosis
in several human malignancies, such as gastric cancer, colorectal
cancer, oesophageal cancer, non-small cell lung cancer, prostate
cancer and hepatocellular carcinoma [10]. Limited preclinical data
on the role of TPX2 in PDAC showed its upregulation compared to
normal tissue in this entity and suggested a potential function as
therapy target [11, 12]. However, its prognostic implications have
only been studied in publicly available small expression datasets
on resected PDAC to date, without considering the potential effect
of the applied adjuvant or palliative systemic therapies on patient
outcome [12]. In this study, we examined the expression of TPX2
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in PDAC tissue and determined its prognostic impact in large
cohorts of resected and advanced PDAC patients with respect to
the applied adjuvant or palliative treatment modalities and
confirmed our findings in gene expression datasets of a large
independent patient cohort.

MATERIALS AND METHODS
Patients and tumour material
Histologically confirmed formalin-fixed paraffin-embedded (FFPE)
tumour tissue of PDAC patients irrespective of its origin (primary
tumour, metastatic tissue) was retrieved from the archives of the
pathology laboratories where the diagnosis of PDAC was first
established. Patients’ overall survival (OS) was calculated from surgery
or start of palliative chemotherapy to death by disease. Disease-free
survival (DFS) was calculated from surgery to clinically or radiologically
apparent disease relapse. Progression-free survival (PFS) was calculated
from the start of palliative chemotherapy to the occurrence of disease
progression. Advanced PDAC patients gave written informed consent to
the use of their tumour material and clinical data upon study enrollment.
The use of patient material and data of the resected PDAC cohort was
approved by the ethics committee of the medical faculty LMU (project
20-081 to SO). The cohort comprised PDAC tissue of patients older than
18 years, resected between 2000 and 2016 with histologically confirmed
PDAC, excluding all other pancreatic malignant entities as well as all
patients deceased due to perioperative mortality within 30 days post
surgery.

Immunohistochemistry
A tissue microarray (TMA), comprising three cores of tumour tissue, one
millimetre in diameter each, was constructed using a semi-automatic tissue
arrayer (Beecher Instruments, CA, USA). Tumour tissue integrity on the TMA
and tumour content was confirmed using routine hematoxyline-eosin
staining by two pathologists (MG, SO). TPX2 expression was detected on 4-
µm-thick sections by immunohistochemistry on a Ventana Benchmark
Ultra autostainer instrument (Ventana, Tucson, AZ, USA) using an anti-TPX2
polyclonal rabbit antibody (HPA005487, Atlas antibodies, Bromma,
Sweden) at a 1:100 dilution for 32min, after incubation with cell
conditioning reagent 1 (CC1, Ventana) for 64min. The signal was detected
using OptiView kits (Ventana). Appropriate positive controls (human
normal tonsil tissue, Supplementary Fig. S1) were included in each staining
run. The expression pattern and expression strength were evaluated by
two pathologists (MG, SO) blinded to the patient outcome and tumours
were classified as follows: TPX2 high: strong and continuous nuclear
expression in most tumour cells; TPX2 low: moderate or weak nuclear
expression in some tumour cells or absent signal. Tumours were scored
independently, and discrepant cases were discussed until agreement was
reached. Microfotographs were acquired on a camera-equipped Zeiss
Axiovision microscope (Zeiss, Wetzlar, Germany) at 200-fold magnification
using proprietary Zeiss software.

Statistics and in silico analyses
Kaplan–Meier curves, Cox regression analyses and cross-tabulations were
calculated using SPSS software (IBM, Ehningen, Germany) considering a P
value of lower than 0.05 as statistically significant. Publicly available gene
expression data from two independent PDAC cohorts [13, 14] were
analysed using the online platform Survexpress [15]. Normalised RNAseq
expression data was downloaded from the data repository of The Cancer
Genome Atlas (TCGA firehose, https://www.cancer.gov/tcga). Correspond-
ing clinical patient information was downloaded from Broad GDAC
Firehose and NCI Genomic Data Commons (GDC Data Release v29.0)
[16]. Propensity-score matching was conducted using pymatch (https://
github.com/benmiroglio/pymatch) for Python (Anaconda Inc., Austin, TX,
USA). TPX2 gene methylation data and comparison to normal pancreatic
tissue were obtained using the DiseaseMeth 2.0 database [17]. A TPX2-
associated gemcitabine-resistance score and the association of TPX2
expression with the expression of gemcitabine-resistance associated
genes was calculated as described previously in the R statistical
environment [18]. Optimal cutpoints defining low and high TPX2
expression were determined using maximally selected rank statistics (R
package: MaxStat v. 0.7-25). Expression heatmaps were generated using
heatmaply [19].

RESULTS
High TPX2 expression correlates with poor outcome in
advanced pancreatic cancer patients treated with
gemcitabine-based chemotherapy
To examine a potential role of TPX2 in PDAC, we first interrogated
two previously published independent expression datasets
[13, 14] (n= 291 in total) and found a strong negative impact of
high TPX2 expression on patients´ survival (Supplementary Fis.
S2A, B). Moreover, PDAC tissue showed significantly decreased
TPX2 gene methylation levels compared to normal pancreatic
tissue (Supplementary Fig. S2C), as a potential reason for its
overexpression. In addition, we did not detect significant TPX2
expression levels in non-neoplastic tissue adjacent to invasive
PDAC, like exocrine parenchyma, exocrine pancreas with reactive
changes and initial chronic pancreatitis, chronic pancreatitis, fat
tissue or neural tissue (Supplementary Fig. S3A–H).

Patient characteristics in the advanced PDAC cohort
To further explore the role of TPX2 in advanced PDAC, we examined
the tumour tissue of 139 patients from two independent study
cohorts for its expression by immunohistochemistry and assessed
its correlation with the patients´ clinicopathological characteristics
including outcome. Seventy-one patients were treated with
erlotinib-containing palliative chemotherapy within the AIO-
PK0104 trial [20]; 68 patients were treated with erlotinib-free
chemotherapy within translational biomarker trials [21]. Seventy-
nine patients were male, 60 were female. Median patient age was
62.5 years. Median follow-up was 19.4 months (95% CI 12.2–26.6)
(95% CI 18.9–45.9) for PFS and 32.4 months for OS. Fifty-one
patients had a Karnofsky performance score (KPS) of lower than or
equal to 80 (Table 1). Most of the patients (n= 80) had poorly
differentiated tumours (grade G3 or G4) which was significantly
associated to inferior patient outcome (Supplementary Table S4).

Table 1. Comparison of clinicopathological patient characteristics as
well as TPX2 expression between the non-gemcitabine-based and the
gemcitabine-based palliative treatment subgroups in the advanced
PDAC cohorts.

Treatment arm, no (%)

Non-gemcitabine-
based (n= 40)

Gemcitabine-
based (n= 99)

P value
(χ2)

Sex

Female 22 (55.0) 57 (57.6) 0.78

Male 18 (45.0) 42 (42.4)

Age (years)

≤60 16 (40.0) 41 (41.4) 0.88

>60 24 (60.0) 58 (58.6)

TPX2 expression

Low 36 (90.0) 84 (84.8) 0.42

High 4 (10.0) 15 (15.2)

KPS

≤80 18 (45.0) 33 (14.9) 0.21

>80 22 (55.0) 65 (85.1)

Grade group

G1–G2 14 (37.5) 47 (21.2) 0.21

G3–G4 26 (62.5) 52 (78.8)

Stage at therapy start

Locally
advanced

7 (17.5) 17 (17.2) 0.96

Metastatic 33 (82.5) 82 (82.8)
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Ninety-nine patients received a gemcitabine-based 1st-line pallia-
tive chemotherapy, whereas 40 received a non-gemcitabine-based
1st-line regimen (capecitabine for the 30 patients from the AIO-
PK0104 study cohort and 5-fluorouracil or other agents for the ten
patients from the translational trials cohort), which conferred
significantly shorter OS and PFS times (Table 1 and Supplementary
Table S4).

TPX2 expression in the advanced PDAC cohort
We detected high TPX2 expression in 13.7% of all tumour samples
(Fig. 1), which was significantly associated with shorter patient
PFS (5.9 vs 2.0 months, P < 0.001, HR 2.74, 95% CI 1.63–4.61,

Supplementary Table S5) and OS (9.3 vs 4.4 months, P < 0.001, HR
2.52, 95% CI 1.52–4.16, Supplementary Table S5). On subgroup
analyses, high TPX2 expression retained its strong negative
prognostic impact on PFS and OS in the patients treated with
1st-line gemcitabine-based palliative chemotherapy (PFS 8.1 vs
2.0 months, HR 5.25, 95% CI 2.71–10.17, P < 0.001; OS 10.5 vs
3.8 months, HR 4.36, 95% CI 2.36–8.07, P < 0.001; Fig. 2a, b),
whereas no significant differences were detected in the patients
treated with non-gemcitabine-based 1st-line regimens (PFS 2.5 vs
1.7 months, HR 0.89, 95% CI 0.31–2.61, P= 0.83, OS 6.7 vs 7.3, HR
0.92, 95% CI 0.32–2.63, P= 0.88; Fig. 2c, d). A separate analysis of
both cohorts confirmed the findings from the entire cohort: high

a b

Fig. 1 Differential expression of TPX2 in pancreatic cancer. Immunohistochemical detection of TPX2 expression in exemplary PDAC cases
showing (a) high TPX2 expression and (b) low TPX2 expression. 200-fold magnification. Scale bars indicate 50 µm.
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TPX2 expression correlated significantly with shorter PFS and OS
in patients which received 1st-line gemcitabine-based treatment
but not in non-gemcitabine 1st-line treated patients in the AIO-
PK0104 study and the translational trials cohort (Supplementary
Table S5).
In Cox multivariate regression analyses adjusting for tumour

differentiation grade, KPS and type of 1st-line chemotherapy
(where appropriate), we identified high TPX2 expression as
independent negative prognostic tissue biomarker for PFS and
OS in the 1st-line gemcitabine-treated patient subgroup (P < 0.001
each, Supplementary Table S6) but not in the non-gemcitabine
1st-line treatment subgroup as expected. Using cross-tabulations,
we did not detect associations between high TPX2 expression and
gender, age group, KPS, tumour grade nor type of 1st-line
chemotherapy (Supplementary Table S7).

High TPX2 expression is associated with poor prognosis in
resected pancreatic cancer patients treated with adjuvant
gemcitabine-based chemotherapy and correlates with
gemcitabine resistance
As we detected a significant impact of TPX2 expression on
outcome limited to gemcitabine-based treated patients with
advanced PDAC, we examined whether similar effects existed in
resected PDAC, in which gemcitabine is still a widely employed
regimen for adjuvant treatment. Thus, we examined TPX2
expression in the tumour tissue of 400 resected PDAC patients
and tested its effect on patient outcome according to the type of
adjuvant treatment they received. The study cohort consisted of
204 women and 196 men (median age 68 years, range 22–87
years), of which 222 received gemcitabine-based adjuvant
treatment (aG) and 178 received either non-gemcitabine-based
or no adjuvant treatment (naG, Table 2). We detected high TPX2
expression at similar rates in both cohorts (aG 14.4%, naG 14.6%,
P= 0.96, Table 2), which conferred significantly shorter DFS and
OS times in the aGC cohort (DFS 7.6 vs 13.8 months, HR 2.56, 95%
CI 1.62–4.04, P < 0.001; OS 16.2 vs 25.8 months, HR 1.56, 95% CI
1.02–2.37, P= 0.04, Fig. 3a, b). However, in the naG cohort, high
TPX2 expression did not affect outcome (DFS 6.4 vs 7.4 months,
HR 0.83, 95% CI 0.46–1.49, P= 0.53; OS 12.0 vs 13.4 months, HR
0.98, 95% CI 0.62–1.54, P= 0.93, Fig. 3c, d). Cox multivariate
regression analyses adjusting for differentiation grade, age,
disease stage and R-status confirmed TPX2 expression as an
independent prognosticator in the aG cohort (DFS P < 0.001, OS
P= 0.01, Supplementary Table S8). As there existed significant
differences in some clinicopathological parameters such as age,
UICC stage and R-status between both cohorts (Table 2), we
employed a propensity-score matching approach to eliminate
these imbalances. In the resulting, well-balanced cohort, consist-
ing of 95 patients in each group (Supplementary Table S9), we
clearly confirmed the findings from the unmatched cohorts
(Supplementary Fig. S10A–D).

TPX2 expression in the validation dataset
To further verify our data, we employed expression data from TCGA
firehose, comprising 149 patients with available data on DFS as a
validation cohort. Sixty-eight patients received gemcitabine-based
adjuvant therapy (aG); 81 received either none or no gemcitabine-
based adjuvant treatment (naG, Table 3). Importantly, high TPX2
mRNA levels within the patients´ tumour tissue conferred significantly
decreased DFS and OS times in the aG patients (DFS 9.6 vs 25.1
months, HR 4.89, 95%CI 2.38–10.07, P< 0.001; OS 16.4 vs 66.9months,
HR 4.10, 95% CI 1.69–9.97, P< 0.001, Fig. 3e, f), but not in the naG
patients (DFS 7.5 vs 13.0 months, HR 1.64, 95% CI 0.37–3.08, P= 0.12;
OS 21.7 vs 30.0 months, HR 1.94, 95% CI 0.93–4.08, P= 0.07, Fig. 3g,
h). To examine whether TPX2 expression was directly linked to
gemcitabine resistance, we calculated a gemcitabine-resistance score
based on a 14 gene expression signature. Tumours showing high
TPX2 expression levels displayed high gemcitabine-resistance scores
(Fig. 3i), as high TPX2 expression co-segregated with the expression
of genes known to be associated with gemcitabine resistance [18]
(Fig. 3j). Thus, in the TCGA firehose legacy dataset [22], TPX2
expression positively correlated with the expression of genes
associated with gemcitabine resistance, such as ribonucleoside-
diphosphate reductase large subunit (RRM1) [23] and polo-like-
kinase-1 (PLK1) [24], but also correlated inversely with the expression
of dipeptidase 1 (DPEP1), a gene previously shown to increase
gemcitabine sensitivity in vitro [25] (Supplementary Fig. S11).

DISCUSSION
In contrast to other solid malignancies like non-small-cell lung
cancer or breast cancer, in which predictive biomarkers entered
routine clinical practice, to date none have been established for

Table 2. Comparison of clinicopathological patient characteristics as
well as TPX2 expression between the non-gemcitabine-based and the
gemcitabine-based adjuvant treatment subgroups in the resected
PDAC cohort.

Treatment arm, no (%)

Non-gemcitabine-
based (n= 178)

Gemcitabine-
based (n= 222)

P value
(χ2)

Sex

Female 92 (51.7) 112 (50.5) 0.81

Male 86 (48.3) 110 (49.5)

Age (years)

≤68 82 (46.1) 123 (55.4) 0.06

>68 96 (53.9) 99 (44.6)

TPX2 expression

Low 152 (85.4) 190 (85.6) 0.96

High 26 (14.6) 32 (14.4)

UICC stage (2017)

Stage IA 13 (7.3) 11 (5.0) <0.001

Stage IB 32 (17.9) 50 (22.5)

Stage IIA 19 (10.8) 15 (6.8)

Stage IIB 48 (26.9) 85 (38.2)

Stage III 31 (17.4) 50 (22.5)

Stage IV 35 (19.7) 11 (5.0)

pT (2017)

pT1a 3 (1.7) 0 (0.0) 0.18

pT1b 2 (1.1) 3 (1.4)

pT1c 18 (10.1) 26 (11.7)

pT2 99 (55.6) 139 (62.6)

pT3 53 (29.8) 53 (23.9)

pT4 3 (1.7) 1 (0.4)

pN (2017)

pN0 77 (43.3) 81 (36.5) 0.15

pN1 54 (30.3) 88 (39.6)

pN2 47 (26.4) 53 (23.9)

R-status

0 99 (55.6) 168 (75.7) <0.001

1 79 (44.4) 54 (24.3)

Grade group

G1–G2 49 (27.5) 67 (30.2) 0.56

G3–G4 129 (72.5) 155 (69.8)
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PDAC, a notoriously therapy-resistant disease. Thus, the character-
isation of novel potential predictive biomarkers, verified in large
independent PDAC cohorts is warranted and could inform therapy
decisions on a molecular basis. A potential biomarker in this
context is TPX2, which has previously been associated to inferior
outcome in several solid malignancies [10]. Interestingly, although
studied as prognostic biomarker in small cohorts of resected PDAC
[12], the impact of TPX2 expression on outcome in advanced
PDAC and on the response to gemcitabine, a commonly
employed chemotherapeutic drug in the adjuvant situation, has
not been thoroughly examined to date. In the present analysis,
using well-curated datasets from defined large study cohorts
comprising 688 patients overall, we show that high TPX2
expression is a biomarker associated with inferior outcome
confined to advanced PDAC patients treated with gemcitabine-
based palliative regimens and resected PDAC patients treated
with gemcitabine-based adjuvant chemotherapy. Thus, we reason

that TPX2 serves as a negative predictive biomarker for
gemcitabine efficacy in both the palliative and the adjuvant
situation. In line with our findings, high TXP2 expression co-
segregates with the expression of genes associated with
gemcitabine resistance, which results in a highly significant
correlation of TPX2 expression and a previously described
gemcitabine-resistance score [18].

Molecular background of TPX2-mediated gemcitabine
resistance
The exact molecular mechanism how TPX2 confers gemcitabine
resistance remains elusive to date. After cellular uptake, gemci-
tabine is activated in the cytoplasm and inhibits DNA synthesis by
incorporation in the DNA strand as “faulty” base, which leads to
chain termination and induces replication stress [26]. One
potential mechanism by which TPX2 may mediate gemcitabine
resistance is through its control over aurora kinase A (AURKA) [8],
which is strongly linked to Polo-like-kinase-1 (PLK1) activity
[27, 28]. PLK1 regulates the activity of the protein origin
recognition complex subunit 2 (ORC2)—which maintains DNA
replication under gemcitabine treatment—and the activity of the
HBO1 acetyltransferase complex—which activates cFOS and
increases the expression of its target multidrug-resistance-
protein MDR1-, both resulting in gemcitabine resistance [24].
Another potential mechanism of gemcitabine resistance is via
TPX2-mediated repression of the Ser139-phosphorylated histone
variant H2AX (γ-H2AX). Gemcitabine induces DNA damage
through stalled replication forks and partial DNA chain termina-
tion, which results in nuclear γ-H2AX accumulation, inhibition of
DNA synthesis, S-phase accumulation and activation of the
S-phase checkpoint pathway, which ultimately leads to a halt in
replication and consequently blocked proliferation [29]. Instead,
TPX2 overexpression reduces γ-H2AX levels, thus inhibiting the
checkpoint arrest and inhibition of DNA synthesis during
gemcitabine treatment [30]. Conversely, TPX2 together with
AURKA was recently shown to protect replication forks during
replication stress [31]. In summary, we propose three potential
mechanisms by which TPX2 mediates gemcitabine resistance:
maintaining DNA replication, increased cellular drug export and
inhibition of the checkpoint arrest pathway. However, considering
the broad evidence on molecular mechanisms of gemcitabine
resistance and the multiple cellular functions of TPX2, its
involvement is likely multifactorial.

Clinical implications
Although gemcitabine monotherapy has been largely replaced by
more efficient chemotherapy regimens in the palliative situation, it
remains an option for many patients whose performance status or
comorbidities preclude combination chemotherapy [2, 32]. In fact,
recent real-world data indicate that gemcitabine-based che-
motherapy is still largely employed in advanced PDAC, according
to which 23.2% of the patients received gemcitabine mono-
therapy and 41.7% were treated with gemcitabine-nab-paclitaxel
[33]. The use of the latter regimen, although more efficient than
gemcitabine monotherapy, is probably discouraged in tumours
with high TPX2 expression, as it also confers resistance to
paclitaxel therapy, at least in vitro [11]. Our findings on the effect
of TPX2 on the efficacy of adjuvant gemcitabine, as measured by
its impact on DFS however, may have direct implications for
clinical routine practice, as adjuvant gemcitabine monotherapy is
still widely in use to date.

Limitations and strengths of the study—outlook
Our study has some limitations, like its retrospective nature for
instance and the fact that neither the advanced PDAC study cohorts
nor the resected PDAC cohort contain a FOLFIRINOX-treated patient
subgroup, which currently is standard-of-care for clinically fit
patients in both situations [4, 5]. Whereas the patients from the

Table 3. Comparison of clinicopathological patient characteristics as
well as TPX2 expression between the non-gemcitabine-based and the
gemcitabine-based adjuvant treatment subgroups in the resected
PDAC validation cohort.

Treatment arm, no (%)

Non-gemcitabine-
based (n= 81)

Gemcitabine-
based (n= 68)

P value
(χ2)

Sex

Female 40 (49.4) 29 (42.6) 0.41

Male 41 (50.6) 39 (57.4)

Age (years)

≤68 41 (50.6) 34 (50.0) 0.94

>68 40 (49.4) 34 (50.0)

TPX2 expression

Low 46 (56.8) 49 (72.0) 0.05

High 35 (43.2) 19 (28.0)

UICC stage (2017)

Stage IA 0 (0) 5 (7.4) 0.16

Stage IB 10 (12.3) 8 (11.8)

Stage IIA 5 (6.2) 5 (7.4)

Stage IIB 31 (38.3) 30 (44.1)

Stage III 31 (38.3) 18 (26.5)

Stage IV 2 (2.5) 2 (3.0)

pT (2017)

pT1 1 (1.2) 6 (8.8) 0.13

pT2 45 (55.6) 39 (57.4)

pT3 26 (32.1) 16 (23.5)

pT4 2 (2.5) 1 (1.5)

pN (2017)

pN0 19 (23.5) 19 (28.0) 0.27

pN1 31 (38.3) 32 (47.0)

pN2 30 (37.4) 17 (25.0)

R-status

0 38 (47.0) 45 (66.2) 0.09

1 32 (39.5) 18 (26.5)

2 3 (3.7) 1 (1.5)

Grade group

G1–G2 61 (75.3) 44 (64.7) 0.16

G3–G4 20 (24.7) 24 (35.3)
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resected PDAC study cohort were all operated in a single large
tertiary care academic centre, the patients in the advanced PDAC
cohorts, however, were treated within randomised multicentric
clinical trials [20]. Moreover, we used a propensity-score matching
approach to overcome potential bias and additionally confirmed our
findings in a well-curated validation cohort using RNA-based
expression data. Importantly, the findings from both advanced
PDAC cohorts perfectly match the findings in the resected patients,
further strengthening our conclusion that the detection of high TPX2
expression may, in addition to the clinical situation of the patient,
inform biomarker-based therapy decisions. Interestingly, with the
advent of mRNA-based vaccination therapies, TPX2 itself was
identified as a potential therapy target in PDAC [34]. Further
research is necessary to elucidate the impact of TPX2 on currently
available therapy regimens like FOLFIRINOX, and a validation of our
findings in randomised control trials is highly desirable.

DATA AVAILABILITY
The expression datasets used to support our findings (Supplementary Fig. S2) are
available publicly at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21501
and https://icgc.org/icgc/cgp/68/304/798. The expression dataset used for validation
is publically accessible on https://portal.gdc.cancer.gov/. Raw data on the patient
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