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Abstract 

Background  In high-dimensional data (HDD) settings, the number of variables associated with each observation is 
very large. Prominent examples of HDD in biomedical research include omics data with a large number of variables 
such as many measurements across the genome, proteome, or metabolome, as well as electronic health records data 
that have large numbers of variables recorded for each patient. The statistical analysis of such data requires knowl‑
edge and experience, sometimes of complex methods adapted to the respective research questions.

Methods  Advances in statistical methodology and machine learning methods offer new opportunities for innova‑
tive analyses of HDD, but at the same time require a deeper understanding of some fundamental statistical concepts. 
Topic group TG9 “High-dimensional data” of the STRATOS (STRengthening Analytical Thinking for Observational Stud‑
ies) initiative provides guidance for the analysis of observational studies, addressing particular statistical challenges 
and opportunities for the analysis of studies involving HDD. In this overview, we discuss key aspects of HDD analysis 
to provide a gentle introduction for non-statisticians and for classically trained statisticians with little experience spe‑
cific to HDD.

Results  The paper is organized with respect to subtopics that are most relevant for the analysis of HDD, in particular 
initial data analysis, exploratory data analysis, multiple testing, and prediction. For each subtopic, main analytical goals 
in HDD settings are outlined. For each of these goals, basic explanations for some commonly used analysis methods 
are provided. Situations are identified where traditional statistical methods cannot, or should not, be used in the HDD 
setting, or where adequate analytic tools are still lacking. Many key references are provided.

Conclusions  This review aims to provide a solid statistical foundation for researchers, including statisticians and non-
statisticians, who are new to research with HDD or simply want to better evaluate and understand the results of HDD 
analyses.
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Background
The goal of the topic group TG9 “High-dimensional 
data” (HDD) of the STRATOS (STRengthening Analyti-
cal Thinking for Observational Studies) [1] initiative is 
to provide guidance for planning, conducting, analyz-
ing, and reporting studies involving high-dimensional 
biomedical data. The increasing availability and use of 
“big” data in biomedical research, characterized by “large 
n” (independent observations) and/or “large p” (number 
of dimensions of a measurement or number of variables 
associated with each independent observation), has cre-
ated a need for the development and novel application of 
statistical methods and computational algorithms. Either 
large n or p may present difficulties for data storage or 
computations, but large p presents several major statis-
tical challenges and opportunities [2]. The dimension 
p can range from several dozen to millions. The situa-
tion of very large p is the focus of TG9 and this paper. 
Throughout the paper, “p” will refer to the number of 
variables and the term “subject” will be used broadly to 
refer to independent observations, including human or 
animal subjects, or biospecimens derived from them; or 
other independent experimental or observational units. 
Researchers who design and analyze such studies need 
a basic understanding of the commonly used analysis 
methods and should be aware of pitfalls when statistical 
methods that are established in the low-dimensional set-
ting cannot, or should not, be used in the HDD setting.

This overview, a product of STRATOS topic group 
TG9, provides a gentle introduction to fundamental 
concepts in the analysis of HDD, in the setting of obser-
vational studies in biomedical research. The focus is on 
analytical methods; however, issues related to study 
design, interpretation, transportability of findings, and 
clinical usefulness of results should also be considered as 
briefly discussed throughout this paper.

The STRATOS initiative and the STRATOS topic group TG9 
“High‑dimensional data”
The STRATOS initiative (www.​strat​os-​initi​ative.​org) is 
a large collaboration involving experts in many different 
areas of biostatistical research. The objective of STRA-
TOS is to provide accessible and sound guidance for 
the design and analysis of observational studies [1]. This 
guidance is intended for applied statisticians and other 
data analysts with varying levels of statistical training, 
experience and interests. TG9 is one of nine topic groups 
of STRATOS and deals with aspects of HDD analysis.

Main issues addressed by TG9 often overlap with those 
of other TGs, but in the work of TG9 there is always a 
focus on the HDD aspect. Sometimes TG9 guidance will 
build upon that of other TGs to adapt it for relevance to 

HDD (see the “Discussion” section), but also completely 
new issues arise and require novel statistical approaches.

High-dimensional data are now ubiquitous in bio-
medical research, very frequently in the context of 
observational studies. Particularly omics data, i.e., 
high-throughput molecular data (e.g., genomics, tran-
scriptomics, proteomics, and metabolomics) have pro-
vided new insights into biological processes and disease 
pathogenesis and have furthered the development of 
precision medicine approaches [3]. Rapidly expand-
ing stores of electronic health records contain not only 
standard demographic, clinical, and laboratory data col-
lected through a patient history, but also information 
from potentially many different providers involved in 
a patient’s care [4]. Data may be derived from multiple 
sources and can be represented in many different forms. 
Collectively, these data can be leveraged to support pro-
grams in comparative effectiveness and health outcomes 
research, and to monitor public health. Many statistical 
methods that are discussed here may be applied to health 
records data as well as to omics data, but our primary 
focus here is on the analysis of omics data.

Simultaneously, advances in statistical methodol-
ogy and machine learning methods have contributed to 
improved approaches for data mining, statistical infer-
ence, and prediction in the HDD setting. Strong collabo-
rations between data and computational scientists (e.g., 
statisticians, computational biologists, bioinformaticians, 
and computer scientists) and other biomedical scientists 
(e.g., clinicians and biologists) are essential for optimal 
generation, management, processing, analysis, and inter-
pretation of these high-dimensional biomedical data [5].

Credibility and importance of research findings from 
biomedical studies involving HDD can be better judged 
when there is understanding of various approaches for 
statistical design and analysis along with their strengths 
and weaknesses. While this overview directly aims to 
improve understanding, simultaneously this guidance 
implies what information is necessary to report to fully 
appreciate how a study was designed, conducted, and 
analyzed. Whether study results prompt further pre-
clinical or early clinical work, or translation to clinical 
use, ability to judge quality, credibility, and relevance of 
those results is critical. It is important to avoid sending 
research programs down unproductive paths or allowing 
flawed research results such as poorly performing prog-
nostic models or therapy selection algorithms generated 
from HDD to be implemented clinically [6]. Historically, 
research involving biomarkers and prognostic modelling 
has been criticized for lack of rigor, reproducibility, and 
clinical relevance [7–10], and for poor reporting [11, 12]. 
At least as many deficiencies are also common in bio-
medical research involving HDD. The goal of STRATOS 

http://www.stratos-initiative.org
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TG9 is to reduce these deficiencies, and improve rigor 
and reproducibility, by providing widely accessible didac-
tic materials pertinent to studies involving HDD.

Study design
In any observational study, including in the HDD set-
ting, study design plays a crucial role in relation to the 
research question. A first important point is the precise 
definition of the target population and the sampling pro-
cedure. The subjects included in a study (or biospecimens 
derived from them) may be selected from the popula-
tion by a random or other statistically designed sampling 
procedure (e.g., case–control, case-cohort), or may sim-
ply represent a “convenience” sample. It is therefore 
important to understand whether the subjects are repre-
sentative of the target population, how the variables asso-
ciated with subjects were measured or ascertained, and 
whether there are potential confounding factors. Failure 
to account for confounding factors or minimize bias in 
subject or variable ascertainment can lead to useless or 
misleading results.

Outcome-dependent sampling is rather common 
in observational studies, particularly for those inves-
tigating risk factors for relatively uncommon diseases 
or outcomes. Examples include classical matched or 
unmatched case–control designs along with two-phase 
sampling from a cohort (case-cohort or nested case–con-
trol). Another often-used strategy oversamples long sur-
vivors, or, for continuous outcomes, subjects with high 
and low values of the outcome variable. When any such 
sampling strategies are employed, it is important to use 
inferential procedures [13, 14] that properly account for 
the sampling design.

Laboratory experiments generating high-dimensional 
assay data should adhere to the same best practices as tra-
ditional controlled experiments measuring only one or a 
few analytes, including randomization, replication, block-
ing, and quality monitoring. Arguably, careful design 
might be even more important in the setting of HDD 
generation because HDD assays may be especially sensi-
tive to technical artifacts. Even when a study is primarily 
observational yet involves analysis of stored biospeci-
mens using omics assays, good design principles should 
be followed when performing the assays. Best practices 
include randomizing biospecimens to assays batches to 
avoid confounding assay batch effects with other factors 
of interest. For unmatched case–control studies, balanc-
ing (randomizing) cases and controls into batches may 
provide important advantages for reducing the influence 
of batch effects [15]. For matched case–control studies or 
studies involving analysis of serial specimens from each 
subject, grouping matched or longitudinal sets within the 

same assay batch can be a convenient way to control for 
batch effects.

Another fundamental aspect of design is sample size, 
which refers to the measurement of different subjects, 
which are referred to as biological replicates. Whenever 
there is interest in making inference beyond an individ-
ual subject, e.g., assessing differential gene expression 
between groups of subjects with different phenotypes 
or exposed to different conditions such as treatments, 
biological replicates are required. In the HDD setting, 
standard sample size calculations generally do not apply. 
If statistical tests are performed one variable at a time 
(e.g., differential expression of each gene comparing two 
groups), then the number of tests performed for HDD is 
typically so large that a sample size calculation applying 
stringent multiplicity adjustment would lead to an enor-
mous sample size. Alternative approaches to control-
ling false positive findings in HDD studies are discussed 
in section “TEST: Identification of informative variables 
and multiple testing.” If the goal is to develop a risk or 
prognostic model using HDD, typical recommenda-
tions about the number of events required per variable 
break down [16]. Other sample size methods that require 
assumptions about the model are challenging to imple-
ment considering the complexity of models that might 
be used in HDD settings [17, 18], as discussed in section 
“PRED2.4: Sample size considerations.” In reality, HDD 
studies are often conducted with inadequate sample size, 
which is an important reason why many results are not 
reproducible and never advance to use in practice [19].

It is important to distinguish technical from biological 
replicates. Technical replication refers to repeating the 
measurement process on the same subject. It should not 
be confused with sample size. Technical replicates are 
useful for evaluating the variability in the measurement 
process, which may be comprised of multiple steps each 
potentially contributing to the total error in the meas-
urement [20] (Fig.  1) described the many steps in gene 
expression microarray analysis of mouse brains. Techni-
cal replication could theoretically be carried out at any 
of those steps. Sometimes measurements are repeated 
using an alternative non-high-throughput measurement 
technique (e.g., RT-PCR assay to measure expression or 
Sanger sequencing of a specific gene) as a form of meas-
urement validation, but this must not be confused with 
other forms of validation such as clinical validation of a 
prediction model (see section “PRED2: Assess perfor-
mance and validate prediction models”). In presence of 
budget constraints, if the goal is to compare different 
biological conditions, it is advisable to invest in biologi-
cal replicates. When biological samples are inexpensive 
compared to the cost of the measurement process, pool-
ing is sometimes recommended as a way to reduce costs 
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by making fewer total measurements [21]. However, cau-
tion is advised, as assumptions may be required about 
assay limits of detection or the correspondence between 
physical pooling and additivity of measurements [22]. 
The context of any technical replication must be carefully 
described along with any methods of summarizing over 
replicates in order to interpret results appropriately.

Design of a study should ideally be placed in the con-
text of an overarching analysis plan. Each individual 
study should be designed to produce results of sufficient 
reliability that its results will inform next steps in the 
research project.

Methods
Structure of the paper
This paper is organized with respect to subtopics that 
are most relevant for the analysis of HDD, particu-
larly motivated by typical aims of biomedical studies 
but also applicable more generally. These subtopics 
are initial data analysis (IDA and Preprocessing, sec-
tion “IDA: Initial data analysis and preprocessing”), 

exploratory data analysis (EDA, section “EDA: Explora-
tory data analysis”), multiple testing (section “TEST: 
Identification of informative variables and multiple 
testing”), and prediction (section “PRED: Prediction”). 
For each subtopic, we discuss a list of main analytical 
goals. For each goal, basic explanations, at a minimally 
technical level, are provided for some commonly used 
analysis methods. Situations are identified where per-
formance of some traditional, possibly more familiar, 
statistical methods might break down in the HDD set-
ting or might not be possible to apply at all when p is 
larger than n. Strengths and limitations of competing 
approaches are discussed, and some of the gaps in the 
availability of adequate analytic tools are noted when 
relevant. Many key references are provided. It should 
be noted that throughout this paper we are concerned 
almost exclusively with cross-sectional or independent 
observations rather than longitudinal observations.

Topics in the paper are organized into sections 
according to the structure summarized in Table  1, 
followed by a discussion of the importance of good 

Fig. 1  Correlogram of 12 male-specific genes expressed as log-counts-per-million from 69 lymphoblastoid cells derived from male (29) and 
female (40) Yoruba individuals. Variables (genes) are reordered to emphasize the similarity among of their relations. Lower triangle: correlations 
shown by color and intensity of shading; upper triangle: by circle filled proportionally to the correlation strength. Given the symmetrical nature of a 
correlogram, often different representations are used for the lower and the upper triangles. Source for the data [27]
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reporting to improve transparency and reproducible 
research in the “Discussion” section and a summarizing 
discussion in the “Conclusions” section.

Results
IDA: Initial data analysis and preprocessing
Initial data analysis (IDA) is an important first step in 
every data analysis and can be particularly challenging in 
HDD settings. IDA is a term for all steps of data inspec-
tion and screening after the analysis plan and data collec-
tion have been finished but before the statistical analyses 
are performed [23, 24]. It focuses on understanding the 
context in which the data were collected, on data clean-
ing (see section “IDA1: Identify inconsistent, suspicious 
or unexpected values”), and on data screening (see sec-
tion “IDA2: Describe distributions of variables, and iden-
tify missing values and systematic effects due to data 

acquisition”). Data cleaning refers to identifying and pos-
sibly correcting errors. Data screening includes reviewing 
the characteristics of the data that could affect the sub-
sequent analysis plan, for example, describing distribu-
tions of variables, by checking assumptions required for 
model fitting and hypothesis testing, describing missing 
values, and identifying the need for adjustments of sys-
tematic effects due to data collection. Systematic effects 
may include batch effects that are caused, e.g., by dif-
ferent technologies used for collecting the data or even 
by different technicians performing laboratory experi-
ments, see section “IDA3.2: Batch correction” for details. 
Further, initial steps may include simplification of data, 
e.g., by excluding or collapsing variables, if deemed 
appropriate. Insights about the data gained from these 
screening steps might lead to refinement or updating of 
an analysis plan to ensure that the data are consistent 

Table 1  Overview of the structure of the paper, as a list of the sections with corresponding analytical goals and common approaches

Section Analytical goals Common approaches Examples

IDA Initial data analysis and preprocessing
  IDA1 Identify inconsistent, suspicious or unex‑

pected values
Visual inspection of univariate and multivari‑
ate distributions

Histograms, boxplots, scatterplots, correlo‑
grams, heatmaps

  IDA2 Describe distributions of variables, and iden‑
tify missing values and systematic effects 
due to data acquisition

Descriptive statistics, tabulation, analysis of 
control values, graphical displays

Measures for location and scale, bivariate 
measures, RLE plots, MA plots, calibration 
curve, PCA, Biplot

  IDA3 Preprocess the data Normalization, batch correction Background correction, baseline correction, 
centering and scaling, quantile normalization, 
ComBat, SVA

  IDA4 Simplify data and refine/update analysis plan 
if required

Recoding, variable filtering and exclusion of 
uninformative variables, construction of new 
variables, removal of variables or observa‑
tions due to missing values, imputation

Collapsing categories, variable filtering, 
discretizing continuous variables, multiple 
imputation

EDA Exploratory data analysis
  EDA1 Identify interesting data characteristics Graphical displays, descriptive univariate and 

multivariate statistics
PCA, Biplot, multidimensional scaling, t-SNE, 
UMAP, neural networks

  EDA2 Gain insight into the data structure Cluster analysis, prototypical samples Hierarchical clustering, k-means, PAM, scree 
plot, silhouette values

TEST Identification of informative variables 
and multiple testing

  TEST1 Identify variables informative for an outcome Test statistics, modelling approaches t-test, permutation test, limma, edgeR, 
DESeq2

  TEST2 Perform multiple testing Multiple tests, control for false discoveries Bonferroni correction, Holm’s procedure, 
multivariate permutation tests, Benjamini-
Hochberg (BH), q-values

  TEST3 Identify informative groups of variables Tests for groups of variables Gene set enrichment analysis, over-represen‑
tation analysis, global test, topGO

PRED Prediction
  PRED1 Construct prediction models Variable transformations, variable selection, 

dimension reduction, statistical modelling, 
algorithms, integrating multiple sources of 
information

Log-transform, standardization, superPC, 
ridge regression, lasso regression, elastic net, 
boosting, SVM, trees, random forest, neural 
networks, deep learning

  PRED2 Assess performance and validate prediction 
models

Choice of performance measures, internal 
and external validation, identification of 
influential points

MSE, MAE, ROC curves, AUC, misclassification 
rate, Brier score, calibration plots, deviance, 
subsampling, cross-validation, bootstrap, use 
of external datasets
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with any assumptions or requirements of the proposed 
analysis strategies (see section “IDA4: Simplify data and 
refine/update analysis plan if required”). However, IDA 
should always be conducted independently of the analy-
sis needed to address the research questions, in order to 
avoid biasing conclusions.

The term “data preprocessing” is often used in bio-
medical research involving analysis of HDD, especially in 
the omics field, to denote certain initial data cleaning and 
screening steps falling within the more general category 
of “initial data analysis.” Data preprocessing refers to the 
process of transforming “raw” data, obtained directly 
from measurement instrument, into quantifications that 
are suitable for the subsequent statistical analysis. This 
includes detection and handling of incomplete, incor-
rect or inaccurate values, application of normalization 
methods that aim to remove systematic biases (e.g., assay 
batch effects), and transformations of variables [25].

A first step of the data cleaning and screening process 
is often to standardize the names or terms of variables 
and observations, especially for omics data compiled 
using different technologies. This type of standardization 
helps facilitate other, more complex downstream analy-
ses and interpretation of results, as well as better online 
dissemination and archiving of data.

The IDA material is organized for ease of discussion, 
but the IDA process is typically iterative. Preprocessing 
is discussed in section “IDA3: Preprocessing the data,” 
but after preprocessing one may need to go back to the 
data cleaning and screening steps described in sections 
“IDA1: Identify inconsistent, suspicious or unexpected 
values” and “IDA2: Describe distributions of variables, 
and identify missing values and systematic effects due 
to data acquisition.” Note also that some model-based 
methods used for the identification of informative vari-
ables incorporate normalization into the data analysis 
model (see section “TEST: Identification of informative 
variables and multiple testing”).

IDA1: Identify inconsistent, suspicious or unexpected values
Identification and handling of incomplete, incorrect, or 
inaccurate values is logically a first step in IDA. Attention 
is directed toward distinguishing aberrant values that 
clearly originate from the data collection or generation 
process from those that might reflect true biological vari-
ability. Both visual and analytical inspections of the data 
are used for the detection of such values.

IDA1.1: Visual inspection of univariate and multivari-
ate distributions  Graphical displays are helpful to both 
understand the structure of the data and detect poten-
tial anomalies. For HDD, it is rarely feasible to conduct a 

detailed examination of the distribution of every variable 
individually. Visual displays might be constructed only 
after variables of interest have been identified, for exam-
ple because a gene is differentially expressed between two 
experimental conditions or because a particular variable 
is identified to have an unusual distribution by calcula-
tion of summary statistics or has an outlier. A practical 
alternative is to first calculate scores (summary statistics) 
for each variable or pair of variables, and then select both 
typical and interesting atypical variables, with respect to 
distributions of the scores, for more detailed inspection 
of their univariate or bivariate distributions. Types of 
scores to be used in these analyses should include those 
that capture specific features of the distributions, includ-
ing measures of location, dispersion, skewness, kurtosis 
for univariate distributions, linear relationships for bivar-
iate distributions, and metrics to detect outliers or influ-
ential values (Table 2).

IDA2: Describe distributions of variables, and identify missing 
values and systematic effects due to data acquisition

IDA2.1: Descriptive statistics  For understanding the 
structure of data, often univariate measures for location 
and scale of the variables are informative. In the HDD 
setting, graphical display is often helpful to scan these 
measures across the large number of variables, both for 
detecting anomalies in the data and for a general explora-
tion of variable distributions and their consistency with 
assumptions required for certain analysis methods. An 
example of the use of boxplots and of smooth histograms 
for exploratory purposes can be found in [31].

Standardization of data values is often performed prior 
to data analyses. Typically, this refers to normalization 
with respect to scale and location (e.g., subtract mean or 
median and divide by standard deviation). This can be 
helpful to give variables similar weight, especially if they 
are measured on different scales. However, standardiza-
tion removes information about absolute magnitude of 
effects, so it should not be used when the actual magni-
tude of differences is of interest (e.g., differences in mean 
expression values between two groups). Another cau-
tion is that HDD will typically contain a certain number 
of variables that are uninformative because they do not 
vary much across observations, with variability essentially 
reflecting noise in the data. Standardization of such varia-
bles can exaggerate the noise to give these variables undue 
influence in analyses that is on par with that of truly 
informative variables. It is often preferred to drop such 
uninformative variables at the start of analyses (Table 3).
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IDA2.2: Tabulation of missing data  Missing values are 
ubiquitous in real-world data and may have major impli-
cations for choice of analysis methods and interpretation 
of results [36]. In fact, most multivariable and multivari-
ate analyses methods have as their default requirement 
that values of all variables are available for all subjects, 
i.e., all observations are “complete.” An important early 
step in any analysis is tabulation of the missing values, 
i.e., the identification of the number of missing values per 
subject and per variable, respectively, to provide an over-
view of the missing data structure. In multi-omics inte-
grative studies, high-dimensional data from different data 
types are collected for the same subjects. In such stud-
ies, small sample size caused by experimental and finan-
cial constraints, which can also vary between data types, 

can be the reason for missing data, the absence of which 
has to be taken into account in the subsequent statistical 
analysis.

IDA2.3: Analysis of control values  Laboratory assay 
measurements can be affected by technical artifacts 
related to factors such as reagent lots, equipment drift, 
or environmental conditions. Sometimes these artifacts 
can be detected, and potentially adjusted for, through use 
of control and reference standard samples, which have 
expected distributions of measurements. For single-ana-
lyte assays, a calibration process is typically performed 
to adjust raw measurements and produce final reported 
values (Table 4).

Table 2  Methods for visual inspection of univariate and multivariate distributions: Histograms, boxplots, scatterplots, correlograms, 
heatmaps

Histograms
  Histograms divide the range of values into intervals and then count how many values fall into each interval. They can be useful to visualize the shape 
of the data distribution and identify outlying points. Sometimes use of a transformation before plotting will improve visualization by providing better 
resolution of densely packed values and drawing more extreme values closer to the main body of the distribution

Boxplots
  A boxplot (also called box-and-whisker-plot) is a graphical display that gives a quick impression of location and spread of data values and thus makes 
the comparison between variables simpler. A central box indicates the values that include the central 50% of the data (interquartile range), the median 
is indicated with a line within the box, and the lines extending vertically from the box (whiskers) indicate the area of all values that are not further than 
1.5 times the interquartile range from the edges of the box. In addition, a commonly used option is to plot points individually that are outside the main 
area indicated by the whiskers. When boxplots are used to display variables with many values (like the expression values of all genes within an experi‑
ment), it is expected that many values fall in this category and plotting them individually can create the impression of many extreme values

Scatterplots
  Scatterplots display one variable plotted against another, with each axis corresponding to one of the two variables. Both variables may be observed 
(e.g., expression of one gene against expression of a different gene), or one of the two variables could be a factor such as time, order of entry into study, 
or order in which a measurement such as an assay was conducted. Plotted points may represent the values of two variables for each of the study sub‑
jects, or each point could represent one of many different variables measured on an individual subject. For HDD, plots in which each point represents a 
different variable may contain an extremely large number of points making them hard to interpret due to many overlapping plotting symbols. Strate‑
gies such as use of semi-transparent colors for the plotted points or density plots, where regions with more observations appear darker in the plot, may 
be necessary. Another strategy is to randomly sample points to create a subset that provides a less dense plot

Correlograms
  A correlogram (or corrgram) is a graphical representation of the correlation matrix [26]. It is a visual display for depicting patterns of relations among 
variables directly from the correlation matrix. In a correlogram, the values are rendered to depict sign and magnitude. Further, variables can be reor‑
dered such that similar variables are positioned adjacently, in order to facilitate the perception of the relations. Since correlograms visualize correlation 
matrices, they are only useful for LDD, i.e., if the number of variables is not too large. Of course, the correlations themselves can be computed from 
high-dimensional vectors. Figure 1 [27] shows an example of a correlogram

Heatmaps
  A common two-dimensional visualization method is a heatmap [28] where the individual values contained in a data matrix are represented as colors 
in boxes of a rectangular grid. Sometimes raw data values are centered or scaled within rows or columns prior to display, which can be particularly 
helpful when rows or columns represent variables having different ranges or measurement scales. Clear description of any such centering and/or scal‑
ing is essential for proper interpretation of the figure. Choice of color-palette and ordering of rows and columns can both heavily influence the informa‑
tion conveyed by the graphical display. Complementary colors (e.g., red and green, blue and orange) can be used to emphasize two sides of a centered 
scale. Examples include many published heatmaps for gene expression microarray data in which shades of red might represent degrees of overexpres‑
sion (relative to median or mean) of a gene and shades of green could represent underexpression. Another consideration for a heatmap display is the 
ordering of the rows and columns. Sometimes there is an ordering of the observations based on experimental design, for example, samples collected 
in a time course experiment are represented as ordered columns in the heatmap. As a quality check, it can be useful to order columns by sequence 
in which samples were assayed. Unexpected trends may indicate assay drift or batch effects. If rows correspond to factors such as gene transcript or 
protein levels, it can be illuminating to order them according to similarity of pattern across observations. Various clustering methods can be applied 
to construct orderings of observations or variables. These orderings might be illustrated by dendrograms, which can be displayed along axes of the 
heatmap to depict the distance structure (see section “EDA2.1: Cluster analysis” for discussion of clustering methods). Figure 2 [29] shows an example of 
a heatmap
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IDA2.4: Graphical displays  Systematic artifact effects 
arising from data acquisition processes can often be 
detected with graphical displays that visualize the data in 
a comprehensive manner. A widely used graphical repre-
sentation for multivariate data is a principal components 
plot, which is also useful in exploratory data analysis, as 
described in section “EDA: Exploratory data analysis” 
(Table 5).

IDA3: Preprocessing the data
Data generated by omics assay technologies typically 
require preprocessing by specially tailored methods that 
are based on understanding of the sophisticated instru-
mentation and scientific underpinnings of the tech-
nologies. Omics data are some of the most frequently 
encountered HDD in biomedical settings and are the 
focus in this paper. However, similar challenges exist 
with other types of HDD in biomedical research. Notably, 
high-dimensional imaging data are becoming common-
place, with examples including those generated by digital 

radiography, PET scans, and magnetic resonance imag-
ing. In the following, we explain the main principles of 
data preprocessing using omics data examples.

Omics technologies are highly sensitive to experimen-
tal conditions and can exhibit systematic technical effects 
due to time, place, equipment, environmental condi-
tions, reagent lots, operators, etc. In general, the first step 
of preprocessing aims to obtain an “analyzable” signal 
from the “raw” measurements. Subsequently, the signal 
is separated from possible systematic technical effects. 
The corrected signal may then be transformed to fulfill 
certain distributional properties, e.g., approximating a 
normal distribution. Note that sometimes the transfor-
mation may be applied before correcting the signal.

Preprocessing aimed at removal of systematic effects 
is often conducted as a separate step, as part of the 
IDA process, before the statistical analysis for answer-
ing the research question is undertaken. If the data have 
already been corrected for systematic effects and retain 
only the signals of interest (e.g., treatment effects), then 
the preprocessed (“normalized”) measurements for the 

Fig. 2  Example for a heatmap, which is a data representation in the form of a map in which data values are color coded. Here, sequencing data 
from the 1000 genomes project [30] are visualized. Rows correspond to samples and are ordered by processing date, and columns represent 
genome location of the corresponding sequence. One can see that for the dates 243–254, orange color indicating high values is overrepresented, 
compared to blue color indicating low values. This demonstrates that so-called batch effects are present, i.e. systematic biases in the data, which are 
discussed in detail in section “IDA3.2: Batch correction.” Source for the data: [29]
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Table 3  Methods for descriptive statistics: Measures for location and scale, bivariate measures, RLE plots, MA plots

Measures for location and scale
  As measure of location, the mean is standard for continuous data, the median is robust regarding extreme values, and the mode is often used for 
categorical data. Such measures can be extended to higher dimensions by calculating them component-wise, i.e., for every variable separately, and 
then collecting the values into a vector

  As measure of scale, the standard deviation for continuous data and the median absolute deviation to the median (MAD) as a robust counterpart are 
often used. The coefficient of variation scales the standard deviation by dividing by the mean and is helpful for comparing variables that are measured 
on different scales

Bivariate measures
  Bivariate descriptive statistics are based on pairs of variables, often the correlation coefficient is used to quantify the relationship between two vari‑
ables. The classical Pearson correlation coefficient captures only linear relationships, whereas Spearman’s rank-based correlation coefficient may more 
effectively capture strong non-linear, but monotonic, relationships

RLE plots
  Relative log expression (RLE) plots [32] can be used for visualizing and detecting unwanted variation in HDD. They were developed for gene expres‑
sion microarray data, but are now very popular especially for the analysis of single-cell expression data. For each variable (e.g., expression of a particular 
gene), first, its median value across all observations is calculated. Then, the median is subtracted from all values of the corresponding variable. Finally, 
for each observation, a boxplot is generated of all deviations across the variables. Comparing the boxplots, if one of them looks different with respect to 
location or spread, it may indicate a problem with the data from that observation. RLE plots are particularly useful for assessing the effects of normaliza‑
tion methods that are applied for removing unwanted variation, which might be due to, e.g., batch effects, see also section “IDA3.2: Batch correction.” 
An example RLE plot is presented in Fig. 3 [32]

MA plots (Bland–Altman plots)
  A natural way to assess concordance between measurements that are supposed to be replicates is to construct a simple scatterplot and look for 
distance from the 45-degree line. However, a preferred approach is to construct a Bland–Altman plot [33] instead of a scatterplot. In the omics literature, 
this plot is often referred to as an MA plot [34]. The horizontal (“x”) axis of a Bland–Altman plot is the mean of the paired measurements, and the vertical 
(“y”) axis is the difference, often after measurements have been log transformed. The advantage of this plot compared to a traditional scatterplot is 
that it allows better visualization of differences against a reference horizontal line at height zero and improved ability to detect changes in variability 
(spread) of those differences moving along the x-axis (see section “IDA4: Simplify data and refine/update analysis plan if required”). An example of a 
Bland–Altman Plot is presented in Fig. 4 [35]

Fig. 3  Visualization of the insights obtained from an RLE plot, representing (a) log gene expression distributions for 27 samples (without 
performing quantile normalization) and (b) relative log gene expression distributions for the same 27 samples. The RLE plot allows to highlight 
the unwanted variation due to the between-batch variation (cyan versus magenta boxplots) as well as the within-batch variation as suggested 
by both the difference in location (median further from 0) and spread (higher IQR) of the boxplots. This interpretation is under the often-plausible 
assumption that expression levels of most genes are unaffected by the biological factors of interest. Source: [32]
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biological samples can be analyzed using statistical meth-
ods that are easily accessible to researchers. However, 
conducting normalization as a separate step has impor-
tant disadvantages. For instance, the normalized val-
ues are estimates and often carry with themselves some 
uncertainty, which should be taken into account in the 

analysis of the normalized data. However, this compli-
cates the statistical analysis.

If inferential analysis is of interest, e.g., when compar-
ing groups of samples to assess for biological differences, 
then a preferred approach is to consider normalization 
as part of a comprehensive statistical analysis model. The 
model is then used both to remove systematic technical 
differences and to quantify biological effects of inter-
est (e.g., treatment effects). In that case, the uncertainty 
related to the normalization part of the analysis is natu-
rally included in the estimates of uncertainty (standard 
errors) of the quantities of biological interest.

IDA3.1: Background subtraction and normaliza-
tion  Omics data are prone to perturbations due to 
systematic effects induced by the measurement technol-
ogy, also referred to as the assay platform. Many of these 
effects are unique to the assay platform, but there are 
some commonalities. A biological sample may have its 
gene expression profile measured using a single micro-
array or gene chip or its protein profile measured using 
a mass spectrometry system. The set of experimental 
conditions that gives rise to profiles such as these will be 
referred to here as an experimental run. However, even 
for the same sample, measurements obtained in different 
runs may differ due to factors such as different amounts 
of biological material input to the measurement system, 

Fig. 4  Comparison of a scatterplot (left) and a Bland–Altman plot (right, also MA plot for omics data) of the same data. In this example, the 
predicted values of two regression models (including and excluding a variable called FLGROSS) are compared. The scatterplot shows similar values 
for most observations, with points close to the diagonal. The Bland–Altman plot, with differences on the y-axis (on log-scale for MA plots on omics 
data typically log-ratios), better visualizes the dependence on the average value of the predictions (typically average log intensity for MA plots). The 
smoothing line in the example Bland–Altman plot indicates the shape of dependence of the differences on the average values. Source: [35]

Table 4  Method for analysis of control values: Calibration curve

Calibration curve
  A typical calibration process for a single-analyte assay might involve 
running a series of reference standard samples with known values of 
the target analyte followed by construction of a calibration curve. This 
curve can then be inverted to produce a mathematical correction that is 
applied to the raw measured values from the test samples. A multipli‑
cative factor applied to all raw assays values is a simple example of a 
correction

  In the setting of HDD such as omics data, it would be infeasible to 
construct a separate calibration curve for every analyte measured by the 
assay. Instead, calibration approaches used for omics assays typically rely 
on corrections derived either from a small subset of the analytes meas‑
ured by the assay platform or on assumptions about the global distribu‑
tion of the measured values across all analytes measured. An example 
of the subset approach in the context of gene expression arrays is the 
calculation of a mean over a small set of so-called “housekeeper genes”, 
whose expression levels are expected to be roughly constant across all 
samples being analyzed. This mean is compared to a specified reference 
value to generate a multiplicative factor specific to each sample, which is 
then applied globally across the expression data for all genes measured 
for the sample. Figure 5 [37] shows several examples of calibration curves
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settings on the instrumentation, environmental condi-
tions in the laboratory, and so forth. These “between-
run” differences may confound the “between sample” 
comparisons of scientific interest. Thus, these nuisance 
run effects should be removed to allow valid compari-
sons among data obtained in different runs. A generic 
preprocessing step aimed at removing between-run dif-
ferences is often termed normalization. Even before nor-
malization methods are applied, data generated by omics 
technologies generally require correction to subtract 

background noise from measurements to reveal their 
signal components. In Table  6  we introduce some basic 
methods for background subtraction and normalization.

IDA3.2: Batch correction  Another example of a sys-
tematic effect that is common to many technologies is a 
“batch effect.” The effect may arise when groups of bio-
logical samples (“batches”) have something in common 
in the way they are processed, e.g., same day or time of 
day, on same instrument, same operators, but these 

Fig. 5  Visualization of calibration curves, representing the relationship between values of an analyte measured on a set of samples by some 
experimental assay (y-axis) and values obtained for those samples from some reference assay that is considered to represent truth and to be 
measured with negligible error (x-axis). The curve may be inverted to correct values obtained from the experimental assay to bring them closer to 
values of the analyte that would have been expected from the reference assay. Source: [37]
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aspects are different for other groups of samples. Besides 
these measurement conditions, factors at play prior to 
measurement can cause batch effects. For example, clini-
cal centers might differ in their standard operating proce-
dures for processing, handling, and storing biospecimens, 
giving rise to pre-analytic factors that could influence 
downstream measurements. Patient characteristics, co-
morbidities, or concomitant medications could addition-
ally vary by batch, and may give rise to different distribu-
tions of measured values that have biological basis. Batch 
effects are widespread [29]. The challenge for batch cor-
rection is removal of nuisance effects such as those due 
to pre-analytic or technical factors while not inadvert-
ently removing true biological differences. To facilitate 
appropriate correction, batch information such as dates, 
instrument, operator, and specimen collection sites 
should be recorded and patient factors might need to 
be taken into account in analyses. Above all, it is critical 
to avoid poor study designs in which important patient 
characteristics (including outcomes) are confounded 

Table 5  Methods for graphical displays: Principal component 
analysis (PCA), Biplot

Principal component analysis (PCA)
  The basic idea of PCA [38] is to transform the (possibly correlated) 
variables into a set of linearly uncorrelated variables as follows. The first 
variable (first principal component) is constructed to capture as much 
of the total multidimensional variability in the data as possible, the 
second variable is uncorrelated with the first and maximizes capture of 
the residual variability (i.e., variability not already captured by the first 
principal component), and so on. Each principal component is a linear 
combination of the original variables. The result is a set of uncorrelated 
variables of decreasing importance, in the sense that the variables are 
ranked from the most informative (the first principal component, i.e., 
the one with the highest variance) to the least informative (i.e., the one 
with the lowest variance). The positions of each observation in the new 
coordinate system of principal components are called scores, and the 
loadings indicate how strongly the variables contribute to each PC. A 
major portion of the total variation in the data is often captured by the 
first few principal components alone, which are the only ones retained 
for the further analysis. Use of principal components greatly reduces the 
dimension of the data typically without losing much information (with 
respect to variability in the data). In the context of IDA, often the first two 
principal components are plotted to inspect for peculiarities in the data. 
Figure 6 [39] shows a PCA plot constructed from high-dimensional gene 
expression profiles generated from analysis of lymphoma specimens

Biplot
  Biplots, introduced by Gabriel [40], are designed to show PCs’ contribu‑
tions with regard to both observations and variables. In a biplot, both the 
principal component scores and loadings are plotted together. The most 
common biplot is a two- or three-dimensional representation, where any 
two (or three) PCs of interest are used as the axes. Since often most of the 
variation in the data is explained by the first few PCs, it usually suffices 
to concentrate on plotting those. The biplot allows identifying samples 
that are “different” from the majority of samples, and at the same time, it 
illustrates nicely where these differences occur, i.e., for which variables 
the samples show different values. Figure 7 [39] shows a biplot for the 
same data used for the PCA plot

Fig. 6  Principal component analysis plot depicting 62 lymphoma 
samples represented by their first and second principal component 
calculated from gene expression profiles comprising expression 
levels of 4026 genes on each lymphoma sample. The samples have 
been annotated in the plot according to pathologic subtype: 11 
B-cell chronic lymphocytic leukemia (B-CLL; blue squares), 9 follicular 
lymphoma (FL; black triangles), and 42 diffuse large B-cell lymphoma 
(DLCL; red dots). Source: [39]

Fig. 7  Biplot constructed by superimposing a PCA plot of 62 
lymphoma samples (see Fig. 6) onto a PCA plot of genes where first 
and second principal component for the genes are calculated from 
gene expression profiles comprising expression levels of the 62 
samples for each gene. Genes are represented in the plot as small 
green dots. Genes representing the three classes well are indicated by 
numbers. Source: [39]
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with nuisance batch effects, as this could make it impos-
sible to remove nuisance batch effects adequately.

Preprocessing of omics data aimed at removal of the 
aforementioned artifact effects poses several challenges. 
For instance, normalization is often data-driven and uses 
methods based on assumptions about the nature of the 
biological mechanisms. If those assumptions do not hold, 
then the methods might not work as intended. An exam-
ple of a commonly made assumption in experiments 
involving genome-wide expression data is that most 
genes are not differentially expressed under the com-
pared conditions. It may be challenging to verify whether 
such assumptions are correct.

The dependence of systematic effects on the plat-
form raises an important issue for novel technologies, 
for which sources of measurement variation may not 
be fully established or understood. Out of conveni-
ence, preprocessing approaches developed for one plat-
form have often been applied to other platforms. For 

example, normalization methods developed for micro-
arrays are also used for proteomic [45] and metabo-
lomic [46] mass spectrometry experiments. This might 
be reasonable in some settings, but the assumptions 
required for adequate performance of a normaliza-
tion method should always be reviewed carefully for 
appropriateness prior to its application to another 
technology.

In addition, it is worth noting that preprocessing may 
need to be tailored to the analysis goals. For instance, 
it is problematic to remove batch effects when con-
structing a classification rule. This is because the meas-
urements for a new sample presented for classification 
will most likely include effects from batches not rep-
resented in the data used to construct the classifica-
tion rule. Consequently, a classification rule should be 
constructed using data that have not been batch cor-
rected so that robustness to batch effects can be built 
in (Table 7).

Table 6  Methods for background subtraction and normalization: Background correction, baseline correction, centering and scaling, 
quantile normalization

Background correction
  A classic example of such a step is a background correction applied to data generated from some of the earliest microarrays [41]. In this approach, 
the signal of interest is obtained by summarizing the pixel intensity values within a designated region or “spot” (e.g., corresponding to location of probe 
for a particular gene) on a scanned image of a hybridized array. Ideally, pixels for areas outside the spots should have zero intensity, but this is rarely the 
case because of the fluorescence of the array surface itself. This fluorescence is termed the background. Because background may contaminate the 
measurement of spot fluorescence, the signal in the spot should be corrected for it by subtracting the fluorescence measured in the background

Baseline correction
  In proteomic mass spectrometry [42], the counterpart of background correction is “baseline correction.” In mass spectrometry, the mass-to-charge 
ratio (m/z) of molecules present in a sample is measured. A resulting mass spectrum is an intensity vs. m/z plot representing the distribution of proteins 
in a sample. In this technology, chemical noise is usually present in the spectrum, which is typically caused by chemical compounds such as solvent 
or sample contaminants that did not originate from the analyzed biological sample. Chemical noise can cause a systematic upward shift of measured 
intensity values from the true baseline across a spectrum. The presence of baseline noise poses a problem, as the intensity is used to infer the relative 
abundance of molecules in the analyzed sample. A baseline shift will distort those relative measures; hence, baseline subtraction is typically applied 
when preprocessing mass spectrometry data

Centering and scaling
  Normalization aimed at addressing between-run differences typically involves re-centering or re-scaling data obtained for a particular run by 
applying a correction factor that captures the difference between the measurements from that run and measurements from some type of average 
over multiple runs or from a reference run. The correction factor may be obtained by using internal controls or standards. These can be either analytes 
known to be present in the sample or analytes added to the sample that should, theoretically, yield the same measurements if the same amount of 
sample material is measured. If the measured values of internal standards differ across runs, then these internal control or standard values can be used 
for re-centering or re-scaling purposes

  An alternative approach is to use a run-based estimate of the constant that is calculated across the many measured variables for an individual sam‑
ple. Examples include re-centering or re-scaling the measurements by their mean value (as in the total ion current normalization of mass spectrometry 
data), or by an estimate reflecting the amount of processed biological material (as in library size normalization of next-generation sequencing data)

  Data preprocessing terminology can be confusing for high-dimensional omics data. Although centering and scaling are often referred to generically 
as standardization, here, centering and scaling will refer to adjustment to all values of one observation (across variables). Standardization as meaning 
centering and scaling of all values of a variable (across observations) is described in section “PRED1.1: Variable transformations.”

Quantile normalization
  Quantile normalization [43] is a widely used normalization procedure that addresses between-run differences and has been popular for use with 
omics data. The method assumes that the distribution of measured values across the many analytes measured is roughly similar from sample to sample, 
with only relatively few analytes accounting for differences in phenotypes (biological or clinical) across samples. Quantiles of the distribution of raw 
measured values (e.g., across genes) for each sample are adjusted to match a reference distribution, which is obtained either from a reference sample or 
constructed as some sort of average over a set of samples. Although the numerical quantiles are forced to match, the particular analyte (e.g., pertaining 
to a certain gene) to which the quantile corresponds can vary from sample to sample, thus capturing the biological differences across samples. Figure 8 
[44] shows the effect of quantile normalization
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IDA4: Simplify data and refine/update analysis plan 
if required
The findings from the IDA steps can have substantial 
impact on the choice of appropriate analytical methods  
for subsequent statistical analyses. Therefore, the analysis  
plan should be refined or updated as necessary and according 
to the relevant findings from the IDA analysis [23].

IDA4.1: Recoding  Recoding primarily refers to transfor-
mations of the (original, raw) data, which allow for easier 
handling for a specific purpose. This is particularly use-
ful in HDD settings, in which simple representation of 
the information can be challenging and sometimes even 
impossible due to the large number of variables (Table 8).

IDA4.2: Variable filtering and exclusion of uninforma-
tive variables  Variable filtering refers to the exclusion 
of variables that are considered uninteresting, before the 
statistical analysis to address the main research ques-
tion is even started. This practice is widespread in HDD 
analysis where any steps to reduce the dimensionality 
and complexity of models at the outset are appreciated. 
If many irrelevant variables are filtered out, the multi-
ple testing problem (see section “TEST: Identification 
of informative variables and multiple testing”) is dimin-
ished, and the statistical power of subsequent analysis 
steps can substantially increase. However, as discussed 
below, caution is required when applying certain filtering 
strategies that may introduce bias (Table 9).

Fig. 8  Boxplots representing artificial distributions of values for 30 samples (subjects), before quantile normalization (top) and after quantile 
normalization (bottom), showing that all distributions are fully aligned with each other after the transformation. Source: [44]
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IDA4.3: Construction of new variables  Sometimes it is 
useful to construct new variables as an initial step of data 
analysis by combining the variables that are available in 
the dataset in a meaningful way, using expert knowledge. 
For example, in medical studies investigating factors 
affecting health, often, overweight status is an impor-
tant variable to consider in the analysis. Because weight 
and height must be considered together in assessing 
whether an individual is overweight, constructed vari-
ables like body mass index (BMI) have been used. The 
importance of fat distribution has also been recognized, 
and it has motivated the combined measured of waist-hip 
ratio (WHR). Instead of relying on the ability of statisti-
cal methods and algorithms to construct such variables 
implicitly, e.g., during a statistical modelling process, it is 
useful to be informed by expert knowledge and to include 
these constructed variables directly into analyses.

Not all constructed variables are derived using expert 
knowledge. Some, like principal component scores (see 
section “IDA2.4: Graphical displays”), are constructed 
in an unsupervised manner meaning that they are con-
structed to capture features of the data based only on 
the explanatory variables without using dependent vari-
ables such as outcomes. These constructed variables are 
sometimes used as explanatory variables when building 
prediction models (see section “PRED: Prediction”), and 
they can also be used for exploratory data analysis (see 
section “EDA: Exploratory data analysis”). As discussed 
in section “IDA2.4: Graphical displays,” plots of (typically 

the first two) principal components are often helpful 
for detecting peculiarities in the data or problems such 
as batch effects. Some constructed variables are derived 
using outcomes or other dependent variables. Exam-
ples of outcome-informed constructed variables include 
supervised principal component [55], or partial least 
squares (PLS) scores (see section “PRED1.3: Dimen-
sion reduction” for further discussion). Sometimes new 
variables are constructed by discretization of continuous 
variables, but this practice is problematic and should gen-
erally be discouraged (Table 10).

IDA4.4: Removal of variables or observations due to miss-
ing values  The simplest approach to deal with miss-
ing data is a “complete case analysis.” That is, if a single 
variable is missing for an observation, the observation is 
fully excluded from the dataset. Basing analyses on only 
complete cases at best only leads to loss of statistical 
power, but at worst can lead to substantially biased anal-
yses. Impact of missing data will depend on how many 
cases have missing data, how many variables have miss-
ing values, how many values are missing, and whether 
the likelihood of missing values in a variable is related to 
the value of that variable or other variables. When few 
observations have missing values for few variables, then 
the impact on results of subsequent analyses may be lim-
ited, but when the number is large, the impact can be 
substantial.

A typical strategy for dealing with missing data is to 
exclude variables from the analysis that have a large num-
ber of missing values. Obviously, the possible relevance 
of such variables is neglected. Only when the missingness 
(the events that lead to a value being missing) is inde-
pendent of both unobserved and observed values, i.e., 
the data are missing “completely at random” (MCAR), 
are the results of the complete case analysis (using like-
lihood-based methods) unbiased. When missing values 
depend on the unobserved values themselves (e.g., it is 
more likely that the measurement of a variable is missing 
when the value of the biomarker is very high or very low), 
then the missing values are said to be “missing not at ran-
dom” (MNAR), and the resulting complete case analysis 
is biased.

Between the two extreme situations of MCAR and 
MNAR, there is a third possibility: missing values are 
called “missing at random” (MAR), when the missingness 
is independent of the unobserved values after control-
ling for the other available variables. One way to diagnose 
whether data are MCAR or MAR is to tabulate a missing 
value indicator against the values of other variables. As 
an example, if the value of a biomarker (e.g., gene expres-
sion level) is missing with higher frequency in males than 

Table 7  Methods for batch correction: ComBat, SVA (surrogate 
variable analysis)

ComBat
  ComBat is a widely used batch correction method that has been 
shown to have generally good performance [47]. For each gene, this 
method estimates location and scale parameters for each batch sepa‑
rately. Then the data are transformed using these parameter estimates so 
that the location and scale parameters are the same across batches. This 
method is robust to outliers also in small sample sizes and thus especially 
well-suited for HDD analysis. ComBat-Seq [48] is an extension specifi‑
cally developed for count data using a negative binomial model, and it 
is compatible with differential expression algorithms that require counts. 
Figure 9 [49] shows an example of the effect of ComBat, comparing the 
results with and without using this batch correction.

SVA (surrogate variable analysis)
  Variability in measurements may arise from unknown technical sources 
or biological sources that are not expected or controllable and can affect 
the accuracy of statistical inference in genome-wide expression experi‑
ments. SVA [50] was developed to deal with the unmeasured factors that 
influence gene expression by introducing spurious signal or confound‑
ing biological signal. SVA identifies unobserved factors and construct 
surrogate variables that can be used as covariates in subsequent analyses 
to improve the accuracy and reproducibility of the results. SVA was first 
developed for microarray data and later adapted for sequencing data 
[51].
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Fig. 9  Visualization of the effect of batch correction. Heatmaps of hierarchical clustering of sponge metagenomics data studying two tissues types 
(C and E) with 2 batches, before and after Combat batch correction. Without batch correction (top figure), the clustering is mainly driven by the 
batch effect. After correction, the clustering is driven by the tissue type (bottom figure). Source: [49]

Table 8  Method for recoding: Collapsing categories

Collapsing categories
  When a categorical variable has substantial imbalance in its distribution across categories, especially when relatively few observations are assigned to 
a certain category, it can cause instability in analyses. Models incorporating categorical variables with substantial imbalance can be strongly influenced 
by them. To avoid the undue influence of a rare category on the analysis, it may be necessary to accept the information loss by collapsing the variable, 
i.e., merging the rare category with another category that is similar in terms of content but more frequent.
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in females, but within these strata, the missing values are 
missing completely at random, then it is likely a situation 
of MAR and not MCAR.

In HDD settings, when a large number of variables 
must be considered, complete case analysis may require 
exclusion of too many observations. To avoid this, com-
mon approaches involve first removing variables for 
which more than a specified percentage (e.g., 5 or 10%) 
of observations are missing and then removing observa-
tions for which more than a specified percentage (e.g., 
2%) of variables have missing values. For studies with 
more complex designs, additional considerations may 
apply. For example, it is common in case–control studies 
to remove variables for which there is larger imbalance 
(e.g., more than 5 or 10% difference) in the percentage of 
missing values between cases and controls.

IDA4.5: Imputation  For MAR situations, methods 
more sophisticated than complete case analyses or 

dropping variables are recommended to use the infor-
mation from all observations in the study and obtain less 
biased results. An example method is multiple imputa-
tion, which is described below. Although imputation is 
a useful strategy, it should be understood that no single 
approach for dealing with missing data is fully satisfac-
tory. Thus, the best approach is to carefully select vari-
ables that are both informative and feasible to collect 
when designing studies and then work diligently to col-
lect those data as completely as possible in order to mini-
mize the amount of missing information. In the context 
of LDD, a framework for the treatment and reporting of 
missing data was proposed [58].

For HDD data, performing a simple multivariable 
regression in high dimensions is typically not feasible. 
Therefore, most procedures for handling missing data 
in the HDD setting either involve a phase for selecting 
for imputation only those variables that are deemed 
important or trying to use some regularized regres-
sion [59] instead of standard multivariable regression. 
The handling of missing data in HDD settings is an 
active topic of research. Many tailor-made imputation 
algorithms have already been developed; for an early 

Table 9  Methods for filtering and exclusion of variables: Variable 
filtering

Variable filtering
  Variable filtering is typically accomplished by calculation of a score for 
each variable, followed by exclusion of variables having a score below a 
threshold from further analyses. Modelling or multiple testing proce‑
dures can then be applied only to the resulting variable set. However, in 
order to preserve the correct error control in multiple testing, it is crucial 
that the filtering is independent of the test statistics that will be used 
to analyze the filtered data [52]. This is generally accomplished using 
“nonspecific” filters, where the filtering does not depend on the outcome 
data. For example, when comparing groups using two-sample t-tests, 
first removing the variables that exhibit a small difference in the mean 
values of the classes and then applying the multiple testing corrections 
to the remaining variables leads to greatly inflated type I errors and 
overoptimistic multiplicity adjusted p-values. In contrast, type I error is 
correctly controlled if the filter is based on the overall variance or mean 
of the variables (combined across both groups), filtering out the variables 
with small overall variability or low overall expression [52–54]. Although 
computationally helpful, filtering that does not inflate errors also does 
not necessarily increase statistical power; for example, Bourgon et al. 
[52] showed an example for Affymetrix gene expression data, where 
filtering out a large proportion of the genes with low expression actually 
decreased the number of true discoveries

  Variable filtering is implicitly performed also by some methods that 
can be used in regression modelling. These methods include Lasso, 
which will be discussed in the context of prediction modelling in section 
“PRED: Prediction.”

Table 10  Method for construction of new variables: Discretizing continuous variables

Discretizing continuous variables
  Discretization of a variable refers to the process of converting or partitioning a continuous variable into a nominal or ordinal categorical variable. 
Often, the variable is discretized into partitions of equal width (e.g., when constructing a histogram) or of equal frequencies (e.g., quartiles). Alterna‑
tively, the categorization may be based on historical context, for example if it is known that age above a certain threshold is a risk factor for a specific 
outcome. However, categorization introduces several problems and is often criticized in LDD [56, 57], especially for the extreme version with only two 
groups, called dichotomization. This simplification of the data structure often leads to a considerable loss of power, and the use of a data-driven optimal 
cutpoint for dichotomization of a variable leads to a serious bias in prediction models including the variable

Table 11  Method for imputation of missing data: Multiple 
imputation

Multiple imputation
  Multiple imputation is a widely used approach for handling missing 
data under the MAR scenario. It uses a regression model based on the 
available variables to predict the missing values. In an iterative fashion, 
missing values of a specific variable are predicted using a regression 
model that depends on the other observed variables, and the resulting 
predicted value is used in the main regression model. To account for the 
uncertainty in the imputation, multiple imputed datasets are generated 
and then analyzed, and the results are summarized according to “Rubin’s 
rule” [61]. Software for multiple imputation is widespread in major statisti‑
cal packages. As described above, for HDD, before applying multiple 
imputation, often a pre-selection of variables is advisable

  Future directions for HDD analysis include a more detailed look at MAR 
settings (as all procedures provided so far are fully justified only when the 
MCAR assumption is tenable), the addition of auxiliary information for 
specifying the imputation model, and development of analysis methods 
that can directly cope with missing values, such as robust PCA and ran‑
dom forests. The best method depends also on the analysis goal, such as 
cluster analysis or developing a prediction model
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overview in the context of for gene expression meas-
urements, see [60] (Table 11).

EDA: Exploratory data analysis
When performing statistical analyses, it is important to 
distinguish between exploratory data analysis (EDA) and 
confirmatory data analysis, as this has important conse-
quences both for the selection of appropriate analytical 
methods and for the correct interpretation of the results. 
The starting point for confirmatory analysis is a hypothe-
sis to be evaluated, whereas, in EDA the goal is to provide 
an unbiased view of the data. Insights from EDA may 
then lead to development of new hypotheses that can be 
evaluated in subsequent confirmatory analyses on inde-
pendent data.

Caution is necessary when performing statistical infer-
ence (e.g., feature selection as described in section “TEST: 
Identification of informative variables and multiple test-
ing”) or model performance assessment following EDA 
when decisions to remove or modify observations from 
the analysis might depend on the observed relationships 
one is trying to confirm. For example, if outlier observa-
tions are removed from a dataset, the performance of a 
prediction model built only on the remaining observa-
tions is most probably an overly optimistic estimate of 
what the model performance would be on an independ-
ent dataset, which might contain different outliers.

Two major analytical goals for EDA are (1) to identify 
interesting data characteristics such as variables with 
extreme values, associations between variables, or repre-
sentative subjects with usual values of variables, and (2) 
to gain insight into the structure of the data. Note that 
many of the methods used in EDA are also applied in 
IDA (like PCA; see section “IDA2.4: Graphical displays”). 
In this section, we focus on methods that are more spe-
cific to EDA. Note that many of the methods described in 
this section are generally designed and suitable for con-
tinuous data; only some can also be applied for discrete 
data.

EDA1: Identify interesting data characteristics
EDA can assist a researcher to identify interesting data 
characteristics that may lead to generation of specific 
scientific hypotheses that can be more fully evaluated 
in subsequent studies. Through EDA, a researcher 
might identify variables exhibiting extreme values or 
study subjects (observations) having extreme values of 
one or more variables or unusual combinations of val-
ues of two or more variables. EDA might also reveal 
intriguing associations between variables (e.g., levels of 
a certain protein tend to differ between two phenotypic 
classes). The two main classes of exploratory methods 

for identifying such interesting data characteristics are 
graphical displays and inspection of descriptive uni-
variate and multivariate summary statistics. Graphical 
displays are discussed in sections “IDA2.1: Descriptive 
statistics,” “IDA2.4: Graphical displays,” and “EDA1.1: 
Graphical displays,” whereas descriptive statistics were 
already described in section “IDA2.1: Descriptive sta-
tistics” as tools for the initial data analysis (IDA). It 
should be noted that due to the potential for identifica-
tion of many false positive signals in the HDD setting, 
findings from large-scale comparisons of descriptive 
summary statistics are often tempered by application 
of multiple testing methods as described later in sec-
tion “TEST: Identification of informative variables and 
multiple testing,” even though the original intent was 
exploratory analysis.

To identify interesting data characteristics in low-
dimensional data via visual or graphical methods, it is 
usually possible to inspect simple summary statistics and 
graphical displays of distributions of variables one, two, 
or three at a time, but for HDD this approach quickly 
becomes infeasible. For instance, the number of scat-
terplots for all pairs of p variables is p(p − 1)/2, which 
already exceeds 1000 when p exceeds 45. Visual identi-
fication of interesting characteristics of HDD typically 
requires specialized graphical displays or reduction of 
data dimensionality.

EDA1.1: Graphical displays  As mentioned in section 
“IDA2.4: Graphical displays,” one can use principal com-
ponents (PCs) for exploratory analysis by first summariz-
ing the information included in all variables through cal-
culation of PC scores (which are linear combinations of 
the original variables) and then plotting in two or three 
dimensions the first several PC scores that capture the 
majority of variability in the data. This may allow identi-
fication of clusters of observations or individual observa-
tions with unusual configurations of variables warranting 
further inspection.

Another goal for HDD visualization is to produce a 
display in lower dimensions that preserves the distances 
(more generally degrees of “dissimilarity”) between 
observations such that the closest points remain the 
closest and the furthest remain the furthest. Alterna-
tive data reduction techniques have been developed to 
achieve this goal. These methods aim to translate the 
data in such a way that dissimilarities among points in 
the lower-dimensional space are as proportional as possi-
ble to those quantified in the original (high-dimensional) 
space. One such technique, multidimensional scaling, is 
described below. A variation of multidimensional scaling 
not discussed here is correspondence analysis, which is 
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suitable for categorical variables and shows the relation-
ships between variables based on data specified in a con-
tingency table. Cox and Cox [62] provide descriptions of 
both multidimensional scaling and correspondence anal-
ysis (Table 12).

EDA2: Gain insight into the data structure
A global depiction of data to identify structure, including 
patterns or motifs, is another major goal of exploratory 
data analysis for HDD. Here, data structure is under-
stood in a general sense, it refers to many aspects of the 
data that concern the arrangement or interrelation of 
the observations or variables of a dataset. Although a 
natural first step is to look at marginal distributions (e.g., 
univariate and bivariate) of all variables across observa-
tions, this approach is generally not feasible for HDD for 
reasons discussed above. Further, some structure may 
involve many different variables and not be discernible 
by examination of univariate, bivariate, or even trivariate 
distributions.

The data visualization techniques described in section 
“EDA1.1: Graphical displays” are often supplemented 
with additional approaches geared toward detection of 
certain kinds of structure, for example clusters. The goal 
of cluster analysis is to identify subgroups of observations 
or variables that are similar to each other, but different 
from others. Identification of prototypical observations 
to characterize each cluster might be of interest. The 
structure might also be multi-level. In this section, we 
focus on techniques that are useful to uncover structure 
that might be missed by examining only marginal distri-
butions or low-dimensional representations of HDD.

EDA2.1: Cluster analysis  The goal of a cluster analysis is 
to assemble objects (observations or variables) into sub-
groups, termed clusters, such that similarities between 
members within the clusters are high (or, equivalently, 
distances are small), compared to similarities between 
members from different clusters. Sometimes, the goal is 
only to find dense, i.e., heavily populated, regions in the 

Table 12  Methods for graphical displays: Multidimensional scaling, t-SNE, UMAP, neural networks

Multidimensional scaling (MDS)
  Multidimensional scaling requires as input a distance matrix with elements corresponding to distances between all pairs of observations calculated 
in the original (high-dimensional) space, and the lower dimension space (often two-dimensional) to which the data should be projected is specified. 
A representation of the data points in the lower-dimensional space, called an embedding, is constructed such that the distances between pairs of 
observations are preserved as much as possible. Functions that quantify the level of agreement between pairwise distances before and after dimension 
reduction are called stress functions. MDS implements mathematical algorithms to minimize the specified stress function

  Classical Multidimensional Scaling was first introduced by Torgerson [63]. Mathematically, it uses an eigenvalue decomposition of a transformed dis‑
tance matrix to find an embedding. Torgerson [63] set out the foundations for this work, but further developments of the technique associated with the 
name principal coordinates analysis are attributed to Gower [64]. While Classical Multidimensional Scaling uses eigenvector decomposition to embed 
the data, non-Metric Multidimensional Scaling (nMDS) [65] uses optimization methods

T-Distributed Stochastic Neighbor Embedding (t-SNE)
  Some newer approaches to derive lower-dimensional representations of data avoid the restriction of PCA, which requires the new coordinates to 
be linear transformations of the original. One popular approach is t-SNE [66], which is a variation of Stochastic Neighbor Embedding (SNE) [67]. It is the 
most commonly used technique in single-cell RNA-Seq analysis. t-SNE explicitly optimizes a loss function, by minimizing the Kullback–Leibler diver‑
gence between the distributions of pairwise differences between observations (subjects) in the original space and the low-dimensional space. PCA 
plots, which are typically based on the first two or three principal component scores, focus on preserving the distances between data points widely 
separated in high-dimensional space, whereas t-SNE aims to provide representations that preserve the distances between nearby data points. This 
means that t-SNE reduces the dimensionality of data mainly based on local properties of the data. t-SNE requires the specification of a tunable param‑
eter known as “perplexity” which can be interpreted as a guess for the number of the effective neighbors (number of neighbors that are considered 
close). Figure 10 shows the result of t-SNE on a dataset with eight classes

Uniform manifold approximation and projection (UMAP)
  t-SNE has been shown to efficiently reveal local data structure and was widely used for identifying subgroups of populations in cytometry and tran‑
scriptomic data. However, it has some limitations. It does not preserve well the global structure of the data, i.e., relations between observations that are 
far apart are not captured well by the low-dimensional representation. A further drawback is large computation time for HDD, especially for very large 
sample size n. A newer approach called uniform manifold approximation and projection (UMAP) [68] overcomes some of these limitations by using a 
different probability distribution in high dimensions. In particular, construction of an initial neighborhood graph is more sophisticated, e.g., by incorpo‑
rating weights that reflect uncertainty. In addition, UMAP directly uses the number of nearest neighbors instead of the perplexity as tuning parameter, 
thus making tuning more transparent. On real data, UMAP has been shown to preserve as much of the local and more of the global data structure than 
t-SNE, with more reproducible results and shorter run time [69]

Neural networks
  Neural networks provide another way to identify non-linear transformations to obtain lower-dimensional representations of HDD, which in many 
cases outperform simple linear transformations [70]. The concept is briefly described in section “PRED1.5: Algorithms” in the context of reducing the 
number of variables in preparation for development of prediction models or algorithms. Yet, research is ongoing to determine how best to develop 
low-dimensional representations and corresponding derived variables, and which of those derived variables might be most suitable depending on 
their subsequent use for statistical modelling or other purposes
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data space that correspond to modes of the data distribu-
tion. Alternatively, there may be interest in fully charac-
terizing the structure. Cluster analyses typically require 
choice of a similarity metric (or, alternatively, distance 
metric) for pairs of objects (sometimes also for pairs of 
clusters), a clustering algorithm, and a criterion to deter-
mine the number of clusters. Some clustering approaches 
that have been successfully used for low-dimensional 
data, e.g., mixtures of low-dimensional parametric prob-
ability distributions such as multivariate normal mix-
tures, either cannot be applied at all or perform very 
poorly in the HDD setting. Approaches not suitable for 
HDD are not further discussed here.

For comparing similarity of objects (either variables 
or observations), the Pearson correlation coefficient or 
Euclidean distance are the most popular metrics. The 
Pearson correlation does not depend on the scale of the 
variables, but the Euclidean distance does. If each of 
the variables characterizing an object is first standard-
ized across the set of objects (subtract mean and divide 
by standard deviation), then use of Pearson correlation 
and Euclidean distance metrics will produce equivalent 
results. The measure should be chosen deliberately. If 
only relative levels of the values are important, then Pear-
son correlation is suitable, but if absolute values matter, 

then Euclidean distance is appropriate. It is important to 
note that both metrics tend to be more heavily influenced 
by a few large differences or deviations than by a series of 
small ones because the values are squared. An important 
modification of the Pearson correlation is the Spearman 
(rank) correlation, where values of observations are first 
replaced by their corresponding ranks before calculating 
the Pearson correlation. With this adjustment, the results 
are less heavily influenced by extreme data values.

In high-dimensional spaces, data are typically quite 
sparse. This means that distances between objects 
become large, a phenomenon often referred to as the 
curse of dimensionality. Therefore, the distance metrics 
may be prone to exaggeration by a few distant objects. 
Strategies to help avoid this problem include use of data 
reduction or variable selection before clustering (see sec-
tion “IDA2.4: Graphical displays” for graphical displays 
for dimension reduction and section “PRED1.2: Variable 
selection.” for variable selection and dimension reduction 
in the context of improving prediction models).

Clustering algorithms can be divided into hierarchi-
cal and partitioning methods. In hierarchical clustering, 
observations are iteratively grouped together into larger 
clusters (agglomerative hierarchical clustering) or clus-
ters are subdivided into smaller clusters (divisive hierar-
chical clustering). Centroid-based so-called partitioning 

Fig. 10  Two-dimensional visualization of a high-dimensional dataset using t-SNE. The dataset consists of 2700 single cells (peripheral blood 
mononuclear cells) that were sequenced on an Illumina NextSeq 500. The dataset is freely available from 10X Genomics. Points are colored by cell 
type. The plot shows that the cell types are locally well separated. Source: [71]
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algorithms aggregate the observations around specific 
points (the centroids) such that observations related to 
the same centroid are as similar as possible, and observa-
tions related to different centroids as different as possible. 
Hierarchical clustering algorithms provide a clustering 
for any number of clusters, whereas partitioning meth-
ods require an initial choice about the number of clusters 
present in the data. The most popular clustering algo-
rithms are described in Table 13.

Other methods for cluster analysis applied to biomedi-
cal data include fuzzy clustering and SOMs (self-organ-
izing maps). In fuzzy clustering, objects can belong to 
multiple clusters. In SOMs (a type of neural networks 
first introduced by Kohonen [77]), a meaningful topology 
(special relationships) between the cluster prototypes is 
assumed. This means that the clusters can be visualized 
as a two-dimensional “map,” so that observations in prox-
imate clusters have more similar values than observations 

Table 13  Methods for cluster analysis: Hierarchical clustering, k-means, PAM

Hierarchical clustering
  Hierarchical clustering is a popular class of clustering algorithms, mostly in an agglomerative version, where initially all objects are assigned to their 
own cluster, and then iteratively, the two most similar clusters are joined, representing a new node of the clustering tree [72]. The similarities between 
the clusters are recalculated, and the process is repeated until all observations are in the same cluster. The distance metric to be used for comparing 
two individual objects is specified by the researcher. For defining distances between two clusters of objects, there are also several options. In hierarchi‑
cal clustering, the approach for measuring between-cluster distance is referred to as the linkage method. Single linkage specifies the distance between 
two clusters as the closest distance between the objects from two clusters; average linkage calculates the mean of those distances, and complete 
linkage specifies the largest distance. Single linkage has the disadvantage that it tends to generate long thin clusters, whereas complete linkage tends 
to yield clusters that are more compact, and average linkage typically produces clusters with compactness somewhere in between. Hierarchical cluster‑
ing results are often displayed in a tree-like structure called a dendrogram. A dendrogram is viewed from the bottom up, with each object beginning 
in its own cluster as the terminal end of a branch and eventually being merged with other objects as clusters are formed climbing up the branches of 
the tree toward the root where all objects are combined into one cluster. The heights in the tree at which the clusters are merged correspond to the 
between-cluster distances. Cutting the tree at a particular height defines a number of clusters. Although the hierarchical structure displayed in the 
dendrogram may seem appealing, it should be interpreted with caution as there can be substantial information loss incurred as a result of enforcing a 
flattened tree structure. Figure 11 [73] shows an example for a dendrogram resulting from hierarchical clustering

k-means
  A popular partitioning clustering algorithm is k-means [74]. For its traditional implementation, the researcher must specify the number of clusters. 
First, random objects are chosen as initial centroids for the clusters. Then the algorithm proceeds by iterating between two steps, (i) comparing each 
observation to the mean of each cluster (centroid) and assigning it to the cluster for which the squared Euclidean distance from the observation to the 
cluster centroid is minimized, and (ii) recalculating cluster centroids based on the current cluster memberships. The iterative process continues until no 
observations are reassigned. k-means is not guaranteed to converge to the optimal cluster assignments that minimize the sum of within-cluster vari‑
ances, and it can be strongly influenced by the selected number of clusters and initial cluster centroids. Nonetheless, it is a relatively simple algorithm to 
understand and implement and is widely used. Figure 12 [75] visualizes the k-means algorithm with an example

PAM
  Several important extensions and generalizations of k-means have been developed. PAM (partitioning around medoids, [76]) allows using arbitrary 
distances instead of Euclidean distance, and instead of mathematically calculated centroids, actual observations are selected as prototypes of clusters. 
The algorithm iteratively improves a starting solution with respect to the sum of distances of all observations to their corresponding prototypes, until 
no improvement can be obtained by replacing one current prototype with another observation

Fig. 11  Hierarchical clustering result displayed in a dendrogram, where heights in the tree at which the clusters are merged correspond to the 
between-cluster distances. Source: [73]
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in clusters that are more distant. Since the assumptions 
for SOMs are not guaranteed to hold, the interpretation 
can easily be misleading, such that SOMs should only be 
used by experts in this field. In addition, SOMs can be 
very sensitive to starting node configurations.

For HDD, the computer runtime of such partitioning 
algorithms can present a challenge. For example, PAM 
cannot be applied if the number of objects to be clustered 
is very large, i.e., for clustering variables in omics data or 
for clustering observations in large health records data. 
This challenge motivated development of the algorithm 
CLARA (Clustering Large Applications) [78], which 
works on subsamples of the data. Distribution-based 
clustering methods provide another alternative where 
probabilistic distributions for the observations within 
the clusters are assumed (e.g., multivariate Gaussian in 
each cluster, but with different means and potentially 
different variances). Parameters of the mixture distri-
bution are typically estimated with EM-type (expecta-
tion–maximization) iterative algorithms [79]. However, 
not only, but particularly for HDD, the distributional 
assumptions are often difficult to verify and the algo-
rithms may not converge to a suitable solution. There-
fore, clusters might not be identified at all, or the results 
could be misleading due to incorrect assumptions about 
the data distributions.

Results produced by clustering algorithms are difficult 
to evaluate and often require subjective judgement. The 
validity of the results depends on the notion of a clus-
ter, which varies between clustering algorithms, and this 

Fig. 12  Visualization of the k-means algorithm with an example. Iteratively, observations are assigned to the cluster for which the squared 
Euclidean distance from the observation to the cluster centroid is minimized, and cluster centroids are computed based on the current cluster 
memberships. The iterative process continues until no observations are reassigned (as in the case of the last iteration in the figure). Source: [75]

Table 14  Methods for estimation of the number of clusters: 
Scree plots, silhouette values

Scree plots
  One traditional approach for estimation of the number of clusters is 
the construction of a scree plot, which involves plotting some measure of 
within-cluster variation on the y-axis and the number of clusters assumed 
in applying the algorithm on the x-axis. For hierarchical clustering, which 
does not require a priori specification of the number of clusters, a similar 
plot can be constructed by “cutting” the dendrogram at different levels 
corresponding to a range of numbers of clusters. The optimal number of 
clusters is determined by visual inspection where a line connecting the 
points shows a kink and there is diminished reduction in within-cluster 
variation with increasing number of clusters. Noise accumulating over 
the variables in HDD coupled with no guarantee that applications of the 
algorithms identify the optimal clusterings may lead to scree plots that 
fail to reveal a strong indication for the number of clusters. Figure 13 [80] 
shows such a typical scree plot

Silhouette values
  Silhouette values are numerical tools for estimating the number of 
clusters [81]. The silhouette value of a single observation measures how 
well the observation fits to its assigned cluster by comparing its average 
similarity to members of its own cluster to the average similarity to 
the next best cluster. It is scaled such that the value 1 corresponds to 
an optimal fit (similarities to members of own cluster extremely large 
compared to next best cluster) and − 1 to the worst case (similarities to 
members of own cluster extremely small compared to best other cluster). 
The average silhouette width (asw) is then defined as average of all single 
silhouette values, which quantifies the quality of the clustering result. 
The asw requires no distributional assumptions for the data. In contrast, 
when using distribution-based clustering, typically so-called information 
criteria are required for selecting the number of clusters. These balance 
the coherence of the clusters (as large as possible) and the number of 
clusters (as small as possible). Figure 14 [82] shows a silhouette plot that 
visualizes the silhouette values of observations that were grouped into 
four clusters
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ambiguity carries through to estimation of the number of 
clusters (Table 14).

Some clustering methods have been specifically devel-
oped to handle the typical large storage requirements and 
long run times for HDD settings. For example, CAST 
(Cluster Affinity Search Technique) [83] is especially 
useful for large numbers of observations or variables. 

Iteratively, clusters are constructed as follows. Choose a 
randomly selected observation not already assigned to 
a cluster and assign it to a newly defined cluster. Then 
repeat the following two steps until the set of observa-
tions assigned to this new cluster no longer changes. Add 
unassigned observations with average similarity to the 
current cluster members above a predefined threshold, 

Fig. 13  Example of a scree plot, which involves plotting some measure of within-cluster variation (here the total within sum of squares) on the 
y-axis and the number of clusters assumed in applying the algorithm on the x-axis. Source: [80]

Fig. 14  Silhouette values for observations that are grouped into four clusters. Observations are sorted along the x-axis by decreasing silhouette 
value, grouped by the four clusters. The silhouette values for the observations of the first two clusters have very low values, indicating two not 
well-separated clusters. Source: [82]
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and remove observations with average similarity below 
this threshold.

Another method is subspace clustering [84], where 
first subsets of variables are identified (called sub-
spaces) and clusters are determined by defining regions 
of values based only on these variables. Then, itera-
tively, lower-dimensional subspaces are combined to 
higher-dimensional ones. In biclustering (or two-way 
clustering), first introduced by Hartigan [85], simulta-
neously variables and observations are selected to gen-
erate clusters that do not depend on all variables at the 
same time. Again, heuristic and stable algorithms are 
required to find approximate solutions in acceptable 
time (see, e.g., [86]).

Many traditional clustering methods are best suited for 
continuous variables, but there are several examples of 
HDD that are not continuous. One example is count data 
such as generated by RNA-Seq. Some examples of clus-
tering methods that have been specifically developed for 
count data include those of Witten [87] and Si et al. [88], 
which are based on Poisson or negative binomial distri-
butions. Cluster analysis based on deep learning has also 
been proposed [89]. That approach trains a deep neural 
network, extracts the resulting hidden variables, and uses 
them as the basis for clustering using standard methods 
like k-means.

EDA2.2: Prototypical samples  Often it is useful to 
construct prototypical observations that represent sub-
groups of observations. Prototypical observations are, for 
example, identified by some clustering algorithms. The 
motivation is to allow visualization or provide a summary 
of relevant characteristics of subgroups of observations. 
These summaries can be interpreted in the biomedical 
context, for example as a description of the characteris-
tics of a typical patient who responds well to a particular 
therapy. Prototypical samples can be selected as central 
observations in their respective subgroups, or they can 
be newly constructed. When applying a k-means algo-
rithm to separate observations into K clusters, centroids 
of each cluster are natural choices for prototypes. Simi-
lar to the principles of many cluster analysis approaches 
(see section “EDA2.1: Cluster analysis”), the construction 
of prototypical observations is done such that they are 
simultaneously as similar as possible to the observations 
of the same subgroup (cluster) and as different as possi-
ble from the observations of the other subgroups. Bien 
and Tibshirani [90] provide a nice overview of available 
methods, although their review is limited to classification 
problems. Prototypical observations can also be used to 
represent classes and then to predict the class of a new 
observation based on the similarities with these proto-
typical samples (see also section “PRED: Prediction”).

TEST: Identification of informative variables and multiple 
testing
In HDD analysis, one is often interested in identifying, 
among a large number of candidate variables, “informa-
tive variables.” These are associated with an outcome or 
with a set of other phenotype variables that character-
ize the study subjects. For example, one might wish to 
characterize which single-nucleotide polymorphisms 
are more often present in patients who experience 
severe side effects from a particular drug compared to 
patients without severe side effects. In drug sensitivity 
screens performed on bacterial cultures, one might aim 
to identify bacterial genes with expression significantly 
associated with degree of sensitivity to a new antibiotic. 
When comparing individuals with a particular disease to 
healthy volunteers, one might wish to identify circulat-
ing proteins that are present in different abundance. In 
all these cases, evaluation of the associations might be 
accomplished by conducting many statistical hypothesis 
tests, one per candidate variable. This represents a multi-
ple testing situation.

Multiple testing scenarios commonly encountered in 
biomedical studies with HDD are divided here into three 
categories. Scenarios that consider each candidate vari-
able individually and perform a similar evaluation or sta-
tistical test for each include the following three cases: 
(i) Identification of variables among a set of candidates 
that are associated with a single outcome or phenotype 
variable, i.e., related to outcome or phenotype classes 
(categorical) or correlated with a continuous phenotype 
variable or time-to-event outcome. (ii) Identification of 
candidate variables with a trajectory over time affected by 
experimental factors or exhibiting a prescribed pattern. 
(iii) Identification of candidate variables that are associ-
ated with a prespecified set of other variables, i.e., where 
the candidate variables are considered as dependent vari-
ables and the set of prespecified variables as independent 
“predictor” variables. To illustrate the concepts, much 
of the discussion here will focus on a simple example of 
scenario (i) in which two classes are being compared with 
respect to a very large number of variables. Methods dis-
cussed for scenario (i) that can be extended straightfor-
wardly to scenarios (ii) and (iii) are noted.

Scientific goals may go beyond simply providing a list 
of individual variables exhibiting associations with an 
outcome, a phenotype, a collection of prespecified vari-
ables, or patterns over time. Frequently, there is inter-
est in more globally characterizing the variables that 
were included in the identified list. For example, genes 
are organized into interconnected biological pathways. 
Expression of two different genes might exhibit simi-
lar associations because they are both regulated by cer-
tain other genes, because one lies downstream of the 
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other in the same biological pathway, or because their 
products serve similar biological functions. Established 
organizational structures might be described by gene 
taxonomies such as Gene Ontology [91], KEGG [92], or 
BioCarta [93]. Gene set enrichment analysis (see section 
“TEST3: Identify informative groups of variables”) refers 
to approaches that exploit these expected associations. 
They were first proposed in the omics field for use with 
HDD gene expression data. Although these enrichment 
analysis strategies could be applied in a variety of HDD 
settings, subsequent discussion of these methods will be 
based on examples with high-dimensional gene expres-
sion data for which the concept of enrichment is intui-
tively clear.

TEST1: Identify variables informative for an outcome

TEST1.1: Test statistics: Hypothesis testing for a single 
variable  Before discussing multiple testing procedures, 
it is helpful to briefly review basic concepts in statistical 
hypothesis testing involving a single variable. A hypothe-
sis test aims to decide whether the data support or refute 
a stated “null hypothesis.” Typical examples of simple null 
hypotheses are that the distribution of a variable is not 
different between two or more groups or that a variable 
is not associated with another variable. A hypothesis test 
is based on some statistic that will reflect strength of evi-
dence for or against the null hypothesis. Knowing the dis-
tribution of the test statistic (e.g., normal distribution or 
binomial distribution) allows one to construct a hypoth-
esis test based on that statistic for which the probability 
of drawing an incorrect conclusion is controlled. Type I 
error refers to erroneously rejecting the null hypothesis 
when it is actually true. Type II error refers to failing to 
reject the null hypothesis when it is actually false. Sta-
tistical power is defined as one minus the type II error. 
In general, one wants to control the probability of a type 
I error, denoted α, at a small value, while maintaining 
acceptably high power (or low type II error). A conven-
tional choice of α for the single variable setting is 0.05, 
which means that the probability of a false positive deci-
sion, i.e., falsely rejecting the null hypothesis when it is 
true, is 0.05.

Hypothesis testing is often operationalized by calculation 
of a p-value from the observed data, which estimates the 
probability of observing a value of the test statistic that 
is at least as extreme as that observed, assuming that the 
null hypothesis was true. (Note the correct definition of 
a p-value stated here, in contrast to the common mis-
interpretation of a p-value as the probability that H0 is 
true). A significance test is performed by comparing the 

computed p-value to the prespecified α level. When the 
p-value is less than or equal to α (e.g., 0.05 in the conven-
tional setting), the null hypothesis is rejected; otherwise, 
it cannot be rejected.

It should be mentioned that sometimes the goal of a 
scientific study is to estimate certain parameters of inter-
est, for example means or correlations, rather than to test 
hypotheses. In estimation settings, it is generally desired 
to provide intervals of uncertainty, such as confidence 
intervals, to accompany parameter estimates. Although 
errors in hypothesis testing have some relation to confi-
dence interval coverage probabilities, most of the multi-
ple testing procedures discussed in this section are not 
readily applicable to multiple estimation. Multiple esti-
mation procedures are beyond the scope of the present 
discussion.

The t-test is an example of a widely used statistical 
test for a single variable. It is the basis for the model-
ling approaches described below that are extensions of 
hypothesis testing to multiple variables. Extensions par-
ticularly developed for HDD include limma, edgeR, and 
Deseq2, as discussed in section “TEST1.2: Modelling 
approaches: Hypothesis testing for multiple variables.”

Calculation of a p-value usually requires assumptions 
about the distribution of the test statistic. Sometimes that 
distribution can be derived from assumptions about the 
distributions of the variables. For example, the statistic of 
the t-test can be shown to have a t-distribution when the 
variables are normally distributed, and the within-group 
variances are the same for the classes being compared. 
Similar requirements hold for F-tests in analysis of vari-
ance and statistics associated with standard linear regres-
sion analysis. Although one can never be certain if these 
assumptions hold for real data, many test statistics can be 
shown by theoretical arguments to have an approximate 
normal distribution when sample size is sufficiently large 
(referred to as “asymptotic” approximation). An example 
asymptotic property is that a t-statistic has an approxi-
mate normal distribution for large samples size, even 
if the data are not normally distributed. Nonetheless, 
extra caution is necessary in the setting of HDD where 
the requirements for sample size to qualify as “large” are 
far greater. Extremes of a test statistic’s distribution are 
particularly prone to departures from data distributional 
assumptions, and this is exactly where accuracy is needed 
most when calculating the very small p-values upon 
which many multiple testing procedures for HDD rely.

When validity of assumptions required for familiar sta-
tistical tests is uncertain, for example that the data follow 
a normal distribution for the t-test or F-test, alternative 
tests broadly referred to as nonparametric tests may be 
preferable. Wilcoxon rank sum (equivalent to Mann–
Whitney U) and signed rank tests are nonparametric 



Page 26 of 54Rahnenführer et al. BMC Medicine          (2023) 21:182 

alternatives to the two-sample t-test and paired t-test, 
respectively; the Kruskal–Wallis test is an alternative to 
the F-test in one-way ANOVA. These nonparametric 
tests are robust to outliers and do not require data to be 
normally distributed; nor do they require that their dis-
tribution is fully characterized by two parameters in the 
way that a mean and variance characterize a normal dis-
tribution. Many nonparametric tests are based on ranks 
of observed data rather than their actual values. Permuta-
tion tests, as described in Table 15 and below, comprise 
another class of nonparametric tests and are more gener-
ally applicable than rank-based tests.

A word of caution is in order to emphasize that correct 
permutation of the data is critical to validity of a permu-
tation test. The permutations must preserve any struc-
ture in the data that is unrelated to the null hypothesis. 
For instance, if the goal is to test whether the mean of 
a variable is different between groups, but it is thought 
that the variances are different, then the simple per-
mutation test described for the two-group comparison 
will not be appropriate because the permutations will 
change the variances as well as the means. If the groups 
are paired, e.g., variables are measured both before and 
after each subject receives an experimental drug, then 
the permutations would have to preserve that pairing by 
randomly “flipping” the before and after measurements 

within patients. Correct permutation might not be easy, 
or even feasible, for regression models with multiple pre-
dictors. For example, naively permuting the outcomes in 
a logistic or Cox regression model with many predictors 
to provide test statistics for individual predictor variables 
(adjusted for the other variables) would not provide valid 
permutation p-values because the correlation structure 
of the data, e.g., correlations of the outcome with other 
variables that are not the focus of the test, would not be 
preserved. Anderson and Legendre [94] discuss appro-
priateness and performance of various permutation test-
ing strategies in the context of testing partial regression 
coefficients in multivariable regression models.

Nonparametric methods have advantages and disadvan-
tages. In the context of statistical tests, their main advan-
tages include their applicability in  situations where little 
is understood about the likely distribution of the data, 
and their robustness to oddities in the data such as outli-
ers. The main disadvantage of nonparametric methods is 
their reduced statistical power, particularly for small sam-
ples sizes, compared to a parametric test when distribu-
tional assumptions of that test are actually met. For HDD 
settings, parametric tests have additional appeal, when 
reasonably justified, due to the possibility to “borrow 
information” across variables by modelling relationships 
of parameters (e.g., means or variances) across variable-
specific distributions; modelling approaches such as those 
discussed in section “TEST1.2: Modelling approaches: 
Hypothesis testing for multiple variables” can greatly 
increase statistical power for testing multiple hypotheses.

TEST1.2: Modelling approaches: Hypothesis testing for 
multiple variables  In the scenarios (i)-(iii) described 
in the introduction of section “TEST: Identification of 
informative variables and multiple testing”, the number of 
statistical analyses performed is equal to the number of 
variables. For omics data, the number of variables is often 
in the range of tens of thousands or even millions. Direct 
application of standard hypothesis testing approaches 
to each variable in the setting of HDD is problematic. 
As an illustration, consider conducting several thousand 
statistical tests (one per candidate variable), each using 
the classical α level of 0.05 to test for significance of an 
association between a single variable and an outcome or 
phenotype of interest. If the truth were that none of the 
candidate variables had an association with the outcome 
or phenotype of interest, then, on average, testing 20,000 
variables would lead to 1000 false positive test results 
(0.05 times the 20,000 variables tested), clearly an unac-
ceptably large number that would limit interpretability 
of the results. Control of the number of false positives, 
often termed “false discoveries” in the setting of HDD, is 
critical.

Table 15  Methods for hypothesis testing for a single variable: 
t-test, permutation test

t-test
  The t-test is a standard test for comparing the means of two groups, 
for continuous outcomes (e.g., blood pressure or tumor size after therapy 
for a treatment and a control group, or expression values of a gene for 
two patient groups with different diseases). The null hypothesis is that 
the true difference between the group means is 0, and the alternative 
hypothesis is that it is not 0 (two-sided testing). The t-statistic underlying 
the usual t-test equals the ratio of the observed mean difference and a 
pooled standard error of both groups. It is important to note that validity 
of a statistical test depends on assumptions that should be checked. 
For this t-test, assumptions include independence of the observations, 
approximate normal distribution of the variable in each group and similar 
variance of the variable irrespective of group. t-tests tend to be sensitive 
to outliers, and in such situations, alternative nonparametric tests may be 
preferred. Extensions include the Welch test, if group variances are not 
assumed equal, and one-way ANOVA (analysis of variance), when more 
than two groups are compared

Permutation test
  The idea behind a permutation test is to scramble the data to mimic a 
null hypothesis situation in which a variable is not associated with a par‑
ticular outcome or phenotype. For the simple example of comparing the 
distribution of a variable between two phenotype classes, a permutation 
test would randomly scramble or re-assign class labels to the collection 
of observations. For each data permutation, the test statistic is calculated 
and recorded. After this statistic has been calculated on many permuted 
versions of the data, a p-value can be computed as the number of per‑
mutations on which the calculated test statistic was as extreme or more 
than the test statistic calculated of the original data
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Several challenges are encountered in multiple testing 
for HDD omics data. One is that in order to control false 
positives when a very large number of statistical tests 
are performed, small α levels must be used, which lim-
its statistical power. Another challenge is the mathemati-
cal difficulty of dealing with joint distributions of certain 
variable types such as counts, which are commonly gen-
erated by newer omics technologies such as RNA-Seq. 
Furthermore, sample sizes are often insufficient to rely 
on classical statistical asymptotic (large sample size) 
theory to provide tractable approximate distributions of 
test statistics required to appropriately control type I and 
II errors. Finally, the classical approach of limiting false 
positives by controlling the overall probability of any false 
positive findings is overly stringent when extremely large 
numbers of tests are performed. These challenges have 
spawned a wealth of innovative statistical approaches for 
multiple testing with HDD, which are described in the 
sections that follow.

The earliest technologies for high-dimensional gene 
expression analysis based on microarray platforms quan-
tified gene expression by fluorescence intensities. After 
logarithmic transformation, these continuous intensity 
values are typically well approximated by a normal dis-
tribution. Many of the early methods developed for sta-
tistical analysis of microarray data relied on normally 
distributed data, the simplest example being use of t-tests 
to identify lists of differentially expressed genes with var-
ying degrees of type I error control. Sample size in these 
early studies was usually relatively small, making it diffi-
cult to adequately control false discoveries and still main-
tain sufficient statistical power. Some of these methods 
were ad hoc or limited to simple experimental settings 
such as two-group comparisons, but advances in statis-
tical methodology led to improved approaches for the 
analysis of HDD gene expression data (Table 16).

Sometimes a researcher is interested in identifying 
genes for which expression is not different between con-
ditions, opposite the more typical goal to identify differ-
entially expressed genes. This requires reversing the usual 
role of the null and alternative hypotheses. However, 
since it is impossible to statistically rule out very tiny 
effects, the null hypothesis that is tested for each gene 
is that its effect is larger than some user-specified mini-
mum size. When implementing this procedure to identify 
genes with negligible effect, mean parameter shrinkage 
functions must be turned off.

TEST2: Multiple testing
Methods described in the previous section provide use-
ful approaches to improve statistical power for testing 
individual variables (genes) and to appropriately model 

commonly encountered omics data. However, a final step 
is required to control false positives in HDD settings. 
Several multiple testing correction methods and their 
utility for HDD are discussed in this section.

TEST2.1: Control for false discoveries: Classical multiple 
testing corrections  A simple table illustrates the types of 
errors that can be encountered in multiple testing [100]. 
When testing m hypotheses, these are either true or false, 
and either rejected or not rejected, yielding four possibil-
ities, which are displayed in Table 17 along with the num-
bers of hypotheses falling in each category.

In Table  17, m represents the number of tests con-
ducted; R represents the number rejected hypotheses; 
V represents the number of tests for which type I errors 
were committed, or the number of false positives; and U 
represents the number of tests that correctly rejected the 
null hypothesis, or the number of true positives. Further, 
m0 represents the total number of true null hypotheses; 
m1 the total number of false null hypotheses; and m1 − U 
represents the number of tests for which type II errors 
were committed. The goal of a multiple testing procedure 
is to control V while not too severely limiting U. If R = 0, 
then no type I error can be committed. If m0 = m, then 
rejection of any test constitutes a type I error and repre-
sents a false positive result.

Classical multiple testing corrections that aim to con-
trol false discoveries by using more stringent (smaller) 
“critical” levels for significance testing may work well 
in situations with a few dozen tests or less. However, they 
can be problematic for HDD because they may be too 
stringent and severely limit statistical power for detect-
ing associations that truly exist, particularly when sample 
sizes are not large.

The simplest approach to controlling false discover-
ies is the classical Bonferroni correction, where the 
critical level is adjusted by dividing it by the number of 
tests performed (see Table 18). Bonferroni correction is 
very stringent for several reasons. First, it is designed to 
control what is known as familywise error rate (FWER), 
which refers to globally controlling the probability that 
any of the tests results in a false discovery. In terms of 
the notation in Table  17, controlling the FWER at level 
α means requiring P(V > 0) ≤ α. Despite its conservative-
ness, Bonferroni adjustment has become the standard 
approach for genome-wide association studies to con-
trol the genome-wide significance level. This enforces 
stringent control on the probability that any of the hun-
dreds of thousands of genomic variants typically studied 
is falsely identified as associated with the phenotype of 
interest. Second, a simple Bonferroni correction is con-
servative in that it does not leverage information about 
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Table 16  Methods for hypothesis testing for multiple variables in HDD: Limma, edgeR, DEseq2

Limma
  Linear Models for Microarray Data (limma) developed by Smyth and colleagues [95, 96] and implemented in the R package limma was developed 
to address several challenges of multiple testing for HDD. Limma offers a unifying, statistically based framework for multiple testing that uses empirical 
Bayes shrinkage methods in the context of linear models. Initially popularized in the context of traditional gene expression analysis with microarrays, 
limma is based on normal distribution theory. It evolved from a procedure to modify t-statistics by “borrowing information” across variables to improve 
variance estimation and increase statistical power. Limma provides a way to balance the need for small type I errors for testing individual variables in 
HDD settings against statistical power to identify true discoveries. Designs more complex than simple two-group comparisons are easily accommo‑
dated by limma’s linear model framework. Although it was developed originally to identify differentially expressed genes for normalized measurements 
from microarrays, it has also been used successfully for analysis of data generated by other omics technologies, e.g., proteomics [97]

  For simplicity of explanation, the focus of discussion here is how limma works in the context of simple two-group comparisons as an extension of the 
familiar t-test. Limma relies on the concept of borrowing information across a collection of similar variables (e.g., expression levels for the thousands of 
genes measured on a microarray). Many omics studies have relatively small sample size compared to the number of variables, so the idea of borrowing 
information across a very large number of variables is very attractive. If one can assume that the true variances across the many variables follow some 
overarching distribution, then variance estimates for individual variables that are imprecise due to small sample size can be made more precise by 
shrinking them toward a variance estimate that is pooled from all variables. The amount of shrinkage depends on the distribution estimated (empiri‑
cal Bayes) or assumed (Bayes) for the true variances. Limma is based on an empirical Bayes approach that assumes normally distributed variables and 
shrinks the individual variances toward the mean of the estimated distribution of true variances

  Out of this empirical Bayes framework comes the moderated t-statistic, which is similar in form to the usual t-statistic, but with an adjusted estimate 
of standard deviation for each variable that has been shrunk toward the mean of the distribution of variances, replacing the usual sample standard 
deviation estimate in the denominator. These shrunken estimates are more precise as reflected in larger degrees of freedom achieved by “gathering 
strength” across the many variables, resulting in higher statistical power to identify true discoveries

  An additional advantage of limma is the complexity of experimental designs that it can handle. Many extensions beyond two class comparison prob‑
lems can be accommodated by the linear model framework. Comparisons can be made between more than two classes, including linear contrasts, for 
example to assess for linear trends in means across classes. In addition, limma offers a powerful set of tools to address a broad range of experimental 
settings in which data can be reasonably represented by a Gaussian linear model. Included in the limma framework are factorial designs, which consist 
of two or more factors with levels (discrete possible values), for which all combinations across the factors are investigated. This allows the analysis of 
main effects and interactions between variables

  The evolution of technologies for gene expression analysis from microarrays to sequencing-based approaches such as RNA-Seq presented new 
statistical challenges for HDD analysis. Gene expression measurements generated by these newer technologies are typically count data rather than 
continuous intensity values as for microarray technologies. Count data are generally not compatible with assumptions of normally distributed data 
on which limma relies. For example, RNA-Seq measures the number of reads (DNA fragments) that map to specific genomic locations or features 
represented on a reference genome. Two extensions to limma were developed to address gene expression measurements expressed as counts. Limma-
trend shrinks the gene-wise variances of the log-transformed count values toward a global mean–variance trend curve. Limma-voom extends this idea 
further by also taking into account global differences in counts between samples, for example due to different sequencing depths

  Several other methods to analyze count data were developed independently of the limma extensions, with foundation on negative binomial models 
to characterize the distribution of count data. The negative binomial includes the Poisson as a special case and is generally preferred in the setting of 
modern gene expression analysis. It has greater flexibility for modelling variances of counts, particularly when those counts are not large or when the 
number of replicates for each biological group or condition is not large

edgeR
  The edgeR procedure [98] assumes that the read count for a particular genomic feature follows a negative binomial (NB) distribution. Although a 
genomic variable of interest need not correspond exactly to a gene, in the following the term gene is used for simplicity of discussion. Much of the 
discussion is framed in terms of gene expression count data arising from RNA-Seq measurements, but the developers note that the methods imple‑
mented in edgeR apply more generally also to count data generated by other omics technologies, including ChIP-Seq for epigenetic marks and DNA 
methylation analyses

  The measured count for gene g in sample i is assumed to follow a NB distribution with mean equal to the library size for that sample (total number 
of DNA fragments generated and mapped) multiplied by a parameter representing the relative abundance of gene g in the experimental group j to 
which sample i belongs. The variance of the count for a specific gene based on the NB distribution is assumed to be a function of the mean and a 
dispersion parameter; specifically, the variance is modeled as the sum of the technical variation and the biological variation. Technical variation for gene 
expression and other types of omics count data can usually be adequately modeled as a Poisson variable, but incorporating biological variability leads 
to additional variability. To incorporate this additional variability, an “overdispersion” term is introduced into the variance. Specifically, the variance of a 
count is modeled as the mean multiplied by the sum of one and the mean multiplied by a term that represents the coefficient of variation of biological 
variation between samples. This expression reflects a partition of the variance into contributions from technical and biological variation. When there is 
no biological variation between samples, e.g., when samples are true technical replicate sequencing runs from a single library produced for a sample, 
this variance reduces to the Poisson variance, which equals the mean. This model provides a flexible and intuitive expression for the variance and incor‑
porates dependence of the variance on the mean as expected for count data

  Using an empirical Bayes approach similar in flavor to that described for limma, the edgeR procedure borrows information across genes to shrink the 
gene-specific dispersion parameters toward a model describing the distribution of dispersion parameters. The simplest model is one in which all genes 
share a common dispersion parameter, which can be estimated from the data. Allowing greater flexibility, dispersion parameters can be modeled as a 
smooth trend as a function of average read count for each gene. To allow for further gene-specific reasons for variation in the count of a gene, empiri‑
cal Bayes methods are employed to estimate weighted averages that combine gene-specific dispersion estimates with those arising from dispersion 
models, in this way “shrinking” gene-specific dispersion estimates toward the overall model
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potential correlations between the test statistics; nor does 
it account for the ordering of the p-values when apply-
ing the significance-testing threshold. When evaluating 
p-values in order from smallest to largest, it is natural to 
require smaller critical levels for declaring significance 

earlier in the list. These limitations of the Bonferroni 
correction have motivated development of modified 
approaches that are less stringent, as discussed next.

Some adjusted versions of Bonferroni correction that 
take p-value ordering into account have been proposed. 
Some, such as those proposed by Hochberg [101] and 
Hommel [102], require assumptions about the joint dis-
tribution of the p-values such as the nature of correla-
tions, and those are not discussed here. However, the 
approach proposed by Holm [103] provides a simple 
improvement on the Bonferroni method that allows criti-
cal values for significance testing to depend on the order-
ing of the p-values while, like Bonferroni, requiring no 
assumptions about the joint distribution of the p-values. 
Holm’s approach is described in Table 18.

Table 16  (continued)

  The edgeR software allows the user to compare gene expression between groups when there are replicate measurements in at least one of the 
groups and more generally when the group mean structure can be expressed as a linear model. Scientific questions of interest can be framed in terms 
of inferences about the relative abundance parameters in the linear model. For example, one might wish to compare relative abundance of a particular 
gene transcript in a group of samples taken from cell cultures that had not been exposed to a new drug to that in samples from cultures after exposure 
to the new drug. There could be interest in examining the pattern of change in relative abundance of the gene, sampling from a series of cultures that 
are exposed to the new drug for differing lengths of time. From the specified linear model and shrunken variance estimates, the edgeR software can 
perform gene-wise tests of significance, based on likelihood ratio statistics, for any parameters or contrasts of parameters in the mean model

DEseq2
  DESeq2 [99] is another method for differential analysis of count data that is widely used. Performance of DEseq2 compares with edgeR in terms of 
false discovery control and statistical power to detect differentially expressed genes. It also uses a negative binomial model for the counts with vari‑
ance expression that incorporates a dispersion parameter, as described for edgeR. Dispersion parameters are modeled across genes as a smooth curve 
depending on average gene expression strength. Using empirical Bayes methods, gene-specific dispersion parameters are shrunk toward the curve 
by an amount dependent on how close the individual dispersion estimates tend to be to the fitted smooth curve and the sample size (through the 
degrees of freedom)

  A feature of DEseq2 that distinguishes it from other methods is incorporation of shrinkage into estimation of mean parameters. Shrinkage of mean 
parameters, e.g., fold-change, has appeal because researchers tend to find larger effects more convincing. Genes that attain statistically significant 
effects but exhibit small effect sizes are frequently manually filtered out due to concern that the significance could be due to random experimental 
noise. Shrinkage of fold-changes implemented by DESeq2 provides a more statistically based approach to address these less reliable findings, which are 
observed particularly often for genes with small counts. Additional useful features of DESEq2 include options for outlier detection

Table 17  Contingency table describing outcomes of testing 
multiple null hypotheses

Null hypothesis truth status

Test result True False Total

Rejected V U R

Not rejected m0 − V m1 − U m − R

Total m0 m1 m

Table 18  Methods for multiple testing corrections: Bonferroni correction, Holm’s procedure, Westfall-Young permutation procedure

Bonferroni correction
  The Bonferroni correction specifies that when m statistical tests are conducted, each one should use a critical level of α/m where α is the desired 
type I error for the full collection of tests. For example, a Bonferroni correction applied in the setting of 10,000 hypothesis tests would require that an 
individual test reaches statistical significance at a critical level = 0.05/10,000 = 0.000005. Achieving this level of significance would require an extremely 
large sample size or effect size (e.g., magnitude of association) in order for an individual test to have reasonable power

Holm’s procedure
  Order the p-values from smallest to largest as p(1), p(2),..., p(m), where m is the number of tests. Beginning with p(1), proceed in order, comparing each p(i) 
to the critical value α/(m-i + 1). Stop the first time that p(i) exceeds the critical value α/(m-i + 1). Call this index j. Declare all p-values p(1), p(2),..., p(j-1) to be 
statistically significant

  This procedure controls the FWER to be no more than α. It is clear from comparison of the sequential Holm critical values to the fixed Bonferroni 
critical value that the Holm procedure has the potential to reject more tests and therefore offers greater power, although when the number of tests m is 
very large, as often in HDD, the actual difference in critical values can be extremely small

Westfall-Young permutation procedure
  The Westfall-Young permutation procedure [104] is a multivariate permutation procedure to control the FWER that is more efficient (powerful) than 
Bonferroni-like procedures (as Bonferroni and Holm’s procedure) in finding true discoveries. It exploits the correlations among variables, which are 
preserved in the permutation process, since all variables are permuted at the same time. The method is a step-down procedure similar to the Holm 
method. After p-values are calculated for all variables and ranked, multiple times class labels are permuted and corresponding p-values are calculated. 
Then the successive minima of these new p-values are retained and compared to the original p-values. For each variable, the proportion of number of 
permutations where the minimum new p-value is less than the original p-value is the adjusted p-value
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Several other methods of controlling the FWER have 
been proposed that require additional assumptions about 
the nature of correlations between test statistics or might 
only control false positives under a global null in which 
all hypotheses are null. Such tests are not guaranteed to 
always control the FWER when these assumptions do not 
hold and will not be discussed further here.

An appealing aspect of multiple testing procedures that 
control FWER is that one can make statements about the 
probability that an individual test falsely rejects the null 
hypothesis. Because the probability that any test among 
a collection of tests falsely rejects must be at least as 
large as the probability that a single randomly chosen test 
falsely rejects, control of FWER at level α automatically 
guarantees control of the type I error at level α for each 
individual test.

An important caveat about any multiple testing cor-
rection method that is based on p-values is that it relies 
on the validity of the p-values or the validity of the cor-
responding test procedures. As noted in the discussion of 
test statistics above in section “TEST1: Identify variables 
informative for an outcome,” ensuring sufficient accuracy 
of p-values based on specific (parametric) distributions 
can be challenging in HDD settings. Permutation tests 
can provide distribution-free options for multiple test-
ing in some situations. They also offer the flexibility to 
handle HDD with variables of different types, e.g., vari-
ables could be a mix of categorical, count, or continuous 
data. However, permutation tests can be problematic for 
multiple testing in HDD settings as well, as it can be very 
computationally intensive to accurately compute p-values 
that might be very small.

Multivariate permutation tests are permutation tests 
that are applied for testing multiple hypotheses simulta-
neously. For each hypothesis, a test statistic is calculated, 
for example for simultaneously comparing the distribu-
tion of many omics variables between two phenotype 
classes. As in the univariate case, class labels are ran-
domly reassigned to the observations (keeping the full 
profile of measurements intact for each observation), 
and then a p-value for each variable is computed as the 
number of permutations on which the corresponding 
calculated test statistic is as extreme or more than the 
test statistic calculated of the original data. The popular 
Westfall-Young permutation procedure, as an example, is 
described in Table 18. Multiple testing procedures can be 
applied to the collection of permutation p-values to con-
trol false discoveries just as if the p-values had been com-
puted assuming parametric distributions for the variable.

TEST2.2: Control for false discoveries: Methods motivated 
by HDD  Various multiple testing correction methods 
have been developed that are more appropriate for HDD 

than the classical Bonferroni-type methods. Usually, 
these approaches aim for a false discovery control that is 
less stringent than familywise error control, such as lim-
iting the percentage of false discoveries (rather than aim-
ing to avoid any false discoveries) in exchange for greater 
power to detect true discoveries. Many multiple test-
ing methods for HDD are combined with methods such 
as those just discussed in section “TEST1.2: Modelling 
approaches: Hypothesis testing for multiple variables” 
that borrow information across variables (or tests) or 
that exploit correlations between candidate variables to 
increase statistical power. The growing amount of HDD 
stimulated development of a variety of innovative mul-
tiple testing procedures more appropriate for these data 
than traditional approaches.

To describe the various multiple testing approaches for 
HDD and the false discovery criteria that they control, it 
is helpful to focus again on one of the most frequent goals 
in omics data analysis, which is the identification of dif-
ferentially expressed genes between two or more classes 
or conditions. The notation used in this section follows 
that defined in Table 17.

Aiming to control type I error in terms of the FWER 
through application of classical Bonferroni-type methods 
becomes extremely challenging with increasing dimen-
sion of HDD due to low statistical power, as already 
discussed. These challenges motivated consideration 
of alternatives to classical control of type I error, most 
commonly control of the false discovery rate (FDR). The 
popular FDR is in principle the expected proportion of 
false discoveries among the rejected tests and described 
in more detail below. The methods differ by the type of 
error they aim to control but share some operational 
aspects. Once the acceptable magnitude of error (e.g., 
FDR) has been specified, the (raw, uncorrected) p-values 
are calculated and next the variables are usually ranked 
based on their associated p-values. Those with p-values 
below a certain threshold are included in the list of the 
positive findings (rejecting their associated null hypothe-
ses). This threshold can be fixed for all p-values, or it may 
depend on the ranking of p-value. Equivalently, the p-val-
ues can be adjusted and then compared to the desired 
level of error control. There are several methods for FDR 
control, which define in a different way the adjustment 
applied to the p-values and the threshold to which those 
p-values are compared.

As is common in statistics, some methods require addi-
tional assumptions and the claimed properties are only 
valid when those assumptions are met. In multiple test-
ing, an important distinction is between methods that 
achieve weak control and those that achieve strong con-
trol. Weak control means that the method achieves the 
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stated error control only when there are no true positives 
(i.e., all null hypotheses are true). In contrast, strong con-
trol means that the method achieves the stated control no 
matter how many of the null hypotheses are true or false. 
Only methods that provide a strong (general) control are 
discussed here. In multiple testing, it is also common to 
encounter assumptions about the dependence among 
variables or p-values; the assumption of independence 
among variables is unrealistic for omics data, where vari-
ables are often positively correlated.

In the following, we first define metrics to quan-
tify false positives and then briefly present some of 
the methods that have been proposed to control them, 
focusing only on the essential concepts. We point the 
more technical reader to comprehensive reviews of 
multiple testing methods by Dudoit et  al. [105] and 
more recently by Goeman and Solari [106]. A practical 
introduction providing illustrative examples with imple-
mentation in the R language is available in the book of 
Bretz et al. [107].

The FDR is a popular extension of the concept of type I 
error for HDD. Using the notation described in Table 17, 
FDR is the expected (average) value of Q, i.e., FDR = E(Q), 
where Q = V/R if R > 0 and Q = 0 if R = 0 [107]. Q is some-
times also called FDP (false discovery proportion). Since 
the case R = 0 is very uncommon in practical HDD appli-
cations, the FDR can be roughly thought of as the pro-
portion of false positives among declared positives (i.e., 
among rejected tests). Controlling FDR is less stringent 
than controlling FWER, as FDR control inherently allows 
for some false positives. The goal of FDR control is to 
identify as many positive test results as possible, while 
accepting a relatively low proportion of false discover-
ies. In practice, common choices for FDR control are 5 
or 10%.

The Benjamini–Hochberg procedure [108] is the 
most widely used method for controlling the FDR. It 
is described in Table 19. Notably, the adjusted thresh-
old value used by the Benjamini–Hochberg method 
is identical to that used by the Bonferroni and Holm 
methods for the variable with the smallest p-value, 
but it is much larger for the others. It is generally true 
that lists of discoveries generated by procedures that 
control the FDR are much longer than those gener-
ated by methods that control the FWER at the same 
level. Yet, like the Bonferroni method, the original 
FDR method is conservative, effectively controlling 
the FDR at level α·m0/m ≤ α if the variables are inde-
pendent. Many methods were proposed to improve 
the power of FDR by estimating this unknown pro-
portion of true null hypotheses (m0/m) from data 
and using it to adapt the threshold value (see [100]). 
The original FDR [108], which was proposed for 

independent variables but proven to be valid under 
the assumption of a positive correlation of the p-val-
ues, was extended by Benjamini and Yekutieli [109] 
to handle more general dependencies. This more 
general procedure has lower thresholds and is more 
conservative. Several other methods were proposed 
to control FDR and some error rates closely related 
to FDR were defined [110]. Figure  15 illustrates how 
the Bonferroni and the Benjamini–Hochberg correc-
tion work.

Many extensions and modifications of the FDR have 
been proposed. The most common criticism of FDR 
is that it controls only the average proportion of false 
positives, which might be very variable: in practice, the 
actual proportion Q of false positives derived from an 
analysis might differ substantially from the targeted 
FDR threshold, but the FDR methods do not provide 
an estimate of this variability. Readers are referred to 
Goeman and Solari [106] for discussion of methods 
that aim to control the false discovery proportion with 
a specified confidence. Other methods have been pro-
posed for control of local FDR, a concept that allows 
a more powerful interpretation of q-values at the level 

Table 19  Methods for multiple testing corrections controlling 
the FDR: Benjamini-Hochberg, q-values

Benjamini-Hochberg (BH)
  The Benjamini–Hochberg procedure [108] to control the FDR specifies 
that the ith ordered (smallest to largest) unadjusted p-value is compared 
to the threshold ( α/m)·i, where i is the ranking of the p-value, m is the 
total number of tests, and α is the desired level of FDR control. Then the 
largest p-value that is smaller than its threshold is identified, and the 
corresponding test and all tests with a smaller p-value are considered 
significant. Alternatively, one can convert the unadjusted p-values to 
FDR-adjusted p-values where the adjusted p-value associated with a vari‑
able represents the smallest value of FDR at which the procedure would 
have rejected the test associated with that variable. The intuition behind 
this correction is linked to the fact that the p-values of null variables 
for independent tests are uniformly distributed; therefore, the ranked 
p-values should lie approximately on the line y = i/m. In the presence of 
true positive variables (non-null hypotheses), one would expect a higher 
concentration of small p-values, therefore an excess of p-values falling 
below the line i/m for lower ranks

q-values
  Adjusted p-values can also be calculated for FDR-controlling proce‑
dures. For a particular variable, the FDR-adjusted p-value is sometimes 
called a q-value and can be interpreted as the expected proportion of 
false positives among all variables with test statistics as or more extreme 
(with smaller adjusted p-values) as the observed value for the variable 
under examination [110]. Thus, the q-value estimates the FDR that would 
be obtained if this specific p-value would be used as the upper threshold 
for the inclusion of the variables in the list of discoveries. Therefore, 
q-values do not have an obvious interpretation at the level of a single 
hypothesis. A related limitation is that the interpretation of the FDR 
results should be restricted to the complete list of discoveries obtained 
from the analysis, as the properties of subsets with respect to what 
number or proportion of false discoveries they might contain are not well 
defined
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of single hypothesis and not as a property of a list 
of variables [111]. In practice, the FDR-controlling 
approaches are some of the most widely used methods 
for multiple testing for omics data, despite some rec-
ognized limitations.

TEST2.3: Sample size considerations  Determina-
tion of an appropriate sample size for a study that will 
involve conducting an extremely large number of sta-
tistical tests is very challenging. Sample size methods 
must be tailored to the desired approach and criteria for 
error control. Both false positive (type I error) and false 
negatives (type II) errors need to be considered. Early 
in the emergence of omics data, sample size methods 
focused on FDR control [112], particularly for microar-
ray technology [113]. A recent review mainly focusing 
on sequencing experiments also provides useful guid-
ance [114].

TEST3: Identify informative groups of variables
The multiple testing problem is less severe when the 
interest is shifted to groups of variables instead of sin-
gle variables, as described in the introduction of sec-
tion “TEST: Identification of informative variables and 
multiple testing” as example (iii) of the main scenarios. 
In most cases, the groups are prespecified (e.g., genes 
belonging to the same biological pathway, genes with 
the same molecular function, or mutations on the same 
arm of a chromosome). A variable can belong to more 
than one group, and often the variables belonging to the 
same group are positively correlated. This type of analysis 
has the potential of having greater statistical power and 
greater between study reproducibility than a variable-by-
variable analysis.

The methods tailored for the analysis of groups of vari-
ables can be divided into two broad classes [115, 116]: 
The first class are competitive methods, which attempt 

Fig. 15  Graphical illustration how the Bonferroni and the Benjamini–Hochberg correction work, for an example with 7129 tests and 0.05 as desired 
significance level in each case. Applying Bonferroni, only the results of the tests with p-values smaller than 0.05 / 7129 (represented by a dotted line) 
provide evidence against the null hypothesis. For Benjamini-Hochberg, the significant genes are those whose tests yield p-values smaller than the 
largest p-value under the threshold, circled in green in the figure. The threshold is represented by the dashed line. The line has intercept 0 and slope 
0.05 / 7129, where now 0.05 is the desired level of FDR control
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to identify which variable groups have a stronger asso-
ciation with the outcome (or phenotype) than the other 
groups. The second class are self-contained methods, 
which try to identify which of the variable groups con-
tain at least one variable that is associated to the out-
come. Example approaches are described below. The 
popular gene set enrichment analysis (GSEA) and over-
representation analysis (ORA) are mixed approaches, 
while topGO is a competitive method and the global 
test a self-contained method. In all cases, FWER or 
FDR can be controlled using any of the methods already 
described in section “TEST2: Multiple testing” on mul-
tiple testing. When applying multiple tests for groups 
of variables, multiplicity refers to the multiplicity of 
these groups, not of individual variables. In order to also 
examine data from a single patient or a small number of 
samples in experiments, methods have been developed 
that score individual samples based on gene sets. Sing-
score [117] is one such approach. It is a rank-based sin-
gle sample method that generates scores that are stable 
across a range of sample sizes (Table 20).

PRED: Prediction
It is often of interest to build a prediction model that takes 
so-called “predictor variables” (sometimes also referred 
to as “independent variables”) as input and returns a pre-
diction for a target variable of interest (sometimes also 

referred to as “dependent variable”) as output. This tar-
get variable, which refers either to the present state of 
the patient or to the future, may be a (binary or multi-
categorical) class membership (e.g., treatment responder 
versus non-responder), a continuous variable (e.g., blood 
pressure or tumor size after therapy), an ordinal variable 
(e.g., WHO tumor grade), or a time-to-event (e.g., the 
overall survival time). Statistically more challenging cases 
of target variables that are not discussed in this paper are 
zero-inflated variables (typically continuous with addi-
tional frequent 0 values), continuous bounded variables 
(e.g., with values in [0,1]), or time-to-event variables in 
the presence of competing risks.

In the HDD setting, the number of candidate variables 
available to build the prediction model may be very large. 
This property has implications for construction of pre-
diction models (section “PRED1: Construct prediction 
models”) and assessment and validation of their perfor-
mance (section “PRED2: Assess performance and vali-
date prediction models”). Detailed guidance for training, 
testing, and validation of HDD prediction models is pro-
vided by the IOM (Institute of Medicine of the National 
Academy of Sciences, USA) within a report that identifies 
best practices for the development, evaluation, and trans-
lation of omics-based tests into clinical practice [124]. 
However, that report does not contain detailed guidance 
on statistical approaches for construction of prediction 

Table 20  Methods for multiple testing for groups of variables: Gene set enrichment analysis (GSEA), Over-representation analysis, 
global test, topGO

Gene set enrichment analysis (GSEA)
  The popular gene set enrichment analysis (GSEA; [118]) and its extensions are considered mixed approaches, as they test whether any of the variable 
groups is associated to the outcome variable and if any of the variable groups is enriched by variables associated to the outcome variable. A summary 
statistic is computed for each variable, a relative enrichment score based on a signed Kolmogorov–Smirnov statistic is calculated for each group, and its 
significance is evaluated using permutations. The groups with scores above or below a threshold are called enriched and the false positive rate is evalu‑
ated using a permutation procedure that permutes the specimens rather than the variables. Efron and Tibshirani [119] proposed to base the score on a 
standardized “maxmean” statistic (the standardized maximum of positive and negative summary statistics in each group), thus improving the power of 
the method

Over-representation analysis
  Over-representation analysis (ORA; [120]) uses a similar concept to GSEA. It determines which variable groups are more present (overrepresented) in 
a subset of a given list of “interesting” variables than would be expected by chance. This can also be applied to situations where GSEA is used, but then 
instead of the Kolmogorov–Smirnov statistic the hypergeometric distribution is used for determining the significance of the over-representation, and 
thus a subjective cutoff for the summary statistic must be chosen a priori

Global test
  The global test [121] is based on the estimation of a regression model where all the variables belonging to the group are included as covariates, and 
the global null hypothesis is tested whether any of the variables is associated with the outcome variable. The method is particularly good at identifying 
groups containing many variables, each of which might have relatively small effects

topGO
  The topGO algorithm [122] provides methods for testing specific gene groups defined via the Gene Ontology (GO). The Gene Ontology is a widely 
recognized comprehensive reference for gene annotations. It assigns genes to GO terms belonging to the three main domains: biological processes, 
molecular functions, or cellular components. The corresponding gene groups (defined according to GO terms) are widely used prespecified groups 
of variables, often referred to as gene sets. However, when scoring the relevance of GO terms with methods as mentioned above, due to the high 
redundancy of many terms resulting in many similar groups of variables, the list of the most significant groups is also highly redundant. topGO provides 
algorithms for testing GO terms while accounting for the relationships between the corresponding gene groups. As a result, the final list of the most 
significant groups better represents the diversity of all significant groups, see Figure 16 [123] for the result of the topGO algorithm
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models and assessment of their performance. In addition, 
statistical methodology has seen substantial develop-
ments during the last decade.

Many methods to assess model performance and 
validate prediction models have been developed for 
low-dimensional data and then adapted to HDD, so a 
good starting reference is the explanation and elabora-
tion paper of the TRIPOD (Transparent Reporting of 
a multivariable prediction model for Individual Prog-
nosis Or Diagnosis) reporting guideline [125]. This 

section explains, expands, and elaborates on existing 
guidance to more comprehensively cover issues in pre-
diction modelling with HDD.

PRED1: Construct prediction models
Researchers developing a prediction model primarily 
focus on how well the model predicts the outcome of 
interest, especially for new observations, e.g., for patients 
whose data were not used to build the prediction model. 
While this is the main concern, often the researchers 

Fig. 16  Subgraph of the Gene Ontology (GO) induced by the top 5 GO terms identified by topGO (elim algorithm) for scoring GO terms for 
enrichment. Rectangles indicate the 5 most significant terms. Rectangle color represents the relative significance, ranging from dark red (most 
significant) to bright yellow (least significant). The top GO terms are spread across different areas of the GO graph, representing rather different 
biological processes. Source: [123]
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are also interested in the interpretation of the model, 
for example identifying which variables contribute most 
to the prediction and in what way. From this perspec-
tive, models involving only a limited number of predic-
tor variables (denoted as “sparse models”), which clearly 
distinguish informative variables from non-informative 
variables, may be preferred to models making use of all 
variables measured for all observations. This is a par-
ticularly big challenge in the HDD setting, where many 
candidate variables are available. Beyond the issue of 
interpretability, sparse models may be easier to apply 
in clinical practice, because fewer variables have to be 
measured or determined to use them than for non-sparse 
models. In the case of gene expression, for example, the 
measurement of, say, 10 genes can be easily performed 
in any lab using PCR techniques, while the measurement 
of genome-wide expression requires the use of high-
throughput methods (see, e.g., [126]).

A model is said to be “complex” if it reflects many pat-
terns present in the available data, for example, by con-
sidering many predictor variables or capturing non-linear 
effects. Overly complex models risk overfitting the data, 
i.e., adhere too specifically to the data at hand and iden-
tify spurious patterns randomly present in the data used 
for model development that will not be present in inde-
pendent data (see, e.g., [127]). An overfitted model usu-
ally exhibits suboptimal prediction performance when 
subjected to appropriate unbiased evaluation methods, 
and interpreting such models can be misleading. In con-
trast, a model that is not complex enough underfits the 
data. It misses important patterns that might have been 
useful for the purpose of prediction. When fitting pre-
diction models, in particular (but not only) in the HDD 
setting, the challenge thus is to identify the optimal level 
of model complexity that will yield interpretable models 
with good prediction performance on independent data 
(see, e.g., [128, 129]).

The most straightforward statistical approach to con-
struct a prediction model using several predictor vari-
ables simultaneously while taking into account their 
correlation is fitting a multivariable (generalized) regres-
sion model, for example a simple linear regression model 
in the case of an approximately normally distributed tar-
get variable. In linear regression, the regression coeffi-
cients are fitted such that the sum (for the n observations) 
of squared errors (i.e., of squared differences between the 
true value of the target variable and the predicted value) 
is minimal. Mathematically, this basic linear regression 
amounts to solving a system of n equations with p + 1 
unknowns, where p stands for the number of predictor 
variables. Such a regression model, however, cannot be 
fitted if the number p + 1 of coefficients to fit (the inter-
cept and one coefficient for each variable) exceeds the 

dataset size n. This dimension problem is complicated by 
the frequently occurring situation in which some of the p 
variables are highly correlated, i.e., they provide similar 
information. These correlations can cause instability with 
regard to which variables are deemed important contrib-
utors to the model and, thus, can influence model inter-
pretability and performance.

Because the number of predictor variables p is usually 
larger than the number of patients n in HDD settings, 
basic regression models cannot be fitted directly. In this 
section, we briefly review some key strategies to deal with 
the dimension problem: variable selection, dimension 
reduction, statistical modelling (mainly through regu-
larization methods), and algorithmic approaches (at the 
interface between statistics and machine learning). First, 
however, we discuss a preliminary step, variable transfor-
mation, that can be particularly helpful in the context of 
HDD analyses.

PRED1.1: Variable transformations  As mentioned 
in section “IDA3: Preprocessing the data,” data may be 
transformed to obtain certain distributional properties 
required for the methods that might be used in preproc-
essing or in downstream analyses of the preprocessed 
data. For example, (approximate) normal distributions 
for errors are a prerequisite for the application of tests 
such as the t-test or methods based on linear models 
such as ANOVA and linear regression [130]. Transfor-
mations may also be helpful to dampen the influence 
of peculiar or extreme observations and may put vari-
ables on scales that are more amenable to analysis. For 
example, one could transform a bounded variable to an 
unbounded range or convert multiplicative effects to 
additive effects. It is often preferable to apply suitable 
transformations first and then work with transformed 
variables (Table 21).

Note that centering and scaling were discussed in 
section “IDA3.1: Background subtraction and normal-
ization” (referring to normalization), but there the trans-
formation was applied to all values of an observation (a 
subject, e.g., a patient) to adjust for potential systematic 
effects and make different observations more compara-
ble, whereas here the transformation is related to all val-
ues of a variable.

PRED1.2: Variable selection  Variable selection refers 
to identification of a subset of predictor variables from 
all available variables, for purposes of building a pre-
diction model. Note that terms as variable selection, 
selection strategy, or stepwise procedures are often 
used in the statistical literature, whereas use of the 
terms feature selection, wrapper, and filter is more 
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common in the machine learning community. Mul-
tiple strategies have been proposed in the statistical 
and machine learning areas; for recent reviews, see, 
e.g., Heinze et al. [132] and Singh et al. [133]. If avail-
able, subject matter knowledge should be included in 
the variable selection process. In many cases, however, 
variable selection is performed in a data-driven way, 
either with filter methods or with wrapper methods. 
In filter methods, the candidate predictor variables are 
considered successively independently of each other. 
Those satisfying a given criterion (for example, those 
associated with the target variable or those showing 
sufficient variability across all patients) are selected, 
while the others are ignored in the remaining analyses 
(for a comparison of filter methods in classification 
tasks with HDD data, see [134]). In contrast, wrap-
per methods select a subset of variables that, taken 
in combination, yield good performance accuracy 
(when used for prediction modelling with a considered 
method). The performance is assessed, e.g., through 
cross-validation (see section “PRED2.2: Internal and 
external validation”). Note that an embedded variable 
selection is also performed intrinsically with model 
building methods such as lasso and boosting (see sec-
tion “PRED1.4: Statistical modelling”).

When the variable selection process uses outcome 
data, care must be taken to avoid optimistic bias in 
apparent model performance estimates due to multiple 
testing issues such as those described in section “TEST: 
Identification of informative variables and multiple test-
ing.” It is critical that any data-driven variable selection 
steps are included as part of the model building process 
when model performance is assessed using any inter-
nal validation method, see Sachs and McShane [135] 
for a discussion of the use of “incomplete” cross-vali-
dation approaches and the bias inherent in such flawed 
approaches. Section “PRED2.2: Internal and external val-
idation” provides a further discussion. With an empha-
sis on LDD, the topic group TG2 “Selection of variables 
and functional forms in multivariable analysis” of the 
STRATOS initiative raised several issues needing more 
research about the properties of variable selection pro-
cedures. Authors stressed that it is not straightforward 
which variable selection approach to use under which 
circumstances [136]. Obviously, problems mentioned are 
strengthened in HDD.

PRED1.3: Dimension reduction  Data reduction has 
many purposes, including easier data handling (see also 
sections “IDA2.4: Graphical displays” and “EDA2.1: Clus-
ter analysis” for aspects regarding data reduction). Con-
cerning prediction, data reduction can help to reduce 
redundant information that may lead to instability of 
prediction models, as noted at the beginning of section 
“PRED1: Construct prediction models.” Data reduc-
tion may also facilitate explanation and interpretation 
by reducing the number of variables to consider. Note, 
however, that it may yield variables without a meaningful 
interpretation from a medical point of view [137].

In contrast to variable selection, the idea of dimension 
reduction is not to select variables but to build (a small 
number of ) new variables, often called components, that 
summarize the information contained in the original 
variables. They can then be used as predictor variables 
for model building—possibly with a low-dimensional 
method. However, portability and feasibility of models 
generated using dimension reduction versus variable 
selection can be substantially different. To predict out-
come using a model containing only a few selected vari-
ables, it is sufficient to measure these selected variables, 
while a model including derived components may require 
the measurement of all original variables. Consider, for 
example, deriving a prediction model from gene expres-
sion data generated using a microarray that measures 
20,000 genes. There is a huge practical difference between 
using a model requiring input of expression levels of only 
10 selected individual genes compared to using a model 

Table 21  Methods for variable transformations: Log-transform, 
standardization

Log-transform
  Variables with nonnegative values are frequently encountered in 
practice and typically have a right-skewed distribution. A logarithmic 
transformation may be helpful to make the distribution of the data more 
symmetric. In principle, instead of X, the derived variable log(X) is used as 
input for prediction modelling [131]. An example in a high-dimensional 
context is gene expression microarray data, which typically enter in a 
prediction model after being log2 transformed (see, e.g., [43]). Other 
transformations than the logarithmic one are, of course, also possible, but 
rarer

Standardization
  Another variable transformation often performed in high-dimensional 
contexts is standardization. Here, the variable is centered (for each value 
of the variable the mean of the variable is subtracted) and scaled (each 
centered value is divided by the standard deviation of the variable). 
This procedure has advantages from an interpretation point of view. For 
example, the intercept of a linear model including age would represent a 
person of average age instead of a hypothetical person of age 0. Further, 
standardization is crucial for the correct implementation of many regular‑
ized methods (e.g., lasso and ridge regression, see section “PRED1.4: Sta‑
tistical modelling”). Note that standardization can cause problems when 
applying a prediction model to a new dataset. In this case, one either has 
to use the correction factors calculated from the original dataset or re-
compute them on the new dataset, which is problematic because then 
individual predictions depend on other observations that happened to 
be included in the new dataset. Standardization is not mutually exclusive 
with other transformations, e.g., the logarithmic transformation described 
above, thus it is often performed in addition (i.e., after the logarithmic 
transformation)
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requiring input of 10 combination scores (components), 
each of which potentially requires knowledge of expres-
sion levels for all 20,000 genes.

The most well-known and widely used dimension 
reduction approaches are principal component analysis 
(PCA, see also section “IDA3: Preprocessing the data” 
for a description) and partial least squares (PLS), where 
the components are defined as linear combinations of the 
original variables [138]. While PCA constructs compo-
nents that have maximal variance and thus capture the 
signals of all types contained in the data, PLS constructs 
new variables that have maximal covariance with the 
target variable of interest. PLS is said to be a supervised 
method, where the term “supervised” refers to the fact 
that the target variable determines the construction of 
the components. Note that dimension reduction can be 
combined with variable selection.

For HDD analysis, a knowledge-based data reduction 
may also be useful. There is often external knowledge 
available about the entities to be investigated, such as 
knowledge of signaling pathways when analyzing gene 
expression data, or knowledge on conserved regions 
when analyzing DNA sequencing data (see also section 
“TEST3: Identify informative groups of variables” for 
incorporating information about functional relationships 
between genes in multiple testing). Attempts to re-dis-
cover such knowledge from the data at hand when per-
forming data reduction then will typically be less reliable 
compared to using a data reduction strategy that explic-
itly incorporates external information, even if the latter 
itself also is to some extent unreliable (Table 22).

PRED1.4: Statistical modelling  Several modifications 
of traditional regression methods are available to address 
common challenges encountered in HDD settings with 
p > n. There is no unique mathematical solution for the 
standard regression parameter estimates. Traditional 
regression aims to find the parameters that minimize 
a sum of squared errors, which can be viewed as mini-
mizing a type of “loss function.” Various modifications to 
this loss function can be made to permit a unique solu-
tion for the regression parameters in the HDD setting. 
The modifications described in this section impose math-
ematical constraints on regression coefficients. These 
constraints effectively limit the number of predictor 

variables included in the model or the magnitudes of 
their effects or both. Estimates obtained with such con-
straints are often referred to as “shrunken.” Some of these 
constraints can be shown equivalent to adjusting the 
covariance matrix (e.g., ridge regression; see [139]), but a 
variety of other constraints can be applied through speci-
fication of different loss functions; lasso [140] and elas-
tic net [141] are two examples. Other methods, such as 
boosting [142], iteratively fit regression models that mini-
mize a specified loss function at each stage. These vari-
ous approaches usually lead to different models, each of 
which is optimal according to its corresponding criteria.

Numerous modifications of these basic approaches 
have been developed in the literature (especially for 
lasso, due to its variable selection property). Goals can 
be to recover desirable mathematical properties (e.g., 
the adaptive lasso [143] uses adaptive weights for penal-
izing different coefficients and estimates the correct 
model under some constraints) or to adapt the lasso 
to specific problems (e.g., the group lasso [144] allows 
predefined groups of variables to jointly be selected or 
not) (Table 23).

PRED1.5: Algorithms  Boosting can be seen both as a 
statistical method, when a statistical model is fitted, and 
as an algorithmic approach, when it is implemented as a 
black box. In the latter case, the prediction updates are 
unrelated to an underlying statistical model, and only 
aim at minimizing a loss function [147]. Several machine 
learning algorithms have been developed to provide pre-
diction rules [148]. The prediction model is constructed 
without variable selection or dimension reduction as a 
preliminary step, in a fully data-driven way, i.e., (in con-
trast to statistical methods) without assuming a par-
ticular model for the dependence between target and 
predictor variables. These algorithmic approaches may 
allow more flexibility to handle aspects such as non-
linear or interaction effects, but often they are also less 
interpretable.

Machine learning algorithms comprise a diverse col-
lection of methods. They include, among others, meth-
ods based on consideration of nearest neighbors in 
the predictor space (such as kNN), decision trees for 

Table 22  Method for dimension reduction: Supervised principal components

Supervised principal components (SuperPC)
  PCA is conducted based on a subset of preliminarily selected variables. In SuperPC [55], first a variable selection method (see above) is used to 
reduce the number of prediction variables. This means that the additional step in comparison with PCA is that the subset of predictors selected is based 
on their association with an outcome, explaining the name supervised. Then, a classical PCA is performed on the reduced space (i.e., only considering 
the selected variables). The newly constructed components are then used for prediction
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classification and for regression (tree-based methods 
based on recursive partitioning of the predictor space), 
random forests (ensembles of decision trees, i.e., sets 
of decision trees whose predictions are averaged), and 
more complex approaches such as deep learning (neu-
ral networks with different structures and typically a 
huge number of parameters). In the HDD setting, many 
of these machine learning methods have been success-
fully used, but one must be particularly careful if the 
methods require the estimation of a large number of 
parameters, which applies especially to deep learning. 
Here, the overfitting problem discussed above becomes 
even more severe. Unbeknownst to users, some soft-
ware developed to implement complex algorithms could 
have faulty designs that result in incorrect or overfitting 
results; hence, algorithms must be carefully tested [149] 
(Table 24).

PRED1.6: Integrating multiple sources of informa-
tion  A major challenge for HDD, both for omics data 
and for electronic health records, is the integrative anal-
ysis of different data types. For instance, multiple types 
of omics data including proteomic, transcriptomic, and 
genomic, may be measured on the same subject. For 
health records data, various variable types are com-
bined, such as blood values, urine values, cardiography 
measurements (ECG or EKG), categorical diagnostic 
measurements, or a variety of demographic variables. 

This has implications for visualization and use of clus-
tering methods, which are often designed for a single 
data type. Conducting and interpreting joint analyses 
of disparate variable types can be challenging. Richard-
son and coauthors [160] distinguish between “horizon-
tal integration” applied to the same type of data across 
multiple studies and “vertical integration” applied to 
different types of data on the same sample of subjects. 
The distinction between horizontal and vertical refers to 
the fact that, usually, data from high-throughput experi-
ments are organized with samples represented by col-
umns and variables by rows.

Regarding horizontal integration, the meta-analytic 
approach of pooling summary measures of association 
is the most used approach. For other applications, such 
as clustering, in order to deal with different normaliza-
tions and platforms for the different datasets, centering, 
and standardization [161] or specific methods should 
be considered; for clustering, see for example Huo et al. 
[162]. Vertical data integration is typically model-based 
and the model used considers the specific characteristics 
of the data to be integrated and of the research question 
(whether exploratory or predictive).

In biomedicine, integration of multiple omics data 
types can provide deeper biological insights compared 
to individual omics in terms of disease subtyping, bio-
marker identification, and understanding of molecular 

Table 23  Methods for statistical modelling with constraints on regression coefficients: Ridge regression, lasso regression, elastic net, 
boosting

Ridge regression, lasso regression, and the elastic net
  Two of the most commonly used constrained regression methods are ridge regression and lasso. Interestingly, the problem of minimization of a loss 
function under particular constraints can be mathematically rewritten as the minimization of the same loss function with an additional penalty term. 
Consequently, ridge regression estimates the regression coefficients by minimizing the negative log-likelihood (in linear regression this corresponds 
to the sum of squared errors) plus a penalty term defined as the sum of the squared values of the coefficients. For lasso, the penalty term is instead the 
sum of absolute values of the coefficients. In both cases, the amount of penalty to be added is controlled by a tuning parameter, which must be chosen 
either by the user or as part of the algorithm (usually by cross-validation)

  A nice property of the lasso penalty is that it forces many regression coefficients to be 0, providing implicit variable selection (those predictor 
variables whose coefficients are estimated equal to 0 are removed from the model). However, the lasso has more difficulties in handling correlations 
among prediction variables. To try to take advantage of the strengths of both methods, a solution that combines both penalties has been proposed 
under the name of elastic net [141]. A further tuning parameter (in addition to the one that controls the strength of penalty) must be chosen, to define 
the balance between the two types of penalty. For extreme values of this parameter, namely 0 and 1, elastic net reduces to ridge regression and lasso, 
respectively

Boosting
  An alternative to adding constraints to solve the dimensionality problem for HDD is to pursue a stagewise approach. Starting from the simplest 
model (e.g., in regression, the null model), a single new predictor variable is added stepwise to the model, gradually improving it [142, 145]. The basic 
idea of boosting (combine several partial improvements to obtain a final good model) works particularly well when the improvements are small. 
Therefore, at each step, a regularized approach to the univariate problem is performed. For example, in a regression problem, rather than allowing only 
a single opportunity to add each predictor variable and produce its coefficient estimate, boosting allows a regression coefficient to be updated several 
times. At each step, the method selects the variable whose regression coefficient is to be updated, based on the minimization of the loss function

  Valuable properties already mentioned for lasso, such as shrinkage and intrinsic variable selection, are also achieved by boosting. Shrinkage results 
from the use of a loss function incorporating a penalty to constrain parameter estimates. The stagewise nature of the procedure potentially allows for 
stopping before all predictors have been added to the model, effectively setting the regression coefficients for the remaining predictor variables to 
zero. When to stop updating the model to avoid excessive complexity and, consequently, overfitting is a crucial decision for which several criteria have 
been proposed, see, e.g., Mayr et al. [146]
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mechanisms in diseases. For example, two different tis-
sues from the same or different organism may carry an 
identical DNA sequence for a particular gene, but the 
gene may be inactivated by methylation in one of the 
tissues and not in the other; or the aberrant expression 
of one gene regulating the function of another down-
stream in the same biological pathway might be evident 
by observing the altered expression of the downstream 
gene at the RNA or protein level.

Richardson and coauthors [160] reviewed some verti-
cal integrative analysis approaches, including integrative 

clustering and regression. The integrative clustering 
approach of Shen and coauthors [163], called iCluster, 
involves projection, via regression modelling, of the data 
onto scores representing a set of latent biological sub-
types assumed common across data types. Resulting pre-
dicted biological subtype scores are clustered to identify 
latent subtype membership, and estimated coefficients 
from the fitted regression models can provide insights 
into data features that associate with certain subtypes. 
Mo and coauthors subsequently developed iCluster + to 
allow for other non-continuous, non-Gaussian data 

Table 24  Methods for statistical modelling with machine learning algorithms: Support vector machine, trees, random forests, neural 
networks and deep learning

Support vector machine (SVM)
  A support vector machine (SVM) is a typical example of an algorithmic method developed in the machine learning context [150]. It is mostly used for 
classification, i.e., to predict the response class of the observations (e.g., healthy vs. sick patients), but can also be applied for regression. An SVM divides 
a set of observations into classes in such a way that the widest possible area around the class boundaries remains free of observations; it is a so-called 
Large Margin Classifier. The main idea is to construct a p-1 dimensional hyperplane (imagine a two-dimensional plane in a three-dimensional space, 
or a straight line in a plane) which separates the observations based on their response class. Often it is unrealistic to find such a perfectly separating 
hyperplane and one should accept some misclassified observations. Therefore, in the standard extended version of an SVM, observations on the wrong 
side of the boundaries are allowed, but their number and their combined distance to the boundary are restricted, such that a tuning parameter, usually 
denoted by C, defines how much “misclassification” is allowed. In addition, the extended implementation of kernel-based methods allows non-linear 
separating boundaries.

Trees and random forests
  One of the simplest algorithmic tools for prediction is a tree, in which the prediction is based on binary splits on the variable space. For example, a 
simple tree could have two nodes (splits): a root (the first split), which divides the space into two regions based on the presence of a genetic mutation, 
and a second node that divides the observations with this mutation again into two parts, based on another mutation. A tree can be grown further, 
until a predetermined (usually via cross-validation) number of regions in the variable space is reached [151]. In many studies, variables are measured on 
different scales (binary, ordinal, categorical, continuous) and several binary splits are possible, raising the issue of multiple testing. Algorithms which do 
not correct for multiple testing are biased in favor of variables allowing several cut points over binary variables [152].

  Simple trees are often unstable, i.e., fitting a tree to subsets of the data leads to very different estimated trees. One idea to solve this problem is to 
aggregate the results of trees computed on several bootstrap samples (bagging = Bootstrap AGGregatING, [153]). For example, for continuous variables, 
the predictions of different trees are typically averaged, and for categorical variables, for each category, the proportion of trees with this category as 
prediction is used as estimate of the probability of that category.

  While bagging partially mitigates the instability problem, often it is not very effective, due to the strong correlation among the trees. Random forests 
[154] improve upon this approach by limiting the correlation among the trees through use of only a subset of the variables in the construction of each 
tree. As in bagging, the results of the different trees are then aggregated to obtain a final prediction rule. Tuning parameters such as the size of the sub‑
set and the number of bootstrap samples must be chosen, but often default values are successfully used. While using the default values is often a good 
strategy in the LDD case, this is not necessarily the case for HDD problems. For example, the best size of the variable subset depends on the dimension 
of the total number of variables available [155]. An overview from early development to recent advances of random forests was provided by Fawagreh 
et al. [156].

Neural networks and deep learning
  In recent years, machine learning techniques like neural networks and deep learning have gained much interest due to their excellent performance 
in image recognition, speech recognition, and natural language processing [157, 158]. They are based on variable transformations: in neural networks, 
the predictor variables are transformed in a generally non-linear fashion through what is called an activation function. One popular choice for the activa‑
tion function is a sigmoid or logistic function, which is applied to a linear combination of predictor variables (the coefficients used in the linear function, 
which provide the individual contribution of each predictor variable, are called weights). These new transformed variables (neurons in machine learning 
terminology, latent variables in statistical terms) form the so-called hidden layers, which are used to build the predictor. Mathematical theorems show 
that increasing the number of hidden layers and decreasing the number of neurons in each layer can improve the prediction performance of neural 
networks.

  Specific neural networks with many hidden layers are called deep learning. The choice of the tuning parameters (activation function, number of 
hidden layers, and number of neurons per layer) characterizes the different kinds of neural networks (and deep learning algorithms). In the high-dimen‑
sional contexts, special approaches (e.g., selecting variables or setting weights to zero) are used to avoid overfitting.

  Deep learning methods are extremely successful in the situation of a very large number of observations (as in image classification and speech 
recognition based on huge databases). However, they tend to generate overfitted models for typical biomedical applications in which the number of 
observations (e.g., number of patients or subjects) does not exceed a few hundred or thousand (see Miotto et al. [159] for a discussion of opportunities 
and challenges).
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types [164]. More complex Bayesian mixture modelling 
approaches have also been developed to offer greater 
flexibility to accommodate mixed data types (e.g., dis-
crete mutation indicators in combination with con-
tinuous RNA or protein expression measures), provide 
metrics reflecting uncertainty about estimated under-
lying structure, and allow for elucidation of potentially 
different structure from different data types [165–168]. 
Integrative regression techniques are useful for super-
vised analyses of integrated data types, such as building 
a regression model for prediction of an outcome or phe-
notype. These methods allow to utilize structure inher-
ent in different data types (e.g., DNA sequence location, 
functional categories of proteins, metabolic or signaling 
pathways) to effectively reduce the high dimensionality of 
the predictor variable space to facilitate development of 
more parsimonious and interpretable models relating the 
multi-omics data to outcomes or phenotypes of interest. 
Multi-omics integration methods using autoencodeurs 
in a deep learning setting are reviewed by Benkirane and 
coauthors [169]. For more details, readers are referred to 
Richardson and coauthors [160] and references therein.

Although many prediction models for clinical out-
comes have been developed based either on clinical data 
or (more recently) on high-throughput molecular data 
(e.g., omics), far fewer models have been developed to 
incorporate both data types through vertical integra-
tion. The paucity of such models in the literature and 
in clinical use persists despite suggestions that a suit-
able combination of clinical and molecular information 
might lead to models with better predictive abilities 
(e.g., [170, 171]).

In many medical specialties, there are some widely 
available and accepted clinical predictors with predic-
tive value already validated in several independent pop-
ulations. Strategies to combine such established clinical 
predictors with different data types, including high-
dimensional omics data, have been proposed [172]; some 
examples have been published [173, 174], but applica-
tions are still rare. Volkmann and coauthors [174] investi-
gated whether better use of the predictive value of clinical 
data has an influence on the added predictive value of 
molecular data. This concept can also be extended to 
multi-omics data [175].

Conceptually, it is obvious that incorporation of 
important clinical variables can potentially lead to bet-
ter prediction models; thus, those variables should be 
considered in combination with molecular data. De Bin 
et al. [176] present strategies to combine low- and high-
dimensional data in a regression prediction model, ana-
lyzing the influence of the complex correlation structure 
within and between the two data sources. In some situ-
ations, predictive value of molecular data might be fully 

captured through the clinical variables, thereby elimi-
nating the need for the molecular data in the prediction 
model [172].

PRED2: Assess performance and validate prediction models
Perhaps even more than constructing predictive mod-
els and algorithms, evaluating their performance and 
validating them are key challenges. For HDD, not only 
the choice of suitable measures to assess and com-
pare model performance (see section below), but also 
the way of computing these measures is generally not 
straightforward.

PRED2.1: Choice of performance measures  Prediction 
performance is typically assessed by comparing the true 
and the predicted values of the target variable. The com-
parison is based on specific metrics, mainly depending on 
the nature of the target variable. Typical metrics include 
mean squared error or mean absolute error for continu-
ous target variables, area under the curve (AUC) or Brier 
score for binary target variables, and calibration plot and 
time-dependent Brier score for time-to-event variables. 
Such measures can be used to quantify the performance 
of a model (or algorithm) or to compare different models 
constructed using the same dataset. In most biomedical 
applications, the goal of a comparative assessment is to 
select a final model [177, 178]. Models of absolute risk 
that depend on covariates have been used to design inter-
vention studies, to counsel patients regarding their risks 
of disease or future disease-related events, and to inform 
clinical decisions. Several criteria related to “calibration” 
and “discriminatory power” have been proposed [179, 
180]. Often the main interest will be in the added value 
of biomarkers or gene signatures relative to an existing 
clinical prediction model. Several performance measures 
are available to quantify the added value [181].

For a clinical task, several very different models with 
equivalent prediction performance may be available. 
Not only, but especially in this situation, other aspects 
of the models can play an important role. Particularly 
noteworthy aspects of a model are sparsity, stabil-
ity, interpretability, and practical usefulness [7, 182]. 
Regarding sparsity, when selecting a final model from 
among several with comparable prediction perfor-
mance, selection of the most parsimonious (e.g., the 
model with smallest number of predictor variables) is 
preferred. Stability refers to the degree to which small 
changes in the data may produce large changes in the 
predictor output. A majority of predictors derived 
from HDD suffer from poor stability, irrespective of the 
method used to fit them, although some methods are 
more affected than others (see [183] for an overview 
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of stability measures, and Sauerbrei et al. [184] for sta-
bility investigations of regression models for LDD and 
HDD). For HDD, the stability problem is due to the 
myriad ways to combine a set of predictor variables to 
derive similar performing predictors. If the stability is 
found to be low, then interpretation of specific model 

components (the list of selected predictor variables, 
relationships between predictor variables, etc.) should 
be avoided. In terms of interpretability of the model, 
strong prior biological knowledge may also be taken 
into account, similar as for the aim of data reduction 
described above (Table 25).

Table 25  Methods for assessing performance of prediction models: MSE, MAE, ROC curves, AUC, misclassification rate, Brier score, 
calibration plots, deviance

Mean squared error (MSE) and mean absolute error (MAE)
  Mean squared error (MSE) and mean absolute error (MAE), sometimes denoted as mean squared prediction error (MSPE) and mean absolute prediction 
error (MAPE) to emphasize the fact that they are computed on a test set (see discussion below), are commonly used measures to evaluate the predic‑
tion performance of a model in the case of a continuous target variable. They are computed by averaging the squared differences or the absolute 
differences, respectively, between the values predicted by the model and the true values of the target variable. Note that the MSE, being a quadratic 
measure, is sometimes reported after a square root transformation, the so-called root mean squared error (RMSE)

ROC curves and AUC​
  A receiver operating characteristic (ROC) curve is a graphical plot that facilitates visualization of the discrimination ability of a binary classification 
method. Many statistical methods classify observations into two classes based on estimated probabilities of their membership. If the probability is 
larger than a threshold, then the response is classified as positive (e.g., sick), otherwise as negative (e.g., healthy). This threshold is mostly set to 0.5 or 
to the prevalence of the positive cases in the dataset. Choosing a lower threshold corresponds to more positive predictions, with the consequence of 
increasing the percentage of observations correctly classified positive among those actually positive (sensitivity) with the potential cost of decreasing 
the percentage of observations correctly classified negative among those actually negative (specificity). Conversely, a larger threshold generally leads to 
lower sensitivity and higher specificity

  The ROC curve is typically constructed with values for 1 − specificity (x-axis) plotted against the values for sensitivity (y-axis) for all possible values 
of the threshold. The result is a curve that indicates how well the method discriminates between the two classes. Models with the best discrimination 
ability will correspond to ROC curves occupying the top left corner of the plot, corresponding to simultaneous high sensitivity and high specificity. A 
ROC curve close to the diagonal line from lower left to upper right represents poor discrimination ability that is no better than random guessing, e.g., 
by flipping a coin. The information provided by the ROC curve is often summarized in one single number by calculating the area under the curve (AUC). 
Best classifiers obtain an AUC value close to 1, while methods not better than random guessing exhibit values close to 0.5. Figure 17 [185] shows an 
exemplary ROC curve corresponding to high discrimination ability with AUC = 0.90 (and confidence interval [0.86, 0.95])

  Caution is advised regarding the risk of overestimating the performance of a classifier based solely on the AUC value, as the binary decision depends 
on an optimized threshold, which can be quite different from 0.5. This problem is especially important for HDD, since there is a lot of flexibility to tune 
and optimize the classifier, including the decision threshold, based on the large number of predictor variables. Calibration plots (see below) are also 
important to assess whether the classifier is well calibrated, i.e., estimated probabilities correspond to similar proportions in the data

Misclassification rate
  A simpler measure of the prediction ability in the case of categorical response is the misclassification rate that quantifies the proportion of observa‑
tions that have been erroneously classified by the model. Here, in contrast to AUC, smaller values are better. While this measure is simple and can be 
used even if the classifier does not assign probabilities to observations, but only predicts classes, it does not differentiate between false positives and 
false negatives. Therefore, the overall misclassification rate can be heavily dependent on the mix of true positive and true negative cases in the test set

Brier score
  While the misclassification rate only measures accuracy, the Brier score also takes into account the precision of a predictor [180, 186]. The Brier score 
can be applied for binary, categorical, or time-to-event predictions. It calculates quadratic differences between predicted probabilities and observed 
outcomes. Thus, it can be considered the counterpart for these prediction targets of the MSE used for regression models. The Brier score is particularly 
useful because it captures both aspects of a good prediction, namely calibration (similarity between the actual and predicted survival time) and dis-
crimination (ability to predict the survival times of the observations in the right order). For survival data, the Brier score is generally plotted as a function 
of the time, where higher curves mean worse models. Alternatively, the area under the Brier score curve is computed, leading to the integrated Brier 
score, which summarizes in a single number the measure of the prediction error (lower being better)

Calibration plots
  Calibration plots for statistical prediction models can be used to visually check if the predicted probabilities of the response variable agree with the 
empirical probabilities. For example, for logistic regression models, the predicted probabilities of the target outcome are grouped into intervals and for 
all observations within each interval the proportion of observations positive for the target outcome are calculated. The means of the predicted values 
are plotted against the proportion of true responders across the intervals. For survival models, the Kaplan–Meier curve (the observed survival function) 
can be compared with the average of the predicted survival curves of all observations. Poorly calibrated algorithms can be misleading and potentially 
harmful for clinical decision-making [187]. Figure 18 [187] visualizes different types of miscalibration using calibration plots

Deviance
  The deviance measures a distance between two probabilistic models, and it is based on likelihood functions. It can be used to perform model com‑
parison, for any kind of response variable for which a likelihood function can be specified. For a Gaussian response, it corresponds (up to a constant) 
to the MSE and thus provides a measure of goodness-of-fit of the model compared to a null model without predictors. For model comparison, when 
computed on the training set (see discussion below) to choose the “best” model among several alternatives, it is often regularized. A factor is applied 
which penalizes larger models (large p, where p is the number of predictor variables), obtaining measures such as the information criteria AIC (penalty 
equal to 2p) and BIC (penalty equal to p * log n). The specific choice of the information criterion is difficult and depends, e.g., for classification tasks, also 
on the relative importance of sensitivity and specificity [188]
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PRED2.2: Internal and external validation  Whatever 
measure of model performance has been chosen, com-
puting it on the same dataset that was used for construct-
ing the model may lead to a dramatic over-estimation of 
the performance. Instead, one should assess prediction 
performance using independent data, i.e., data not used 
to construct the model [189–191]. One classical proce-
dure is to split the given dataset into a training set and a 
test set, and then to construct the model using only the 
training set and evaluate the model using only the test 
set. This is one type of “internal validation,” in contrast 
to “external validation,” where data from independent 
patient cohorts are used [192].

Due to the typical instability of predictors developed 
using HDD, this sample splitting procedure is very risky, 
as in most cases the specific split heavily influences the 
result. Resampling techniques, such as cross-valida-
tion, subsampling and bootstrapping, can be less risky, 
although even those methods cannot avoid impact of 
biases in the data introduced by faulty designs such as 
those that would confound batch effects with outcome 
variables. The common idea behind these procedures is 
to repeatedly use a part of the dataset as training data-
set, i.e., to construct a prediction model, and the other 
(non-overlapping) part as test dataset to evaluate the 

constructed model. This process is repeated several times 
for different splits into training and test data to pro-
duce a more stable and representative estimate of model 
performance.

For such approaches, a bias in the performance esti-
mates must be considered (see also [135]). This bias 
occurs because the training data sample size is smaller 
than for the full dataset, and therefore prediction mod-
els built on the training dataset tend to have somewhat 
worse performance than a final model built on the full 
data. The latter is typically used for further evaluation. 
This bias becomes larger the smaller the training dataset 
is compared to the full dataset. This aspect is less relevant 
if the sample size of the full dataset and thus of the train-
ing dataset is very large.

One misleading practice is use of resampling proce-
dures for multiple different prediction modelling meth-
ods or for different parameter values, and then reporting 
results for only the model with best performance. This 
practice leads to over-optimism in model performance 
because it neglects to acknowledge and account for the 
fact that the reported model was the result of another 
optimization process [201]. Such studies aiming to find 
“best” models occur quite frequently in the context of 
HDD. While it would be naive to expect that investiga-
tors will not try multiple approaches to develop a pre-
diction model, the key is transparency in reporting how 
many models were actually produced and evaluated, and 
appropriately accounting for the additional selection step. 
One should either validate the final selected model using 
an independent dataset (see Table  26), or when such a 
dataset is not available, embed the selection process in 
the cross-validation procedure, i.e., perform a so-called 
nested cross-validation procedure [190, 202]. Figure  19 
[203] shows a schematic representation of a suitable pro-
cess for developing a predictor, here specified for omics 
data, in which the discussed aspects are adequately taken 
into account.

PRED2.3: Identification of influential points  Identifi-
cation of possible influential observations, defined as 
those for which inclusion or exclusion in model devel-
opment might substantially alter characteristics of the 
final model [204], is an important aspect of prediction 
modelling that is often neglected in HDD settings, and 
even frequently in low-dimensional settings. Model 
alterations can be related to variable selection (see, 
e.g., [205]), functional forms (e.g., [206]) or parameter 
estimation (e.g., [207]). Influential points can be outli-
ers in some of the variables (observations suspiciously 
different from the rest, such that they are probably 
generated by a different mechanism [208]), but they do 
not need to be.

Fig. 17  Receiver operating characteristic (ROC) curve that illustrates 
the predictive performance of a gene signature including 227 genes 
for the prediction of chemotherapy response in serous ovarian 
cancer, obtained using the TCGA (The Cancer Genome Atlas) data 
set. The arrow indicates the sensitivity and specificity values obtained 
for a selected cutoff value that can serve as a threshold for patient 
stratification. In this example, the AUC is evaluated on the same data 
used to train the classifier, so it is likely to be overoptimistic. Source: 
[185]
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Fig. 18  Illustrations of different types of miscalibration, visualized by calibration plots. Illustrations are based on an outcome with a 25% event rate 
and a model with an area under the ROC curve (AUC or c-statistic) of 0.71. Calibration intercept and slope are indicated for each illustrative curve. a 
General over- or underestimation of predicted risks. b Predicted risks that are too extreme or not extreme enough. Source: [187]
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For HDD, identification of influential points is par-
ticularly difficult, due to data sparsity (the so-called 
“curse of dimensionality”) and, more generally, the 
increased difficulty in identifying data patterns, espe-
cially by graphical methods. Many available methods 
for influential point detection are extensions of tradi-
tional low-dimensional tools such as Cook’s distance 
[204] and the CFBETA / DFFITS measures [209]. Exam-
ples of adaptations to the high-dimensional framework 
of the former are Zhao et  al. [210] and Wang and Li 
[211], of the latter Walker and Birch [212] and Rajarat-
nam et  al. [213]. Focusing more on statistical models 
(see section “PRED1.4: Statistical modelling”), meth-
ods like those of Shi and Wang [214] and Hellton et al. 
[215] investigate the effect of influential points on the 
choice of the tuning parameters, again adapting exist-
ing low-dimensional approaches (the aforementioned 
DFFITS measure and the resampling approaches in De 
Bin et  al. [205], respectively). The latter is an example 
of how cross-validation and subsampling can be used 
to detect influential points by tracking large changes 
in the estimates when one (or a few) observation is 
omitted. Although influential points and outliers can 
strongly affect the results of analyses in HDD settings, 

systematic checks for them seem to be often ignored in 
the literature, despite of the availability of various tech-
niques [216, 217].

In a study on the classification of breast cancer sub-
types, Segaert et  al. [218] stress that classical statistical 
methods may fail to identify outliers and argue for robust 
classification methods that flag outliers. They propose the 
DetectDeviatingCells outlier detection technique. Specif-
ically for HDD, Boulesteix et al. [216] propose a rank dis-
crepancy measure that considers the difference between 
gene rankings for the original data and for a pretransfor-
mation that tries to eliminate the effect of extreme val-
ues. For survival data, Carrasquiha et al. [219] propose a 
rank product test to identify influential observations, and 
more techniques have been proposed recently. Fan [220] 
released the R package HighDimOut, which contains 
three high-dimensional outlier detection algorithms. 
However, none of the approaches seems to have gained 
popularity in practice. More guidance and comparisons 
of available approaches are needed.

PRED2.4: Sample size considerations  Recent guide-
lines for calculating sample size when developing a risk 
prediction model [16] are not specifically tailored for 

Table 26  Methods for validation of prediction models: Subsampling, cross-validation, bootstrapping, use of external datasets

Subsampling
  Subsampling is probably the most straightforward procedure to address the stability issue discussed above. Instead of relying on the result of one 
single split in training and test sets, the prediction measure is computed for a large number (at least 100) of splits. In practice, for each split, the model 
(or algorithm) is trained on a part of the data and evaluated on the rest. The results are then averaged to yield a summary measure of performance

Cross-validation
  Subsampling can substantially improve stability compared to use of a single data split, but a potential criticism is that it does not guarantee (for a 
finite number of replications) that all observations are used equally frequently in the training set and in the test set. Cross-validation ensures balance 
by splitting the observations in K approximately equal-sized portions (folds) and using, in turn, K − 1 folds to build the model and the remaining fold to 
evaluate its performance. Every single observation is then used K − 1 times to train the model and once to test it. The K results are then averaged. One 
drawback for classical cross-validation is that the procedure relies on the specific split in K folds. To address this issue, the cross-validation procedure can 
be repeated several times, combining the idea of cross-validation and subsampling [193]

Bootstrapping and its modifications
  Similar to subsampling, bootstrapping is based on the idea of generating a large number of training and test sets. In contrast to subsampling, 
bootstrapping generates training sets of the same size as the original sample, by resampling observations with replacement [194, 195]. Since some 
observations are then used multiple times in the bootstrap-generated training set, other observations are not included at all, and these then form the 
test set on which the model is evaluated

  Bootstrapping is known to overestimate the prediction error, since the training datasets are smaller than the full dataset, as discussed above. Adjust‑
ments to the method have been proposed, for example, the 0.632 bootstrap and the 0.632+ bootstrap [196]. Both modifications balance the overes‑
timated bootstrap-based error estimate with the heavily underestimated corresponding error estimate computed on the training set. An overview of 
many different bootstrapping approaches for practitioners and researchers was provided by [197]

Use of external datasets (“external validation”)
  While resampling-based approaches can be useful to evaluate and compare performance of prediction models, they do not meet validation 
standards typically desired in real-world scenarios. Generally, the goal is to develop a prediction model that generalizes well to independent patient 
cohorts. This refers both to future patients from the same, say, clinical centers as those from which the data used for the construction of the model were 
obtained, and to patients from different clinical centers [198–200]. Resampling techniques reflect the model performance for independent patient 
data only if the distribution of the independent data is the same as the original. This assumption can justifiably be questioned when high-dimensional 
omics or other biomarker data are involved, which may be generated in a new laboratory or according to modified methods, or at very least subject to 
different batch effects (see section “IDA3.2: Batch correction”). For all of these reasons, validation on external data (cohorts) is essential to have sufficient 
confidence in the performance of a predictor for clinical use
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applications involving variable selection or shrinkage 
methods (such as LASSO or Ridge Regression). This 
is the situation in high-dimensional settings, where 
variable selection or dimension reduction is needed 
to identify prognostic variables or components. The 
available methods for sample size planning [17, 18] and 
references therein are based either on simulations that 
require assumptions of feature independence or on the 
availability of a pilot dataset or preliminary data, but 
these methods are hardly used in practice. Moreover, 
penalized estimation has often been proposed for situ-
ations with potentially large overfitting problems, while 
recent evidence suggests that it yields unstable results, 
especially for small sample sizes [221], when overfitting 
is a major concern.

A practical sample size method for planning a pre-
liminary study of a prognostic biomarker is suggested 
for microarray technology [113], which can be used 
in more general settings. When a gene signature is 
already available from previous exploratory studies, 
a formal calculation for a predictive model, including 
the gene signature and standard prognostic covariates, 
can be performed according to available guidelines, 
taking also into account the need for external valida-
tion [16, 200].

Good reporting to improve transparency and reproducible 
research
Reporting of studies involving HDD can be particularly 
challenging and at the same time especially important 

Fig. 19  Schematic representation of an appropriate omics predictor development process, with internal validation for improving prediction 
performance (left box) and external validation for assessing prediction performance on external data. Source: [203]
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due to the many potential pitfalls in the collection and 
analysis of complex HDD as described herein. Com-
plete and transparent reporting of these studies is crit-
ical to allow independent researchers to evaluate how 
a study was designed, conducted, and analyzed so that 
quality and relevance of the findings can be judged and 
interpreted in appropriate context. Provision of data 
and computer code may be required to achieve full 
transparency.

Guidelines for reporting of many types of health 
research have already been developed and are largely 
applicable in HDD settings. Simera et  al. [222] intro-
duced the EQUATOR (Enhancing the QUAlity and 
Transparency Of health Research) network as an 
umbrella organization for the reporting of studies in 
the health sciences. Most relevant for HDD data are 
the REporting recommendations for tumor MARKer 
prognostic studies (REMARK) [11] and TRIPOD 
for the reporting of multivariable prediction models 
for individual prognosis or diagnosis [12]. For both 
reporting guidelines, more detailed “explanation and 
elaboration” papers have been published [125, 223], 
which also include several sections on statistical anal-
yses. Furthermore, the two-part REMARK profile, 
a structured display that summarizes key aspects of 
a study, has been proposed to improve completeness 
and transparency of reporting, specifically of statistical 
analyses. The TRIPOD checklist distinguishes between 
model development and validation. Both guidelines 
were developed for markers and for models based on 
clinical data, with no more than a few dozen potential 
predictors in mind.

In an article stressing the importance of register-
ing diagnostic and prognostic research, Altman [224] 
clearly expresses that non-reporting and misleading 
reporting do not just mislead researchers in the field, 
they also diminish the evidence base underpinning 
clinical practice and harm patients. To improve on 
such an unacceptable situation of non-transparency 
in studies, several initiatives including data pooling, 
registers, and journal requirements for protocols were 
started, see Peat et  al. [225] for a detailed discussion 
with an emphasis on prognosis research.

Obviously, reporting of artificial intelligence and 
machine learning methods come with a large number 
of additional challenges. Concerns have been raised 
that they are overhyped in clinical medicine (see, e.g., 
[226]) and, if not used with proper expertise, have 
methodological shortcomings, poor transparency, and 
poor reproducibility [227]. There is a strong need for 
applications of machine learning techniques to adhere 
to established methodological standards already 
defined in prediction model research [228].

Discussion
In this section, we first summarize the content and the 
key messages of this overview paper. We also briefly pre-
sent the relationships of the other topic groups of the 
STRATOS initiative to the HDD-focused TG9 group and 
discuss the importance of further collaboration.

Biomedical research has always relied on a combina-
tion of observational studies, carefully controlled labo-
ratory experiments, and clinical trials, but the types of 
data generated and analyzed in these studies continue 
to evolve and now more often include HDD. The high 
dimensionality may result from new technologies such as 
omics assays, which are capable of comprehensive inter-
rogation of biological specimens, or from increased abil-
ity to merge data from multiple information systems such 
as electronic health records or registries. HDD present 
many new challenges for statistical design and analysis 
of biomedical research studies. This overview provides a 
gentle introduction to basic concepts and useful strate-
gies for design and analysis of studies involving HDD. 
Key points are summarized in the discussion that follows.

Study design for prospectively planned investigations 
and vigilance to detect (and avoid when possible) con-
founding in observational studies remain as important 
for studies involving HDD as for other studies. Conse-
quences of inattention to these aspects can be particu-
larly damaging when HDD are involved. While HDD 
may provide greater opportunity for discovery of new 
biological and clinical concepts and associations, they 
might also be more susceptible to influence of ancillary 
confounding variables and technical artifacts. Therefore, 
initial examination of data for technical artifacts such as 
batch effects, inconsistent, extreme, or suspicious values 
is critically important but simultaneously more challeng-
ing as the data dimension increases. New data visualiza-
tion, detection, and correction or normalization methods 
have been adopted for HDD, as were described in sec-
tion “IDA: Initial data analysis and preprocessing” of this 
overview. Techniques for data visualization and explora-
tion such as those described in section “EDA: Explora-
tory data analysis” of this overview are also important 
to provide biological insights and support development 
of new scientific hypotheses from HDD. The initial steps 
and exploratory data analyses described in sections 
“IDA: Initial data analysis and preprocessing” and “EDA: 
Exploratory data analysis” are optimally performed when 
equipped with a good understanding of the data sources 
and data generation methods, for example assay tech-
nologies that produce omics data, and interpreted in 
collaboration with other scientists knowledgeable in the 
technology, biology, and clinical aspects.

Statistical analysis methods that were developed for 
traditional settings where the number of independent 
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observations or subjects is substantially larger than the 
number of variables acquired are widely used by classi-
cally trained statisticians and others in a variety of appli-
cations, and their widespread use is supported by ready 
availability of software. Emergence of many new types 
of HDD has exposed the limitations of many traditional 
methods. Often, methods rely heavily on distributional 
assumptions such as normality, which may be unrealis-
tic for data types generated by novel technologies such 
as omics assays. Many methods owe their robustness 

to such assumptions to large sample size, yet the notion 
of what qualifies as “large n” is dramatically different 
for HDD where even the most basic requirement n > p 
is not satisfied. Much traditional statistical methodol-
ogy for addressing multivariate data has focused heavily 
on mathematically tractable joint distributions such as 
multivariate Gaussian or assumed that sample sizes were 
large enough that this served as a good approximation. 
As these are not reasonable assumptions for many types 
of HDD, many researchers opt for an alternative strategy 

Table 27  Relationship and collaboration between TG9 (topic group 9) and the other topic groups of the STRATOS initiative

All other topic groups work on issues that are also relevant for the analysis of HDD. Obviously, all papers are written in the context of LDD. Appropriate 
study designs (TG5) are a key to improve research in the health sciences. It is well known that mistakes in design are often irremediable [229]. Nearly all 
studies in HDD and LDD have to cope with missing data (TG1, [58]) and data preprocessing is a relevant topic for all studies, closely related to tasks in 
initial data analysis (TG3). Analyzing LDD, the importance of IDA was largely ignored and a recent review showed that reporting of IDA is sparse [230]. In 
section “IDA: Initial data analysis and preprocessing,” we provided a discussion of IDA aspects in the context of HDD. Measurement error and misclas‑
sification (TG4) is a common problem in many studies in LDD and HDD, which is often ignored in practice [231]. Studies with a survival time output are 
popular in HDD, and they have to cope with several issues discussed in the survival analysis group (TG8, [232])

In the context of LDD, TG2 published a review focusing on approaches and issues for deriving multivariable regression models for description [136]. 
Although analyses of HDD concentrate more on models for prediction, some of the issues are also relevant and the very large number of variables 
and (too) small sample sizes strengthen some problems severely. In LDD, issues in deriving models for prediction are discussed in TG6 [233]. Finally, the 
overarching aim of many HDD studies is to discover knowledge that is causally related to an outcome of interest. However, causal inference imposes 
several important challenges (TG7, [234])

Table 28  Overview of method tables with descriptions of statistical methods

1 Methods for visual inspection of univariate and multivariate distributions: Histograms, boxplots, scatterplots, correlograms, heatmaps (Table 2)

2 Methods for descriptive statistics: Measures for location and scale, bivariate measures, RLE plots, MA plots (Table 3)

3 Method for analysis of control values: Calibration curve (Table 4)

4 Methods for graphical displays: Principal component analysis (PCA), Biplot (Table 5)

5 Methods for background subtraction and normalization: Background correction, baseline correction, centering and scaling, quantile normaliza‑
tion (Table 6)

6 Methods for batch correction: ComBat, SVA (surrogate variable analysis) (Table 7)

7 Method for recoding: Collapsing categories (Table 8)

8 Method for filtering and exclusion of variables: Variable filtering (Table 9)

9 Method for construction of new variables: Discretizing continuous variables (Table 10)

10 Method for imputation of missing data: Multiple imputation (Table 11)

11 Methods for graphical displays: Multidimensional scaling, t-SNE, UMAP, neural networks (Table 12)

12 Methods for cluster analysis: Hierarchical clustering, k-means, PAM (Table 13)

13 Methods for estimation of the number of clusters: Scree plots, silhouette values (Table 14)

14 Methods for hypothesis testing for a single variable: T-test, permutation test (Table 15)

15 Methods for hypothesis testing for multiple variables in HDD: Limma, edgeR, DEseq2 (Table 16)

16 Methods for multiple testing corrections: Bonferroni correction, Holm’s procedure, Westfall-Young permutation procedure (Table 18)

17 Methods for multiple testing corrections controlling the FDR: Benjamini-Hochberg, q-values (Table 19)

18 Methods for multiple testing for groups of variables: Gene set enrichment analysis (GSEA), over-representation analysis, global test, 
topGO (Table 20)

19 Methods for variable transformations: Log-transform, standardization (Table 21)

20 Method for dimension reduction: Supervised principal components (Table 22)

21 Methods for statistical modelling with constraints on regression coefficients: Ridge regression, lasso regression, elastic net, boosting (Table 23)

22 Methods for statistical modelling with machine learning algorithms: Support vector machine, trees, random forests, neural networks and deep 
learning (Table 24)

23 Methods for assessing performance of prediction models: MSE, MAE, ROC curves, AUC, misclassification rate, Brier score, calibration plots, devi‑
ance (Table 25)

24 Methods for validation of prediction models: Subsampling, Cross-validation, Bootstrapping, use of external datasets (Table 26)
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of examining each of many variables one-at-a-time. Yet, 
naively taking such an approach is fraught with danger 
of generating many false discoveries due to the extremely 
large number of variables examined. Traditional strat-
egies for controlling false positive findings, such as 
controlling the FWER, are often impractical or overly 
stringent in view of the goals of many studies involving 
HDD, and this recognition has stimulated development 
of novel approaches for false discovery control. Section 
“TEST: Identification of informative variables and mul-
tiple testing” of the overview highlighted some of these 
many challenges and summarized some useful strategies 
to address them.

The last few decades have seen substantial progress in 
development of prediction modelling methodology, espe-
cially as applicable to HDD, and increased availability 
of free software to implement these methods has fueled 
their use. Available methods include a variety of statis-
tically based approaches as well as a number of purely 
algorithmic approaches such as many machine learn-
ing methods. Prediction models developed from HDD 
have intrigued many researchers under the impression 
that with sufficiently large volumes of data one should 
be capable of predicting virtually anything. Numerous 
dramatic claims of performance have been made; unfor-
tunately, these claims do not always withstand careful 
scrutiny. Section “PRED: Prediction” provides a review of 
several popular prediction modelling methods for HDD, 
and it stressed the importance of following proper proce-
dures to assess and avoid model overfitting that leads to 
prediction models that do not perform well outside of the 
data from which they were developed. Poor study design 
and faulty prediction modelling approaches that lead to 
spurious and overfitted models along with wildly inaccu-
rate claims of their performance persist in the biomedical 
literature. Guidance provided in section “PRED: Predic-
tion” aims to reduce this problem and promote successful 
development of useful prediction models.

Within the STRATOS initiative, there are currently 
nine topic groups (TGs), mainly concerned with LDD. 
Table 27 presents the relationship of the other STRATOS 
topic groups to TG9 group and how TG9 guidance will 
build upon that of other TGs to adapt it for relevance.

Conclusions
This overview aimed to provide a solid statistical foun-
dation for researchers, including statisticians and non-
statisticians, who are newly embarking on research 
involving HDD or who are merely wanting to better eval-
uate and understand results of HDD analyses. Common 
approaches for the statistical analysis of high-dimen-
sional biomedical data are described in 24 method tables; 
see Table  28 for a list of these tables.  New methods to 

generate HDD or combine existing data resources to 
yield HDD will continue to evolve, and there will be con-
tinued need to develop new and improved computational 
and statistical analysis strategies to address new types of 
data and novel questions to be answered from those data. 
Basic concepts and strategies presented in this overview 
will remain relevant, and their wider grasp by the bio-
medical research community will hopefully lead to con-
tinued improvement in the quality, reliability, and value 
of studies involving HDD. Most importantly, strong col-
laborations between statisticians, computational scien-
tists, and other biomedical researchers such as clinicians, 
public health experts, laboratorians, technology experts, 
bioinformaticians, and others that are relevant to each 
project, are essential to produce the most reliable and 
meaningful data and results.
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