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11C-BU99008 is a novel positron emission tomography (PET) tracer that enables selective imaging of astrocyte reactivity in vivo. To
explore astrocyte reactivity associated with Alzheimer’s disease, 11 older, cognitively impaired (CI) subjects and 9 age-matched
healthy controls (HC) underwent 3T magnetic resonance imaging (MRI), 18F-florbetaben and 11C-BU99008 PET. The 8 amyloid (Aβ)-
positive CI subjects had higher 11C-BU99008 uptake relative to HC across the whole brain, but particularly in frontal, temporal,
medial temporal and occipital lobes. Biological parametric mapping demonstrated a positive voxel-wise neuroanatomical
correlation between 11C-BU99008 and 18F-florbetaben. Autoradiography using 3H-BU99008 with post-mortem Alzheimer’s
brains confirmed through visual assessment that increased 3H-BU99008 binding localised with the astrocyte protein glial fibrillary
acid protein and was not displaced by PiB or florbetaben. This proof-of-concept study provides direct evidence that 11C-BU99008
can measure in vivo astrocyte reactivity in people with late-life cognitive impairment and Alzheimer’s disease. Our results confirm
that increased astrocyte reactivity is found particularly in cortical regions with high Aβ load. Future studies now can explore how
clinical expression of disease varies with astrocyte reactivity.
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INTRODUCTION
Astrocyte reactivity is a prominent feature of the neuropathology
of Alzheimer’s disease (AD), but the extent to which it is a
consequence or a contributing factor for the formation of amyloid
(Aβ) and tau aggregation remains uncertain [1]. Astrocytes have a
wide range of roles in the central nervous system [2, 3], and
astrocyte reactivity can increase expression of inflammatory
mediators, reactive oxygen species and Aβ deposition in mouse
models [2]. It has been suggested that astrocyte reactivity could
be a tissue response to Aβ deposition and may have protective
roles by phagocytosing and degrading Aβ [4, 5]. Human data
concerning astrocyte reactivity in AD is largely limited to that from
neuropathology post-mortem. Whilst some methodologies exist to
measure astrocyte reactivity in living AD patients, such as CSF
[6, 7], blood [8] and positron emission tomography (PET) [9]
biomarkers, there are issues surrounding their sensitivity and
specificity [10]. Non- or minimally invasive methods for monitoring
astrocyte reactivity in patients with late-life cognitive impairment
would provide a powerful tool for testing their contributions to
disease progression. Currently, the only available PET tracer which

can measure astrocyte reactivity in vivo is 11C-deuterium-L-
deprenyl (11C-DED) [10, 11]. However, this tracer binds to
monoamine oxidase-B, which is not exclusively expressed in
astrocytes and is not elevated in late disease stages when Aβ load
is high [12]. Additional radioligands are needed to confidently
image astrocyte reactivity and its relations to Aβ load and clinical
symptoms.
Non-adrenergic imidazoline binding in astrocytes is of the I2

sub-class with the putative receptor localised mainly in the
mitochondria [13]. Post-mortem neuropathology described upre-
gulation of I2-BS sites with aging [14] and in AD [15]. In order to
make corresponding observations in living subjects, a novel
approach using a PET tracer, 11C-BU99008, which binds specifically
to I2-BS, has been developed [13, 16–18]. 11C-BU99008 showed
good brain penetration in rodents [19], pigs [20] and non-human
primates [20–22]. Subsequent studies showed favourable biodis-
tribution [23] and dosimetry profiles in humans [24].
This pilot study was designed to test, for the first time, whether

the uptake of 11C-BU99008 is increased in older cognitively
impaired (CI) subjects relative to approximately age-matched
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healthy controls (HC). We then characterised the distribution of
uptake of 11C-BU99008 across the brain. Finally, we explored the
neuroanatomical associations between 11C-BU99008 uptake and
Aβ deposition assessed using 18F-florbetaben which will allow us
to test in the future the more specific hypothesis that astrocyte
reactivity is an early and dynamic response to the neuropathology
of AD.

MATERIALS AND METHODS
Subjects
Eleven subjects with CI who were clinically diagnosed as having probable
AD dementia or mild cognitive impairment (MCI) due to AD [25, 26] (5 MCI,
6 AD; Mini-Mental State Examination score (MMSE) mean ± SD= 22.6 ± 4.1)
and met the additional criteria below and 9 approximately age-matched
HC without a history of brain disease or contraindications to magnetic
resonance imaging (MRI; MMSE mean ± SD= 29.1 ± 1.27) were included in
the study (Table 1). All 20 subjects were recruited from memory clinics,
advertisements and research registries. Additional inclusion/exclusion
criteria for the CI subjects were that they needed to be able to give
informed consent, have at least 8 years of education, an MMSE score ≥17
when enroled in the study and not have prior evidence of significant
vascular or small vessel disease on MRI. All subjects underwent medical,
neurological and detailed cognitive assessments using the Repeatable
Battery for the Assessment of Neuropsychological Status (RBANS). Ethical
approval for this study was granted by the local and regional Research
Ethics Committee. Approval to administer radiotracers was given by the
Administration of Radioactive Substances Advisory Committee UK. Written
informed consent was obtained from all participants. The human biological
samples sourced from the subjects participating in this study were
obtained ethically and their research use was in accordance with the terms
of the informed consents.

MRI
All subjects underwent MRI with either a 3 Tesla Magnetom Trio or Verio
(Siemens Healthcare Sector, Erlangen, Germany) with a 32-receiver channel
head matrix coil. A sagittal T1-weighted MPRAGE was acquired with TR=
2400ms, TE= 3.06ms, flip angle= 9°, TI= 900ms, matrix= [256 × 246], a
1 mm isotropic voxel size, anteroposterior phase encoding direction, IPAT
factor 2 and a symmetric echo.

PET
18F-florbetaben PET. All subjects underwent 18F-florbetaben PET scanning
to assess Aβ plaque deposition in the brain. Subjects received a mean of
236.4 (±6.8) MBq 18F-florbetaben as a single intravenous bolus. PET
acquisition was commenced 90min after 18F-florbetaben administration
and subjects were scanned for 30min. 18F-florbetaben uptake was
evaluated using the standardised uptake value ratio (SUVR) of the cerebral
cortex with cerebellar grey matter (GM) as reference [27]. For this, regional
uptake in cerebellum was calculated in Analyze 11.0 (developed by the
Biomedical Imaging Resource at the Mayo Clinic). The 90–120min 18F-
florbetaben ratio images were created by dividing the cerebral cortical 18F-
florbetaben image by the uptake value of cerebellar GM. Aβ positivity was
defined by using a whole-brain uptake cut-off of 1.43 [27].

11C-BU99008 PET. 11C-BU99008 was synthesised at the Invicro Centre for
Imaging Sciences in London and imaging was performed at the same
centre with a Siemens Truepoint PET/CT. An initial CT scan was acquired for
attenuation correction of the PET images. A mean activity of 330 (±30) MBq
11C-BU99008 in 20ml normal saline was injected into the antecubital vein.

Dynamic emission 11C-BU99008 PET images were then acquired over 120
min and rebinned in 29 time frames: 8 × 15, 3 × 60, 5 × 120, 5 × 300, and
8 × 600 s. Non-attenuation corrected 11C-BU99008 PET images were also
created for motion correction in MIAKATTM (www.miakat.org). All subjects
had a radial arterial cannula inserted, and arterial blood was sampled
continuously for the first 15 min. Twelve additional samples were taken at
5, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, and 100min after injection. The
radioactivity in the whole blood and plasma was measured using a
gamma-counter for each sample. Metabolism of 11C-BU99008 was
evaluated by reverse-phase high-performance liquid chromatography,
which determined the relative proportions of parent tracer and
metabolites in the blood. In this study, we used MIAKATTM to perform
the spatial normalisation and compartmental modelling. In order to
generate the parent plasma input function, the radioactivity in the whole
blood in the first 15 min was estimated by calibrating the first 15 min of
continuous whole blood data to the gamma-counter measurements. The
ratio of radioactivity concentration in the plasma to blood measurements,
and the fraction of parent compound in the blood, were both fitted with
sigmoid curves as described previously [23]. These models were used to
correct the whole blood data, and the resulting input function fitted by a
tri-exponential model [28].

Region of interest (ROI) analysis
To create individual object maps, each structural MRI was segmented into
GM, white matter (WM) and CSF, and the GM images were thresholded at
50% probability. The structural T1 volumetric MRI, GM MRI and 3D PET data
were co-registered into a mutual space. The deformation fields to
transform the individual’s MRI to the standard MNI template were
calculated, and the inverse of these parameters was applied to the CIC
atlas to create an atlas in individual subject’s native PET space. This was
then used to generate individualised ROIs for each participant. VT was
calculated using 2TCM for frontal, temporal, medial temporal, parietal and
occipital lobe, as well as the cerebellum, composite cortex and other
subcortical regions in PET space. Time–activity curves for selected ROIs
were generated by sampling the radioactivity concentration of the motion-
corrected dynamic PET in native space. Regional estimates of total volumes
of distribution (VT) were obtained with the four-parameter reversible two-
tissue compartmental model (2TCM4k), as previously described [24, 28].
These analyses were extended by applying spectral analysis to 11C-

BU99008 dynamic images to generate parametric maps [29, 30]. The
Impulse Response Function at 120min (IRF-120) was chosen to create 11C-
BU99008 parametric maps using Modelling, Input Functions and
Compartmental Kinetics Parametric Map (MICK-PM) software (available
on request from RH, Wolfson Molecular Imaging Centre, University of
Manchester, Manchester, UK). After creating IRF-120 parametric maps for
each subject using spectral analysis, parametric maps were co-registered
to the individual’s T1 volumetric MRI. The T1 volumetric MRI and GM MRI
were normalised to the MNI template using Analyze 11.0, and these
deformation fields were applied to the 3D PET data to transform them into
MNI space. The normalised parametric maps were then sampled to
generate ROI results. For voxel-wise statistical parametric mapping (SPM)
and biological parametric mapping analysis in SPM, all parametric images
were smoothed using a 6 × 6 × 6 mm3

filter in SPM8.

Statistical parametric mapping (SPM) analysis
A limitation of the ROI-based analyses above is that they describe average
tracer uptake across pre-defined anatomical regions. To better characterise
the neuroanatomical distributions of differences in uptake between
groups, we also performed voxel-level SPM analyses. 11C-BU99008 uptake
was estimated using IRF-120 in CI subjects against HC using a two-sample

Table 1. Demographics and cognitive test scores (cognitively impaired subjects vs healthy control subjects).

N Sex (M:F) Age
in Years
Mean (±SD)

Global Aβ
PET SUVr
Mean (±SD)

MMSE
Mean (±SD)

Immediate Memory
Mean (±SD)

Visuospatial/
Constructional
Mean (±SD)

Language
Mean (±SD)

Attention
Mean (±SD)

Delayed Memory
Mean (±SD)

HC 9 8:3 69.8 (±8.5) 1.21 (±0.06) 29.1 (±1.27) 115.4 (±11) 100.5 (±16) 100.8 (±6.34) 110 (±12.7) 105 (±7.8)

CI Subjects 11 (8 Aβ+,
3 Aβ−)

5:4 74 (±4.5) 1.55 (±0.29) 22.6 (±4.1) 65.5 (±20) 86 (±20.6) 81.5 (±15.4) 87.5 (±19) 61.5 (±17.3)

P values N/A N/A 0.919 0.004* 0.001* <0.001* 0.172 0.003* 0.012 <0.001*
*p < 0.01 between cognitively impaired and healthy control subjects.
Aβ+ amyloid positive, Aβ− amyloid negative, F female, M male, MMSE mini-mental state examination, SD standard deviation, SUVr standard uptake value ratio.
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Student’s t test (two-tailed, threshold p < 0.05; cluster extent threshold 50
voxels). To perform single-subject analyses, t tests in SPM8 were
performed, comparing each CI subject’s normalised and smoothed (6 ×
6 × 6 mm in SPM8) image against the group of HC subjects.

Biological parametric mapping (BPM) correlation analysis
In order to evaluate the neuroanatomical relationships between Aβ and
11C-BU99008 binding, Z-score maps for each PET modality were created,
which represented 11C-BU99008 binding and Aβ deposition compared
with the HC’ mean and standard deviation on an individual level on a
voxel-wise basis using the following formulae:

Zmap of 11C-BU99008

¼ cognitively impaired subject 11C-BU99008�meanof healthy controls 11C-BU99008
SDof healthy controls 11C-BU99008

Zmapof 18F-florbetaben

¼ cognitively impaired subject 18F-florbetaben�meanof healthy controls 18F-florbetaben
SDof healthy controls 18F-florbetaben

Then, a voxel-level correlation between the Z-score maps for 11C-
BU99008 uptake and Aβ deposition was estimated using BPM [31]. The
BPM toolbox runs on the MATLAB platform and is integrated into the SPM
software package [32]. The BPM toolbox performs multimodal correlations
and multiple regression at a voxel-level using the general linear model to
provide sophisticated voxel-wise correlation. Z-score maps were created
(instead of using the raw image) in order to remove any non-specific
uptake of 18F-florbetaben (such as WM uptake) which occurs in healthy
populations. Thus, when the correlation is performed, we will only be
correlating residual pathology which is disease-related, and therefore
reduce the likelihood of artificial correlations not related to disease
pathology. In addition, Z-mapping is the recommended way of performing
BPM correlation [31]. Correlations for all CI subjects and for the subgroup
of Aβ-positive subjects were evaluated separately. Results are displayed
with a cluster threshold of p < 0.05 and extent threshold of 50 voxels.

In vitro autoradiography and immunostaining
11C-BU99008 PET has not been validated previously for AD. We performed
autoradiographic studies of 3H-BU99008 binding to post-mortem AD and
non-disease control brains of similar age to test for specific (displaceable)
cortical GM binding, greater uptake with Alzheimer’s pathology and co-
localisation with glial fibrillary acid protein (GFAP), an astrocyte marker.
Details are described in Supplementary Methods. Briefly, to address
specificity of binding, human frontal cortical tissue sections (12–14 µm
thick) from post-mortem brains with Alzheimer pathology were incubated
with 2–3.5 nMol/L 3H-BU99008 for 60min in assay buffer, with or without
an excess of unlabelled BU224 (a ligand that competes for the same I2B site
as BU99008). Frontal cortex tissue was used as this is one of the main area’s
that Aβ deposition occurs first [33]. Additional experiments were
performed to enhance confidence in target specificity of 3H-BU99008 in
cortical sections with high Aβ plaque densities by testing for competition
with excesses of either unlabelled Pittsburgh Compound-B (PiB) or
florbetaben. Finally, quantitative assessments of ex vivo 3H-BU99008
binding in AD and control tissue were performed, in conjunction with
immunohistochemical staining of contiguous sections for GFAP. Following
washing, slides were exposed along with radioactive standards and
imaged by phosphorimaging. ROIs were manually drawn of the whole
section, GM and WM, and optical density per mm2 was converted to fmol
radioligand/mg wet tissue equivalent. Localisation of increased 3H-
BU99008 binding and GFAP staining on adjacent sections were compared
visually.

RESULTS
18F-florbetaben ROI analysis
All of the HC were Aβ-negative. 8/11 CI subjects were Aβ-positive
(3 MCI, 5 AD) and 3/11 were Aβ-negative (2 MCI, 1 AD). Ages of
Aβ-positive (mean age ±SD, 76 ± 4 years old) and Aβ-negative (71
± 4 years old) CI subjects were similar to the HC group (70 ± 8
years old; See Table 1). Global tracer uptake (mean uptake ±SD)
was 1.55 ± 0.29 for CI subjects and 1.21 ± 0.06 for HC. Shapiro-
Wilk’s tests confirmed data of global tracer uptake were normally
distributed for CI subjects (W(11)= 0.948, p= 0.616) and HC (W(9)
= 0.956, p= 0.751).

11C-BU99008 ROI analysis
Results for the ROI analysis of 11C-BU99008 uptake are shown in
Fig. 1. Global tracer uptake (mean uptake ±SD) was 82.7 ± 11.5 for
CI subjects and 77.7 ± 7.7 for HC. Shapiro–Wilk’s tests confirmed
data of global tracer uptake were normally distributed for CI
subjects (W(11)= 0.942, p= 0.546) and HC (W(9)= 0.869, p=
0.095). Contrast of major brain ROI VT generated from a 2TCM
showed increased uptake in the CI subjects compared to HC in the
frontal (17%, p= 0.007, uncorrected, two-tailed Student’s t test)
cortex. Aβ-positive CI subjects had higher 11C-BU99008 uptake in
the frontal (21%, p= 0.004), temporal (15%, p= 0.034), medial
temporal (18%, p= 0.015) and occipital (24%, p= 0.026) lobes.
We extended the analysis using model-free IRF parametric maps

(Supplementary Fig. 1) for CI subjects who were further stratified
post hoc based on Aβ status. Contrasting the Aβ-positive CI
subjects with HC, IRF-120 demonstrated increased uptake over the
whole brain (22% increase, p= 0.008, uncorrected) and in frontal
(20%, p= 0.03), temporal (19%, p= 0.01), medial temporal (14%,
p= 0.022), parietal (25%, p= 0.003) and occipital (26%, p=
0.006) lobes.
We performed Pearson correlations to investigate the relation-

ship between IRF-120 and 2TCM images in each participant
(Supplementary Fig. 2). We found very strong correlations across
each of the four main lobes, as well as in smaller ROIs, such as the
hippocampus (r= 0.86, p < 0.001) and amygdala (r= 0.91, p <
0.001), despite increased noise in these regions. One HC (53yo
female) was located as an outlier for the temporal lobe, perhaps
due to her younger age. Compared to other HCs, this individual
had a somewhat higher MMSE (30, mean of HC= 29.25) and high
RBANS (120, mean of HC= 105) score, was Aβ-negative according
to their 18F-florbetaben scan and had a hippocampal volume of
3607mm3 (mean of HC= 3792 mm3).

BPM correlations between 11C-BU99008 binding and Aβ
deposition
Voxel-based BPM analysis demonstrated a strong positive
correlation between cortical 11C-BU99008 and 18F-florbetaben
binding in Aβ-positive subjects (Fig. 2). A similar relationship was
found with a BPM analysis across the whole group studied (Fig. 2).

SPM analysis
Voxel-wise SPM of the whole CI group and for those who were Aβ-
positive demonstrated increased 11C-BU99008 uptake in clusters
of voxels predominantly in the frontal, parietal, occipital and

Fig. 1 11C-BU99008 2TCM VT in different cortical regions. Dot plot
demonstrating the regional 11C-BU99008 2TCM VT in Aβ-positive
CI subjects (purple filled circle), Aβ-negative CI subjects (purple open
circle) and HC (green triangle). “Brain” refers to the composite
cortex, combining all the major cortical regions. *denotes p < 0.05,
uncorrected.
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temporal cortex and the cerebellum, consistent with the ROI and
BPM analyses (Fig. 3). Whole-brain voxel-level analyses of the
individual CI subjects showed significantly increased uptake in
clusters of cortical voxels in 8/11 of CI (6/8 Aβ-positive; 2/3 Aβ-
negative) relative to HC (Supplementary Fig. 3).

In vitro autoradiography and immunohistochemistry
We performed in vitro 3H-BU99008-binding studies using post-
mortem frozen sections of frontal cortex from AD patients and
from HC to validate the in vivo 11C-BU99008 PET observations.
Total binding of 3H-BU99008 was higher in cortical GM than WM,
with a clear distinction between binding in the two-tissue
compartments apparent visually (Fig. 4A, B). Quantitatively, higher
specific binding was observed across whole sections from AD
brains relative to the HC tissue (t(9)= 2.596, p= 0.0289; Fig. 4B).
This binding was consistent with a high-affinity binding site and
not due to difference in non-specific binding (Fig. 4C). 3H-BU99008
binding was displaceable by excess unlabelled BU224, which
binds to the same I2B target (non-specific binding, Fig. 4A, D).
Immunostaining in sections adjacent to 3H-BU99008 binding
showed a good spatial overlap of higher 3H-BU99008 binding with
anti-GFAP staining for astrocytes (Fig. 4D, red circle). There was no
evidence for “off-target” binding of 3H-BU99008 to Aβ plaques: PiB
or florbetaben in concentrations spanning one order of magni-
tude (10 nMol/L–10 µMol/L) failed to displace 3H-BU99008 binding
in post-mortem frontal cortex sections from AD patients with Braak
stages 2–5 (Fig. 4D, E).

DISCUSSION
This is the first study evaluating 11C-BU99008 PET as a tool for
imaging astrocyte reactivity in the brains of subjects with late-life
cognitive impairment of the Alzheimer-type. We demonstrated an
increase in 11C-BU99008 uptake in Aβ-positive MCI or AD subjects
using ROI and voxel-wise analyses. In addition, we provided
evidence for a correlation between 11C-BU99008 and 18F-
florbetaben uptake in these subjects as a group, consistent with
the expected association of astrocyte reactivity with Aβ plaques
observed neuropathologically in brains from people with AD.
While preliminary, our single-subject analyses suggested that PET
Aβ-positivity is neither necessary nor sufficient for elevated local
11C-BU99008 uptake (and, by implication, astrocyte reactivity) in
people with CI. Finally, we used in vitro autoradiography to
confirm increased cortical 3H-BU99008 binding in tissue from AD
relative to non-disease control brains, the co-localisation of 3H-
BU99008 binding with staining for GFAP, a marker of reactive
astrocytes, and the specificity of binding.

11C-BU99008 is a novel PET tracer targeting I2-BS. It is
hypothesised that I2-BS are expressed predominantly in astro-
cytes, in which it is predominantly localised to the mitochondria
[15, 34, 35]. However, despite the pharmacological specificity of
binding, no single receptor site has been characterised to date
[35]. Preclinical PET evaluations of 11C-BU99008 in rhesus monkey
brains demonstrated selective uptake (globus pallidus>cortex>-
cerebellum) in GM consistent with in vitro localisation of I2-
binding sites by autoradiography and similar to results obtained

Fig. 2 BPM correlation between 11C-BU99008 and Aβ deposition. BPM correlation between 11C-BU99008 and 18F-florbetaben binding in
(a) all CI subjects and in (b) Aβ-positive CI subjects at a cluster threshold of p < 0.05 with an extent threshold of 50 voxels. These BPM are T
maps describing the strength of the voxel-wise correlations between binding of the two radioligands represented in a common brain space.

Fig. 3 SPM analysis of 11C-BU99008. SPM analysis of significant increased 11C-BU99008 uptake as a group for (a) all CI subjects and (b) Aβ-
positive CI subjects compared with HC, using a cluster threshold of p < 0.05 and with extent threshold of 50 voxels. The Colour bar indicates
the Z-score.
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earlier in porcine brains [20]. A subsequent first-in-human study
recently published by our group provided further evidence that
11C-BU99008 has high specificity and selectivity for I2-BS and
validated a two tissue compartment model for analysis of the data
[28]. 11C-BU99008 has favourable dosimetry and thus appears to
be safe for serial administrations in humans [24]. Based on this and
the in vitro cellular localisation data, we believe that 11C-BU99008
is a potential new tracer for assessment of the trajectory of in vivo

astrocyte reactivity with Alzheimer’s and other late life neurode-
generative diseases.
The potential utility of the tracer is suggested by considerable

independent neuropathological data that has defined an associa-
tion between astrocyte reactivity and Aβ deposition in the brain.
Studies of both animal models and human brains post-mortem
demonstrate astrocyte reactivity near Aβ plaques [36, 37].
Consistent with this, in our single-subject SPM analysis, we

Fig. 4 In vitro autoradiography of 3H-BU99008 in brain tissue from people with AD and controls. A Greater 3H-BU99008 binding around Aβ
plaques in AD brain tissue sections. Representative autoradiographs showing 3H-BU99008 total (left panel) and non-specific binding (centre
panel; determined with 10 µM BU224) in 12 µm frontal cortex sections of the human brain (AD and age-matched controls). Standards (ARC
123B) represent a linear range of radioactivity. Immunohistochemistry for total Aβ (1 µg/mL pan-anti-Aβ, MOAB-2, clone 6C3, right panel)
shows spatial distribution of plaques. White arrows point to high-intensity binding of 3H-BU99008 in the vicinity of plaques (black arrows), as
magnified inserts show. B 3H-BU99008 binding is increased in AD brain sections relative to control brain. Comparative quantitative analysis of
specific binding of 3H-BU99008 in grey and white matter (when identifiable) or total section of 12 µm frontal cortex sections (AD with Braak
stages 5–6 and controls). Binding of 3H-BU99008 in the total sections from AD cases is significantly higher (unpaired t-test) than that in
controls. Data is mean (±SD) from triplicates; AD: n= 6, Control: n= 5. C Non-specific binding is not different between AD and control brain
sections. Quantitative analysis of non-specific binding, showing no difference between brain sections from AD and controls. Increased specific
binding in AD (A/B) sections relative to controls therefore is not caused by differences in non-specific binding. D 3H-BU99008 binding
colocalised with GFAP staining. Autoradiograph showing 3H-BU99008 total binding (left panel) and non-specific binding (centre panel;
determined with 10 µM BU224) in 14 µm frontal cortex sections of the human brain (Braak stage 6). Standards (ARC 123B) represent a linear
range of radioactivity. Immunohistochemistry for GFAP (right panel) shows spatial distribution of an astrocytic marker. Magnifications of 3H-
BU99008 binding and GFAP staining are shown in the panels. Solid red arrows point to high-intensity 3H-BU99008 binding and corresponding
areas of GFAP staining. E, F Common Aβ tracers do not displace 3H-BU99008 binding. Autoradiograph showing 3H-BU99008 total binding (left
upper panel) and non-specific binding (left lower panel; determined with 10 µM BU224) in 14 µm frontal cortex sections of the human brain
(Braak stage 2). Standards (ARC 123B) represent a linear range of radioactivity. Upper/lower right row shows binding of 3H-BU99008 in the
presence of two commonly unlabelled PiB and Florbetaben, two commonly used Aβ tracers in ascending concentrations, showing no
displacement. Quantitative analysis of specific binding (E) in the grey and white matter and in the presence of unlabelled PiB and Florbetaben
(10–10000 nMol/L) in 14 µm frontal cortex sections (Braak stage 2). Quantification indicates that high-intensity 3H-BU99008 accumulation
around plaques is likely not caused by binding to common Aβ-binding sites.
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demonstrated that there were significant clusters of greater 11C-
BU99008 uptake in 6/8 of the Aβ-positive CI subjects relative to
HC. The association between Aβ and astrocyte reactivity is
believed to reflect mechanistic links between the two phenomena
in a cascade of biochemical events contributing to neurodegen-
eration. Astrocytes are important mediators of Aβ-induced
neurotoxicity and tau phosphorylation in primary culture, e.g.,
through increased expression of neurotoxic substances such as
nitric oxide and TNFα [38]. Astrocytes also play a critical role in
regulating brain glucose metabolism homoeostasis [39] and
contribute to 18F-FDG uptake in the brain [40]. Consequently, a
proinflammatory state leading to astrocyte dystrophy will reduce
astrocytic glycolytic capacity and, in consequence, neuronal
metabolism, potentially leading to neuronal death [41–43].
Therefore, due to the role of astrocyte reactivity on Aβ, tau and
glucose metabolism, astrocyte reactivity can lead to atrophy and
neurodegeneration and will have a significant impact on the A/T/
N framework which should be considered further [44, 45].
We validated our in vivo findings through autoradiography, as 3H-

BU99008 colocalised with GFAP staining. GFAP is significantly
upregulated during astrocyte reactivity [46] as the protein is
necessary to build intermediate filaments [47] required for the
biological process of hypertrophy that is characteristic of astrocyte
reactivity [48]. Consequently, GFAP knockout in an AD mouse model
inhibits the development of hypertrophic astrocytes [4]. GFAP also
appears to be upregulated in a range of astrocyte reactivity states
[49], even in the absence of cell proliferation [50]. Therefore, GFAP is
a widely used marker of astrocyte reactivity, and is being
investigated as a CSF [51] and blood [52] biomarker for astrocyte
reactivity in AD. Ishiki et al. [51] found that whilst CSF GFAP was
significantly higher in AD patients compared with controls, CSF
GFAP findings were similar with other types of dementia such as
dementia with Lewy Bodies and frontotemporal lobar degeneration.
This is proposed to be due to a common underlying mechanism of
neuroinflammation, and thus suggests CSF GFAP is not suitable for
distinguishing between neurodegenerative diseases. We also found
that 3H-BU99008 colocalised with Aβ plaques and was not displaced
by PiB/florbetaben, confirming the tracer was not simply binding to
Aβ. The antibody we used to identify amyloid specifically recognises
Aβ in plaques (as well as oligomers and fibres). Alternative
intercalating markers such as Thioflavin T recognise all aggregated
proteins, including tau, that share Aβ structures. Other studies have
also shown that GFAP co-localises with Aβ [53–55], and that GFAP
can attenuate Aβ load [4, 56], suggesting astrocyte reactivity can
occur in response to Aβ pathology.
However, we also observed increased 11C-BU99008 uptake in 2/3

of the Aβ-negative CI subjects, suggesting that Aβ plaques detected
by 18F-florbetaben PET are not necessary for astrocyte reactivity. We
have previously demonstrated similar findings with a tracer of
microglial activation showing increased uptake in areas with low Aβ
load [57]. There is an emerging view that astrocyte reactivity occurs
early on in the AD trajectory, and is supported by findings of
increased 11C-DED binding in autosomal dominant AD patients [58]
and Aβ-positive MCI subjects [59]. Importantly, astrocyte reactivity
can accelerate Aβ production with increased expression of three
elements central to Aβ production: Aβ precursor protein, β-secretase
and γ-secretase [60]. The lysis of dead phagocytic astrocytes that
have engulfed Aβ peptides may even contribute to the genesis of
the consolidated Aβ plaques detected by PET Aβ imaging in vivo
[36]. It should also be noted that astrocyte reactivity can occur in
other neurodegenerative diseases without Aβ deposition, high-
lighting that there are multiple triggers [61, 62]. Recent papers have
provided in vivo imaging evidence for astrocyte reactivity in
Parkinson’s disease, based both on observations of increased 11C-
BU99008 and 11C-DED uptake in the brain [62, 63]. Our observations,
these, and related studies thus all emphasise that, while increased
11C-BU99008 PET signal may be able to be used as a biomarker for

astrocyte reactivity, it is not specific to AD, and could be used to
evaluate astrocyte reactivity in different neurodegenerative diseases.
It is more difficult to interpret the lack of any voxel-wise clusters

showing significantly increased 11C-BU99008 binding relative to
HC for the Aβ-positive subject 7 and the relatively small, sparsely
distributed clusters found for Aβ-positive subject 5 (Supplemen-
tary Fig. 1). Both of these subjects had cognitive and imaging
findings (low MMSE scores, high 18F-florbetaben uptake and small
hippocampal volumes) consistent with inclusion criteria and a
clinical diagnosis of probable AD. The relative absence of astrocyte
reactivity detected by 11C-BU99008 around advanced Aβ plaques
could be a marker of a shift in the reactive astrocyte phenotype. It
is important to remember that 11C-BU99008 binds to I2-BS
receptor sites as an index of astrocyte reactivity, and thus not all
types of astrocyte reactivity will be detected. For example,
differences in the molecular phenotypes of reactive astrocytes
could lead to relatively lower I2B expression in a subset, although
earlier unselective biochemical pathology did not suggest much
heterogeneity in relative levels of expression between brains
studied post-mortem [15]. However, the authors noted that GFAP
was increased more (88%) than imidazoline receptor proteins
(36%) in AD brains, suggesting an astrocyte phenotype which
lacks I2-BS receptor sites and thus will not be detected by 11C-
BU99008. Additional 11C-BU99008 PET studies of well charac-
terised subjects, as well as 3H-BU99008 autoradiography of post-
mortem brain tissue, are needed to further test and then, if
confirmed, explore these phenomena.

CONCLUSION
In this proof-of-principle study using the novel PET tracer 11C-
BU99008, we demonstrated an increase in 11C-BU99008 uptake in
CI subjects with MCI or probable AD compared with HC. We found
that radioligand uptake was associated with Aβ deposition at
voxel level, consistent with a potential mechanistic link between
Aβ deposition and astrocyte reactivity. The observation that, on an
individual subject level, a positive 18F-florbetaben PET signal is
neither a necessary nor sufficient condition for the increased 11C-
BU99008 PET signal is most consistent with a model in which
astrocyte reactivity can precede significant Aβ plaque deposition
and possibly contribute to their formation. While this was only a
pilot study, it suggests the potential for using 11C-BU99008 for
longitudinal study of relationships between astrocyte reactivity
and other neuropathological and clinical features in vivo and for
exploring the impact of therapeutic approaches targeting astro-
cyte reactivity.

Assumptions for power calculation
We assumed that variance in the ROI-based measures may be as
much as 15% in the HCs, but, in CI subjects, who may show
additional variance related to disease, this will increase to ~30%.
Using these assumptions, we calculated the following population
sizes to achieve a power of 80% to detect an increase in the
subjects with CI (p < 0.05): CI subjects= 21, HC subjects= 15.
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