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Octocorallia (class Anthozoa, phylum Cnidaria) is a group of calcifying corals displaying
a wide diversity of mineral skeletons. This includes skeletal structures composed
of different calcium carbonate polymorphs (aragonite and calcite). This represents
a unique feature among anthozoans, as scleractinian corals (subclass Hexacorallia),
main reef builders and focus of biomineralization research, are all characterized by an
aragonite exoskeleton. From an evolutionary perspective, the presence of aragonitic
skeletons in Octocorallia is puzzling as it is observed in very few species and
has apparently originated during a Calcite sea (i.e., time interval characterized by
calcite-inducing seawater conditions). Despite this, octocorals have been systematically
overlooked in biomineralization studies. Here we review what is known about
octocoral biomineralization, focusing on the evolutionary and biological processes
that underlie calcite and aragonite formation. Although differences in research focus
between octocorals and scleractinians are often mentioned, we highlight how strong
variability also exists between different octocoral groups. Different main aspects of
octocoral biomineralization have been in fact studied in a small set of species,
including the (calcitic) gorgonian Leptogorgia virgulata and/or the precious coral
Corallium rubrum. These include descriptions of calcifying cells (scleroblasts), calcium
transport and chemistry of the calcification fluids. With the exception of few histological
observations, no information on these features is available for aragonitic octocorals.
Availability of sequencing data is also heterogeneous between groups, with no
transcriptome or genome available, for instance, for the clade Calcaxonia. Although
calcite represents by far the most common polymorph deposited by octocorals,
we argue that studying aragonite-forming could provide insight on octocoral, and
more generally anthozoan, biomineralization. First and foremost it would allow to
compare calcification processes between octocoral groups, highlighting homologies
and differences. Secondly, similarities (exoskeleton) between Heliopora and scleractinian
skeletons, would provide further insight on which biomineralization features are driven by
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skeleton characteristics (shared by scleractinians and aragonitic octocorals) and those
driven by taxonomy (shared by octocorals regardless of skeleton polymorph). Including
the diversity of anthozoan mineralization strategies into biomineralization studies remains
thus essential to comprehensively study how skeletons form and evolved within this
ecologically important group of marine animals.

Keywords: octocorallia, biomineralization, aragonite, evolutionary biology, calcite

INTRODUCTION

Biomineralization refers to the process by which organisms
produce minerals. The ability to form biomineral structures is
taxonomically widespread and has evolved multiple times during
the Earth’s history, including twenty independent origins within
Metazoa and four within plants (Knoll, 2003). Biominerals serve
a wide variety of biological functions including, among others,
body support, defense against predation, navigation (Frankel
et al., 1997) and (in plants) the regulation of photosynthesis
and ion concentration (He et al., 2014 for review). Many
groups of marine invertebrates (e.g., sponges, molluscs, and
echinoderms) produce biominerals and among these, anthozoan
coral (Cnidaria: Anthozoa) calcium carbonate biomineralization
holds an extreme ecological significance, as it forms the 3D-
framework of one of the most biodiverse ecosystems on
the planet, coral reefs. Within Anthozoa, calcifying corals
are found in two distinctive clades: the order Scleractinia
(subclass Hexacorallia) and the subclass Octocorallia (Figure 1f).
Scleractinian corals currently are the major contributors to reef
accretion, and have thus been the focus of biomineralization
research over the years (e.g., Tambutté et al., 2011; Falini
et al., 2015). On the other hand, calcium carbonate (CaCO3)
production in octocorals, commonly referred to as soft corals, is
often modest and can be of several orders of magnitude lower
compared to scleractinians (Smith and Kinsey, 1976; Herrán
et al., 2017; Edinger et al., 2019). Despite this, some octocoral
species (primarily the order Helioporacea) can significantly
contribute to reef formation (Zann and Bolton, 1985) and
can become the main reef builders within different habitats
(Shaish et al., 2010; Yasuda et al., 2012). Octocorals can also
exhibit higher resilience to environmental conditions, enabling
them to outperform and replace scleractinians after events
such as coral bleaching, pollution and Acanthaster outbreaks
(Nishishira, 1974; Stobart et al., 2005; Ruzicka et al., 2013).
Moreover, from a biomineralogical perspective, octocorals are
more diverse than scleractinians, as they have evolved a wide
range of different biomineralization strategies. These include
the production of skeletal structures composed of different
calcium carbonate polymorphs (aragonite and calcite) and of
organic components (Gorgonin). On the other hand, all modern
scleractinian species are characterized by the production of
aragonite skeletons only.

In light of this, octocorals represent an interesting target
for biomineralization research. Yet they remain marginally
studied. One of the main questions surrounding octocoral
calcification is whether the morphological and compositional
diversity of their skeletons is related to differences in the

cellular and molecular mechanisms employed by them for
biomineralization. As in other animal groups, calcification in
Octocorallia is a biologically controlled process, in which the
precipitation mineral is not a byproduct of metabolic processes
(biologically induced mineralization), but is rather under strict
physiologic control (Lowenstam, 1981; Mann, 1983). In general,
biological control can be broadly subdivided into two main
processes, namely, the regulation of ion (e.g., calcium) transport
and concentration at the calcification sites (Kingsley and Watabe,
1985; Watabe and Kingsley, 1992; Bertucci et al., 2013), and the
secretion of an organic matrix into the mineral fraction of the
skeleton (Weiner et al., 1983). The composition of organic matrix
in octocorals is of particular interest, as it has been shown—in
other calcifying taxa—that it regulates in vitro precipitation of
different CaCO3 polymorphs (Goffredo et al., 2011; Laipnik et al.,
2019). Despite this, little is known about skeleton formation in
octocorals, especially whether these animals have (and how they
evolved) the ability to control the formation of different CaCO3
polymorphs. Finally, furthering our knowledge on octocoral
calcification would also allow to obtain comparative information
on the biomineralization strategies of two different groups of
calcifying corals, and better understand how biomineralization
evolved within the Anthozoa.

In this review, we examine the research status of calcite
and aragonite biomineralization in octocorals. After introducing
Octocorallia and highlighting the diversity of their skeletons,
we summarize what is known about the evolutionary histories
of biomineralization in octocorals, with a focus on polymorph
diversity. We then surveyed available information on the
cellular and molecular processes responsible for the formation
of different skeletons. The aim was to (1) highlight the
numerous current knowledge gaps characterizing octocoral
biomineralization (especially pertaining to aragonite-forming
species), and (2) propose novel potential approaches and/or
research avenues to gain insight on the molecular mechanisms
underlying such skeleton diversity.

OCTOCORALS: SOFT
BIOMINERALIZERS

The cnidarian subclass Octocorallia represents a group of
marine benthic organisms, currently comprising more than 3,400
described valid species (Williams and Cairns, 2015). They inhabit
all marine habitats, but do mostly occur in either shallow tropical
or deep sea environments. Around 75% of octocoral species
have been described from waters below 50 m and the deepest
specimen to date was recorded at 6,400 m depth (Roberts et al.,
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2009; Zapata Guardiola and López González, 2012). They are
globally distributed, albeit very few species are cosmopolitan,
with the highest diversity occurring in the Indo-Pacific region
(Williams and Cairns, 2013; Pérez et al., 2016). Octocorals
represent important marine community members and can
increase habitats’ spatial complexity (Quattrini et al., 2014). In
deep sea environments, for example, octocorals can occur at
high densities and sustain biodiverse ecosystems by providing
substratum and shelter to other organisms like fishes (Caley and
St John, 1996), or nudibranchs, crustaceans, and echinoderms
(Krieger and Wing, 2002; Mortensen and Buhl-Mortensen,
2005; De Clippele et al., 2015). As observed in scleractinians,
octocoral can also establish symbiotic relationships (obligate or
facultative) with photosynthetic microalgae (zooxanthellae) or be
non-symbiotic (Fabricius and Alderslade, 2001). This octocoral-
algae association is considered mutualistic: the symbiont obtains
inorganic nutrients from the coral, while the host receives
in turn organic compounds, the products of photosynthesis.
Primary productivity is nonetheless usually low, and octocorals
often rely also on heterotrophy (e.g., suspension feeding,
prey capture) (Sorokin, 1991; Fabricius and Klumpp, 1995;
Ribes et al., 1998).

With the sole exception of members of the genus Taiaroa
(Bayer and Muzik, 1976), octocorals are colonial, and consist
of multiple polyps embedded and interconnected by tissue
(coenenchyme). Octocoral colonies can be morphologically very
distinct and exhibit a wide range of forms from encrusting
to arborescent (Figures 1a–e). Nevertheless, polyps are always
characterized by an eightfold symmetry (i.e., they possess eight
tentacles and eight internal mesenteries). This represents the
synapomorphy of the group and separates Octocorallia from
all remaining anthozoan taxa, in which a sixfold symmetry is
present. In octocorals, polyp tentacles are also often characterized
by lateral branched structures called pinnulae. This does however
not constitute an octocoral synapomorphy as species with
smooth tentacles have also been described (Alderslade and
McFadden, 2007). Biomineralization is also not shared by all
octocorals, and species lacking any mineral structure have been
described in different groups (Alderslade and Mcfadden, 2011;
Benayahu et al., 2017; Lau and Reimer, 2019b).

Taxonomically, Octocorallia is currently divided into
three orders: Helioporacea, Pennatulacea, and Alcyonacea
(Bayer, 1981b). The first two are grouped based on well-
defined characters: the presence of an aragonite skeleton
(Helioporacea) and the oozoid, a differentiated polyp that
ensures attachment to the substratum (Pennatulacea). Order
Alcyonacea is subsequently divided into six sub-ordinal groups
based on their skeleton characteristics: Alcyoniina, Holaxonia,
Stolonifera, Calcaxonia, Scleraxonia, and Protoalcyonacea
(Grasshoff, 1999; Fabricius and Alderslade, 2001). Molecular
phylogenetic studies of Octocorallia, however, have repeatedly
shown that these groups are artificial and should be abandoned.
For example, the analysis McFadden et al. (2006) found
the suborders Stolonifera, Alcyoniina, and Scleraxonia
polyphyletic. Polyphyly for Scleraxonia was also observed
in Sánchez et al. (2003a), while Alcyoniina and Calcaxonia
appeared paraphyletic.

DIVERSITY AND COMPOSITION OF
OCTOCORAL SKELETONS

Compared to modern scleractinians, which all produce massive
aragonitic exoskeletons, octocorals have evolved a diverse array
of skeletal structures. In the vast majority of species, the skeletal
elements consist of multiple micro- or millimetric calcareous
structures called sclerites, which occur embedded within the
animal tissues. The overall sclerite morphology (e.g., spicule,
spindle, rod, plate) (Devictor and Morton, 2010) and the different
types of ornamentations can differ sensibly between species
(Figure 2) and have been thus used extensively for species
delimitation (Bayer, 1981a; Fabricius and Alderslade, 2001;
Tentori and van Ofwegen, 2011). Molecular phylogenies have
confirmed the taxonomic value of sclerite morphology to some
extent, despite also highlighting instances of homoplasy (Sánchez
et al., 2003b; Vargas et al., 2010c, 2014; Ament-Velásquez et al.,
2016; Poliseno et al., 2017). Morphological plasticity linked to
environmental conditions (Prada et al., 2008) and predation
(West, 1997) has also been reported. Intraspecific variability
is also present and different sclerite types and abundance
can be observed within single individuals (Van Alstyne et al.,
1992; Vargas et al., 2010a,b). In some species, different sclerite
morphologies appear to correlate with their different localization
(e.g., polyp, base) within the animal body (Williams, 1986, 1992;
Alderslade, 2000; Tentori and van Ofwegen, 2011). Sclerites are
found embedded within the mesoglea—a collagen-like substance
between the ectodermal and endodermal layers (Barzansky and
Lenhoff, 1974)—of the coenenchyme (tissue connecting the
polyps) and/or the polyp (Fabricius and Alderslade, 2001).

Mineralogy: Octocoral sclerites are all composed of CaCO3
in the form of high-magnesium calcite. More detailed
compositional analyses have been obtained for the sclerites
of Mediterranean gorgonians and precious corals. In the
former, magnesium concentrations ranged between 1.4 and
2.2% (Weinbauer and Vellmirov, 1995). Slightly higher values
(2.1–3.0%) have been found in C. rubrum (Family Corallidae),
although variability in magnesium content both within single
sclerites, individuals and between colonies was reported
(Weinbauer et al., 2000). Strontium is another common
component of octocoral sclerites and its concentration values
in gogonians can range between 0.1 and 0.2% (Weinbauer
and Vellmirov, 1995). Incorporated amounts of magnesium
and strontium have been extensively used to reconstruct
paleoclimatic conditions. For example, the concentration
of magnesium in octocoral sclerites is positively correlated
with seawater temperature (Weinbauer and Vellmirov,
1995; Yoshimura et al., 2011), although in C. rubrum this
correlation appears not to hold when colonies are exposed
to large temperature fluctuations (Vielzeuf et al., 2013).
Finally, several trace elements have been detected in the
sclerites of C. rubrum including lithium, iron, zinc and barium
(Vielzeuf et al., 2013, 2018).

In some octocoral groups a mineral axial skeleton is
deposited alongside sclerites. The axis provides support to
the colony and can be entirely composed of biogenic calcite
or be a combination of scleroproteins (collectively referred
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FIGURE 1 | (a) Tubipora musica (order Stolonifera) (scale bar: 1 cm). (b) Heliopora coerulea (order Helioporacea) (scale bar: 1 cm). (c) Paragorgia sp. (order
Alcyonacea). (d) Iridogorgia sp. (order Alcyonacea). (e) Corallium rubrum (order Alcyonacea). (f) Phylogenetic tree of class Anthozoa highlighting presence-absence
patterns of mineral skeletons. We based the Anthozoa phylogenetic tree on Kayal et al. (2018). Here, Ceriantharia was found as sister taxon to other members of
Hexacorallia. This has been recently corroborated in a phylogenomic analysis by McFadden et al. (2021). However, an alternative tree topology puts Ceriantharia as
sister to remaining Anthozoa (Stampar et al., 2014). Pictures credit: (a,b) Department of Earth and Environmental Science, Ludwig-Maximilians-Universität München,
(c) NOAA Office of Ocean Exploration and Research, Deep Connections 2019, and (d) NOAA Okeanos Explorer Program, Gulf of Mexico 2012 Expedition.

to as gorgonin; Bayer, 1981b) and calcite. Axial skeletons
can arise from different calcification mechanisms that often
entail the fusion of sclerites. In the precious coral Corallium
rubrum, for example, sclerites at the tips of colony branches
fuse to form the core of the axis, which is secondarily
thickened by subsequent deposition of mineral layers (Allemand,
1993; Debreuil et al., 2012). In C. johnsoni however, the

axial skeleton appears to be devoid of scleritic material
(Lawniczak, 1987). In Octocorallia, different biomineralization
strategies could have thus evolved within genera. In the family
Ellisellidae, sclerites forming the axial core are often markedly
different from those found in the coenenchyme (Devictor and
Morton, 2010). Alternatively, sclerites can also assemble into
reticulate structures (e.g., Melithaea) (Cuif, 2016). In octocorals

Frontiers in Ecology and Evolution | www.frontiersin.org 4 February 2021 | Volume 9 | Article 623774

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-09-623774 February 15, 2021 Time: 18:39 # 5

Conci et al. Review of Biomineralization in Octocorallia

FIGURE 2 | Overview of skeletal structures present in different octocoral clades. Images acquired by scanning electron microscopy (SEM). Images sources:
Gorgoniidae from Horvath (2019), Corallidae from Simpson and Watling (2011) (Cambridge Press©, reproduced with permission of copyright holder), Stolonifera
from Lau et al. (2019) and personal image, Helioporacea (personal images). Image from Conci (2020).

producing proteinaceous skeletons, the axis can be reinforced
with endogenous/biogenic (high magnesium calcite) or non-
endogenous (calcite, aragonite, or amorphous CaCO3) minerals
(Lewis et al., 1992). Amounts and origin of the axis mineral
fraction can differ between groups. In Calcaxonia, large amounts
of non-scleritic or scleritic calcite are present, while members

of the suborder Holaxonia are characterized by small quantities
of embedded calcium carbonate (Bayer and Macintyre, 2001).
In bamboo corals (Family Isididae), the proteinaceous and
mineral fractions of the axial skeleton are arranged to form
an alternation of flexible joints and rigid mineral internodes
(Noé and Dullo, 2006).
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Exceptions to the “calcite rule” are members of Order
Helioporacea, in which a trabecular skeleton of fibrous aragonite
is present (Hill, 1960). In the genus Heliopora and Nanipora,
only aragonite is observed, while in the genus Epiphaxum
calcite sclerites are formed alongside the aragonitic skeleton
(Lozouet and Molodtsova, 2008; Miyazaki and Reimer, 2015).
However, compared to the high-magnesium calcite of sclerites,
the magnesium content found in Heliopora’s aragonite skeleton is
lower (ca. 0.5 mol%) (Velimirov, 1980).

Finally, hydroxyapatite (Ca10(PO4)6(OH)2) has also been
detected in some gorgonians and currently represent the
only possible instance of likely biologically produced calcium
phosphate in cnidarians (Macintyre et al., 2000).

EVOLUTIONARY HISTORY OF
OCTOCORAL BIOMINERALIZATION

The origin of Octocorallia and the evolutionary relationships
between different skeletal structures, notably between aragonite
skeletons and calcite structures (sclerites and axis), remain largely
elusive. This is in part caused by the poor preservation (Cope,
2005) and challenging identification (Deflandre-Rigaud, 1957;
Kocurko and Kocurko, 1992) of octocoral skeletal elements in the
fossil record, and the current lack of robust phylogenetic analyses
for Octocorallia (but see Quattrini et al., 2020).

The earliest putative octocoral fossils currently date back to
the Ediacaran (Glaessner, 1985). A putative Cambrian bryozoan
fossil (genus Pywackia) (Landing et al., 2010) was later re-
classified as an octocoral (Ausich and Babcock, 1998; Taylor
et al., 2013), although this claim has been questioned (Landing
et al., 2015). Earliest undisputed specimens of the group currently
date back to the Ordovician, and belong to the gorgonian
genus Petilavenula (Cope, 2005). Paleozoic (Silurian) octocoral
fossils also include examples of a spiculite, a type of calcareous
rock composed of cemented sclerites (Bengtson, 1981). Other
octocoral groups appeared in the fossil record during the
Cretaceous period (Figure 3). These include sea pens (order
Pennatulacea) (Reich and Kutscher, 2011) and precious corals
(family Coralliidae) (Schlagintweit and Gawlick, 2009). The
oldest fossil specimens of aragonitic Heliopora and Epiphaxum
species also date back to the Creataceous (Eguchi, 1948; Colgan,
1984; Lozouet and Molodtsova, 2008). A recent time-calibrated
molecular phylogenetic analysis has corroborated the hypothesis
of a Cretaceous origin for helioporaceans, while the proposed
origin of pennatulaceans was pushed back to the Carboniferous
(Quattrini et al., 2020).

The emergence of aragonitic skeletons during the Cretaceous
is of evolutionary interest, as it lies in apparent disagreement with
the calcite-inducing conditions (i.e., low magnesium-calcium
molar ratio, or mMg:mCa) experienced by marine calcifiers
during that time (Hardie, 1996; Lowenstein et al., 2001). The
mMg:mCa of seawater has been hypothesized to represent one
of the main drivers of selective inorganic precipitation of CaCO3
polymorphs, with lower (<2) and higher (>2) values promoting
the formation of calcite and aragonite, respectively (Morse et al.,
1997; Balthasar and Cusack, 2015). Variations in mMg:mCa

during the last 500 Mya have created an alternation between
aragonite and calcite-favoring environments (referred to as the
so-called “Aragonite-” and “Calcite Seas”), and have been shown
to correlate with shifts in the skeleton polymorph produced
by major calcificiers (Hardie, 1996; Stanley and Hardie, 1998;
Knoll, 2003).

Aragonitic scleractinian corals, for example, represent the
main reef framework-builders today (mMg:mCa ca. 5.2) and
were responsible for reef formation during the Triassic
Aragonite Sea (Stanley, 1981). They were, however, replaced
by calcitic rudists (class Bivalvia, phylum Mollusca) during
the Cretaceous, when Calcite Sea conditions prevailed (Scott,
1988). In addition to driving shifts in the composition of reef
building communities, the seawater mMg:mCa appears to have
also influenced the polymorph initially adopted by different
organisms (Porter, 2010).

Aragonitic octocorals represent one of the very few exceptions
to these patterns, as they appear to have evolved the ability to
deposit aragonite skeletons during a Calcite Sea interval (Porter,
2010). On one hand, this could be explained by a currently
incomplete fossil record. Aragonite-forming octocorals might
have appeared earlier during aragonite-favoring conditions. This
would, however, imply an extensive gap in the fossil record.
On the other hand, precipitation of aragonite could have
been promoted by other environmental variables. During the
Cretaceous, several seawater properties differed compared to
today’s conditions. These include higher seawater temperatures
(above 32◦C at low latitudes) in shallow marine habitats
(Schouten et al., 2003; Bice et al., 2006), lower pH (Zeebe,
2001) and lower sulfate (SO4

2−) concentrations (Algeo et al.,
2015). Among these, higher seawater temperatures have been
shown to promote the co-precipitation of aragonite, alongside
calcite, even at mMg:mCa < 1 (Balthasar and Cusack, 2015).
The warm surface temperature characterizing the shallow
environments inhabited by H. coerulea during the Cretaceous
(Zann and Bolton, 1985), might thus have enabled this species to
deposit its aragonitic skeleton. A similar scenario has also been
proposed to explain the appearance of aragonitic brachiopod
shells in the Silurian and Ordovician (Balthasar et al., 2011;
Balthasar and Cusack, 2015).

Inferences on the evolution of octocoral biomineralization
are furthermore hampered by the current lack of robust
phylogenies for Octocorallia. The most comprehensive analysis,
published by McFadden et al. (2006), identified two major clades
(Holaxonia + Alcyoniina and Pennatulacea + Calcaxonia) plus
a third clade consisting of genus Anthomastus and the precious
coral Corallium ducale. The blue coral H. coeruela formed a
clade with sea pens and calcaxonians. The hypothesis of a
close evolutionary relationship between aragonitic octocorals
(genera Heliopora and Nanipora) was later corroborated by
Miyazaki and Reimer (2015) using different molecular markers.
In another phylogeny, based on mitochondrial protein-coding
genes, H. coerulea was, however, retrieved as sister to the rest
of Octocorallia (Kayal et al., 2013). Nonetheless, the latter
study aimed at resolving evolutionary relationships between
Cnidaria major clades, and included a smaller taxon sampling
of octocorals. In any case, no mitochondrial or nuclear
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FIGURE 3 | Current fossil record of different octocoral taxa and concurrent environmental conditions (magnesium-calcium molar ratio, mMg:mCa, and sea surface
water temperature) during the last 500 Mya. Fossil record based on Reich (2009). Seawater surface temperature and mMg:mCa based on Song et al. (2019) and
Hardie (1996), respectively. Skeleton images: Helioporacea (Gert Wörheide), Alcyoniina (McFadden and Ofwegen, 2017) (Magnolia Press© reproduced with
permission of copyright holder), Holaxonia (Dautova, 2019), Stolonifera (Lau et al., 2018) and Pennatulacea (Williams, 2015). Pre, Precambrian; Cam, Cambrian; Ord,
Ordovician; S, Silurian; Dev, Devonian; M, Mississippian; P, Pennsylvanian; Pm, Permian; Tr, Triassic; Jur, Jurassic; Cret, Cretaceous; Pg, Plaeogene; Ng, Neogene.
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marker have proved effective in resolving deep phylogenetic
relationships between octocoral clades to date. This suggests
that octocorals might have undergone a rapid radiation. Because
phylogenomic analyses with larger taxon sampling to reconstruct
the evolutionary history between octocoral groups are currently
lacking, there clearly is the need for increased transcriptome and
genome sequencing efforts to fill this knowledge gap (Rokas et al.,
2005; McFadden et al., 2010). Nonetheless, some sequencing
data is already available for some species and octocorals have
been included in broader phylogenomic and phylotranscriptomic
analyses to assess evolutionary relationships between cnidarian
(Zapata et al., 2015; Kayal et al., 2018) or metazoan (Simion
et al., 2017) groups. Several octocoral transcriptomes have been
sequenced in the last few years and three genomes were released
in the last 2 years (Table 1).

The majority of sequencing datasets is derived from octocorals
of the suborder Holaxonia, while for other groups the number
of species with a sequenced transcriptome/genome is extremely
limited. To date, to the best of our knowledge, no data
is available for Calcaxonia. Despite the recent increase in
availability of octocoral omic resources, dozens of genera remain
to be sequenced before phylogenomic (or phylotranscriptomic)
analyses, with taxon samplings equivalent to previous studies
(e.g., 103 species included in McFadden et al., 2006), can be
conducted. In this light, research efforts aimed at resolving the
origin and evolution of octocorals should (1) focus on filling the
gap in terms of availability of data for calcaxonian octocorals and
(2) examine existing phylogenies to prioritize the sequencing of
taxa belonging to unresolved clades.

SCLEROBLASTS: THE OCTOCORAL
CALCIFYING CELLS

Biological control over biomineralization often entails specialized
cell types carrying out skeleton formation. For example, cells
forming the scleractinian aboral ectoderm (or calicoblastic layer)
or the outer epithelium of the molluscan mantle are, respectively,
responsible for the deposition of skeletons or shells, respectively

TABLE 1 | Number of octocoral genomes and transcriptome publicly available.

Taxon Genome Transcriptome Species in McFadden et al. (2006)

Alcyoniina 2 3 37

Calcaxonia 12

Helioporacea 1 1

Holaxonia 1 8 29

Pennatulacea 1 2 10

Scleraxonia 2 7

Stolonifera 3 7

Number indicates number of species with at least one transcriptome and/or
genome sequenced. Numbers are compared to taxon sampling in McFadden
et al. (2006). Numbers based on NCBI Sequence Read Archive (SRA), NCBI
Transcriptome Shotgun Assembly (TSA) Database and the Cnidarian Blast
Database available at http://data.centrescientifique.mc (Karako-Lampert et al.,
2014). Assignment of species to subordinal groups based on the World Register of
Marine Species. All databases last accessed on 21.08.2020.

(Saleuddin, 1977; Johnston, 1980; Jolly et al., 2004). In octocorals,
sclerites are produced by calcifying cells called scleroblasts. These
cells likely originate in the ectodermal layer (Hickson, 1895;
Woodland, 1905; Bayer and Owre, 1967; Watabe and Kingsley,
1992) and from there migrate into the mesoglea. Scleroblasts
can exhibit varying morphological states, which appear to
be correlated with different developmental stages of sclerite
formation (Watabe and Kingsley, 1992). Based on histological
and electron microscopy observations, a two step growth
model for sclerite development has been proposed, involving
an intracellular and a possible extracellular formation phase
(see Watabe and Kingsley, 1992, for a review). Several authors
provided a description of scleroblasts associated with different
maturation stages in different octocorals, for example Leptogorgia
virgulata (Kingsley and Watabe, 1982), Sinularia (Jeng et al.,
2011), pennatulaceans (Dunkelberger and Watabe, 1974), and
the precious coral C. rubrum (Grillo et al., 1993). An entirely
intracellular growth model was initially proposed for the sea pen
Renilla reniformis (Dunkelberger and Watabe, 1974), but later
observations revealed the presence of an additional extracellular
growth phase also in this octocoral species (Watabe, 1981).

Sclerite deposition appears to initially occur within a
series of vacuoles present in the cytoplasm of scleroblasts
(Watabe and Kingsley, 1992). Secretion of an organic matrix
(discussed in the following section) into these vacuoles precedes
mineral deposition and continues throughout sclerite formation
(Kingsley and Watabe, 1982). The function of these organic
matrices apparently is to provide a scaffold for mineral deposition
(Lowenstam and Weiner, 1989). During the intracellular phase,
scleroblasts are characterized by a prominent nucleus and their
cytoplasm is rich in vesicles and mitochondria (Kingsley and
Watabe, 1982; Grillo et al., 1993; Figure 4.1a). At this stage,
scleroblasts are not solitary in the mesoglea but they instead form
cell aggregates (Grillo et al., 1993). As sclerites grow, vacuoles
occupy an increasingly larger space within the scleroblast, while
the nucleus and cytoplasm are now restricted to the periphery
of the cell (Watabe and Kingsley, 1992; Figure 4.1b). These
changes are followed by the extrusion of the sclerite into the
mesoglea (Figure 4.1c). A detailed description of the transition
between the intracellular and extracellular phase has been
provided for L. virgulata by Kinglsey and Watanabe (1982).
These authors have shown that the extrusion of sclerites involves
the fusion of the cell plasma membrane with the vacuole
containing the sclerite. The maturation stage at which the
sclerites become extracellular appears to vary between species.
In L. virgulata, for example, the emergence of sclerites from
the scleroblasts occurs at a late growth stage, and sclerites
already exhibit their characteristic wart-like branching structures
(Kingsley et al., 1987). In the gorgonian Pseudoplexaura
flagellosa, on the other hand, crystals are extruded and they
eventually aggregate into sclerites extracellularly (Goldberg and
Benayahu, 1987). Once extracellular, sclerites can be enveloped
by different scleroblasts, which are in contact by means of
pseudopod-like extensions (Grillo et al., 1993). In C. rubrum
for instance, two scleroblasts joined by septate junctions
surround growing sclerites in the mesoglea (Le Goff et al.,
2017; Figure 4.2). One or more scleroblasts associated with
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FIGURE 4 | (1) Different sclerite growth phases in Leptogorgia virgulata: (a) early intracellular deposition in a vacuole, (b) latest stage of intracellular deposition, and
(c) transition between intracellular and extracellular stage by expulsion from vacuole/cell into the mesogloea. During the latter, vacuole and cell membrane fuse
together and the sclerite is extruded from the scleroblasts (based on Watabe and Kingsley, 1992). (2) Extracellular growth of a sclerite in Corallium rubrum. Two
scleroblasts—connected by septate junctions (SJ) envelop a single sclerite, surrounded by an extracellular calcifying medium (based on Le Goff et al., 2017).

single sclerites have also been observed in Swiftia exserta
(Menzel et al., 2015).

In Sinularia species, an additional cementation phase takes
place at the base of the colony, where mature sclerites are fused
together by amorphous calcium carbonate (Jeng et al., 2011).
Sclerite fusion is also observed among different stoloniferous
octocoral species (Lau and Reimer, 2019a).

Less is known about the cells responsible for the growth of
axial skeletons. A description of the epithelial cells responsible
for the axis annular growth in C. rubrum has, however, been
provided by Grillo et al. (1993). These authors did not report
any observable differences between the cells enveloping the axial
skeleton and the scleroblasts found in the mesoglea. Based on
this, they proposed that these cells constitute actual scleroblasts
and that sclerite-forming cells might be the result of calcifying
epithelium fragmentation.

Information about calcifying cells in aragonite-forming
octocorals is extremely limited but the presence of a calcifying
epithelium in H. coerulea was already reported in an early
observation (Moseley, 1876). Calcifying cells in H. coerulea were
originally defined as “mesodermic” (Moseley, 1876), but were
later described as of ectodermal origin (Bourne and Lankester,
1895). The latter authors also reported an increase in size
and granule content during the diversification of calcifying

(calicoblastic) cells from epithelial cells. The calcifying epithelium
of H. coerulea was later further characterized by Le Tissier
(1991), who noted the presence of vesicles in the cytoplasm of
calicoblastic cells found in areas of active skeleton deposition.
However, whether these cells can be classified as “scleroblasts”
(homologous to those characterizing calcitic species) is not
currently known. In fact, although it appears that both aragonite
and calcite skeletons in Octocorallia are deposited by specialized
ectodermal calcifying cells, possible differences in cytological
characteristics and gene expression patterns between “calcite-
forming scleroblasts” and aragonite-forming cells have not
been investigated.

Biological Control I: Skeleton Organic
Matrix
Octocoral sclerites and skeletons are biocomposite materials
formed by a mineral (CaCO3) and an organic fraction. The
latter is also referred to as the skeleton organic matrix (SkOM).
In scleractinian corals, SkOM quantities can range between
0.3 and 2% of the total dried skeleton weight (Constantz
and Weiner, 1988; Allemand et al., 1994; Cuif et al., 2004;
Goffredo et al., 2011; Ramos-Silva et al., 2013). Higher amounts
have been reported in Octocorallia. In gorgonians, the SkOM
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represents between 1 and 5% of the skeleton weight (Silberberg
et al., 1972; Kingsley and Watabe, 1983). However, a sensibly
lower value (ca. 0.04%) was later obtained for the octocoral
Sinularia sp. (Rahman et al., 2013). Precisely quantifying organic
materials occluded within coral skeletal structures is, however,
a challenging task. Following skeleton/sclerites decalcification,
SkOM isolation requires a series of washing steps that can
contribute to loss of low-molecular weight components from
the sample, which in turn can lead to underestimations of
SkOM amounts (Puverel et al., 2007; Allemand et al., 2011).
Compositionally, the SkOM consists of a diverse mixture of
different macromolecules. Major components of both octocoral
and scleractinian matrices include proteins (Fukuda et al., 2003;
Ramos-Silva et al., 2013), both mono- and polysaccharides
(Goldberg, 2001; Naggi et al., 2018; Takeuchi et al., 2018) and
lipids (Farre et al., 2010; Reggi et al., 2016). In the gorgonian
Eugorgia ampla, lipids can represent ca. 60% of the SkOM and
are followed in abundance by proteins (Fox et al., 1969). In
Corallium species, for example, proteins constitute ca. 0.01%
of the total skeleton weight (Debreuil et al., 2011). Among
carbohydrates, glucose, galactose, galactosamine, and mannose
were the most represented in the sclerites of Pseudoplexaura
(Goldberg, 1988). Additional studies have also focused on the
pigments responsible for the coloration of skeletal elements in
gorgonians (carotenoids) (Leverette et al., 2008), H. coerulea
(biliverdin IXa) (Rüdiger et al., 1968; Hongo et al., 2017) and
precious corals (canthaxanthin) (Merlin and Delé-Dubois, 1986;
Cvejic et al., 2007; Bracco et al., 2016).

One property of the octocoral SOM, shared by many
different calcifying organisms (Puverel et al., 2005; Marin and
Luquet, 2007; Mann et al., 2010), is the abundance of proteins
highly enriched in acidic (isoelectric point < 4.5) amino acids,
primarily aspartic acid (Watabe and Kingsley, 1992; Rahman
and Oomori, 2009). One possible biological reason being the
proposed interaction of carboxylic groups, found in the side
chain of aspartic acid, interacting with calcium ions (Weiner and
Hood, 1975). The mechanisms underlying SkOM regulation over
coral calcification remain, however, elusive, and no functional
information is currently available. The first octocoral skeletal
protein to be characterized was extracted from the sclerites of
C. rubrum, and named scleritin (Debreuil et al., 2012). This
occurred almost a decade after the isolation of the first skeletal
protein (galaxin) from a scleractinian skeleton (Fukuda et al.,
2003). Scleritin does not possess any known protein domain and
appears solely expressed by scleroblasts found in the mesoglea,
but not by the cells in calcifying epithelium forming the axial
skeleton (Debreuil et al., 2012). As previously mentioned, the
latter have been classified as composed of scleroblasts, due to
the absence of morphological differences with the mesogleal
sclerite-producing cells (Grillo et al., 1993). However, the
expression pattern of scleritin suggests that cells involved in
these two calcification processes (i.e., sclerite formation and
axial skeleton deposition) employ different proteins and are
thus characterized by different gene expression profiles. Another
extracellular protein (ECMP-67), with the ability to regulate
CaCO3 polymorphism in vitro, was also isolated from the
sclerites of Lobophytum crassum (Rahman et al., 2011).

Over the years, different coral SkOM components - including
proteins, polysaccharides and lipids—have been in fact shown
to promote the formation of different calcium carbonate
polymorphs in vitro (Rahman and Oomori, 2009; Reggi et al.,
2016; Naggi et al., 2018; Laipnik et al., 2019). However, whether
these molecules possess the same properties in vivo remains to
be determined. More recently, the advent of mass spectroscopy
coupled with transcriptomics has enabled researchers to shift
from the analysis of single proteins to the characterization
of whole skeletal proteomes. This allowed to describe the
“skeletogenic proteins” (Jackson et al., 2007), “skeletome”
(Ramos-Silva et al., 2013) or “biomineralization toolkits” (Drake
et al., 2013) in different calcifying organisms. This approach
was recently applied to obtain the first proteomes found in
octocoral skeletons and sclerites and provide a comparative
analysis of octocorals producing aragonite (H. coerulea) and
calcite (Tubipora musica and S. cf. cruciata) (Conci et al.,
2020). An extremely low overlap was reported between aragonite
and calcite-producing species, pointing to different protein
repertoires being used by species forming different polymorphs.
The only instance of a shared protein was a carbonic anhydrase
homolog to CruCA-4. This protein was originally described,
alongside other five carbonic anhydrases, in C. rubrum and found
overexpressed in tissues enriched in calcifying cells (Le Goff et al.,
2016). Carbonic anhydrases (CAs) are a superfamily of enzymes
responsible for catalyzing the interconversion between carbon
dioxide (CO2) and bicarbonate (HCO3

−) (Supuran, 2008), and
are commonly found in different animal skeletons, including
scleractinian corals (Miyamoto et al., 1996; Mann et al., 2008;
Ramos-Silva et al., 2013; Mann, 2015). In anthozoan corals, CAs
can regulate the concentration of HCO3

− in calcification spaces
(see Bertucci et al., 2013 for a review). Scleritin was identified in
the organic matrix of both T. musica and S. cf. cruciata, but not in
the aragonitic H. coerulea (Conci et al., 2020), consistent with the
hypothesis of its involvement in sclerite formation. Nonetheless,
despite not being secreted into the skeleton, scleritin homologs
are actively being expressed in H. coerulea (Conci et al., 2019).
This could point on one hand to H. coerulea scleritin playing
a different role (not requiring secretion into the skeleton) in
calcification. Alternatively, the protein could hold an unrelated
function and could have been recruited for biomineralization by
octocorals producing calcite sclerites. In this light, comparison of
the characteristics and function of calcification-related proteins
in both aragonite and calcite-forming octocorals could highlight
differences between groups and detect co-option events of
proteins for biomineralization.

Biological Control II: Ion Transport and
Regulation
For CaCO3 precipitation to occur, different physio-chemical
conditions have to be reached within the calcification spaces. One
critical parameter is the saturation state (�) of the solution with
respect to a certain CaCO3 polymorph (�Aragonite or �Calcite).
This value is calculated as the ratio of Ca2+ and CO3

2− ion
activity products to the stoichiometric solubility product of
aragonite or calcite (Morse and Mackenzie, 1990). At � = 1
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solid mineral and seawater are in equilibrium, while at � >
1 and � < 1 precipitation and dissolution, respectively, occur.
The saturation state is also intimately linked to the pH of the
solution as this can influence the availability of CO3

2− ions. It
has been suggested that corals might be able to modulate the
composition of their calcifying fluids, with respect to seawater,
to promote CaCO3 precipitation and enhance calcification. In
scleractinian corals for example, �Ar of calcifying fluids can be
on average around 12 (DeCarlo et al., 2017) and display diurnal
cyclic variability (DeCarlo et al., 2019). This value is sensibly
higher compared to seawater in reef environments (�Ar ca. 3)
(Mongin et al., 2016).

Several chemical parameters of the calcifying fluids have been
studied in scleractinian corals (Cai et al., 2016; Comeau et al.,
2017; Sevilgen et al., 2019), while information on octocorals is
very limited. This is partly due to the presence of additional
tissue layers preventing direct access to the calcification space
(Le Goff et al., 2017). Information on the pH of calcifying fluids
(pHcf) in both coral groups is however available. In scleractinian
corals, pHcf is higher compared to the pHsw, but increases in
seawater acidity appear to cause declines in the pH of calcifying
fluids (Venn et al., 2013; Holcomb et al., 2014). Contrarily, early
analyses in C. rubrum (based on boron isotopic analysis) did
not detect the presence of significant pH upregulation between
seawater and the pHcf of the axial skeleton (McCulloch et al.,
2012). This was later corroborated by pH-sensitive dye-based
measurements showing that sclerites and axis growth occur at a
pH of 7.97 ± 0.15 and 7.89 ± 0.09, respectively (Le Goff et al.,
2017). In the same study however, pHcf was found more alkaline
compared to the cytoplasm of calcifying cells, which implies—
as in scleractinians (Zoccola et al., 2004)—the active proton
removal from calcification spaces, possibly operated by a Ca2+-
ATPase (Le Goff et al., 2017). Measurements for sclerites were
obtained during the extracellular phase (i.e., sclerites enveloped
by two scleroblasts), while no information is currently available
for pH of the calcifying medium within scleroblasts vacuoles (i.e.,
intracellular stage).

Analysis was then conducted at normal pHsw values.
Whether C. rubrum is able to maintain pH homeostasis under
seawater acidification conditions has not been determined.
Differences in pH regulation between scleractinian skeletons
and octocoral sclerites could be related to the different
localization or composition (aragonite vs. calcite) of the skeletal
structures. For example, the cells and/or mesoglea surrounding
octocoral sclerites could buffer the effects of seawater chemistry.
Surrounding tissues have, for instance, been proposed to act
as a protective barrier against the effects of ocean acidification
(OA) in octocorals (discussed in the next section; Gabay et al.,
2014). However, the multi-step (intracellular and extracellular)
growth model of octocoral sclerites previously described, opens
to the possibility that sclerites could experience different
environments—in terms of calcifying fluids chemistry and their
interaction with seawater—during their formation.

Ocean acidification also appears to impact CaCO3
polymorphs differently, with calcite being apparently less
affected (although depending on magnesium content) (Ries et al.,
2009). A possible approach to further elucidate pHcf regulation

mechanisms in octocorals could be the characterization of
calcifying fluids pH in H. coerulea, for which no information is
currently available. Such analysis could determine, on one hand,
whether the absence of pHcf regulation is indeed a common trait
among Octocorallia, independently of the characteristics of the
mineral structures (calcite sclerites/axis vs. aragonite skeleton).
Alternatively, aragonitic octocorals could exhibit pHcf increases
as observed in scleractinian, pointing to pH upregulation
representing a required feature for aragonite deposition in
both coral groups.

Within the calcification space, calcium concentration in
scleractinians is not necessarily higher compared to seawater,
but some species can modulate calcium levels in response to
decreases in seawater pH (DeCarlo et al., 2018). For octocorals,
to the best of our knowledge, no information has been obtained.
Calcium transport to calcification sites has been studied in
Leptogorgia virgulata and a general model of calcium transfer
has nonetheless been provided by Watabe and Kingsley (1992).
Transport of Ca2+ during the intracellular growth of sclerites
in octocorals represents a multi-step process (Figure 5). To
reach the calcification space, calcium first diffuses from seawater
into the outer epithelial cells and is actively extruded into
the mesoglea. Studies involving specific transporters inhibitors
have highlighted the action of Ca2+-ATPases during this
step, while Na+-K+ exchangers don’t appear to be involved
(Kingsley and Watabe, 1984). Once in the mesoglea, the
majority of calcium ions reach the axis epithelium and are
incorporated into the axial skeleton, while others diffuse into
the scleroblasts. Inside calcifying cells, calcium is transported
inside electron-dense bodies (Kingsley and Watabe, 1985) to
the calcifying vacuoles where sclerites form (Kingsley and
Watabe, 1982). Both the membrane of scleroblasts and calcium-
transporting vesicles exhibit signs of Ca2+-ATPases activity
(Kingsley and Watabe, 1984).

The origin and transport of carbon (CO2 and HCO3
−)

has also been investigated in L. virgulata (Lucas and Knapp,
1997). In this species, carbonic anhydrase represented the major
carbon source followed by bicarbonate. Inhibition of carbonic
anhydrases caused significant declines in incorporation rates
of both dissolved and metabolically produced CO2, pointing
to an important role of these enzymes in the regulation of
carbon availability. Carbonic anhydrases, for example, have been
proposed to operate on the membrane of calcifying vacuoles
and electron-dense bodies (Kingsley and Watabe, 1987; Lucas
and Knapp, 1996) and the aforementioned presence of CruCA-
4 homologs inside octocoral skeletons confirms the presence of
these enzymes within the calcifying medium (Conci et al., 2020).

ANTHROPOGENIC THREATS TO
OCTOCORAL BIOMINERALIZATION

The effects of anthropic stressors on the ability of marine
organisms to calcify have been the topic of a number of
studies. In corals, for example, changes in calcification rates
and growth have been studied in relation to different stressors,
such as seawater temperature (Howe and Marshall, 2002;
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FIGURE 5 | Proposed model of calcium transport from seawater to growing sclerites in Leptogorgia virgulata (based on Watabe and Kingsley, 1992).

Marshall and Clode, 2004), pollution (Spencer Davies, 1990;
Biscéré et al., 2015) and turbidity (Kendall et al., 1985;
Browne, 2012).

However, particular focus has been dedicated to study the
effects of the so-called “ocean acidification” (OA), i.e., the
decrease in sea surface water pH caused by the increase in
the atmospheric carbon dioxide (CO2) concentration (Hoegh-
Guldberg et al., 2007; Solomon et al., 2007). Ocean acidification
linked detrimental effects on biomineralization have been
reported for multiple marine groups including calcifying algae
(Kuffner et al., 2008), scleractinian corals (Marubini et al.,
2003; Hoegh-Guldberg et al., 2007; Mollica et al., 2018) and
molluscs (Comeau et al., 2009; Gazeau et al., 2013). Research
has however also highlighted several instances of resilience
to ocean acidification, highlighting species-specific responses
to low pH (Cross et al., 2015a,b; González-Pech et al., 2017;
Lenz and Edmunds, 2017).

Octocorals appear to exhibit varying responses to ocean
acidification. An inverse correlation between calcification rates
and pCO2 have been reported for Eunicea flexuosa when
exposed to a pH range of 8.1 and 7.1 (Gómez et al., 2015).
Contrarily, in another study no changes in branch extension
and sclerite structure could be observed in the same species at

pH 7.75 compared to control values (pH 8.1) (Enochs et al.,
2016). Lower pH (7.6 and 7.3) had no effects on polyp weight
and protein content in different octocorals nor in chlorophyll
abundance ordensity of its symbiotic algae (Gabay et al., 2013).
One possible explanation behind octocoral resilience could
be the location inside the mesoglea of their sclerites with
the surrounding tissues acting as a protective barrier (Gabay
et al., 2014). A similar scenario has also been proposed for
the organic layers protecting mollusc shells against dissolution
(Rodolfo-Metalpa et al., 2011). From an ecological perspective,
different tolerance to changing environmental conditions is of
importance as it can determine which species will thrive or
decline under future conditions, and cause profound changes
in marine communities composition (Fabricius et al., 2011).
And shifts from stony (more vulnerable) to soft coral (more
resistant)-dominated environments have already been observed
(Inoue et al., 2013).

DISCUSSION

Octocorals (Cnidaria: Anthozoa) represent a group of
benthic marine organisms that have evolved a wide variety
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of biomineralization strategies. The composite biomaterials
produced by these organisms include structures composed of
different calcium carbonate (CaCO3) polymorphs (aragonite
and calcite). From an evolutionary perspective, the presence of
aragonite skeletons in Octocorallia is puzzling as it is observed
in an extremely low number of species in a single clade, the
Helioporacea. Apparently, this occurrence represents one
of the very few instances of aragonite formation originating
during a Calcite Sea interval (Porter, 2010). Despite the
diversity of their skeletal elements, octocorals have only
been marginally studied for biomineralization research.
This has been partially caused by their low contribution to
CaCO3 production and reef formation (Smith and Kinsey,
1976; Herrán et al., 2017; Edinger et al., 2019) compared to
scleractinian corals, the other group of calcifying anthozoans
and main reef builders in today’s oceans. Additionally, octocoral
species often inhabit deeper marine habitats compared to
scleractinians (Roberts et al., 2009), which can hinder field
observation and the collection of specimens for follow-up
studies. With the aim to identify current knowledge gaps
and propose possible future research approaches, here we
reviewed the research status of octocoral biomineralization. We
focused and compared what is known about the evolutionary,
cellular and molecular processes underlying different octocoral
skeletons, with a focus on CaCO3 polymorph (i.e., aragonite and
calcite) diversity.

Although differences in research output between scleractinian
and octocoral calcification are often mentioned, we highlighted
how differences—both in terms of data availability and
scientific knowledge—exist with respect to the process of
biomineralization between different octocoral groups. Several
mechanisms and features of octocoral biomineralization, such
as the characteristics of the calcifying cells (e.g., scleroblasts)
or Ca2+ transport, have mostly been investigated in species
depositing calcite. Although calcite represents by far the
most commonly deposited polymorph in octocorals, studying
aragonite formation provides the opportunity to further our
understanding on multiple aspects of the origin and evolution of
octocoral and scleractinian biomineralization. Firstly, differences
between aragonite and calcite formation are not necessarily
limited to skeleton polymorphism. In fact, calcite and aragonite-
forming species also differ in terms of other calcification-
related properties, such as the composition of the organic
matrix proteome (Conci et al., 2020) and possibly the type
and characteristics of calcifying cells and epithelia. With the
exception of early descriptions from the late nineteenth century
(e.g., Bourne and Lankester (1895), no study has in fact
focused on the calcifying cells of aragonitic octocorals. In
addition, the different localization of calcitic and aragonitic
structures (i.e., surrounded by tissue or not) could also
entail the different regulation of the chemistry and pH of
the calcification fluids, as observed between scleractinians
(Venn et al., 2013; Holcomb et al., 2014) and Corallium
rubrum (Le Goff et al., 2017). In fact, the scleractinian-
like characteristics of helioporacean skeletons (i.e., aragonite
exoskeleton), provide the unique opportunity to compare
aragonite formation between Octocorallia and Scleractinia, and

in turn determine which biomineralization features are driven
by phylogeny (i.e., properties shared by octocorals producing
different polymorphs) and which are instead related to the
characteristics of the skeleton (i.e., properties shared by aragonitic
octocorals and scleractinians). So far, this research avenue has
not been fully explored, but at present the data at hand
suggest that the aragonitic Heliopora coerulea employs a different
biomineralization strategy compared to both calcitic octocorals
and scleractinians. The only aspect for which information is
currently available for all three groups concerns the composition
of the skeleton proteomes. Their analyses have shown that very
few proteins found in the skeleton of Heliopora coerulea are
also found in other calcifying corals, irrespective of whether
those are of calcite or aragonite (Ramos-Silva et al., 2013;
Conci et al., 2020).

Difference in research focus and information availability
are not limited to calcite vs. aragonite species, but can also
be observed within the former. The majority of information
for calcite-forming octocorals has been obtained from a small
set of species, including the gorgonian Leptogorgia virgulata
and the precious coral Corallium rubrum. This includes
(1) the current knowledge on ion sources and transport
needed for calcification, (2) detailed description of scleroblasts,
and (3) both mechanisms of intracellular and extracellular
formation of sclerites. Although extremely informative, a
research approach focusing on very few “model species” may
lead to an underestimation of the diversity of biomineralization
strategies exhibited by different octocoral groups. The possible
presence of substantial differences in sclerites and/or skeleton
formation that can also occur even within a single genus (e.g.,
Corallium) (Lawniczak, 1987), requires extensive comparative
analyses instead.

In the light of this, a possible step could be to taxonomically
widen the generation of—omic resources, optimized to
encompass a broad diversity of octocoral skeletal structures.
The simultaneous presence, within Octocorallia, of calcite,
aragonite and aragonite + calcite skeletons represents an ideal
scenario to compare gene repertories across species producing
different polymorphs, and compare those with scleractinian
corals. Moreover, in addition to the aforementioned need
for DNA sequencing data from the Calcaxonia, sequencing
projects for skeleton-lacking octocorals (e.g., genus Phenganax)
(Alderslade and Mcfadden, 2011) would also be beneficial,
as they would allow to detect differences in the molecular
mechanisms of biomineralization between calcifying and
non-calcifying octocorals. The increase in the availability
of octocoral genomes and transcriptomes would then in
turn allow to progressively conduct more taxonomically
comprehensive phylogenetic analysis, and resolve deep
evolutionary relationships between clades, and ultimately
how biomineralization in Octocorallia evolved.
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