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Abstract
In this work we consider three well-studied broadcast protocols: push, pull and push&pull. A key prop-
erty of all these models, which is also an important reason for their popularity, is that they are presumed
to be very robust, since they are simple, randomized and, crucially, do not utilize explicitly the global
structure of the underlying graph. While sporadic results exist, there has been no systematic theoretical
treatment quantifying the robustness of these models. Here we investigate this question with respect to
two orthogonal aspects: (adversarial) modifications of the underlying graph and message transmission
failures.

We explore in particular the following notion of local resilience: beginning with a graph, we investigate
up to which fraction of the edges an adversary may delete at each vertex, so that the protocols need sig-
nificantly more rounds to broadcast the information. Our main findings establish a separation among the
three models. On one hand, pull is robust with respect to all parameters that we consider. On the other
hand, pushmay slow down significantly, even if the adversary may modify the degrees of the vertices by an
arbitrarily small positive fraction only. Finally, push&pull is robust when no message transmission failures
are considered, otherwise it may be slowed down.

On the technical side, we develop two novel methods for the analysis of randomized rumour-spreading
protocols. First, we exploit the notion of self-bounding functions to facilitate significantly the round-based
analysis: we show that for any graph the variance of the growth of informed vertices is bounded by its
expectation, so that concentration results follow immediately. Second, in order to control adversarial
modifications of the graph wemake use of a powerful tool from extremal graph theory, namely Szemerédi’s
Regularity Lemma.

2020 MSC Codes: Primary 05C85; Secondary 68R10

1. Introduction
Randomized broadcast protocols are highly relevant for data distribution in large networks of
various kinds, including technological, social and biological networks. Among many others there
are three basic models in the literature, introduced in [9], [19] and [27], namely push, pull and
push&pull (or pp for short). Consider a connected graph in which some vertex holds a piece of
information; we call this vertex (initially) informed. All three models have the common charac-
teristic that they proceed in rounds. In the push model, in every round every informed vertex
chooses a neighbour independently and uniformly at random and informs it; this of course only

1An extended abstract of this paper was published in the Proceedings of the European Symposium on Algorithms 2019
(ESA ’19).
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has an effect if the target vertex was previously uninformed. Conversely, in the pull model every
round every uninformed vertex chooses a neighbour independently and uniformly at random and
asks for the information. If the asked vertex has the information, then the asking vertex becomes
informed as well. The third model, push&pull, combines both worlds: in each round, each ver-
tex chooses a neighbour independently and uniformly at random, and if one of two vertices is
informed, then afterwards both become so. We additionally assume that each message transmis-
sion succeeds independently with probability q ∈ (0, 1]. For these algorithms, the main parameter
that we consider is the random variable that counts howmany rounds are needed until all vertices
are informed, and we call these quantities the runtimes of the respective algorithms.

In the remainder we will denote the runtime of push by Tpush(G, v, q), whereG is the underlying
graph, initially the vertex v is informed, and we have a transmission success probability of q ∈
(0, 1]. Analogously we denote the runtimes of pull and push&pull by Tpull(G, v, q) and Tpp(G, v, q)
respectively. If the choice of v does not matter we will omit it in our notation. The most basic case
is when G is the complete graph Kn with n vertices. Then (see e.g. Doerr and Kostrygin [11]) it is
known that, for P ∈ {push, pull, pp} and q ∈ (0, 1] in expectation and with probability tending to
1 as n→ ∞,

TP (Kn, q)= cP (q) log n+ o( log n),
where, for q ∈ (0, 1),

cpush(q) := 1
log (1+ q)

+ 1
q
,

cpull(q) := 1
log (1+ q)

− 1
log (1− q)

,

cpp(q) := 1
log (1+ 2q)

+ 1
q− log (1− q)

,

and where we set cP (1) := limq→1 cP (q). If q is clear from the context, we write cP instead of
cP (q). In fact, the results in [11] and also [12] are much more precise, but the stated forms will be
sufficient for what follows.

Contribution and related work. In this article our focus is on quantifying the robustness of all
three models. Indeed, robustness is a key property that is often attributed to them, since they are
simple, randomized and, crucially, do not exploit explicitly the structure of the underlying graph
(apart from considering the neighbourhoods of the vertices, of course). Clearly the runtime can
vary tremendously between different graphs with the same number of vertices. Hence it is essential
to understand the impact of structural graph characteristics on the runtime of rumour-spreading
algorithms.

One result in this spirit for the pushmodel was shown in [28]. Roughly speaking, in that paper it
is shown that even on graphs with low density, if the edges are distributed rather uniformly, then
push is as fast as on the complete graph. This can be interpreted as a robustness result: starting
with a complete graph, one can delete a vast amount of edges, and as long as this is done rather
uniformly, the runtime of push is affected insignificantly. To state the result more precisely, we
need the following notion.

Definition 1.1 ((n, δ,�, λ)-graph). Let G be a connected graph with n vertices that has minimum
degree δ and maximum degree �. Let μ1 �μ2 � · · ·�μn be the eigenvalues of the adjacency
matrix of G, and set

λ = max
2�i�n

|μi| =max{|μ2|, |μn|}.
We will call G an (n, δ,�, λ)-graph.

https://doi.org/10.1017/S0963548320000310 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548320000310


Combinatorics, Probability and Computing 39

In this paper we are interested in the case where G gets large, that is, when n→ ∞. Hence
all asymptotic notation in this paper is with respect to n; in particular, ‘with high probability’, or
w.h.p. for short, means with probability 1− o(1) when n→ ∞.

Definition 1.2 (expander sequence). Let G = (Gn)n∈N be a sequence of graphs, where Gn is a
(n, δn,�n, λn)-graph for each n ∈N. We say that G is an expander sequence if �n/δn = 1+ o(1)
and λn = o(�n).

Note that if we consider any sequence G = (Gn)n∈N of graphs this always implicitly defines
δn,�n and λn as in Definition 1.2. Expander graphs have found numerous applications in com-
puter science and mathematics; see e.g. the survey [25]. If G is an expander sequence, then
intuitively this means that for n large enough, the edges ofGn are rather uniformly distributed. For
amore formal statement see Lemma 2.7. Moreover, note that our definition of expander sequences
excludes the case when �n is bounded. This is actually a necessary condition for our robustness
results to hold; see [13]. With all these definitions at hand we can state the result from [28] that
quantifies the robustness of push with respect to the network topology, that is, the runtime is
asymptotically the same as on the complete graph Kn.

Theorem 1.1. Let G = (Gn)n∈N be an expander sequence. Then w.h.p.

Tpush(Gn)= cpush(1) log n+ o( log n).

Apart from expander sequences, results in the form of Theorem 1.1 (where the asymptotic
runtimes of one or more of these algorithms are determined) were also shown for sufficiently
dense Erdős–Rényi random graphs [16], random regular graphs [15] as well as hypercubes [28].
Moreover, the order of the runtime on various models that describe social networks was investi-
gated. The Chung–Lu model was studied in [17], preferential attachment graphs were explored
in [10], and geometric graphs were examined in [18]. A somewhat different approach is to derive
general runtime bounds that hold for all graphs and depend only on some graph parameter, e.g.
conductance [6, 20], vertex expansion [21] or diameter [5, 14, 23]. Furthermore, several variants
of push, pull and push&pull were studied. These include vertices being restricted to answer only
one pull request per round [7], vertices being allowed to contact multiple neighbours per round
[11, 28], vertices not calling the same neighbour twice [10] and asynchronous versions [1, 2, 4, 29].
Finally, besides [11], robustness of these rumour-spreading algorithms with respect to message
transmission failures was also studied by Elsässer and Sauerwald in [13]. It was shown for any
graph that if a message fails with probability 1− p, then the runtime of push increases at most by
a factor of 6/p.

In this work our focus is on three subjects concerning the robustness of rumour spreading.
Our first (and not unexpected) result extends Theorem 1.1 to the runtimes of pull and push&pull.
In particular, we show that none of the three protocols slows down or speeds up on graphs with
good expansion properties compared to its runtime on the complete graph. This motivates us to
investigate how severely a graph with good expansion properties has to be modified to increase
the respective runtimes.

In our second contribution, which is also the main result and which differs from what was
treated in previous works, we propose and study a novel approach to quantifying robustness. In
particular, we investigate the impact of adversarial edge deletions, where we use the well-known
concept of local resilience; see e.g. [8, 31]. To be specific, we explore up to which fraction of edges
an adversary needs to be allowed to delete at each vertex to slow down the process by a significant
amount of time, i.e. by�( log n) rounds. Here we discover a surprising dichotomy in the following
sense. On the one hand, we show that neither pull and push&pull can be slowed down by such
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adversarial edge deletions – in essentially all but trivial cases, where the fraction is so large that the
graph may become (almost) disconnected. On the other hand, we demonstrate that even a small
number of edge deletions is sufficient to slow down push by �( log n) rounds. In other words,
we find that in contrast to pull and push&pull, the push protocol is not resilient to adversarial
deletions and lacks (in this specific sense) the robustness of the other two protocols.

As our third subject, we generalize the previous results by additionally considering message
transmission failures that occur independently with probability 1− q ∈ [0, 1). On the positive side,
we show that for arbitrary q ∈ (0, 1], all three algorithms inform almost all vertices at least as fast
as in an expander sequence in spite of adversarial edge deletions. However, if we want to inform
all vertices, only pull is not slowed down by adversarial edge deletions for all values of q; push can
be slowed down as before, and push&pull is a mixed bag, in that for q= 1 it cannot be slowed
down whereas for q< 1 it can. Furthermore, in general it is also possible to speed up push&pull
by deleting edges, which is however not surprising as the star-graph deterministically finishes in
at most two rounds.

Summarizing, this work enhances previous (robustness) results, particularly the ones concern-
ing precise asymptotic runtimes and random transmission failures. Crucially, we introduce and
study the concept of local resilience as a method to investigate robustness. However, apart from
that, in this paper we develop two new general methods for the analysis of rumour-spreading
algorithms.

• The most common approach in the current literature for the study of the runtime is to deter-
mine the expected number of newly informed vertices in one or more rounds and to show
concentration, for example by bounding the variance. Achieving this, however, is often quite
complex and makes laborious and lengthy technical arguments necessary. Here we use the
theory of self-bounding functions (see Section 2), which allows us to cleanly upper-bound the
variance by the expected value. The argument works for all three investigated algorithms and
the bound is valid for all graphs. We are certain that this method will also facilitate future
work on the analysis of rumour-spreading algorithms.

• Studying the robustness of the protocols is a challenging task, as the adversary (as described
previously) has various options to modify the graph, for example by introducing a high vari-
ance in the degrees of the vertices; this turns out to be particularly problematic in the case of
push&pull. Here we demonstrate that such types of irregularities can be handled universally
by applying a powerful tool from a completely different area, namely extremal graph theory.
In particular, we use Szemerédi’s Regularity Lemma (see e.g. [30]), which allows us to parti-
tion the vertex set of a graph such that nearly all pairs of sets in the partition behave nearly
like perfect regular bipartite graphs. This allows us to apply our methods on these regular
pairs; eventually we obtain a linear recursion that can be solved by analysing the maximal
eigenvalue of the underlying matrix.

1.1 Results
Our first result addresses the question about how fast rumours spread on expander graphs; in
order to obtain a concise statement, the occurrence of independent message transmission failures
is also considered.

Theorem 1.2. Let G = (Gn)n∈N be an expander sequence and let q ∈ (0, 1]. Then w.h.p.

(a) Tpush(Gn, q)= cpush(q) log n+ o( log (n)),
(b) Tpull(Gn, q)= cpull(q) log n+ o( log (n)),
(c) Tpp(Gn, q)= cpp(q) log n+ o( log (n)).
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The first statement is an extension of Theorem 1.1 and its proof is a straightforward adaptation
of the proof in [28]. We omit it. The contribution here is the proof of (b) and (c). Next we consider
the case with edge deletions in addition to the message transmission failures.

Theorem 1.3. Let 0< ε < 1/2, q ∈ (0, 1] and G = (Gn)n∈N be an expander sequence. Let G̃ =
(G̃n)n∈N be such that each G̃n is obtained by deleting edges of Gn such that each vertex keeps at
least a (1/2+ ε) fraction of its edges. Then w.h.p.

(a) Tpull(G̃n, q)= cpull(q) log n+ o( log n),
(b) Tpp(G̃n, 1)� cpp(1) log n+ o( log n), when additionally assuming that δ(Gn)� αn for some

constant 0< α � 1.

This result demonstrates unconditionally the robustness of pull, and conditionally on q= 1
the robustness of push&pull on dense graphs, in the case of edge deletions, that is, the runtime is
asymptotically the same as in the complete graph. Moreover, we even show that push&pull may
profit from edge deletions in contrast to being slowed down; see Subsection 3.6 for an example.
The proof of this result, especially the statement about push&pull, is rather involved, since the
original graph may become quite irregular after the edge deletions. Here we use, among many
other ingredients, the aforementioned decomposition of the graph given by Szemerédi’s Regularity
Lemma.

Note that Theorem 1.3 does not consider push and push&pull (when q �= 1) at all. Indeed, our
next result states that in these cases the behaviour is rather different and that the algorithms may
be slowed down.

Theorem 1.4. Let ε > 0 and q ∈ (0, 1]. Then there is an expander sequence G = (Gn)n∈N and a
sequence of graphs G̃ = (G̃n)n∈N with the following properties. Each G̃n is obtained by deleting edges
of Gn such that each vertex keeps at least a (1− ε) fraction of its edges. Moreover, w.h.p.

(a) Tpush(G̃n, q)� cpush(q) log n+ ε/(2q) log n+ o( log n),
(b) Tpp(G̃n, q)� cpp(q) log n+ (ε/(8q)− εq3/5) log n+ o( log n).

Nevertheless, not all hope is lost. On the positive side, the next result states that push and
push&pull are able to inform almost all vertices as fast as on the complete graph in spite of
adversarial edge deletions. In this sense, we obtain an almost-robustness result for these cases.

Theorem 1.5. Let 0< ε < 1/2, q ∈ (0, 1] and G = (Gn)n∈N be an expander sequence. Let G̃ =
(G̃n)n∈N be such that each G̃n is obtained by deleting edges of Gn such that each vertex keeps at least
a (1/2+ ε) fraction of its edges. For P ∈ {push, pp}, let T̃P denote the number of rounds needed to
inform at least n− n/ log n vertices. Then w.h.p.

(a) T̃push(G̃n, q)= log1+q (n)+ o( log n),
(b) T̃pp(G̃n, q)� log1+2q (n)+ o( log n), when additionally assuming that δ(Gn)� αn for some

0< α � 1.

We conjecture that there is also a version of Theorem 1.5(b) that is true for push&pull on sparse
graphs; to be precise we conjecture that in the setting of Theorem 1.5(b), T̃pp(G̃n)� log1+2q(n)+
o(log n), without further restrictions on Gn, that is, push&pull cannot be slowed down, informing
almost all vertices.

As a final remark, note that Theorems 1.3 and 1.5 are tight in the sense that if an adversary
may delete up to half of the edges at each vertex, then there are expander graphs that become
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disconnected such that their components have linear size. On those graphs a linear fraction of the
vertices will remain uninformed forever.

Outline. The rest of this paper is structured as follows. In Section 2 we collect and prove several
important facts; this part of the paper also contains our technical contribution concerning
the analysis through self-bounding functions. In Section 3.1 we show that pull is as fast on
expanders with (or without) deleted edges as it is on the complete graph. Section 3.2 treats
push&pull on expanders without deleted edges. In the remaining subsections we focus on the
cases that may be slowed down by edge deletions. In Section 3.3 we show that adversarial edge
deletions cannot slow down the time until push has informed almost all vertices, by giving a
coupling to the case without edge deletions. Conversely, in Section 3.4 we show that the time
until push has informed all vertices can be slowed down by edge deletions, even if only a few
edges are deleted. Then in Section 3.5 we show that push&pull informs almost all vertices of
dense graphs fast in spite of adversarial edge deletions. We utilize a version of Szemerédi’s
Regularity Lemma to get a well-behaved partition of the vertex set that is suitable for performing a
round-based analysis. However, if q< 1, adversarial edge deletions can slow down or speed up the
time until push&pull has informed all vertices for nearly all values of q; we show this in Section 3.6.

Further notation. Let G= (V , E) denote a graph with vertex set V and edge set E⊆ (V
2
)
. We

will denote the set of neighbours of any vertex v ∈V by NG(v) or by N(v), and we will denote
its degree by dG(v) := |NG(v)| or by d(v); δG or δ and �G or � denote the minimum and
maximum degree of G. Similarly the neighbourhood of any set of vertices S⊆V is defined by
NG(S) := ∪v∈SNG(v). Furthermore, letU,W ⊆V withU ∩W = ∅ be two disjoint vertex sets; then
E(U,W)= EG(U,W) denotes the set of edges with one vertex in U and one vertex in W and let
e(U,W)= eG(U,W) := |EG(U,W)|. With EG(U) we denote the set of edges with both vertices in
U; eG(U) := |EG(U)|. For any round t ∈N and P ∈ {push, pull, pp}, we let I(P)

t (G) denote the set
of vertices of G informed by push, pull and push&pull respectively at the beginning of round t
and |I(P)

1 | = 1; if the underlying graph is clear from the context we will omit it; if we consider a
sequence of graphs G = (Gn)n∈N and a sequence of times t = (t(n))n∈N, then

I(P)
t (G)= (I(P)

t(n)(Gn))n∈N

is also a sequence. Similarly, U(P)
t :=V\I(P)

t denotes the set of uninformed vertices. By log we
refer to the natural logarithm. For any event A we will write Et[A] instead of E[A|It] for the
conditional expectation and Pt[A] instead of P[A|It] for the conditional probability. Finally we
want to clarify our use of Landau symbols. Let a, b ∈R and f be a function. The terms a� b+ o(f )
and a� b− o(f ) mean that there exist positive functions g, h ∈ o(f ) such that a� b+ g and a�
b− h. Consequently a= b+ o(f ) means that there exists a positive function g ∈ o(f ) such that
a ∈ [b− g, b+ g].

2. Tools and techniques
In this section we collect and prove statements about our protocols and properties of expander
sequences. We begin by applying the previously mentioned notion of self-bounding functions
to derive universal and simple-to-apply concentration results for our random variables, i.e. the
number of informed vertices after a particular round. Then we extend the concentration results
to more than one round. In the last part we recall the well-known Expander Mixing Lemma and
utilize it to derive properties (weak expansion, path enumeration) for the case where we delete
edges from our graphs.
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Self-bounding functions. Our main technical new result in this section is the following bound
on the variance for the number of informed vertices in any given round; it is true for any graph
and any set of informed vertices.

Lemma 2.1. Let G be a graph, t ∈N and It = I(P)
t (G) for P ∈ {push, pull, pp}. Then

Var[|It+1| |It]�E[|It+1| |It].

Lemma 2.1 follows directly from Lemmas 2.2 and 2.3. Before stating them we introduce the
notion of self-bounding functions.

Definition 2.1 (self-bounding function). Let X be a set and m ∈N. A non-negative function
f :Xm →R is self-bounding if there exist functions fi :Xm−1 →R such that, for all x1, . . . , xm ∈ X
and all i= 1, . . . ,m,

0� f (x1, . . . , xm)− fi(x1, . . . , xi−1, xi+1, . . . , xm)� 1

and ∑
1�i�m

(f (x1, . . . , xm)− fi(x1, . . . , xi−1, xi+1, . . . , xm))� f (x1, . . . , xm).

A striking property of self-bounding functions is the following bound on the variance.

Lemma 2.2 ([3]). For a self-bounding function f and independent random variables X1, . . . , Xm,
m ∈N,

Var[f (X1, . . . , Xm)]�E[f (X1, . . . , Xm)].

Lemma 2.3. Let G be a graph, t ∈N, and let It = I(P)
t (G) forP ∈ {push, pull, pp}. Then, conditional

on It, there exists m ∈N, independent random variables X1, . . . , Xm and a self-bounding function
f = f (P) such that |It+1| = f (X1, . . . , Xm).

Proof. We will prove in detail the result for push, and then we show what needs to be modified
in order to obtain the statement in the case of pull and push&pull. Let It = I(push)t , n ∈N be the
number of vertices of G, i.e. V = [n], and f : [n]|It | →R with

(x1, . . . , x|It |) �→ |It| +
∑

1�k�|It |
1[xk ∈Ut]1[∀ � < k : xk �= x�].

Moreover, let (Xi)1�i�|It | be independent random variables, where Xi is a uniformly ran-
dom neighbour of the ith vertex – according to an arbitrary ordering – in It . We argue that
f (X1, . . . , X|It |)= |It+1|. Consider v ∈ It ; then v is counted by the |It| term in f . For v ∈ It+1\It ,
let v1, . . . , vs ∈ It , s ∈N be the informed vertices with random neighbour v in round t, i.e. Xv1 =
· · · = Xvs = v andXu �= v for all other u ∈ It . Assume further that v1 < v2 < · · · < vs. For k= v1 the
term1[Xk ∈Ut]1[∀ � < k : xk �= x�]= 1 asXv1 = v ∈Ut and for all i� v1 it holds thatXi �= Xvi . For
k= vr , 2� r� s the term 1[∀ � < k : xk �= x�]= 0 as v1 < vr and Xv1 = Xvr = v. Thus every vertex
v ∈ It+1\It is counted exactly once by f . Further, set

fi(x1, . . . , xi−1, xi+1, . . . , x|It |)= |It| +
|It |∑

k=1,k�=i
1[xk ∈Ut]1[∀ j< k, j �= i : xj �= xk], 1� i� |It|.
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The function fi arises from f by leaving the ith variable out of consideration, that is, the push of
the ith vertex has no effect. Then by definition f − fi ∈ {0, 1} for all 1� i� |It|, and in fact we have

f − fi = 1[xi ∈Ut]1[∀ j �= i : xi �= xj].

This quantity is precisely the difference in informed vertices after round t, assuming the ith vertex
did not push. Furthermore∑

1�i�|It |
(f − fi)�

∑
1�i�|It |

1[xi ∈Ut]1[∀ j �= i : xi �= xj]� f .

Thus f has the self-bounding property, which establishes the claim in the case of push. The proof
for pull is completely analogous, where we use

f (pull) : [n]|Ut | →R, (x1, . . . , x|Ut |) �→ |It| +
∑
k∈Ut

1[xk ∈ It]

and, similarly, for push&pull we use f (pp) : [n]n →R with

(x1, . . . , xn) �→ |It| +
∑

1�k�n
1[k ∈ It]1[xk ∈Ut]1[∀ j ∈ {1, . . . , k} ∩ It : xk �= xj]

+
∑

1�k�n
1[k ∈Ut]1[xk ∈ It]1[∀ w ∈ It : xw �= k].

Here it is useful to see that the two sums in f (pp) are complementary, that is, only one of the
summands for index k can be 1. Thus the functions f (pull)i and f (pp)i are obtained analogously to
the push case.

Remark 2.1. Let G= (V , E) be a graph. Lemma 2.3 also applies to subsets of It+1, that is, for any
U ⊂V and conditioned on It we have that |It+1 ∩U| and |(It+1 ∩U) \ It| are self-bounding.

The following proposition gives a tool that we will use in order to extend our round-wise
analysis to longer phases.

Proposition 2.4. Let (Ai)i∈N0 be a sequence of events, 0< c< 1, δ > 0 and t1 � t0 � 1, such that

P[At |At0 , . . . ,At−1,A0]� 1− ct−t0δ for all t0 � t� t1.

Then

P

[ t1⋂
t=t0

At |A0

]
� 1− δ/(1− c).

Proof. Using the definition of conditional probability we obtain, as c< 1,

P

[ t1⋂
t=t0

At |A0

]
=

t1∏
t=t0

P[At |At0 , . . . ,At−1,A0]

�
t1∏

t=t0

(1− ct−t0δ)

� 1−
t1∑

t=t0

(ct−t0δ)
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= 1− δ

t1−t0∑
t=0

ct

� 1− δ/(1− c).

We give two typical applications of the previous lemmas, similar to what we will encounter
several times later in the paper. The first lemma addresses the case where we have a lower bound
for the expected number of informed vertices after one round.

Lemma 2.5. LetP ∈ {push, pull, pp} and It = I(P)
t . Assume that there is c> 1 such thatEt[|It+1|]�

c|It| for all t as long as n/f (n)� |It|� n/g(n) for some functions 1� f (n)� g(n)� n, f = o(n).
Assuming |It0 |� n/f (n), then there is τ = logc (f (n)/g(n))+ o( log n) such that w.h.p.

|It0+τ |� n/g(n).

Proof. Let t� t0 and n/f (n)� |It|� n/g(n). Lemma 2.1 guarantees that Vart[|It+1|]�Et[|It+1|],
and applying Chebyshev’s inequality gives

Pt[| |It+1| −Et[|It+1|]|�Et[|It+1|]2/3]� 1−Et[|It+1|]−1/3 � 1− |It|−1/3. (2.1)

Consider the events

At = |It|�Et−1[|It|]−Et−1[|It|]2/3 or |It|� n/g(n).

The intersection ofAt0+1, . . . ,At implies inductively that either |It|� n/g(n) or

|It|� (1−Et−1[|It|]−1/3)Et−1[|It|]
� (1− (c|It−1|)−1/3)c|It−1|
� ((1− (c|It0 |)−1/3)c)t−t0 |It0 |. (2.2)

We obtain with (2.1)

Pt0 [At+1 |At0+1, . . . ,At , |It| < n/g(n)]� 1− ((1− (c|It0 |)−1/3)c)−(t−t0)/3|It0 |−1/3,

and otherwise

Pt0 [At+1 |At0+1, . . . ,At , |It|� n/g(n)]= 1.

Choose

τ := t − t0 = logc (f (n)/g(n))+ o( log n)

as small as possible such that the lower bound for |It+1| in (2.2) is � n/g(n), that is, the lower
bound in (2.2) is < n/g(n) for t = t0 + τ . Combining the two conditional probabilities we obtain
for all t0 � t� t0 + τ

https://doi.org/10.1017/S0963548320000310 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548320000310


46 R. Daknama, K. Panagiotou and S. Reisser

Pt0 [At+1 |At0+1, . . . ,At]� 1− ((1− (c|It0 |)−1/3)c)−(t−t0)/3|It0 |−1/3.
Applying Proposition 2.4 then yields the claim.

In the second lemma we make the stronger assumption that we can determine asymptotically
the expected number of informed vertices after one round. Here we assume that we begin with a
‘small’ set of informed vertices, say of size

√
log n, and want to reach a set of size nearly linear in n.

Lemma 2.6. Assume that there is some c> 1 such that Et[|It+1|]= (1+ o(1))c|It| for all t as
long as

√
log n� |It|� n/log n. Assume furthermore that |It0 |�

√
log n. Then there are τ1, τ2 =

logc (n/|It0 |)+ o( log n) such that w.h.p.

|It0+τ1 |�
n

log n
� |It0+τ2 |.

Proof. Lemma 2.5, setting f = n/
√
log n and g = log n directly implies the existence of τ1. To

find τ2, let At be the event ||It| −Et−1[|It|]|�Et−1[|It|]2/3. There is h(n) ∈ o(1) such that, for
c− := (1− h(n))c and c+ := (1+ h(n))c, we have that Et[|It+1|]� c+|It| and Et[|It+1|]� c−|It|.
Using this notation, the eventsAt0+1, . . . ,At+1 together imply inductively that

|It+1|� (1+Et[|It+1|]−1/3)Et[|It+1|]
� (1+ (c−|It|)−1/3)c+|It|
� ((1+ (c−|It0 |)−1/3)c+)t−t0 |It0 |

for all t such that the right-hand side is bounded by n/ log n. Moreover, for all such t,

|It+1|� (1−Et[|It+1|]−1/3)Et[|It+1|]
� (1− (c−|It|)−1/3)c−|It|
� ((1− (c−|It0 |)−1/3)c−)t−t0 |It0 |.

Thus, asAt only depends on It , it follows with (2.1) that

Pt0 [At+1 |At0+1, . . . ,At]� 1− ((1− (c−|It0 |)−1/3)c−)−(t−t0)/3|It0 |−1/3.
Applying Proposition 2.4 yields the existence of τ2.

Expander sequences. In this section we collect some important properties of expander sequences
that we are going to use later. We start by stating a version of the well-known Expander Mixing
Lemma applied to our setting of expander sequences.

Lemma 2.7 ([28, Corollary 2.4]). Let G = (Gn)n∈N = ((Vn, En))n∈N be an expander sequence.
Then, for Sn ⊆Vn such that 1� |Sn|� n/2, it is∣∣∣∣e(Sn,Vn\Sn)− �n|Sn|(n− |Sn|)

n

∣∣∣∣ = o(�n)|Sn|.

The following result is a consequence of the Expander Mixing Lemma that applies to graphs in
which some edges were removed. It seems very simple but it turns out to be surprisingly useful.

Lemma 2.8. Let G = (Gn)n∈N = ((Vn, En))n∈N be an expander sequence. Let ε > 0 and set G̃ =
(G̃n)n∈N, where each G̃n is obtained from Gn by deleting edges such that each vertex keeps at least
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a (1/2+ ε) fraction of its edges. For each n ∈N let Sn ⊆Vn. Then there is n0 ∈N such that, for all
n� n0,

eG̃n
(Sn,Vn\Sn)� εeGn(Sn,Vn\Sn).

Proof. Without loss of generality we assume that |Sn|� n/2. Since at most (1/2− ε)�n edges are
deleted at each vertex, we immediately obtain that

eG̃n
(Sn,Vn\Sn)� eGn(Sn,Vn\Sn)− �n(1/2− ε)|Sn|.

Using Lemma 2.7 and choosing n0 large enough such that
o(�n)
�n

n
n− |Sn| < ε for all n� n0,

we obtain that
(1− ε)eGn(Sn,VN\Sn)− �n(1/2− ε)|Sn|

� (1− ε)
�n|Sn|(n− |Sn|)

n
− o(�n)|Sn| − �n(1/2− ε)|Sn|

= �n|Sn|(n− |Sn|)
n

(
1− ε − o(�n)

�n

n
n− |Sn| − n(1/2− ε)

n− |Sn|
)
.

As n− |Sn|� n/2, the last expression is > 0. Hence
eG̃n

(Sn,Vn\Sn)� εeG(Sn,Vn\Sn)+ (1− ε)eG(Sn,Vn\Sn)− �n(1/2− ε)|Sn|
� εeGn(Sn,Vn\Sn).

Next we give a lemma that counts the number of paths between two arbitrary vertices of a dense
graph satisfying a weak expander property (as for example guaranteed by Lemma 2.8). This will
later be used to give a lower bound on the probability of any vertex being informed after a given
constant number of rounds.

Lemma 2.9. Let G= (V , E), |V| = n. Assume that there is α > 0 such that d(v)� αn for all v ∈V
and e(W,V\W)� α|W| |V\W| for all W ⊆V. Then, for all u,w ∈V, there is 1� d� 8/α2 + 2
such that there are at least (α4/64)d+1nd−1 paths of length d from u to w.

Proof. Assume α � 1/2, as otherwise the claim is trivial (with d ∈ {1, 2}). We define sequences
(Si)i∈N and (Hi)i∈N ⊆V as follows. Set S1 = {u} ∪N(u),W = {w} ∪N(w) and H1 =V\(S1 ∪W)
and proceed for i� 1 as follows. Let S̃i+1 ⊆Hi be the set of vertices v ∈Hi with |N(v)∩ Si|�
α2n/8. Set Si+1 = Si ∪ S̃i+1 and Hi+1 =Hi\S̃i+1. Then we claim that, for all i� 1,

e(Si,W)� α3n2/2 or |Si+1|� |Si| + α2n/8. (2.3)
To see this, assume that e(Si,W)� α3n2/2. Since |Si|, |W|� αn, the weak expansion property
guarantees that

e(Si,Hi)= e(Si,Hi ∪W)− e(Si,W)� α|Si| |Hi ∪W| − α3n2/2� α2(1− α)n2 − α3n2/2,
and using α � 1/2 we obtain that e(Si,Hi)� α2n2/4. To complete the proof of (2.3) we compute
the size of S̃i+1. As |N(v)∩ Si|� α2n/8 for all v ∈Hi\S̃i+1 and |N(v)∩ Si|� n, we get

α2n2

4
� e(Si,Hi)� |S̃i+1|n+ |Hi|α

2n
8

.
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Since |Hi|� n we immediately get that |S̃i+1|� α2n/8, which shows (2.3). We next show that
there are (sufficiently) many paths for each vertex in Si to u. More precisely, let 1� j� 8/α2 be
such that e(Si,W)< α3n2/2 for all 1� i� j. For those i we have by (2.3) that |Si|� i · α2n/8.
We claim that for all v ∈ Si \ {u} there is d� i such that v has at least (α4/64)d · nd−1 paths of
length d with endpoint u. We show the claim by induction on i. The base case v ∈ S1 \ {u} is
clear, as 1� α4/64. For the induction step assume that v ∈ Si+1\Si, v �= u. Then by construction
|N(v)∩ Si|� α2n/8. Thus, by induction hypothesis, there is d� i such that v has at least α2n/(8i)
neighbours with at least (α4/64)dnd−1 paths with endpoint u. As i� 8/α2 this gives that v has at
least α2n/(8i) · (α4/64)dnd−1 � (α4/64)d+1nd paths of length d + 1� i+ 1 with endpoint u, and
this accomplishes the induction step. With all these facts at hand we finally show the claim of the
lemma. Let j� 8/α2 be the first index such that e(Sj,W)� α3n2/2, and let W′ ⊆W be such that
|N(v)∩ Sj|� α3n/4 for all v ∈W′. Thus

α3n2

2
� e(Sj,W)� |W′|n+ |W|α

3n
4

,

and thus |W′|� α3n/4. Then there is d� j andW′′ ⊆W′ such that |W′′|� |W′|/j and every v in
W′′ has at least α3n/(4j) neighbours with at least (α4/64)dnd−1 paths of length d with endpoint u.
Therefore every v ∈W′′ has at least

(α4/64)dnd−1 · α3n/(4j)� (α4/64)d+1nd/j

paths of length d + 1 with endpoint u. This in turn gives that there are at least

|W′|/j · (α4/64)d+1nd/j� α3/4 · (α4/64)d+2nd+1

paths of length d + 2 from w to u, and the proof is completed.

Next comes a technical lemma that, given a small set, quantifies the number of vertices for
which only a small fraction of their neighbourhood intersects that given set.

Lemma 2.10. Let G = (Gn)n∈N = ((Vn, En))n∈N be an expander sequence. Let ε > 0 and let G̃ =
(G̃n)n∈N, where each G̃n it is obtained from Gn by deleting edges such that each vertex keeps at least
a (1/2+ ε) fraction of its edges. Let An ⊆Vn with |An| = o(n).

(a) There is Bn ⊆An with |Bn| = (1− o(1))|An| such that, for all u ∈ Bn,

|NG̃n
(u)∩An|

|NG̃n
(u)| = o(1).

(b) There is Bn ⊆Vn \An with |Vn \ (An ∪ Bn)| = o(|An|) such that, for all v ∈ Bn,

|NG̃n
(v)∩An|

|NG̃n
(v)| = o(1).

Proof. Let δn,�n denote the minimum and maximum degree of Gn. Lemma 2.7 yields that

eGn(An,Vn \An)= �n|An| |Vn \An|
n

+ o(�n)|An| = (1+ o(1))�n|An|.
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As there are a maximum of �n|An| edges with at least one point in An, we get that eGn(An)=
o(�n)|An|. Since we obtain G̃n from Gn by deleting edges,

eG̃n
(An)= o(�n)|An|. (2.4)

With this fact at hand we show (a). Let η > 0 and call a vertex u ∈An bad if |NG̃n
(u)∩An|�

η|NG̃n
(u)|. Since NG̃n

(u)� δn/2, we obtain for any bad u that |NG̃n
(u)∩An|� ηδn/2. As δn =

(1− o(1))�n, we infer from (2.4) that the number of bad vertices is o(|An|).
To see (b), again let η > 0 and this time call a vertex v ∈Vn \An bad if |NG̃n

(v)∩An|�
η|NG̃n

(v)|. Then, for any such bad v, we know that |NG̃n
(v)∩An|� ηδn/2. As before, using (2.4)

we readily get that the number of bad v is o(|An|).

We conclude our preliminary section by giving a lemma that crudely bounds the time needed
until at least ω(1) vertices are informed.

Lemma 2.11. Let 0< ε � 1/2, q ∈ (0, 1] and G = (Gn)n∈N be an expander sequence. Let G̃ =
(G̃n)n∈N be such that each G̃n is obtained by deleting edges of Gn such that each vertex keeps at least a
(1/2+ ε) fraction of its edges. Let P ∈ {push, pull, pp} and suppose that |I(P)

t | < √
log n. Then there

is τ = o( log n) such that w.h.p. |I(P)
t+τ |�

√
log n.

Proof. Recall that the probability that v ∈Ut gets informed by pull is q|N(v)∩ It|/|N(v)|. Thus

Pt[|I(pull)t+1 \It| = 0]=
∏

u∈N(It)∩Ut

(
1− q|N(u)∩ It)|

|N(u)|
)
� e−qe(Ut ,It)/�n .

Similarly we obtain for push

Pt[|I(push)t+1 \It| = 0]=
∏
v∈It

|N(v)∩ It|
|N(v)| =

∏
v∈It

(
1− |N(v)∩Ut|

|N(v)|
)
� e−qe(It ,Ut)/�n .

The same bound is obviously also true for push&pull. Thus, for all P ∈ {push, pull, pp},
Pt[|I(P)

t+1\It|� 1]� 1− e−qe(Ut ,It)/�n .

As Lemmas 2.7 and 2.8 imply that e(Ut , It)� (1+ o(1))ε�n|It|, there is c ∈ (0, 1) such that
P[|I(P)

t+1\It|� 1]> c. Define τ := �(2/c)√log n� and X = Bin(τ , c) with E[X]= cτ and Var[X]=
τ (1− c)c. Then, using Chebyshev,

Pt[|I(P)
t+τ |�

√
log n]� Pt[X �

√
log n]� Pt[|X −E[X]|�E[X]/2]� 4Var[X]/E[X]2 = o(1).

3. Proofs
3.1 Proof of Theorems 1.2(b) and 1.3(a) – edge deletions do not slow down pull
Let 0< ε � 1/2. In this section we study the runtime of pull in the case in which the input graph is
an expander, and where at each vertex at most a (1/2− ε) fraction of the edges is deleted. The run-
time on expander sequences without edge deletions, i.e. the setting in Theorem 1.2(b), is included
as the special case where we set ε = 1/2. In contrast to previous proofs, in the analysis of pull the
‘standard’ approach that consists of showing, for example, that Et[|It+1 \ It|]≈ |It| fails. The main
reason is that the graph between It and Ut might be quite irregular, so that, depending on the
actual state, Et[|It+1 \ It|]≈ c|It| for some c< 1. However, we discover a different invariant that
is preserved, namely that the number of edges between It and Ut behaves in an exponential way.
With Lemmas 2.7 and 2.8 we can then relate this to the number of informed vertices.
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Lemma 3.1. Consider the setting of Theorem 1.3(a) and let It = I(pull)t .

(a) Let
√
log n� |It|� n/ log n. Then

|e(Ut+1, It+1)− (1+ q)e(Ut , It)|� |It|−1/3e(Ut , It)

with probability at least 1−O(|It|−1/3).
(b) Let |Ut|� n/ log n. Then Et[|Ut+1|]= (1− q+ o(1))|Ut|.

Proof. We start with (a). Let Dt = e(Ut+1, It+1)− e(Ut , It) and for u ∈Ut let Xu be the random
variable that indicates whether u gets informed in round t + 1. Then

Et[Dt]=
∑
u∈Ut

∑
v∈N(u)∩Ut

Et[Xu(1− Xv)]−
∑
u∈Ut

Et[Xu] · |N(u)∩ It|

=
∑
u∈Ut

q
|N(u)∩ It|

|N(u)|
(( ∑

v∈N(u)∩Ut

1− q
|N(v)∩ It|

|N(v)|
)

− |N(u)∩ It|
)
.

The second sum is at most |N(u)|, so obviously Et[Dt]� qe(Ut , It). To get a lower bound consider
a largest set Ũ ⊆Ut such that |N(u)∩ It|/|N(u)| = o(1) for all u ∈ Ũ. From Lemma 2.10(b) we
obtain that |Ut \ Ũ| = o(|It|), and so

Et[Dt]�
∑
u∈Ut

q|N(u)∩ It|
(( ∑

v∈N(u)∩Ũ

1
|N(u)| − o

(
1

|N(u)|
))

− |N(u)∩ It|
|N(u)|

)
.

Consider furthermore Û ⊆ Ũ such that |N(u)∩ Ũ|/|N(u)| = 1− o(1) and thus also |N(u)∩
It|/|N(u)| = o(1) for all u ∈ Û. Lemma 2.10(b) again yields that we can choose Û such that
|Ut\Û| = o(|It|), and thus

Et[Dt]� (1− o(1))
∑
u∈Û

q|N(u)∩ It|
( |N(u)∩ Ũ|

|N(u)| − |N(u)∩ It|
|N(u)|

)
−

∑
u∈Ut\Û

|N(u)∩ It|

� (q− o(1))e(Ut , It)− 2e(Ut\Û, It).

According to Lemmas 2.7 and 2.8 we have that e(Ut , It)= �(|It|�n). But

e(Ut\Ũ, It)� |Ut\Ũ|�n = o(|It|�n).

Thus Et[e(Ut+1, It+1)]= (1+ q− o(1))e(Ut , It). In the next step we bound the variance. For each
edge e let Xe be the indicator random variable that denotes the events that e ∈ E(Ut+1, It+1). Thus

e(Ut+1, It+1)=
∑
e∈E

Xe = 1
2

∑
u∈V

∑
v∈N(u)

X{u,v}.

Using the fact that Xe and Xe′ are independent for all e, e′ ∈ E with e∩ e′ = ∅,

Var[e(Ut+1, It+1)]=Var
[∑
e∈E

Xe

]

=
∑
e,e′∈E

E[XeXe′]−E[Xe]E[Xe′]

�
∑
u∈V

∑
v,v′∈N(u)

E[X{u,v}X{u,v′}]
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��n
∑
u∈V

∑
v∈N(u)

E[X{u,v}]

= 2�nE[e(Ut+1, It+1)].
Since

Et[e(Ut+1, It+1)]= (1+ q− o(1))e(Ut , It)= �(�n|It|),
by Lemmas 2.7 and 2.8 and

Var[e(Ut+1, It+1)]� 2�nEt[e(Ut+1, It+1)]
we immediately obtain for |It|�

√
log n with Chebyshev’s inequality that

P[|e(Ut+1, It+1)−Et[e(Ut+1, It+1)]|� e(Ut , It)|It|−1/3]�O(|It|−1/3).
Next we show (b). We bound the expected number of uninformed vertices after one additional
round. Lemma 2.10(a) asserts that there is a set Ũ ⊆Ut such that |Ũ| = (1− o(1))|Ut| and |N(u)∩
It|/|N(u)| = 1− o(1) for all u ∈ Ũ. Thus

Et[|Ut+1|]=
∑
u∈Ut

1− q
|N(u)∩ It|

|N(u)|

� |Ut| − q
∑
u∈Ũ

|N(u)∩ It|
|N(u)|

= |Ut| − q(1− o(1))|Ũ|
= (1− q− o(1))|Ut|.

As |N(u)∩ It|� |N(u)| we also have
Et[|Ut+1|]=

∑
u∈Ut

1− q
|N(u)∩ It|

|N(u)| �
∑
u∈Ut

(1− q)= (1− q)|Ut|.

Lemmas 3.2 and 2.11 give lower bounds which, together with an upper bound provided by
Lemma 3.3, imply Theorems 1.2(b) and 1.3(a).

Lemma 3.2. (upper bound in Theorem 1.3(a)). Consider the setting of Theorem 1.3(a) and let
It = I(pull)t . Then the following statements hold w.h.p.

(a) Let
√
log n� |It|� n/ log n. Then there are τ1, τ2 = log1+q (n/|It|)+ o( log n) such that

|It+τ2 | < n/ log n< |It+τ1 |.
(b) Let n/ log n� |It|� n− n/ log n. Then there is τ = o( log n) such that |It+τ | > n− n/ log n.
(c) Let |It| � n− n/ log n.

(i) Case q= 1. Then there is τ = o( log n) such that |It+τ | = n.
(ii) Case q �= 1. Then there is τ �− log n/ log (1− q)+ o( log n) such that |It+τ | = n.

Proof. We start with (a). Let |It| ∈ [
√
log n, n/ log n]. First note that any bound on e(Ut , It)

translates to a bound for |It|, as with Lemmas 2.7 and 2.8 we obtain
(1− o(1))ε�n|It|� e(Ut , It)��n|It|. (3.1)

In particular, up to constant factors, |It| is e(Ut , It)/�n and vice versa. From Lemma 3.1(a) we
obtain that e(Ut+1, It+1)= (1+ q± |It|−1/3)e(Ut , It) with probability 1−O(|It|−1/3). Proceeding
as in Lemmas 2.5 and 2.6 and their proofs, where we replace the events

|It|�Et−1[|It|]−Et−1[|It|]2/3 or |It|� n/g(n)
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and

||It| −Et−1[|It|]|�Et−1[|It|]2/3
with

e(Ut , It)� (1+ q− |It−1|−1/3)e(Ut−1, It−1) or |It|� n/ log n

and

e(Ut+1, It+1)= (1+ q± |It|−1/3)e(Ut , It),

we obtain the statement.
We continue with (b). Consider first the case |It| ∈ [n/ log n, n/2]. Using Lemmas 2.7 and 2.8,

i.e. e(Ut , It)� ε|Ut| |It|�n/n+ o(�n)|It|, together with |Ut|� n/2 implies

Et[|It+1\It|]=
∑
u∈Ut

q
|N(u)∩ It|

|N(u)|

� q · e(Ut , It)
�n

� qε|Ut| |It|�n/n+ o(�n)|It|
�n(1+ o(1))

�
(
qε
2

+ o(1)
)

|It|.

Applying Lemma 2.5, where we set g = 2, f = log n and c= qε/2+ o(1), we are finished with
this part as well. Now let |It| ∈ [n/2, n− n/ log n]. We switch our focus to the set of uninformed
vertices. Using again the fact that e(Ut , It)� ε|Ut| |It|�n/n+ o(�n)|Ut|, we have

Et[|Ut+1|]=
∑
u∈Ut

1− q
|N(u)∩ It|

|N(u)|

=
∑
u∈Ut

1− q
|N(u)∩ It|

�n(1+ o(1))

= |Ut| − q · e(Ut , It)
�(1+ o(1))

= |Ut| − qε|Ut| |It|�n/n+ o(�n)|Ut|
�n(1+ o(1))

�
(
1− qε

2
+ o(1)

)
|Ut|.

Inductively we obtain for any integer τ � 1 the bound Et[|Ut+τ |]� (1− qε/2+ o(1))τ |Ut|, and
so for some τ := 2 log log n/ log (1/(1− qε/2+ o(1)))= o( log n) we have

Et[|Ut+τ |]� |Ut|/ log2 n= o(n/ log n).

Hence, by Markov’s inequality, Pt[|Ut+τ |� n/ log n]= o(1).
In order to show (c), let |It| ∈ [n− n/ log n, n]. As for q= 1 the term 1− q in Lemma 3.1(b)

vanishes, we distinguish the cases q= 1 and q �= 1. We start with q= 1. By induction, it follows
that for any round τ > 0 and suitable f = o(1),

Et[|Ut+τ |]� (f (n))τ |Ut|.
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We choose τ = log1/f (n) (n)= o(logn) as 1/f = ω(1). Hence we obtain Et[|Ut+τ |]� |Ut|/n�
1/log n. Therefore we have Pt[|Ut+τ |� 1]� o(1) by Markov’s inequality. For q �= 1 we have by
induction, for any number of rounds τ � 1,

Et[|Ut+τ |]� (1− q+ o(1))τ |Ut|.
We choose

τ = log1/(1−q+o(1)) (n)= − log n/ log (1− q)+ o( log n).

Thus, using Markov’s inequality, analogously to the case q= 1, we obtain the desired upper
bound.

Note that for q= 1 this already implies Theorems 1.2(b) and 1.3(a). This leaves the case for
q �= 1.

Lemma 3.3. Let 0< ε � 1/2, q ∈ (0, 1] and G = (Gn)n∈N be an expander sequence. Let G̃ =
(G̃n)n∈N be such that each G̃n is obtained by deleting edges of Gn, such that each vertex keeps at
least a (1/2+ ε) fraction of its edges and abbreviate It = I(pull)t . Let q ∈ (0, 1) and |It| � n/2. Then,
for τ = − log n/ log (1− q) and all c< 1, w.h.p. |It+cτ | < n.

Proof. We consider amodified process in which vertices have a higher chance of getting informed.
In particular, note that the probability that u ∈Ut gets informed is at most q|N(u)∩ It|/|N(u)|� q
and that all these events are independent; now we assume that each such u gets independently
informed with probability exactly q. Then the runtime in this modified model constitutes a lower
bound for the runtime in the original model.

Let c< 1, u ∈Ut and Eu be the event that u does not get informed in cτ rounds in this
model. Thus

P[Eu]= (1− q)cτ = (1− q)−c log n/ log (1−q) = n−c = ω(1/n),

and as the events Eu are independent and |Ut| = �(n),

P

[ ∧
u∈Ut

Eu
]
�

∏
u∈Ut

P[Eu]� exp
(

−
∑
u∈Ut

P[Eu]
)

= o(1).

3.2 Proof of Theorem 1.2(c) – push&pull is fast on expanders
As we are now in the case without edge deletions, we begin with a lemma that determines the
expected number of informed vertices in one round. Intuitively we will show that push and pull
do not interact badly, and therefore push&pull is given as a straightforward combination of push
and pull.

Lemma 3.4. Let G be an expander sequence and abbreviate It = I(pp)t .

(a) Let |It|� n/ log n. Then Et[|It+1 \ It|]= (2q+ o(1))|It|.
(b) Let |Ut|� n/ log n. Then Et[|Ut+1|]= (1+ o(1))e−q(1− q)|Ut|.
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Proof. We begin with (a). The probability that v ∈Ut gets informed by pull is q|N(v)∩ It|/|N(v)|.
Thus, using Lemma 2.7,

Et[|I(pull)t+1 \It|]=
∑
u∈Ut

q
|N(u)∩ It|

|N(u)|

= q
∑
u∈Ut

|N(u)∩ It|
�n(1+ o(1))

= (q+ o(1))
e(Ut , It)

�n

= (q+ o(1))
|Ut| |It|�n/n+ o(�n)|It|

�n
. (3.2)

Since |It| = o(n) we obtain that |Ut| = (1− o(1))n, and this expression simplifies to
(q+ o(1))|It|.

Before we switch our attention to push we make a simple observation. Let a1, . . . , ak, k ∈N be
real numbers. Then, using the fact that for any a= o(1) it is e−a+o(a) = 1− a and e−a = 1− a+
o(a), we have∏

1�i�k
(1− ai)= exp

(
−(1+ o(1))

∑
1�i�k

ai
)

= 1− (1+ o(1))
∑

1�i�k
ai if

∑
1�i�k

ai = o(1).

(3.3)

The probability that v ∈Ut gets informed by push is

1−
∏

i∈N(v)∩It
(1− q/|N(v)|).

According to Lemma 2.10(b) there is Bt ⊆Ut such that |N(u)∩ It| = o(|N(u)|) for all u ∈ Bt and
|Ut \ Bt| = o(|It|). Thus (3.3) is applicable, and in a similar fashion to (3.2) we get

Et[|I(push)t+1 \ It|]=
∑
u∈Ut

1−
∏

i∈N(u)∩It

(
1− q

|N(i)|
)

= q
∑
u∈Bt

|N(u)∩ It|
�n(1+ o(1))

+ o(|It|)

= (q+ o(1))|It|. (3.4)

We express the expected number of vertices informed by push&pull after one additional round in
terms of the expected values we just calculated ((3.2) and (3.4)):

Et[|It+1\It|]=Et
[|I(pull)t+1 \It| + |I(push)t+1 \It| − |(I(push)t+1 \It)∩ (I(pull)t+1 \It)|

]
= (2q− o(1))|It| −Et

[|(I(push)t+1 \It)∩ (I(pull)t+1 \It)|
]
. (3.5)

Lemma 2.10(a) gives a set

At ⊆ I(push)t+1 , |At| = (1− o(1))|I(push)t+1 |,
such that

|N(u)∩ I(push)t+1 | = o(1)|N(u)| for all u ∈At .
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Since push and pull happen independently,

Et
[|(I(pull)t+1 \It)∩ (I(push)t+1 \It)| | I(push)t+1

] =
∑

u∈I(push)t+1 \It
Pt[u ∈ I(pull)t+1 \It]

=
∑

u∈I(push)t+1 \It
q
|N(u)∩ It|

|N(u)|

�
∑
u∈At

q
|N(u)∩ It|

|N(u)| +
∑

u∈I(push)t+1 \At

q
|N(u)∩ It|

|N(u)| .

Using the fact that |N(u)∩ It| = o(|N(u)|) for all u ∈At , we obtain

Et
[|(I(pull)t+1 \It)∩ (I(push)t+1 \It)|

]
�Et

[
o(|At|)+ |I(push)t+1 \At|

] = o(|It|),
as

|At|� |I(push)t+1 |� 2|It| and |I(push)t+1 \At| = o(|I(push)t+1 |)= o(|It|).
Combining this with (3.5) we get Et[|It+1 \ It|]= (2q+ o(1))|It|, as claimed.

Next we show (b). Let Au be the event that an uninformed vertex u does not get informed by
the push algorithm, let Bu be the corresponding event for pull. Then Au and Bu are independent
and Au ∩ Bu is the event that u does not get informed in the current round. We obtain

Pt[Au]=
∏

i∈N(u)∩It

(
1− q

|N(i)|
)

�
(
1− q

�n

)|N(u)∩It |

� exp
(

−q
|N(u)∩ It|

�n

)

= exp
( −q|N(u)∩ It|
(1+ o(1))|N(u)|

)

and

Pt[Bu]= 1− q|N(u)∩ It|
|N(u)| .

According to Lemma 2.10(a) there is a set Ct ⊆Ut , |Ct| = (1− o(1))|Ut| such that |N(u)∩ It| =
(1− o(1))|N(u)| for all u ∈ Ct . As Pt[Au ∩ Bu]� 1, we therefore get

Et[|Ut+1|]=
∑
u∈Ut

Pt[Au ∩ Bu]�
∑
u∈Ct

Pt[Au] · Pt[Bu]+ |Ut \ Ct|� (1+ o(1))e−q(1− q)|Ut|.

For the lower bound we need to find a lower bound on the probability of a single uninformed
vertex not getting informed in one round by push. Indeed, for any u ∈Ut and sufficiently large n,

Pt[Au]=
∏

v∈N(u)∩It

(
1− q

|N(v)|
)
�

(
1− q

δn

)|N(u)∩It |
� e−q�n/δn . (3.6)
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Combining this inequality with the trivial bound P[Bu]� 1− q, we get a lower bound on the
expected number of uninformed vertices after one round using push&pull:

Et[|Ut+1|]=
∑
u∈Ut

Pt[Au ∩ Bu]

=
∑
u∈Ut

Pt[Au] · Pt[Bu]

� e−q�n/δn(1− q)|Ut|
= (1+ o(1))e−q(1− q)|Ut|.

Next we show upper and lower bounds that together with Lemma 2.11 imply Theorem 1.2(c).

Lemma 3.5. Let G be an expander sequence and abbreviate It = I(pp)t . Let q ∈ (0, 1]. Then the
following statements hold w.h.p.

(a) Let
√
log n� |It|� n/ log n. Then there are τ1, τ2 = log1+2q (n/|It|)+ o( log n) such that

|It+τ2 | < n/ log n< |It+τ1 |.
(b) Let n/ log n� |It|� n− n/ log n. Then there is τ = o( log n) such that |It+τ | > n− n/ log n.
(c) Let |It|� n− n/ log n.

(i) Case q= 1. Then there is τ = o( log n) such that |It+τ | = n.
(ii) Case q �= 1. Then there is τ � log n/(q− log (1− q))+ o( log n) such that |It+τ | = n.

Proof. Since |It|� |I(pull)t |, statements (b) and (c) for q= 1 follow immediately from Lemma 3.2.
To see (a), note that by using Lemma 3.4 we get Et[|It+1\It|]= (2q+ o(1))|It|, and applying
Lemma 2.6 implies the claim.

Finally we show (c) for q �= 1. Let |It| � n− n/ log n. By Lemma 3.4, we obtain that, for any
τ ∈N,

Et[|Ut+τ |]= ((1+ o(1))e−q(1− q))τ |Ut|.

Thus we may choose τ = log n/(q− log (1− q))+ o( log n) such that, say, Et[|Ut+τ |]� |Ut|/n�
1/log n. Thus Pt[|Ut+τ |� 1]� o(1) by Markov’s inequality.

Note that for q= 1 this already implies Theorem 1.2(c). This leaves the case for q �= 1.

Lemma 3.6. Let G be an expander sequence and abbreviate It = I(pp)t , let q ∈ (0, 1) and |It| � n/2.
Then for τ = log n/(q− log (1− q)) and all c< 1 w.h.p. |It+cτ | < n.

Proof. We consider a modified process in which vertices have a higher chance of getting
informed. In particular, note that the probability that u ∈Ut gets informed by pull is at most
q|N(u)∩ It|/|N(u)|� q and that all these events are independent; according to (3.6) the proba-
bility that u ∈Ut gets informed by push is at most 1− e−q�n/δn . Now we assume that each such
u gets independently informed with probability exactly 1− e−q�n/δn(1− q). Then the runtime in
this modified model constitutes a lower bound for the runtime in the original model. Let u ∈Ut
and Eu be the event that u does not get informed in this modified model in cτ rounds. Thus, for
c< 1,

P[Eu]� ((1− q)e−q�n/δn)cτ = ω(n−1),
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and as the events Eu are independent and |Ut| = �(n),

P

[ ∧
u∈Ut

Eu
]
�

∏
u∈Ut

P[Eu]� exp
(

−
∑
u∈Ut

P[Eu]
)

= o(1).

3.3 Proof of Theorem 1.5(a) – push informs almost all vertices fast in spite of edge deletions
To shorten the notation, let us call the setting with deleted edges the ‘new model’ and the setting
without deleted edges the ‘old model’, that is, the term ‘newmodel’ corresponds to the graphs in G̃
while ‘old model’ refers to the (original) graphs in G. We prove Lemma 3.7, which directly implies
Theorem 1.5(a). We write It = I(push)t throughout.

Lemma 3.7. Under the assumptions of Theorem 1.5(a), the following holds for the new model:

(a) There are τ , τ̃ = log1+q (n)+ o( log n) such that w.h.p. |Iτ̃ | < n/ log n< |Iτ |.
(b) Assume |It|� n/ log n. Then there is a τ = o( log n) such that w.h.p. |It+τ |� n− n/ log n.

For the proof of Lemma 3.7 we will need the following statements, the first one taken from [28].

Lemma 3.8 (proof of Lemma 2.5 in [28]). Consider the old model. Assume |It| < n/ log n and
q= 1. Then

Pt[|It+1| = |It| + (1− o(1))|It|]= 1− o(1). (3.7)

Lemma 3.9. Consider push on a sequence of graphs (Gn)n∈N, where Gn has n vertices. Assume that
|It| = ω(1) and that (3.7) holds for q= 1, that is, assume that

Pt[|It+1| = |It| + (1− o(1))|It|]= 1− o(1) for q= 1.

Then, for q ∈ (0, 1],

Pt[|It+1| = |It| + (q− o(1))|It|]= 1− o(1). (3.8)

Moreover, assume that whenever |It| < n/ log n, for q= 1, (3.7) holds. Then there are τ , τ̃ =
log1+q (n)+ o( log n) such that w.h.p.

|Iτ̃ | < n/ log n< |Iτ |. (3.9)

Proof. For a graph G and for v ∈ It , let Xv(G) denote the vertex to which v pushes in round t. Let

Nt+1 := {Xv(Gn) | v ∈ It} ∩Ut .

Note that whenever |It| < n/ log n, w.h.p. |Nt+1| = (1− o(1))|It| from (3.7). For q ∈ (0, 1] each
vertex in Nt+1 has a probability at least q of being informed and all these events are independent;
thus (3.8) follows directly by applying the Chernoff bounds whenever |It| = ω(1).

In order to prove the second statement we call a round t that does not satisfy (3.8) a failed
round. Note that we just argued that the probability that a round fails is o(1) whenever |It| =
ω(1) and |It| < n/ log n, and the events that distinct rounds fail are independent. In particular,
the number of failed rounds among the next R rounds, assuming that |It| stays below n/ log n, is
w.h.p. o(R). Moreover, if a round does not fail, the number of informed vertices increases by a
factor of (1+ q+ o(1)) and otherwise it may increase by an arbitrary factor in the interval [1, 2].
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Finally, Lemma 2.11 yields that there is t∗ = o( log n) such that w.h.p. |It∗ | = ω(1), which implies
that after R+ t∗ rounds, the number of informed vertices is w.h.p. in the interval

[(1+ q+ o(1))R−o(R), (1+ q+ o(1))R−o(R) · 2o(R)],
and choosing R= log1+q (n)+ o( log n) in two ways establishes (3.9).

In the subsequent proof of Lemma 3.7 we will use the simple observations that, for any n ∈N0,

P[Bin(n, 1/2)� n/2]� 1/2 and P[Bin(n, 1/4)� n/4]� 1/4 (3.10)

(see e.g. [22] when n> 4), and the other cases are checked easily.

Proof of Lemma 3.7. We first show (a). We assume q= 1 and prove that, for |It| < n/ log n, (3.7)
also holds in the new model; then claim (a) follows directly from Lemma 3.9. Let G= (V , E) be a
graph. For v ∈ It let Xv(G) denote the vertex to which v pushes in round t. For u ∈V let cu(G) :=
|{v ∈ It | Xv(G)= u}| denote the number of times u is pushed in round t. Let

Yt(G) := {v ∈ It | cv(G)= 1} and Ht(G) := {v ∈ It | cv(G)� 1}
denote the set of informed vertices that are being pushed exactly once in round t and the set of
informed vertices that are being pushed at least once in round t respectively. Let

Zt(G) := {v ∈V | cv(G)� 2}
denote the set of vertices that are being pushed more than once in round t. Let Yt(G) := |Yt(G)|
and Ht(G) := |Ht(G)| and, in a slight abuse of notation, let

Zt(G) :=
∑
k�2

(k− 1) · |{v ∈V | cv(G)= k}|

denote the number of vertices that are being pushed multiple times in round t counted with mul-
tiplicity. Note that the quantity Y + Z denotes the number of pushes that have no effect in the
respective round, that is, there are Y + Z pushes that are useless in the sense that even with-
out them, the same number of vertices would become informed in the respective round. In the
following paragraphs we condition on It implicitly, that is, we write P[. . .] instead of Pt[. . .],
etc., to lighten the notation. We want to show that (3.7) does hold in the new model; for con-
tradiction we assume that this is not the case. Hence we can infer that there is a constant c> 0
such that

lim sup
n→∞

P[Yt(G̃n)� c|It|]> 0 or lim sup
n→∞

P[Zt(G̃n)� c|It|]> 0.

Thus, without loss of generality, we can assume that there is f ∗ > 0 and n0 ∈N such that

P[Yt(G̃n)� c|It|]> f ∗ for all n� n0 or P[Zt(G̃n)� c|It|]> f ∗ for all n� n0.

If this is not the case we can restrict ourselves to a suitable subsequence of (n)n∈N on which it is
true. Next, we describe an explicit coupling between the new and the old model. For any vertex
v consider Xv(Gn). If Xv(Gn) ∈NG̃n

(v), then set Xv(G̃n) := Xv(Gn) and otherwise choose Xv(G̃n)
uniformly at random from NG̃n

(v). Note that Xv(Gn), Xv(G̃n) have by construction the correct
marginal distribution. Moreover, note that by construction, the family

(Xv(Gn) | (Xu(G̃n))u∈Vn)v∈Vn (3.11)

of random variables is independent, since Xv(Gn) depends only on Xv(G̃n) for all v ∈Vn.
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We begin with the case that P[Yt(G̃n)� c|It|]> f ∗. We will show

P[Ht(Gn)� Yt(G̃n)/2 |Yt(G̃n)]� 1/2

and then, since by assumption P[Yt(G̃n)� c|It|]> f ∗, we can infer P[Ht(Gn)� c|It|/2]� f ∗/2,
which contradicts Lemma 3.8. Let Yt(G̃n)= {y1, . . . , yYt(G̃n)}. Then there are distinct vertices
v1, . . . , vYt(G̃n) ∈ It such that Xvi(G̃n)= yi for all i ∈ {1, . . . , Yt(G̃n)}. Due to (3.11) the events
({Xvi(Gn)= Xvi(G̃n)})1�i�Yt are independent. Moreover, for all i ∈ {1, . . . , Yt(G̃n)},

P[Xvi(Gn)= Xvi(G̃n) |Yt(G̃n)]=
dG̃n

(vi)
dGn(vi)

� 1/2+ ε

and therefore, given Yt(G̃n), Ht(Gn) dominates a binomially distributed random variable
Bin(Yt(G̃n), 1/2). In particular, this implies with (3.10) that

P[Ht(Gn)� Yt(G̃n)/2 |Yt(G̃n)]� 1/2,

as claimed.
We continue with the case P[Zt(G̃n)� c|It|]> f ∗. Let Zt(G̃n)= {z1, . . . , z|Zt(G̃n)|}. Then, for

any i ∈ {1, . . . , |Zt(G̃n)|} let ni := czi(G̃n)� 2, that is, there are distinct vertices vi,1, . . . , vi,ni such
that Xv(G̃n)= zi for all v ∈ {vi,1, . . . , vi,ni}. We will show that

P[Zt(Gn)� Zt(G̃n)/8 |Zt(G̃n), n1, . . . , n|Zt(G̃n)|]� 1/8 (3.12)

and then, since by assumption P[Zt(G̃n)� c|It|]> f ∗, we obtain P[Zt(Gn)� c/8|It|]� f ∗/8,
which contradicts Lemma 3.8. Due to (3.11) the events

({Xvi,j(Gn)= Xvi,j(G̃n)})1�i�|Zt(G̃n)|,1�j�ni (3.13)

are independent. Moreover, for all 1� i� |Zt(G̃n)|, 1� j� ni,

P
[
Xvi,j(Gn)= Xvi,j(G̃n) |Zt(G̃n), n1, . . . , n|Zt(G̃n)|

] = dG̃n
(vi,j)

dGn(vi,j)
� 1/2+ ε. (3.14)

For 1� i� |Zt(G̃n)| let Bi ∼ Bin(ni, 1/2) be independent random variables. Moreover, let M1 :=
{i | 1� i� |Zt(G̃n)|, ni = 2} andM2 := {i | 1� i� |Zt(G̃n)|, ni > 2}. Using (3.13) and (3.14), given
Zt(G̃n), n1, . . . , n|Zt(G̃n)|, we infer that Zt(Gn) dominates

|Zt(G̃n)|∑
i=1

max{Bi − 1, 0}�
∑
i∈M1

max{Bi − 1, 0} +
∑
i∈M2

Bi − |M2|.

We treat the two sums individually. Note that
∑

i∈M1 max{Bi − 1, 0} ∼ Bin(|M1|, 1/4); in
particular,

P

[∑
i∈M1

max{Bi − 1, 0}� |M1|/4
]
� 1/4

by (3.10). Regarding the second sum, since
∑

i∈M2 Bi ∼ Bin(
∑

i∈M2 ni, 1/2), we obtain

P

[∑
i∈M2

Bi � 1/2
∑
i∈M2

ni
]
� 1/2.
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Thus, givenZt(G̃n), n1, . . . , n|Zt(G̃n)| and using 2|M1| = ∑
i∈M1 ni and

∑
i∈M2 ni � 3|M2|, we infer

that with probability at least 1/4 · 1/2= 1/8

Zt(Gn)�
1
4
|M1| + 1

2
∑
i∈M2

ni − |M2|

= 1
8

∑
i∈M1

ni + 1
2

∑
i∈M2

ni − |M2|

� 1
8

∑
i∈M1

ni + 1
6

∑
i∈M2

ni

� 1
8

|Zt(G̃n)|∑
i=1

ni

= 1
8
(Zt(G̃n)+ |Zt(G̃n)|)

� 1
8
Zt(G̃n).

This establishes (3.12). All in all, for q= 1 we have shown that (3.7) also holds in the new model.
Hence claim (a) follows directly from Lemma 3.9.

Next we prove claim (b). We write �n := �(Gn), �̃n := �(G̃n), δn := δ(Gn) and δ̃n := δ(G̃n);
moreover, we write Ñ(·) instead of NG̃n

(·). We assume that |It| ∈ [n/ log n, n− n/ log n]. We fur-
ther distinguish two cases, namely |It| ∈ [n/ log n, n/2] and |It| ∈ [n/2, n− n/ log n]. We start
with the case |It| ∈ [n/ log n, n/2]. Using Lemmas 2.7 and 2.8 and the assumption that �n/δn =
1+ o(1) we obtain, for any 0< ε̄ < ε/2, for n sufficiently large,

e(It ,Ut)> ε̄δn|It|. (3.15)

Using the fact that ex � (1+ x/n)n for n ∈N and |x|� n, we obtain

Et[|It+1\It|]�
∑

u∈Ñ(It)\It

[
1−

∏
v∈Ñ(u)∩It

(
1− q

�̃n

)]
�

∑
u∈Ñ(It)\It

1− e−|Ñ(u)∩It |q/�̃n .

Further, using the fact that e−x � 1− x/2 for any x ∈ (0, 1) and (3.15) yields the bound

Et[|It+1\It|]�
∑

u∈Ñ(It)\It

q|Ñ(u)∩ It|
2�̃n

= qe(It ,Ut)
2�̃n

� ε̄qδn
2�n

|It|.

For this case the claim follows by Lemma 2.5, when setting f = n/ log n, g = log n and c=
ε̄qδn/(2�n).

Finally we consider the case |It| ∈ [n/2, n− n/ log n]; here we examine the shrinking of Ut .
Using Lemmas 2.7 and 2.8 we obtain, for any 0< ε̄ < ε/2, for n sufficiently large, e(It ,Ut)>
ε̄δn|Ut|. Hence, again using the fact that for any x ∈ (0, 1) it holds that e−x � 1− x/2, and that
for n ∈N and |x|� n it is ex � (1+ x/n)n, we obtain

Et[|Ut+1|]=
∑
u∈Ut

∏
v∈Ñ(u)∩It

(
1− q

dG̃n
(v)

)

�
∑
u∈Ut

e−|Ñ(u)∩It |q/�̃n
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�
∑
u∈Ut

1− q|Ñ(u)∩ It|
2�̃n

� |Ut| − ε̄qδn
2�̃n

|Ut|

�
(
1− ε̄qδn

2�n

)
|Ut|.

Using the tower property of conditional expectation, we immediately get

Et[|Ut+τ |]�
(
1− ε̄qδn

2�n

)τ

|Ut|, τ ∈N.

Thus, for

τ := −2 log log (n)/ log (1− ε̄qδn/(2�n))= o( log n),

we have Et[|Ut+τ |]= o(n/ log n). Hence by Markov’s inequality, P[|Ut+τ |� n/ log n]= o(1).

3.4 Proof of Theorem 1.4(a) – edge deletions slow down push

Let I(push)t := It . In order to show the claim we construct an explicit sequence of graphs that has the
desired property. More precisely, for any ε > 0, each q ∈ (0, 1] and n ∈N we will define a graph
Gn(ε) that is obtained by deleting edges from the complete graph on n vertices such that each
vertex keeps at least a (1− ε) fraction of its edges and such that push slows down significantly.

We define Gn(ε)= (V1 ∪V2, E) with vertex set V =V1 ∪V2, where V1 := {1, . . . , �n/2�} and
V2 := {�n/2� + 1, . . . , n}, as follows. We include in E all pairs of vertices that intersect V1 and,
moreover, we add edges (that now have endpoints only in V2) such that all vertices in V2 have
degree �(1− ε)n� + 1± 1. According to Lemma 3.7(a) there is a t = log1+q (n)+ o( log n) such
that w.h.p. |It| < n/ log n. It thus suffices to show that it takes w.h.p. at least (1+ ε/2)q−1 log n
more rounds to inform all remaining vertices.

LetU ′
t :=U(push)

t ∩V2. As |It| < n/ log nwe have |U ′
t |� n/4with plenty of room to spare. In the

remainder of this proof we will consider a modified process in which vertices have a higher chance
of getting informed; in particular we assume that in each round, all vertices choose a neighbour
independently and uniformly at random and after this round the chosen vertices are informed.
Let Eu denote the event that u ∈U ′

t does not get informed within the next τ := (1+ ε/2)q−1 log n
rounds in this modifiedmodel. Each vertex u ∈U ′

t has �n/2� neighbours that have degree n− 1, at
most �(1− ε)n� + 1± 1− �n/2�� (1/2− ε)n+ 4 neighbours that have at least degree (1− ε)n
and no further neighbours. Therefore, using the fact that for any a ∈R we have (1+ a/n)n =
ea +O(1/n), we obtain for each u ∈U ′

t

Pt[Eu]�
((

1− q
n− 1

)n/2(
1− q

(1− ε)n

)(1/2−ε)n+4)τ

= (1+ o(1))(e−q(1/2+(1/2−ε)/(1−ε)))τ

= (1+ o(1)) exp
(

−4− 4ε − 3ε2

4− 4ε
log n

)

= ω(n−1).

In this modified model the events {Eu | u ∈U ′
t} also satisfy Pt[Eu | {Ev : v ∈U}]� 1− p for all

u ∈V2 and U ⊆V \ {u} and for some p= ω(n−1). This follows immediately from the previous
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calculation, as conditioning on an event like {Ev : v ∈U} only decreases the number of vertices
that can push to u. Thus, as |U ′

t| = �(n),

Pt

[ ∧
u∈U ′

t

Eu
]
�

∏
u∈U ′

t

(1− p)� exp
(

−
∑
u∈U ′

t

p
)

= o(1).

3.5 Proof of Theorems 1.3(b) and 1.5(a) – push&pull informs almost all vertices fast in spite of
edge deletions

Before we show the actual proof we will first present an informal argument that contains all
relevant ideas and important observations. Let

√
log n� |It|� n/ log n and assume q= 1. In

Section 3.3 we proved that for push the informed vertices nearly double in every round for an
arbitrary expander sequence with edge deletions and an otherwise arbitrary set It . For pull this
is not true; however, we proved in Section 3.1 that the number of edges between the informed
and the uninformed vertices nearly doubles in every round. The first attempt towards the proof
of Theorems 1.3(b) and 1.5(b) then seems obvious: one would try to show that either the vertices
triple every round, or the the edges do so, or for example that the product of the two quantities
increases by a factor of 9. As it turns out, this is in general not the case; indeed, it is possible to
choose an expander sequence, to delete edges such that each vertex keeps at least an (1/2+ ε)-
fraction of its neighbours, and to choose a (large) set of informed vertices It such that after one
round w.h.p. either |It+1| < c|It| or e(It+1,Ut+1)< ce(It ,Ut) or |It+1|e(It+1,Ut+1)< c2|It|e(It ,Ut)
for some c< 3. On the other hand, and although we have no explicit description of these ‘mali-
cious’ sets, it seems rather unlikely that such sets will occur several times during the execution of
push&pull.

In order to show the claimed running time of push&pull we will impose some additional struc-
ture. Let ε > 0. In the subsequent exposition we assume that our graph G – obtained from an
expander by deleting edges such that each vertex keeps at least a (1/2+ ε) fraction of the edges –
has a very special structure. In particular, we assume that there is a partition 
 = (Vi)i∈[k] of the
vertex set of G into a bounded number k of equal parts such that EG(Vi)= ∅ for all 1� i� k
and such that the induced subgraph (Vi,Vj) looks like a random regular bipartite graph for
all 1� i< j� k. Of course, not every relevant G admits such a partition; however, Szemerédi’s
Regularity Lemma guarantees that every sufficiently large graph has a partition that is in a well-
defined sense almost like the one described previously, and a substantial part of our proof is
concerned with showing that being ‘almost special’ does not hurt significantly.

Assuming thatG is very special, let us collect some easy facts. Denote the degree of u ∈Vi in the
induced subgraph (Vi,Vj) by dij; this immediately gives dG(u)= ∑k

�=1 di�, and note that dii = 0 as
there are no edges in Vi. Moreover, regular bipartite random graphs satisfy an expander property,
that is,

e(Wi,Wj)= di,j|Wi| |Wj|/|Vj| + o(di,j)|Wi|
≈ |Wi| |Wj|dijk/n for allWi ⊆Vi,Wj ⊆Vj, 1� i< j� k,

where we used the fact that all |Vi| are of equal size. This is quite similar to the property that we
used in our preceding analysis on expander sequences; see Lemma 2.7. As a pair in
 behaves like a
bipartite expander sequence, we can easily compute the expected number of informed vertices like
we did in Section 3.2. We do so now for pull. Let |Ii,jt+1| be the number of vertices in Vi informed
after round t + 1 by pull from vertices only in Vj and set Iit := It ∩Vi,Ui

t :=Ut ∩Vi for all
1� i� k. Thus, as long as Iit is much smaller than Vi (and thus also Ui

t ≈ |Vi| = n/k), we get
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Et[|I(pull),i,jt+1 \It|]=
∑
u∈Ui

t

|N(u)∩ Ijt|
d(u)

= e(Ui
t , I

j
t)∑

1���k di�
≈ dij∑

1���k di�
|Ijt|.

A similar calculation, which we do not perform in detail, yields for push

Et[|I(push),i,jt+1 \It|]≈ dij∑
1���k d�j

|Ijt|.

Moreover, as in previous proofs it turns out that the number of vertices informed simultaneously
by push as well as pull is negligible; compare with the proof of Lemma 3.4. Thus we obtain that
more or less

Et[|I(pp),i,jt+1 |]≈ |Iit| +
( dij∑

1���k di�
+ dij∑

1���k d�j

)
|Ijt|,

and by linearity of expectation

Et[|I(pp),it+1 |]≈ |Iit| +
∑

1�j�k

( dij∑
1���k di�

+ dij∑
1���k d�j

)
|Ijt|.

Set Xt = (|Iit|)i∈[k] and A= (Aij)1�i,j�k, the matrix with entries

Aij = dij∑
1���k di�

+ dij∑
1���k d�j

for 1� i �= j� k

and Aii = 1 for 1� i� k. With this notation we obtain the recursive relation

Et[Xt+1]≈A · Xt , (3.16)

that is, we may expect that Xt ≈Et[Xt]≈AtX0. If we then let λmax denote the greatest eigenvalue
of A, then we obtain that to leading order

|It| ≈ λtmax.

Our aim is to show that push&pull is (at least) as fast as on the complete graph, that is, |It|� 3t ,
so we take a closer look at the eigenvalues of A. By construction A is symmetric, so the largest
eigenvalue equals sup‖x‖=1 ‖xTAx‖, and the simple choice x= k−1/21 yields

λmax �
∑

(i,j) Ai,j

k
=

∑k
j=1 1+ ∑k

i=1
∑k

j=1 dij/(
∑k

�=1 di�)+
∑k

j=1
∑k

i=1 dij/(
∑k

�=1 d�j)
k

= 3.

This neat property leads us to the expected result

Tpp(G)= (1+ o(1)) logλmax
n� (1+ o(1)) log3 n,

and it also completes the informal argument that justifies the claim made in Theorems 1.3(b)
and 1.5(b). In the rest of this section we will turn this argument step by step into a formal proof
by filling in all missing pieces.

Obtaining an appropriate regular partition. An important ingredient in the previous sketch
was the assumption that the given graph has a partition into a bounded number of equal parts,
such that the bipartite graph induced by any two different parts looks like a random regular graph.
This assumption is quite strong and very much not true in general. However, restricting ourselves
to dense graphs we can actually come quite close to that. Let us begin with some definitions; the
statements are taken from [30].
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Definition 3.1 (density). Given a graph G= (V , E) and two disjoint non-empty sets of vertices
X, Y ⊆V , we define the density of the pair (X, Y) as

dG(X, Y)= eG(X, Y)
|X| |Y| .

As usual, if the graph is clear from the context the index will be omitted. The next defini-
tion gives a partition that is close to the previously described properties; all sets in the partition
have nearly the same size and nearly all pairs behave in a well-defined sense like regular bipartite
random graphs.

Definition 3.2 ((ε, k0,K0)-Szemerédi partition). Let G= (V , E) and k ∈N. We call 
 = {Vi}i∈[k]
an (ε, k0,K0)-Szemerédi partition of G if the following conditions are fulfilled.

(a) V1∪̇ · · · ∪̇Vk =V .
(b) k0 � k�K0.
(c) |V1|� · · ·� |Vk|� |V1| + 1.
(d) For all but at most εk2 pairs (Vi,Vj) of
with i< j, we have that for all subsetsUi ⊆Vi and

Uj ⊆Vj with |Ui|� ε|Vi| and |Uj|� ε|Vj|,
|d(Ui,Uj)− d(Vi,Vj)|� ε.

A pair (Vi,Vj) satisfying the last condition is called ε-regular. For pairs (Vi,Vj) in 
 we will
abbreviate d(Vi,Vj) to dij.

Next we state Szemerédi’s Regularity Lemma. It guarantees that we will have a Szemerédi
partition if the underlying graph is large enough.

Lemma 3.10 ([30], The Regularity Lemma). For every ε > 0 and every k0 ∈N there exist K0 =
K0(ε, k0) and n0 such that every graph G= (V , E) with at least |V| = n� n0 vertices admits an
(ε, k0,K0)-Szemerédi partition.

The next lemma gives a useful property of regular pairs. In particular, with the exception of a
small set only, all other vertices have a degree that is close to dN, where d is the density of the pair
and N is the number of vertices in each part. In fact the statement also is true for arbitrary but not
too small subsets of the parts.

Lemma 3.11. Let G= (V , E) be a graph, ε > 0 and U,U ′ ⊆V. Suppose that (U,U ′) is an ε-
regular pair, and let W ⊆U ′, |W|� ε|U ′|. Furthermore, let E(U,W)⊆U be the largest set such
that |d(u,W)− d(U,U ′)|� ε for all u ∈ E(U,W). Then |E(U,W)|� 2ε|U|.

Proof. We will prove this by contradiction. Assume that |E(U,W)|� 2ε|U|. Let us write
E(U,W)= S∪ L, where

S= {u ∈ E(U,W) : d(u,W)< d(U,U ′)− ε}, L= {u ∈ E(U,W) : d(u,W)> d(U,U ′)+ ε}.
Then |S|� ε|U| or |L|� ε|U|. In the former case

d(S,W)=
∑

u∈S e(u,W)
|S| |W| =

∑
u∈S d(u,W)

|S| < d(U,U ′)− ε.

As |S|� ε|U|, |W|� ε|U ′|, this contradicts the assumption that (U,U ′) is an ε-regular pair. The
case |L|� ε|U| follows analogously by showing that d(L,W)> d(U,U ′)+ ε.
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We call the set E(U,W) in Lemma 3.11 the exceptional set ofU with respect toW. In particular,
Lemma 3.11 implies that for every ε-regular pair (U,U ′) and all W ⊆U ′, |W|� (1− cε)|U ′|, c> 0
we have

|d(u,W)− d(U,U ′)|� |d(u,W)− d(u,U ′)| + |d(u,U ′)− d(U,U ′)|
� (c+ 1)ε for all u ∈U\E(U,U ′). (3.17)

Having done these preparations we can now determine a partition that comes close to the initially
described properties.

Lemma 3.12. Let Gn = (V , E) be a graph on n vertices such that δGn � αn for some α > 0. Then
for all η > 0 and k0 > 1/√η there exists n0,K0 ∈N such that for all Gn with n� n0 there is an
(η, k0,K0)-Szemerédi partition
 = {Vi}i∈[k] of Gn with the following property. There is F ⊆ 
 with
|F|� ηk such that, for all Vi ∈ 
\F,

• there are at most ηk non-η-regular pairs (Vi,Vj), j ∈ [k], and
• there exists an exceptional set Ni, |Ni|� η|Vi| such that

d(u)� (1+ η)
n
k

∑
1�j�k

d(Vi,Vj) for all u ∈Vi\Ni.

Proof. According to Lemma 3.10, for all ξ > 0 and k0 > 1/
√

ξ , there are n0,K0 ∈N such that for
all Gn with n� n0 there is a k ∈N and a (ξ , k0,K0)-Szemerédi partition 
 = {Vi}i∈[k] of Gn. Let
F ⊆ 
 contain the parts Vi ∈ 
 such that there are at least

√
ξk other parts Vj ∈ 
 such that the

pair (Vi,Vj) is not ξ -regular. As there are at most ξk2 non-ξ -regular pairs, we infer that |F|�√
ξk.

Let Vi ∈ 
 \ F. Further, let Ai ⊆ 
 be such that (Vi,Vj) is a ξ -regular pair for all Vj ∈ 
 \Ai and
(Vi,Vj) is not ξ -regular for all Vj ∈Ai. The definition of F implies that |Ai|�√

ξk. For these
Vj ∈ 
 \Ai let Ei(Vj)= E(Vi,Vj) be the exceptional set of Vi with respect to Vj. On top of that let
Ni ⊆Vi be the set of points in Vi that are in at least

√
ξk exceptional sets with respect to parts in


 \Ai. As there are at most k exceptional sets and by Lemma 3.11 each exceptional set has at most
2ξ |Vi| vertices, we get that |Ni|� 2

√
ξ |Vi|. Let Vi ∈ 
\F, u ∈Vi\Ni and let B(u)⊆ 
\Ai be the

set of parts such that u ∈ Ei(Vj) for all Vj ∈ B. Then |B|�√
ξk and

d(u)=
∑

1�j�k
|Vj|d(u,Vj)

=
( ∑
Vj∈Ai∪B

|Vj|d(u,Vj)+
∑

Vj∈
\(Ai∪B)
|Vj|d(u,Vj)

)

�
∣∣∣∣N(u)∩

( ⋃
Vj∈Ai∪B∪{Vi}

Vj

)∣∣∣∣ +
∑

1�j�k
|Vj|(d(Vi,Vj)+ ξ ).

By the definition of F and as u ∈Vi\Ni, we get that∣∣∣∣ ⋃
Vj∈Ai∪B∪{Vi}

Vj

∣∣∣∣� (
√

ξk+ √
ξk+ 1)(n/k+ 1)� 3

√
ξn.

With that at hand and by using d(u)� αn and the fact that the sizes of the parts in 
 differ by at
most one, we obtain

d(u)� 3
√

ξn+ n
k

∑
1�j�k

d(Vi,Vj)+ 2ξn� n
k

∑
1�j�k

d(Vi,Vj)+ 5
√

ξd(u)/α.
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Let η > 0. Choosing ξ small enough such that

max{ξ , 2√ξ , 1/(1− 5
√

ξ/α)− 1}� η

implies the claim.

The recursion relation. In this section we exploit the properties of the partition to study the
expected number of informed vertices after one additional round; our aim is to establish a precise
version of (3.16). In the remainder let ‖A‖F = (

∑
1�i�n

∑
1�j�n |ai,j|2)1/2 denote the Frobenius

norm of a matrix A ∈R
n×n.

For the next lemma consider the setting of Theorems 1.3(b) and 1.5(b), that is, we are given an
expander sequence (Gn)n∈N with minimal degree δn � αn for some α > 0 and an ε > 0.We obtain
a sequence of graphs (G̃n)n∈N by deleting up to a 1/2− ε fraction of the edges at each vertex inGn.
Further, let η > 0, k0 ∈N and
 = {Vi}i∈[k] be the (η, k0,K0)-Szemerédi partition of G̃n as given by
Lemma 3.12. For that partition define Ei,j := E(Vi,Vj) as the exceptional set of Vi with respect to
Vj given by Lemma 3.11, i �= j ∈ [k], F and Ni as the exceptional sets from Lemma 3.12, i ∈ 
 \ F.
Moreover, let 
i = {Vj ∈ 
 \ F : (Vi,Vj) is η-regular} and note that

|
i|� (1− 2η)k, |Ni|� η|Vi| and |Ei,j|� 2η|Vi| for all i ∈ 
 \ F, j ∈ 
i. (3.18)

Finally, define

Hi,j′ =Ni ∪ Ei,j′ , i ∈ 
 \ F and j ∈ 
i

and

Xt,i,j = |I(pp)t ∩ (Vi \ (Ni ∪ Ei,j))|, i ∈ 
 \ F and j ∈ 
i

as well as

Xt,i =min
j∈
i

Xt,i,j, i ∈ 
 \ F.

This definition guarantees that |I(pp)t |� ‖Xt‖1. The cornerstone of our proof is the following
lemma, which bounds the growth of Xt = (Xt,i)i∈
\F after one round.

Lemma 3.13. Consider the situation as described above and assume additionally that |Xt,i|�
log log n for all i ∈ 
 \ F and that |I(pp)t |� n/ log n. Then, for all ν > 0 and n large enough, there
exists a symmetric matrix A with biggest eigenvalue λmax � 1+ 2q− ν and an error matrix �A
with ‖�A‖F � ν such that w.h.p.

Xt+1 � (A+ �A)Xt .

Proof. We set IP ,i
t = IPt ∩Vi, UP ,i

t =UP
t ∩Vi for P ∈ {push, pull, pp} and let

IP ,i,j
t+1 \It = {u ∈Ut ∩Vi | there is v ∈ It ∩Vj such that u gets informed by v using P}

be the vertices in Vi newly informed in round t + 1 by operations involving only vertices from Vi
andVj. Let (i, j) ∈ 
 \ F. For all u ∈Ui

t we know that d(u)� αn/2. Moreover, |Iit|� |It|� n/ log n.
Thus the probability of u ∈Ui

t being informed by vertices in Ijt via pull is q|N(u)∩ Ijt|/|N(u)| =
o(1). As the events of u being informed by push and pull are independent,

P[u ∈ I(push),i,jt+1 ∩ I(pull),i,jt+1 ]= o(1)P[u ∈ I(push),i,jt+1 ].

Thus, for any set S ∈V ,

E[|(I(pp),i,jt+1 \ It)∩ S|]= (1− o(1))(E[|(I(pull),i,jt+1 \ It)∩ S|]+E[|(I(push),i,jt+1 \ It)∩ S|]). (3.19)
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Let i ∈ 
\F and j ∈ 
i. We start by determining the expected number of vertices informed by pull.
Further, set

Di = (1+ η)
n
k

∑
1���k

di�.

According to Lemma 3.12, all v ∈Ui
t \Ni have degree less than Di. Let j′ ∈ 
i. Then

Et[|I(pull),i,jt+1 \(It ∪Hi,j′)|]=
∑

u∈Ui
t\Hi,j′

q
|N(u)∩ Ijt|

|N(u)| � q
e(Ui

t \Hi,j′ , I
j
t)

Di
.

Since |Iit|� |It|� n/ log n, we get with room to spare that |Ui
t \Hi,j′ |� (1− 5η)n/k for n large

enough and all j′ ∈ 
i. Applying (3.17), where we chooseW =Ui
t \Hi,j′ , yields |d(Ui

t \Hi,j′ , u)−
dij|� 6η for all u ∈Vj \ Ej,i. Thus

Et[|I(pull),i,jt+1 \(It ∪Hi,j′)|]� q
(dij − 6η)|Ui

t \Hi,j′ | |Ijt\Ej,i|
Di

� (1− 5η)q
(dij − 6η)|Ijt\(Ej,i ∪Nj)|

Dik/n
.

As Di = (1+ η)n/k
∑

1���k di�, we get for

c1 := (1− 6η)(1+ η)−1

with Xt,j,i = |Ijt\(Ej,i ∪Nj)| that

Et[|I(pull),i,jt+1 \(It ∪Hi,j′)|]� c1 · q (dij − 6η)Xt,j,i∑
1���k di�

for all i ∈ 
 \ F and j, j′ ∈ 
i. (3.20)

We continue with push. Let i ∈ 
\F and j, j′ ∈ 
i, and set (as before)

Dj = (1+ η)
n
k

∑
1���k

d�j.

Then

Et[|I(push),i,jt+1 \(It ∪Hi,j′)|]=
∑

u∈Ui
t\Hi,j′

(
1−

∏
v∈N(u)∩Ijt

(
1− q

|N(v)|
))

.

According to Lemma 3.12 all v ∈ Ijt\Nj have degree less than Dj and furthermore |It| = o(n)=
o(Dj). Thus (3.3) yields the estimate

Et[|I(push),i,jt+1 \(It ∪Hi,j′)|]�
∑

u∈Ui
t\Hi,j′

(
1−

(
1− q

Dj

)|N(u)∩(Ijt\Nj)|)

� (1− o(1))
∑

u∈Ui
t\Hi,j′

q
|N(u)∩ (Ijt\Nj)|

Dj
. (3.21)

The remaining steps are similar to the previously considered case of pull. By assumption we have
that |Ijt\Hj,i| = Xt,j,i and as |Iit|� |It|� n/ log n we obtain that |Ui

t\Hi,j′ |� (1− 5η)n/k for n large

https://doi.org/10.1017/S0963548320000310 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548320000310


68 R. Daknama, K. Panagiotou and S. Reisser

enough and all j′ ∈ 
i. Using (3.17) we obtain that |d(Ui
t \Hi,j′ , u)− dij|� 6η for all u ∈Vj \ Ej,i.

Thus

Et[|I(push),i,jt+1 \(It ∪Hi,j′)|]� (q− o(1))
e(Ui

t \Hi,j′ , I
j
t\(Nj ∪ Ej,i))

Dj

� (q− o(1))
(dij − 6η)|Ui

t \Hi,j′ |Xt,j,i

Dj
.

Using the fact that Dj = (1+ η)n/k
∑

1���k d�j, we get for the same constant c1 as in (3.20) and
n large enough

Et[|I(push),i,jt+1 \(It ∪Hi,j′)|]� c1 · q (dij − 6η)Xt,j,i∑
1���k d�j

for all i ∈ 
 \ F and j, j′ ∈ 
i. (3.22)

With (3.19), we can combine the results for pull, (3.20), and push, (3.22), to get for c2 := c1 − η

Et[|I(pp),i,jt+1 \(Iit ∪Hi,j′)|]� c2 · q
( dij − 6η∑

1���k di�
+ dij − 6η∑

1���k d�j

)
Xt,j,i for all i ∈ 
 \ F, j, j′ ∈ 
i.

(3.23)

Next we will show how we can exploit (3.23) to obtain (a lower bound for) Et[|(I(pp),it+1 \ It)|]. Let
i ∈ 
 \ F and u ∈Ui

t . Using |It| = o(n) and (3.3) we obtain

Pt[u ∈ I(push),it+1 \ It]= 1−
∏

i∈N(u)∩It

(
1− 1

|N(i)|
)

= (1− o(1))
∑

i∈N(u)∩It

1
|N(i)| .

LetW ⊆V . Using (3.19), the previous equation and that 
 is a partition, we get

Et[|(I(pp),it+1 \ It)∩W|]= (1− o(1))
∑

u∈Ui
t∩W

( |N(u)∩ It|
|N(u)| +

∑
i∈N(u)∩It

1
|N(i)|

)

= (1− o(1))
∑

u∈Ui
t∩W

(∑
j∈[k]

( |N(u)∩ It ∩Vj|
|N(u)| +

∑
i∈N(u)∩It∩Vj

1
|N(i)|

))

= (1− o(1))
∑
j∈[k]

Et[|(I(pp),i,jt+1 \ It)∩W|].

ChooseW =V \Hi,j′ . Then the previous equation implies

Et[|I(pp),it+1 \(It ∪Hi,j′)|]� (1− o(1))
∑
j∈
\F

Et[|I(pp),i,jt+1 \(It ∪Hi,j′)|] for all i ∈ 
 \ F, j′ ∈ 
i,

which in turn, using (3.23) and Xt,j,i � Xt,j for all j ∈ 
 \ F and i ∈ 
j, implies for c := c2 − η

Et[Xt+1,i,j′]� Xt,i + c · q
∑
j∈
i

( dij − 6η∑
1���k di�

+ dij − 6η∑
1���k d�j

)
Xt,j for all i ∈ 
 \ F, j′ ∈ 
i.

(3.24)
Assume that (3.24) holds not only in expectation but also for a slightly smaller c, say c− η, with
high probability. We are going to show this at the end of the proof. Using this assumption and a
union bound over j′ ∈ 
i gives w.h.p.

Xt+1,i = min
j′∈
i

Xt+1,i,j′ � 〈ai, (Xt,j)j∈
i〉 for all i ∈ 
 \ F, (3.25)
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where for i ∈ 
 \ F and j ∈ 
i we have

aij = 1[i= j]+ c · q
( dij − 6η∑

1���k di�
+ dij − 6η∑

1���k d�j

)
. (3.26)

Let A be the |
 \ F| × |
 \ F| matrix with entries as in the previous equation, that is, A=
(aij)(i,j)∈(
\F)2 is given by (3.26) for all (i, j) ∈ (
 \ F)2. Note that A is symmetric. Then we obtain
from (3.25)

Xt+1 � B · Xt ,
with B=A+ �A, where

(�A)ij =
{
0 i ∈ 
\F and j ∈ 
i,
−aij i ∈ 
\F and j ∈ 
 \ (F ∪ 
i).

Set
F′ := {(i, j) ∈ (
 \ F)2 | j ∈ 
 \ (F ∪ 
i)}.

As d(u)� αn/2 for all u ∈V and some α > 0, we also know that
∑

1���k d�j � kα/2. Together
with 0� di,j � 1 for all (i, j) ∈ [k]2, we get that∣∣∣∣ dij − 6η∑

1���k di�

∣∣∣∣� 2
αk

.

Using the fact that |F′|� 2ηk2 (see (3.18)), we obtain

‖�A‖2F =
∑

(i,j)∈F′
a2ij �

∑
(i,j)∈F′

(
4
αk

)2
� 2ηk2

(
4
αk

)2
= 42 · 2 · η

α2

and thus ‖�A‖F � 4
√
2η/α. This leaves us with bounding the biggest eigenvalue λmax of A. Using

the well-known inequality for symmetric matrices,

λmax �
∑

(i,j)∈(
\F)2
Aij/|
 \ F|,

we obtain

λmax �
1

|
 \ F|
∑

(i,j)∈(
\F)2
aij

� 1
|
 \ F|

( ∑
(i,i)∈(
\F)2

1+
∑

(i,j)∈[k]2

cq(dij − 6η)∑
1���k di�

+
∑

(i,j)∈[k]2

cq(dij − 6η)∑
1���k d�j

− 2
∑

i∈[k]\(
\F)

∑
j∈[k]

cq∑
1���k d�j

)
.

Note that |
 \ F|� (1− η)k, |[k] \ (
 \ F)|� ηk. Moreover,
∑

1���k d�j � αk/2 for all
j ∈ [k]. Thus

λmax � 1+ 1
k

(
cqk+ cqk− 12cq

∑
(i,j)∈[k]2

η∑
1���k d�j

− 2cq
ηk2

αk/2

)
� 1+ 2cq(1− 8η/α).

Choosing η small enough such that 2q(1− c(1− 8η/α)), 4
√
2η/α � ν implies the claim of this

lemma.
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This leaves us with proving that (3.24) also holds with high probability. As |I(pp)t+1 | conditioned
on It is a self-bounding function, so is |I(pp),it+1 \ Iit| for all i ∈ 
 \ F and therefore also |I(pp),it+1 \(It ∪
Hi,j′)| =: Yt+1,i,j′ for all i ∈ 
 \ F and j′ ∈ 
i. Note thatYt+1,i,j′ = Xt+1,i,j′ − Xt,i,j′ . Lemma 2.2 yields
that

Pt[Yt+1,i,j′ � (1−Et[Yt+1,i,j′]−1/3)Et[Yt+1,i,j′]]� 1−Et[Yt+1,i,j′]−1/3

and therefore, setting

Zt,i = c · q
∑
j∈
i

( dij − 6η∑
1���k di�

+ dij − 6η∑
1���k d�j

)
Xt,j for all i ∈ 
 \ F,

and using (3.24), i.e. Et[Yt+1,i,j′]� Zt,i for all i ∈ 
 \ F and j′ ∈ 
i, we get with probability at least
1− k3Z−1/3

t,i

Yt+1,i,j′ � (1− Z−1/3
t,i )Zt,i for all i ∈ 
 \ F and j′ ∈ 
i.

This and |Iit|� Xt,i for all i ∈ 
 \ F implies that (3.24) also holds with high probability for a
marginally smaller c, as claimed.

Extension. We now solve the linear recurrence relation above and extend it to more than one
round to get an upper bound on the runtime of push&pull. We first state a Chernoff bound that
will be very useful in the next lemma.

Lemma 3.14 ([26]). Let ε, δ > 0. Suppose that X1, . . . , Xn are independent geometric random
variables with parameter δ, so E[Xi]= 1/δ for each i. Let X := ∑

1�i�n Xi,μ =E[X]= n/δ. Then

P[X � (1+ ε)μ]� e−n(ε−log (1+ε)) � e−ε2n/2(1+ε)

Together with Lemma 2.11 the following lemma implies Theorems 1.3(b) and 1.5(b).

Lemma 3.15. Consider the setting of Theorems 1.3(b) and 1.5(b) and let It = I(pp)t . The following
statements hold w.h.p.

(a) Let S⊆Vn, |S| = �(n). Then there is t = �(log log n) such that w.h.p. |It|� |It ∩ S|�
log log n.

(b) Let log log n� |It|� n/ log n. Then there is τ � log1+2q (n/|It|)+ o(log n) such that
|It+τ | > n/ log n.

(c) Let n/ log n� |It|� n− n/ log n. Then there is τ = o( log n) such that |It+τ | > n− n/ log n.
(d) Let |It|� n− n/ log n and q= 1. Then there is τ = o( log n) such that |It+τ | = n.

Proof. As |I(pp)t |� |I(pull)t | clearly (c) and (d) follow from Lemma 3.2.We show (a) by determining
a lower bound for the probability that an arbitrary vertex gets informed after a constant number
of rounds. Set β =min{α, ε}, let S0 = {u} and choose w ∈V ,w �= u. By Lemma 2.9 there is d�
8/β2 + 2 and c= (β4/64)8/β2+3 ∈ (0, 1) such that there are at least cnd−1 paths of (edge) length d
from u to w. Let γ = (u, v1, . . . , vd−1,w) be such a path from u to w, and let Aγ denote the event
that w is informed via γ after exactly d rounds performing only push operations, that is, Aγ is the
event that in the first round the randomly selected neighbour of u is v1, in the second round the
randomly selected neighbour of v1 is v2 and so forth, until in the dth round the randomly selected
neighbour of vd−1 is w. Obviously, the probability of Aγ is bounded from below by n−d. Further,
let γ ′ �= γ be another path from u to w with length d. As γ and γ ′ differ by at least one edge we
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readily obtain that P[Aγ ∩Aγ ′]= 0. Let � denote the set of all paths with length d from u to w.
Having done these preparations we use them to conclude for all w ∈V and t� 0

Pt[w ∈ It+d]� Pt

[⋃
γ∈�

Aγ

]
�

∑
γ∈�

Pt[Aγ ]�
∑
γ∈�

n−d � c
n
. (3.27)

We define a modified protocol as follows.Wait d := �8/β2 + 2� rounds, after that with probability
c choose one uninformed vertex uniformly at random and set it as informed. Repeat. Call the
vertices informed by this algorithm I�t . Then the probability of any vertex being informed after d
rounds is

Pt[v ∈ I�t+d|v /∈ I�t ]= c/n.
Thus, for any t� 0,

Pt[v ∈ It+d|v ∈Ut]� Pt[v ∈ I�t+d|v /∈ I�t ]= c/n.
Note that for any s ∈N the set I�sd is generated by a very simple procedure: s times independently,
with probability c, we choose a random vertex and put it into I�sd. Thus |I�sd ∩ S| is binomially
distributed with s trials, where each one has success probability c|S|/n= �(c); it follows readily
that |I�sd ∩ S| concentrates around a multiple of s for large s, and the claim follows by choosing
s= �( log log n).

This leaves (b) to be shown. Part (a) implies that there is some t0 = o( log n) such that Xt0,i =
�( log log n) for all i ∈ 
 \ F by choosing S=Vi \ (Ni ∪ Ei,j), j ∈ 
i and applying a union bound
over i and j. Thus we can apply Lemma 3.13. It gives w.h.p., say with probability 1− g(n)= 1−
o(1), that Xt+1 � (A+ �A)Xt , A has maximal eigenvalue λmax(A)� 1+ 2q− ν and ‖�A‖F � ν.
Then B :=A+ �A has maximal eigenvalue

λmax(B)� λmax(A)− ‖�A‖F � 1+ 2q− 2ν
(Theorem of Wielandt and Hoffmann; see e.g. [24]).

Set f (n) := ( log (n/ log n))2/3. Our assumptions guarantee that f (n)= ω(1) and f (n)=
o( log n). Moreover, set

τ := 1
1− g(n)

· log (n/ log n)
log (λmax(B))

+ f (n)= log n
log (λmax(B))

+ o( log n).

Let (Xi)i∈N be independent and identically distributed geometric random variables with expecta-
tion 1− g(n). Set X = X1 + X2 + · · · + XT with T = log (n/ log n)/ log (λmax(B)). We show that
P[X � τ ]= 1− o(1). To see this, note first that by linearity of expectation E[X]= τ − f (n). Then,
by Lemma 3.14,

P[X � τ ]= P

[
X�

(
1+ f (n)

τ + f (n)

)
E[X]

]
� 1− exp

(
−�

(
f (n)2

τ

))
= 1− o(1).

Thus we have w.h.p.

|It+τ |� ‖Xt+τ‖1 � ‖BT Xt0‖1.
Let v be an eigenvector of B to λmax(B). As v �= 0 there is an index � such that v� �= 0. Without loss
of generality we can assume that v� = 1, as v/v� is also an eigenvector to λmax(B). Thus (BT v)� =
λmax(B)T , (BT (Xt0 − v))i � 0 for all 1� i� k and therefore

|It+τ |� (BT Xt0 )� � (BT (v+ Xt0 − v))� = (BT v)� + (BT (Xt0 − v))� � (BT v)� � λmax(B)T .

Our choice of T yields w.h.p. |It+τ |� λmax(B)T � n/log n. Note that, since ν > 0 was chosen
arbitrarily, we in fact have that τ � log1+2q (n)+ o( log n), and the proof is completed.
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Figure 1. Plotted values of� in Tpp(Gn(ε), q)− cpp log n= � log n+ o( log n), for 0.9< q< 1 and 0< ε < 1/2.

3.6 Proof of Theorem 1.4(b) – edge deletions may slow down push&pull
For any 0< ε < 1/2, q ∈ (0, 1) we consider a sequence of graphs (Gn(ε))n∈N = ((Vn, En))n∈N
that is similar to the one studied in the proof of Theorem 1.4(a). Let Vn =An ∪ Bn with An :=
{1, . . . , �n/2�}, Bn := {�n/2� + 1, . . . , n} and deg(v)= n− 1 for all v ∈An. Let the induced sub-
graph of Bn be a random graph in which each edge is included independently with probability
p= 1− 2ε. We know and it is easy to show (see e.g. [15, Section IV]) that w.h.p. this subgraph is
almost regular, that is,

dBn(v)= (1+ o(1))(1− 2ε)n/2 for all v ∈ Bn, (3.28)

and is an expander, which means that for every Sn ⊆ Bn, 1� |Sn|� n/4 and dBn := (1− 2ε)n/2
we have

e(Sn, Bn\Sn)= (1+ o(1))
dBn |Sn| |Bn \ Sn|

|Bn| = (1− 2ε + o(1))|Sn| |Bn \ Sn|. (3.29)

First we give a statement that describes the expected number of informed vertices after performing
one round of push&pull.

Lemma 3.16. Let Gn(ε)= (An ∪ Bn, En) be as above.

(a) Let
√
log n� |It|� n/ log n and set

Xt = (|I(pp),(A)t |, |I(pp),(B)t |) := (|I(pp)t ∩An|, |I(pp)t ∩ Bn|).
Then Et[Xt+1]= (1+ o(1))MXt, where

M =
⎛
⎝ 1+ q q

(
1+ ε/(2− 2ε)

)
q
(
1+ ε/(2− 2ε)

)
1+ q

(
1− 2ε/(2− 2ε)

)
⎞
⎠.

(b) Let |U(pp)
t |� n/ log n. Then

Et[|U(pp)
t+1 |]� (1+ o(1))e−q(1/2+(1/2−ε)/(1−ε))(1− q)|Ut|.

Proof. For J ∈ {A, B}, Jn ∈ {An, Bn} set U(J)
t :=Ut ∩ Jn, I(J)t := It ∩ Jn and I(pp),(J)t+1 = I(pp)t+1 ∩ Jn. We

first prove (a) by computing the expected number of informed vertices after a single round. Since
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d(u)= �(n) for all u ∈Vn and |It|� n/ log n, the probability of u ∈Ut being informed by pull is

Pt[u ∈ I(pull)t+1 \ It]= q|N(u)∩ It|
|N(u)| = o(1).

As the events of u being informed by push and pull are independent, we have

Pt[u ∈ (I(push)t+1 ∩ I(pull)t+1 ) \ It]= o(1)Pt[u ∈ I(push)t+1 \ It].
Thus

Et[|I(pp)t+1 \ It|]= (1+ o(1))(Et[|I(push)t+1 \ It|]+Et[|I(pull)t+1 \ It|]).
We look at pull in detail first. Recall that

deg (v)= n− 1 for all v ∈An and deg (v)= (1+ o(1))(1− ε)n for all v ∈ Bn.
Moreover, using (3.29), we obtain

Et[|I(pull)t+1 \ It|]=
∑
u∈Ut

q
|N(u)∩ It|

|N(u)|

=
∑

u∈U(A)
t

q
|N(u)∩ It|

|N(u)| +
∑

u∈U(B)
t

q
|N(u)∩ It|

|N(u)|

= (q+ o(1))
n
2

( |I(A)t | + |I(B)t |
n

+ |I(A)t | + (1− 2ε)|I(B)t |
(1− ε)n

)
and thus

Et[|I(pull),(A)t+1 \ It|]= (q+ o(1))
|I(A)t | + |I(B)t |

2
,

Et[|I(pull),(B)t+1 \ It|]= (q+ o(1))
|I(A)t | + (1− 2ε)|I(B)t |

2(1− ε)
.

Next we consider push. By using |It| = o(n)= o(δGn(ε)) and (3.3), we obtain

Et[|I(push)t+1 \ It|]=
∑
u∈Ut

1−
∏

i∈N(u)∩It

(
1− q

|N(i)|
)

=
∑
u∈Ut

(1+ o(1))
∑

i∈N(u)∩It

q
|N(i)|

= (q+ o(1))
∑
u∈Ut

( |I(A)t |
n

+ 1[u ∈U(A)
t ]|I(B)t | + 1[u ∈U(B)

t ]|N(u)∩ I(B)t |
(1− ε)n

)

and thus, with |U(A)
t |, |U(B)

t | = (1− o(1))n/2 and (3.29),

Et[|I(push),(A)t+1 \ It|]= (q+ o(1))
( |I(A)t |

2
+ |I(B)t |

2
+ ε|I(B)t |

2(1− ε)

)
,

Et[|I(push),(B)t+1 \ It|]= (q+ o(1))
( |I(A)t |

2
+ |I(B)t |

2
− ε|I(B)t |

2(1− ε)

)
.

Accumulating the calculated expectations for pull and push yields the claim.
Next we show (b). The assumption implies that |It| = (1− o(1))n and therefore |I(A)t | = |I(B)t | =

(1− o(1))n/2. Let Du be the event that an uninformed vertex u does not get informed by the
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push algorithm; let Eu be the corresponding event for pull. Then Du and Eu are independent and
Du ∩ Eu is the event that u does not get informed in the current round. Let u ∈U(A)

t , and then

Pt[Du]=
∏
v∈I(A)t

(
1− q

|N(v)|
) ∏

v∈I(B)t

(
1− q

|N(v)|
)

= (1− o(1))
(
1− q

n

)|I(A)t |(
1− q

(1− ε)n

)|I(B)t |

= e−q(1/2+1/(2(1−ε))) + o(1)
� e−q(1/2+(1−2ε)/(2(1−ε))) + o(1)

and

Pt[Eu]= 1− q|N(u)∩ |It| |
|N(u)| = 1− q|It|

n− 1
= 1− q+ o(1).

Now consider u ∈U(B)
t ; then according to (3.28) we have

|N(u)∩ I(B)t | = |N(u)∩ Bn| − |N(u)∩U(B)
t | = (1+ o(1))(1− 2ε)n/2.

Therefore

Pt[Du]=
∏
v∈I(A)t

(
1− q

|N(v)|
) ∏

v∈N(u)∩I(B)t

(
1− q

|N(v)|
)

= (1− o(1))e−q/2
(
1− q

(1− ε)n

)|N(u)∩I(B)t |

= e−q(1/2+(1−2ε)/(2(1−ε))) + o(1)

and

Pt[Eu]= 1− q|N(u)∩ |It| |
|N(u)| = 1− (1+ o(1))

q(|I(A)t | + |N(u)∩ I(B)t |)
(1− ε)n

= 1− q+ o(1).

Combining the results for u ∈U(A)
t and u ∈U(B)

t , we get

Et[|Ut+1|]=
∑
u∈Ut

Pt[Du]Pt[Eu]� (1+ o(1))e−q(1/2+(1/2−ε)/(1−ε))(1− q)|Ut|.

Remark 3.1. Let λmax be the greatest eigenvalue ofM as defined in Lemma 3.16(a). Then

λmax = 1+ 2q+
(
2q

(√
(ε2/2− ε + 1)− 1

)
+ qε

)
/(2− 2ε)> 1+ 2q.

Next comes a lemma that bounds the runtime of push&pull on Gn(ε). In particular, (a) and (c)
of Lemma 3.17 provide a lower bound on the runtime, and (a), (b) and (d) of Lemma 3.17 together
with Lemma 3.15(a) provide an upper bound.

Lemma 3.17. Let It = I(pp)t , ε > 0 and λ = λmax(M) be the greatest eigenvalue of M as given in
Lemma 3.16(a). Consider Gn(ε).

(a) Let
√
log n� |It|� n/ log n. Then there are τ1, τ2 = logλ (n/|It|)+ o( log n) such that

|It+τ1 | < n/ log n< |It+τ1 |.
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(b) Let n/ log n� |It|� n− n/ log n. Then there is τ = o( log n) such that |It+τ | > n− n/ log n.
(c) Let |It|� n/ log n. Then there is

τ � log n/ log ((1− q)−1 exp (q(1/2+ (1/2− ε)/(1− ε))))− o( log n)
such that |It+τ | < n.

(d) Let |It|� n− n/ log n and q ∈ (0, 1). Then there is

τ � log n/ log ((1− q)−1 exp (q(1/2+ (1/2− ε)/(1− ε))))+ o( log n)
such that |It+τ | = n.

Proof. We do not give a proof for (b) as it follows immediately from Lemma 3.15(a). For
J ∈ {A, B} set U(J)

t :=Ut ∩ Jn, I(J)t := It ∩ Jn. We prove (a) first. Let t0 > 0 be the first round such
that |It0 |� log log n and set Xt and M as in Lemma 3.16(a); note that Lemma 3.15(a) also gives
that (Xt0 )i � log log n/2 for i ∈ {1, 2}. Then, for all t� t0 such that |It|� n/ log n, we obtain
from Lemma 3.16(a) that Et[Xt+1]= (1+ o(1))MXt and, in particular, Et[(Xt+1)i]= �(|It|) for
i ∈ {1, 2}. As every component of Xt is self-bounding, Lemma 2.1 applies and we get for i ∈ {1, 2}

Pt[|(Xt+1)i −Et[(Xt+1)i]|�Et[(Xt+1)i]2/3]=O(|It|−1/3)
and by the union bound, provided that |It|� n/ log n,

Pt

[ ⋂
i∈{1,2}

(|(Xt+1)i −Et[(Xt+1)i]|�Et[(Xt+1)i]2/3)
]

= 1−O(|It|−1/3). (3.30)

Using (3.30) we want to find a bound on |It+1|. As long as |It|� n/ log n, we get

((1−O(|It0 |−1/3))M)t+1−t0Xt0 � Xt+1 � ((1+O(|It0 |−1/3))M)t+1−t0Xt0 .
As seen in Remark 3.1,M has maximal eigenvalue λmax > 1, and asM is a positive matrix there is
a positive eigenvector v to λmax; see [32]. This gives constants c1, c2 > 0 such that c1v log log n�
Xt0 � c2v log log n, and for t large enough

c1
c2
((1−O(|It0 |−1/3))λmax)t+1−t0Xt0 � Xt+1 �

c2
c1
((1+O(|It0 |−1/3))λmax)t+1−t0Xt0 ,

and therefore

|It+1|� c1
c2
((1+ o(1))λmax)t−t0 |It0 |,

as long as the right-hand side is bounded by n/ log n. For all these t we also get

|It+1|� c2
c1
((1− o(1))λmax)t−t0 |It0 |.

Proceeding as in Lemmas 2.5 and 2.6 and their proofs, where we replace the events

|It|�Et−1[|It|]−Et−1[|It|]2/3 or |It|� n/g(n)
and

||It| −Et−1[|It|]|�Et−1[|It|]2/3
with ⋂

i∈{1,2}
((Xt+1)i � (1−Et[(Xt+1)i]−1/3)Et[(Xt+1)i]) or |It|� n/ log n

and ⋂
i∈{1,2}

(|(Xt+1)i −Et[(Xt+1)i]|�Et[(Xt+1)i]2/3)
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we obtain the statement. Next we show (c). The assumption guarantees that less than n/ log n
vertices are informed. Thus |U(B)

t |� n/2− |It|� (1/2− 1/log n)n. We consider a modified dis-
semination process, where in each round, each uninformed vertex always chooses an informed
neighbour (but does not necessarily get informed as the message transmission may fail), and
additionally each vertex chooses a neighbour independently and uniformly at random and after
this round the chosen vertex is informed with probability q; in other words, we assume that
uninformed vertices can inform other vertices. In this modified process the probability of an unin-
formed vertex u ∈U(B)

t staying uninformed after performing one round is given by the product of
the probabilities of not being informed by pull or via push by a vertex in An or Bn. Using (3.29)
and (1− 1/n)n = e−1+o(1), we get g(n)= o(1) such that

Pt[u ∈U(B)
t+1]= (1− q)

(
1− q

n

)n/2(
1− q

(1− ε)n

)|N(u)∩Bn|

= (1− q) exp
(

−q
(
1
2

+ 1/2− ε

1− ε

)
+ g(n)

)
.

As we have seen in the proof of Lemma 3.16(b), the probability of being informed by push&pull
is greater for a vertex in An than for a vertex in Bn. Therefore it is sensible to expect that some
vertices in Bn will be the last to be informed. Consequently let Eu denote the event that a currently
uninformed vertex u ∈U(B)

t does not get informed in this modified version within the next

τ := 1
log ((1− q)−1 exp (q(1/2+ (1/2− ε)/(1− ε)− g(n))))

log (n)− h(n)

rounds, where h= o( log n) and h= ω(1). Therefore we have

Pt[Eu]=
(
(1− q) exp

(
−q

(
1
2

+ 1/2− ε

1− ε

)
+ g(n)

))τ

= 1
n
eω(1).

In this modified model the events {Eu | u ∈U(B)
t } satisfy that there is p= ω(n−1) such that

Pt[Eu | {Ev : v ∈U}]� p for all u ∈ Bn and U ⊆V \ {u}.
This follows immediately by the above calculations. Thus, as |U(B)

t | = �(n),

Pt

[ ∧
u∈U(B)

t

Eu
]
�

∏
u∈U(B)

t

(1− p)� exp
(

−
∑

u∈U(B)
t

p
)

= o(1).

Finally we show (d). By Lemma 3.16(b), we obtain that for any τ ∈N,

Et[|Ut+τ |]� ((1+ o(1))e−q(1/2+(1/2−ε)/(1−ε))(1− q))τ |Ut|.
Then, for some

τ := log (n)
log ((1− q)−1 exp (q(1/2+ (1/2− ε)/(1− ε))))

+ o( log n),

we obtain that, say, Et[|Ut+τ |]� |Ut|/n� 1/log n. Thus Pt[|Ut+τ |� 1]� o(1) by Markov’s
inequality.

Lemma 3.17 together with Lemma 2.11 gives that

Tpp(Gn(ε), q)= logλ n+ 1
q(1− 1.5ε)/(1− ε)− log (1− q)

log n+ o( log n),
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where

λ = 1+ 2q+
(
2q

(√
(ε2/2− ε + 1)− 1

)
+ qε

)
/(2− 2ε)> 1+ 2q.

To see whether push&pull actually slowed down (in terms of order log n) one has to compare the
runtime on this sequence of graphs to cpp log n, the runtime on expander sequences. In Figure 1 we
can see that it slows down for nearly all values of ε and q in question; however, there are admissible
values of ε and q such that the process even speeds up.
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