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Abstract

Particle therapy treatment planning requires accurate volumetric maps of the relative stopping power,
which can directly be acquired using proton computed tomography (pCT). With fluence-modulated
pCT (FMpCT) imaging fluence is concentrated in a region-of-interest (ROI), which can be the vicinity
of the treatment beam path, and imaging dose is reduced elsewhere. In this work we present a novel
optimization algorithm for FEMpCT which, for the first time, calculates modulated imaging fluences
for joint imaging dose and image variance objectives. Thereby, image quality is maintained in the ROI
to ensure accurate calculations of the treatment dose, and imaging dose is minimized outside the ROI
with stronger minimization penalties given to imaging organs-at-risk. The optimization requires an
initial scan at uniform fluence or a previous x-ray CT scan. We simulated and optimized FMpCT
images for three pediatric patients with tumors in the head region. We verified that the target image
variance inside the ROI was achieved and demonstrated imaging dose reductions outside of the ROI of
74% on average, reducing the imaging dose from 1.2 to 0.3 mGy. Such dose savings are expected to be
relevant compared to the therapeutic dose outside of the treatment field. Treatment doses were re-
calculated on the FMpCT images and compared to treatment doses re-recalculated on uniform
fluence pCT scans using a 1% criterion. Passing rates were above 98.3% for all patients. Passing rates
comparing FMpCT treatment doses to the ground truth treatment dose were above 88.5% for all
patients. Evaluation of the proton range with a 1 mm criterion resulted in passing rates above 97.5%
(FMpCT/pCT) and 95.3% (FMpCT/ground truth). Jointly optimized fluence-modulated pCT
images can be used for proton dose calculation maintaining the full dosimetric accuracy of pCT but
reducing the required imaging dose considerably by three quarters. This may allow for daily imaging
during particle therapy ensuring a safe and accurate delivery of the therapeutic dose and avoiding
excess dose from imaging.

1. Introduction

Particle therapy treatment planning for irradiation of tumors requires a precise knowledge of a patient’s
anatomy (Engelsman et al 2013, Landry and Hua 2018), in particular of the stopping power relative to water
relative stopping power (RSP). With volumetric maps of the RSP, the dose of protons or heavier ions can be
calculated and optimized such that the prescription is deposited inside the tumor and surrounding healthy tissue
is spared as much as possible (Weber et al 2012, Park et al 2015, Nakajima et al 2017). Inaccuracies in RSP maps

©2021 The Author(s). Published on behalf of Institute of Physics and Engineering in Medicine by IOP Publishing Ltd


https://doi.org/10.1088/1361-6560/abe3d2
https://orcid.org/0000-0001-8410-3995
https://orcid.org/0000-0001-8410-3995
https://orcid.org/0000-0002-7892-2756
https://orcid.org/0000-0002-7892-2756
https://orcid.org/0000-0001-7779-6690
https://orcid.org/0000-0001-7779-6690
https://orcid.org/0000-0003-1707-4068
https://orcid.org/0000-0003-1707-4068
mailto:guillaume.landry@med.uni-muenchen.de
https://doi.org/10.1088/1361-6560/abe3d2
https://crossmark.crossref.org/dialog/?doi=10.1088/1361-6560/abe3d2&domain=pdf&date_stamp=2021-03-02
https://crossmark.crossref.org/dialog/?doi=10.1088/1361-6560/abe3d2&domain=pdf&date_stamp=2021-03-02
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0

10P Publishing

Phys. Med. Biol. 66 (2021) 064001 ] Dickmann et al

result in inaccurate calculations of the particles’ range (Paganetti 2012) and can cause over-or under-dosages
both in the tumor and the surrounding tissue and are worth minimizing. Remaining uncertainties are
considered either directly in a robust optimization (Cubillos-Mesias et al 2017) or as additional margins around
the tumor and necessarily increase the dose to healthy tissue. In current clinical practice, RSP maps are
calculated from x-ray computed tomography (CT) images by conversion of the x-ray attenuation coefficient to
RSP, introducing uncertainties of up to 3% (Yang et al 2012). Recently, dual-energy x-ray CT has become
available in the clinic, reducing the RSP uncertainty to around 1% (Hiinemohr et al 2014, Hudobivnik et al 2016,
Wohlfahrt etal 2017, Bir et al 2018, Taasti et al 2018, Niepel et al 2020). To limit the patient’s exposure to
imaging dose and due to time constraints during treatment, CTs are typically not acquired prior to every fraction
of the treatment and also not in treatment position. More frequent and ideally daily imaging could detect
anatomical changes that inevitably occur during treatment. Since this is currently not possible, additional
margins have to be considered to cover such changes (Wedenberg et al 2018). In the future, an improvement of
RSP accuracy and daily imaging in treatment position with low imaging dose may be possible using proton CT
(pCT), which was proposed by Cormack (1963) and later realized by Hanson et al (1977). It directly uses the
energy loss of protons for tomographic imaging of the RSP. This achieves a better dose efficiency than x-ray CT
assuming ideal detectors (Schulte et al 2005) and a pre-clinical prototype scanner produced a comparable
accuracy to state-of-the-art clinical dual-energy x-ray CT (Dedes et al 2019).

Unlike traditional radiotherapy, the clinically relevant dose in particle therapy typically covers a small
fraction of the image used for treatment planning since only a few treatment fields are used and particles stop
inside the tumor. This enables the application of fluence field modulation (Graham et al 2007, Bartolac et al
2011) to pCT as proposed by Dedes et al (2017). Fluence-modulated pCT (FMpCT) further reduces the imaging
dose by maintaining image quality in a region-of-interest (ROI), i.e. the vicinity of the treatment beam path, but
reducing imaging fluence elsewhere. Dickmann et al (2020) proposed a three-step optimization algorithm for
FMpCT which calculates imaging fluences achieving a target image variance map. It used an iterative variance
forward-projection approach allowing to solve for the fluence modulation for each projection independently.
With this, dose savings of up to 40% outside of the ROI could be achieved, outperforming the simple
intersection-based approach used in Dedes et al (2017). Optimized fluence modulations were employed
experimentally by modulating pencil beams and using a prototype pCT scanner resulting in good agreements
between simulated and experimental scans in terms of image variance and RSP accuracy (Dickmann et al 2020a).
The studies of Dickmann et al (2020, 2020a) were limited to phantoms with tissue-equivalent materials and the
optimization algorithm only took into account image variance and not imaging dose. Dose savings were
achieved implicitly by prescribing higher image variance outside of the ROI, and it remained unclear if the
chosen variance level achieved the optimal dose saving, and whether this level was the lowest achievable.

In this study we propose a novel FMpCT optimization algorithm which jointly optimizes imaging fluences
for dose and image variance targets. The optimization requires knowledge of the patient’s RSP and therefore an
initial scan at uniform fluence. Alternatively, this information could be obtained from a previous x-ray CT scan.
It allows to achieve a desired variance level inside the ROI while minimizing imaging dose outside, avoiding the
need to prescribe an arbitrary high variance outside of the ROI. At the same time imaging dose inside the ROI
and variance outside can be disregarded in the cost function. Moreover, we can define imaging organs-at-risk
(OARs) where the imaging dose saving is reinforced. Such an optimization can be computationally expensive
since the cost function is defined in image domain while fluences are modulated in projection domain, thus
requiring one dose calculation and one variance reconstruction in each iteration of the algorithm. Adapting
concepts of treatment plan optimization (Bortfeld 1999, Scholz et al 2003), we formulated the algorithm using
sparse matrix multiplications, which can be executed efficiently using specialized libraries. In a simulation study,
we applied the FMpCT algorithm to three pediatric cases of brain tumors to assess the accuracy of the resulting
ROl variance and the potential imaging dose savings. Therapeutic doses were re-calculated on the FMpCT
images as well as un-modulated pCT images to evaluate the dosimetric accuracy of FMpCT scans compared to a
ground truth RSP image and to standard pCT.

2. Materials and methods

2.1. Simulation framework

Data for this study was simulated using the GEANT4 Monte Carlo simulation framework (Agostinelli et al 2003)
and a detailed implementation (Giacometti et al 2017) of the phase-1I prototype pCT scanner (Bashkirov et al
2016, Johnson et al 2016). The simulation framework produces equivalent output to the one of the physical
scanner, which can be processed using the same reconstruction chain. It was validated for its fidelity in terms of
RSP (Giacometti et al 2017, Dedes et al 2019). In terms of prediction of the image variance, its accuracy was
estimated by Dickmann et al (2019) to be better than 7% (root-mean-square error).
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The prototype pCT scanner consists of two tracking detectors, one prior and one after the object, as well asa
longitudinally segmented energy detector, which was fully modeled in the Monte Carlo code. The two silicon
strip tracking detectors measure both position and direction of travel of each incident proton. The plastic
scintillator energy detector produces five independent energy measurements, one in each of its longitudinal
segments (called stages). An empiric calibration (Bashkirov et al 2016) is used to infer the protons’ water-
equivalent path length (WEPL) from those energy measurements. Eventually, the input to the reconstruction
algorithm are two positions, two directions and the WEPL.

To simulate modulated pencil beams, we used the pencil beam model of Dickmann et al (2020) with an
elliptical Gaussian profile and a small divergence. The beam shape was elliptical because standard deviations were
different for the horizontal coordinate u and the vertical coordinate v due to operation in research mode. In
accordance with recent experiments (Dickmann et al 2020a) at the Northwestern Medicine Chicago proton center
using the phase-1I pCT scanner the standard deviations were chosen as o, = 3.7 mm and o, = 2.9 mm and in
agreement with Dickmann et al (2020) the divergence was 6, = 5.2 x 10~ *mm ™ 'and §, = 5.8 x 10~ *mm™". The
smaller spot size compared to Dickmann et al (2020) was necessary due to an upgrade of the treatment facility.
Horizontally, Npg , = 51 columns of pencil beams were interspaced by 5.6 mm and vertically Npg , = 21 rows were
interspaced by 4.5 mm resulting in a total of 1071 pencil beams covering 285.6 mm x 94.5 mm.

2.2.Image and variance reconstruction

Data were simulated in step-and-shoot mode for 360 degrees in 1 degree steps. Before image reconstruction,
protons of one projection angle are grouped together based on their coordinates 1 and v at the front tracker in
bins of 2 mm x 2 mm. In each of those bins, distributions of direction angles and WEPL are estimated and
protons outside of a three standard deviation interval are rejected (Schulte et al 2005).

For each of the remaining protons, a most likely path (Schulte et al 2008) is calculated based on the tracking
information. This allows to estimate the track coordinates (1(d), v(d)) at any distance d between the front and the
rear tracker. To exploit this path information, three-dimensional discretized projections are calculated on a grid
of l mm X 3 mm X 1 mmin u, vand d. Each voxel of such a projection contains the mean WEPL value of all
protons intersecting it as described in Rit et al (2013). Additionally, variance projections can be calculated as the
WEPL variance of all intersecting protons divided by the number of intersecting protons (Dickmann et al 2019).
Such projections are labeled with v for a given rotation angle «v. A third type of three-dimensional projections
containing only the number of protons intersecting a given voxel will be called counts projection and labeled
with f*.

To calculate volumetric RSP maps from the WEPL projections using a cone-beam filtered backprojection
algorithm for pCT from Rit et al (2013), each projection at each depth dis convolved individually with a ramp
filter before backprojection. When backprojecting, the algorithm chooses the optimal binning depth d which
corresponds to a voxel’s position along the beam for a given rotation angle . This way the path information is
fully exploited and spatial resolution improved (Rit et al 2013).

Analogously, image variance maps can be reconstructed from the variance projections as suggested for pCT
by Radler et al (2018) and validated in Dickmann et al (2019). Instead of applying a ramp filter, the projections
are convolved with the squared elements of the ramp filter, and then backprojected as for the WEPL projections
(see equations (16) and (20) in Rédler et al 2018). This produces an image variance map from a single dataset.
Calculating the variance from a set of protons in each pixel covers all possible sources of noise without the need
to model single contributions such as energy straggling or multiple Coulomb scattering (Radler et al 2018,
Collins-Fekete et al 2020).

2.3.Dose and variance optimization algorithm

In this work, we propose an optimization algorithm for FMpCT which calculates pencil beam weights achieving
given objectives in terms of spatial distributions of image variance and imaging dose. The workflow of the
algorithm is illustrated in figure 1. We first describe forward models predicting the image variance and imaging
dose for a given incident fluence. The forward models are based on Monte Carlo simulations which requires
knowledge of the patient’s RSP, which could be obtained through an initial scan at uniform fluence.
Alternatively, an x-ray CT scan can be imported to the simulation as described in section 2.7. The algorithm then
uses these forward models in a bixel-wise fluence optimization. This step is illustrated in figure 1(a) and concepts
are similar to early optimization of intensity-modulated radiotherapy (Bortfeld 1999, Markman et al 2002)
which were also used in proton therapy in more recent studies (Wilkens and Oelfke 2006, Kamp et al 2017).
Secondly, we optimize pencil beam weights approaching this bixel-wise fluence. This step is illustrated in

figure 1(b). All equations in this section are formulated in parallel beam geometry, which is a fair assumption,
given that the virtual source of the pencil beams is at 1.8 m from the isocenter (Dickmann et al 2020). The
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(a) bixel optimization workflow (c) bixel-to-voxel interpolation
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Figure 1. (a) Workflow for the bixel-wise optimization indicating the relation of quantities in equations (1)—(11), (b) workflow of the
pencil beam optimization indicating the relation of quantities in equations (12)—(18), and (c) illustration of the bixel-to-voxel
interpolation in equation (3) and the indexing of bixels and voxels.

divergence of the pencil beams, however, is considered implicitly in the final pencil beam optimization in
section 2.3.5.

To establish a forward model for image variance and imaging dose, we discretize the incident fluence into
bixels as illustrated in figure 1(c). Each bixel refers to a virtual detector element of size 4 mm x 4 mm at a given
rotation angle. Bixels are numbered for all rotation angles consecutively with the bixel indexj € {1, ..., M}.In
thiswork M = Np - Ny, ,, - Ny, , = 518 400 with Np = 360 projections, N, , = 60 bixels along the © coordinate of
the virtual detector and Ny, , = 24 bixels along the v coordinates of the virtual detector. Each bixel is associated to
arotation angle ;. Additionally, the image volume is discretized using N, = N, = 60 virtual voxels in the left—
right and anterior—posterior directions and N, = 24 virtual voxels in the superior—inferior direction, with virtual
voxel size of 4 mm X 4 mm x 4 mm. Voxels are numbered consecutively with the voxel indexi € {1, ..., N}
with N = N, - N, - N, = 86 400. Each bixel’s center on the detector is denoted as (1;, v;) and each voxel’s center is
denoted as (x;, y;, z;).

2.3.1. Imaging dose forward model
The forward model for imaging dose D; at voxel iis formulated as a matrix multiplication of the dose matrix D;;
with a weight vector w;as
M
Di = ZD,‘]‘ . Wj. (1)
j=1
The weight vector w; describes the relative fluence modulation at bixel j with respect to a given reference fluence.
This is similar to the approach in Scholz et al (2003). The dose matrix D;; can be calculated from the dose d iaf
scored in a Monte Carlo simulation at the homogeneous reference fluence for a single projection angle a;;and
voxel i. Instead of scoring the dose for each bixel individually, the full projection dose is sliced into bixel
contributions and the dose matrix will then be

Dy = d;" - & @)

where in the simplest case 6;; would be 1, if bixel j intersects with voxel i and 0 otherwise. To be more accurate this
was implemented as a linear interpolation between two voxels, and therefore

M if [(xjcosaj — y;sina; — u;)/uj| = 0and z; = v;
0 =11 — n; if [(xicosaj — y.sina — uj) /ujreeil = 0and z; = v (3)
0 else

where | - | is the floor operator, [ - | is the ceil operator and the interpolation fraction 7;; calculates as
n; = (xjcosaj — y;sina; — u]-)/uj — |(xicosaj — y;sina; — uj) Ju;]. 4)

The bixel-to-voxel interpolation is illustrated in figure 1(c) where two bixels correspond to one voxel.
Consequently, the matrix D; is sparse and only has two non-zero elements in every row or column.
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2.3.2. Image variance forward model
The forward model for the image variance V;in voxel i is formulated analogously to equation (1) as

M
Vi=co > Vg, 5)
=1

where cis a constant which will be defined later, Vj;is the variance matrix and #; = 1/w; are the inverse fluence
weights, since variance is inversely proportional to the fluence. The variance matrix Vj; can be calculated from
the variance projections of a simulation performed at the reference fluence as described in section 2.2. Those
variance projections, which are defined in the (1, v, d) coordinate system are rotated by their corresponding
rotation angle and interpolated at (x;, ;, ;). The rotated variance projection at rotation angle v; will then be
called v;7 and the variance matrix is consequently defined as

Vi = v - by (6)
where §;;is defined by equation (3). The constant cis defined as
2
TAu
¢ = finterp * Jeitr - (Tp) , ™

with Au = 4 mm the bixel size, finterp = 2/3 — 2/ 7% &~ 0.46 an interpolation term (Rédler et al 2018) and

fater ~ 1.33/ (2Au)* afilter term. The filter term is a consequence of ignoring the filtration with the squared
ramp filter and simply using the sum of the filter elements, assuming variance projection values to be locally
constant within the extent of non-negligible filter elements, as done in equation (4) in Hsieh and Pelc (2014). It
calculates as

1 n 2 " 2 n 2 n N 1.33
QAw*  (rAuw  GrAwt  GrAwt T QAw*

3

f filter —

2.3.3. Bixel-wise optimization
Using equations (1) and (5) one can predict imaging dose and image variance maps for any arbitrary bixel-wise
fluence modulation with weights w; (from which 1%; can be calculated). Using optimization, we tried to achieve a
certain imaging dose objective D,,; ;and a variance objective V,,,; ; in voxel i. We also imposed a dose penalty pl.D
and a variance penalty piv, which describe the relative strength with which a certain violation of the objective in
voxel iis to be avoided. The bixel-wise optimization is illustrated in figure 1(a) and objectives and penalties will
be defined in section 2.9.

To optimize bixel weights w; the cost function

N N
Cw) = > pP(Di(w) — Dopi,)* + 3 b (Vi(w) — Vipi)? ©)
i=1 i=1

was used, where the dependence of D; and V; on the weights w; is stated explicitly. The gradient with respect to
one weight w; can then be expressed as

0 al al Vi
—Cw) = 2> pP(Di(w) — Dopi,) Dy — 2> p" (Vi(w) — Viwj)) —5- (10)
ow; i=1 i=1 wj

With this, the optimized weights W; can be found as

w = argmin,, C(W) s.t. Wnin < Wj < Wiax VJ, (11)

where the limits Wi, > 0and Wiax > Wmin ensure that only physical (non-negative and finite) weights are
allowed. The optimization is performed using the limited-memory BFGSB algorithm (Zhu et al 1997), which isa
quasi-Newton method that minimizes the cost function equation (9) along the known gradient equation (10)
subject to simple bounds equation (11).

2.3.4. Target counts maps

Since experimentally fluence can only be modulated using pencil beams (and not bixels), the problem is first
transformed to maps of a target proton number and then, as described in the next section, to relative pencil beam
weights. Similar to the matrix multiplications before, we can define a projection counts map in image space for a
given rotation angle o as

F'= > Fj-w (12)
jelin)
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where the set {j, } contains all j for which cj = a. The matrix Fj;is defined as
.
E; = f{V - &, (13)
where fiaj is the three-dimensional counts projection described in section 2.2 and ¢;;is as defined in equation (3).
Those counts maps contain only protons used for reconstruction and are not equivalent to the initial proton
fluence, from which protons are lost due to nuclear interactions causing attenuation. In presence of an object f;"

will be reduced compared to the incident fluence, which will be accounted for in the following step. Using the
optimized weights #; from equation (11) target projection counts maps E" are generated using equation (12).

2.3.5. Pencil beam optimization
To calculate relative pencil beam weights, which are needed to employ the fluence modulation in a simulation or
experiment, a second optimization needs to be performed that tries to achieve the bixel fluence using pencil
beams. This step is illustrated in figure 1(b). It uses the same pencil beam model used in the simulation
(Dickmann et al 2020). For each of the K= Np - Npg,, - Npp, = 385 560 pencil beams, we used the pencil beam
model to calculate the counts map P;; of pencil beam k in voxel i. The counts map was normalized to have a
maximum value of 1. Each pencil beam is associated with one rotation angle o. For given pencil beam weights
wiand a selected rotation angle o, the summed pencil beam counts map P;* can be calculated as

Pf= > Py-wp (14)

ke {ka}
where the set {k, } contains k for which oy, = . Please note the Greek notation of pencil beam weights wjy which
is different to the Latin notation of bixel weights w;. Pj, can directly be calculated from the analytical pencil beam
model by calling the Gaussian model on a fine grid with voxels of 1 mm x 1 mm x 1 mm, rotating the map by its
rotation angle o; and resampling it to the coarse optimization grid with voxels i. Due to these operations, no
interpolation as in equations (2), (6) and (13) is needed. To avoid unnecessary calls to the Gaussian function, Py
was set to zero if the distance between voxel i and pencil beam k was more than three standard deviations.
Eventually, we can formulate the cost function

N
Cop(w)=)_(P{"(w) — F{")? (15)
i=1
and the corresponding gradient
) N
—Cpp(w) = 2) (P (w) — F{) Py, (16)
3wk i=1

with which pencil beam weights wy can be optimized as
& = argmin  Cpp(w) $.t. Winin < Wk < Wmax Vk € {ka}, (17)

using the bounds Wi and wp,x which in section 2.9 were chosen to be equal to the bounds Wi, and Wiyay.
Note, that only weights for one rotation angle o can be optimized and the remaining weights are found by
changing o This also allows for an efficient parallelization of the optimization.

Asin Dickmann et al (2020), to account for attenuation affecting the F" in equations (12) and (15), the pencil
beam optimization in equation (17) is performed twice: once for the target projection counts map ﬁla and once
for a reference counts map F;". This reference counts map can be generated using equation (12) with all weights
wj =1 Vj. The two optimizations result in weights & and w, respectively, which are both affected by attenuation.
Finally, the desired pencil beam weights €2 are found as the ratio of these two weights cancelling out the effect of
attenuation, and thus

O = 2k, (18)

(), must be in the the interval wy,;, to Wmax and otherwise is thresholded. A second Monte Carlo simulation can
now be run using the relative pencil beam weights €2, by simulating €2 - N particles for pencil beam k instead of
N particles in the initial simulation with uniform fluence, that served as a reference in equations (2), (6) and (13).

2.4. Optimization hard-and software
Fluence optimizations were performed on a computer with two Intel Xeon E5-2667 v4 processors at 3.2 GHz
and with in total 16 physical cores. The machine was equipped with 252 GB memory, which was required to
store the dose and variance matrices. No GPU was used. Such high-performance workstations are likely to be
available in proton therapy centers.

We used a C++ implementation of the optimization algorithm from the Insight Toolkit (ITK) (McCormick
etal 2014), which was also used for handling and manipulation of image data. The sparse matrices and vector
operations were implemented in C++ using the Eigen3 library (Guennebaud and Jacob et al 2010).
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Table 1. Clinical characteristics of the delivered photon plans for the three pediatric patients under investigation.
Patient 1 had an sequential boost prescription. The last two rows list the proton gantry angles for treatment plan
generation and the gantry angle used for range evaluation, both are in the international technical commission
scale. Abbreviations: RT—radiotherapy, GA—gantry angle.

Patient 1 Patient 2 Patient 3
Ageatfirst RT 4.0 years 5.8 years 4.4 years
Tumor site Left orbit Pons Parotid gland
Tumor type Embryonal rhabdomyosarcoma Glioma Acute lymphatic leukemia
Prescription/Gy 50.4"/36.0 54.0 20.0
fractions 28 30 8
Proton GA/deg 30,90 90,180,270 270,315
Proton GA (range)/deg 90 180 270

* boost to primary tumor.

2.5. Binary fluence modulation

To compare the performance of our proposed algorithm, a more simple intersection-based fluence modulation
(Dedes et al 2018) was implemented. A pencil beam was assigned a weight of {2, = 1 ifit intersected a target
volume T;and (% = wp;, elsewhere. This target volume was 0 if the variance penalty pl.v was 0 and 1 elsewhere,

andthus T, = p1.V > 0. Pencil beams weights can be found by simple scalar product

N

O = 1 forig:lPikTi>0‘ (19)

Wmin €lse

Essentially this will result in an image with the unit fluence variance inside the target volume and a dose
reduction outside. Images acquired with this fluence modulation will be labeled binary.

2.6. Patient data and original photon plans

In this work, we simulated pCT scans and optimized proton plans for three pediatric patients that underwent
photon radiotherapy of the head. Due to the limited field-of-view and longitudinal coverage of the pCT scanner,
we limited this investigation to pediatric tumors of the head region. Pediatric patients in particular are more
susceptible to damage induced by imaging radiation due to their age. They can, therefore, benefit more from a
radiation dose reduction. Tumor sites and indications of the original photon treatments are listed in table 1
together with the prescription dose and the number of fractions of the delivered photon plans. The three patients
were chosen to be representative for typical cases in clinical practice with different tumor size and location
within the brain. All plans were delivered using a 6 MV photon beam. Patient 1 had a photon plan with a
sequential boost to the primary tumor, which is why two dose levels are reported. This plan was realized for
protons as an integrated boost. Dose-volume histograms of the photon plans can be found in the supplementary
material (available online at stacks.iop.org/PMB/66,/064001 /mmedia).

2.7.Study design and proton treatment plans

To assess the accuracy of pCT and FMpCT scans, we first created ground-truth RSP maps from the treatment
planning CT's using the GEANT4 simulation code. We then imported the RSP maps to the treatment planning
system (TPS) RayStation (RaySearch Laboratories AB, Stockholm, Sweden) and generated proton treatment
plans while trying to match or improve dose-volume statistics of the delivered photon plans. Using the
simulation code we then created uniform fluence pCT scans as well as FMpCT scans with modulation weights
calculated by the optimization algorithm. Both pCT and FMpCT scans were then imported to RayStation as
additional image sets where doses could be re-calculated to evaluate the accuracy of pCT and FMpCT scans with
respect to the ground truth RSP map.

Ground-truth RSP maps were generated from a voxelized geometry in the GEANT4 simulation code using the
x-ray CT images. Material and densities of the voxelized geometry were found from a piecewise-linear calibration
curve used in Schmid et al (2015) and Resch et al (2017). In the GEANT4 code, each voxel of the geometry was then
queried and its stopping power value relative to the one of water was output for a proton energy of 150 MeV. These
three-dimensional maps served as ground truth to compare pCT and FMpCT scans to.

To import RSP maps back to the TPS, we generated a voxelized geometry with CT values ranging
from —1000 to 4000 HU. The resulting RSP values were matched to the original CT values resulting in a RSP-to-
CT value mapping. Since the same RSP value can be produced by two different CT values (due to a change of the
elemental composition), the mapping was forced to be bijective by fitting continuous splines to local subsets of
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Table 2. Fluence optimization objectives and imaging OARs for the three patients investigated in this study.
The variance objective is also reported as RSP standard deviation (o). Abbreviations: OAR—organ at risk,

r—right, I—left.
Patient 1 Patient 2 Patient 3
Dose objective Dp;/mGy 0.0 0.0 0.0
Variance objective Voy; 541 x 107* 6.09 x 10~* 6.72 x 10~*
Tobj 0.023 0.025 0.026
Imaging OARs r. eye, brainstem r./l. eye, r./1. optical nerve r./1. eye, spinal cord

the data. The patients’ RSP maps were subsequently run through the mapping to convert them back to CT values
before importing them to the TPS. While this resulted in small differences between the original CT and the
imported ground-truth CT, it allowed to import pCT and FMpCT scans using the same mapping and enabled us
to compare them to the ground truth scan using the TPS.

Using the initial delineations and dose prescriptions of the photon plans, we then optimized proton
treatment doses in the TPS using the clinical target volume (CTV) as prescription volume and the ground truth
RSP maps. Gantry angles used for the proton plans are listed in table 1. For all patients, a generic IBA machine
(RSL_IBA_DED) was used with a 40 mm range shifter and an air gap of 100 mm. The dose grid was uniformly
3 mm. Beam spots were interspaced laterally by 3 mm and in depth the adaptive spacing with energy of the TPS
was used. Treatment plans were obtained using a robust optimization accounting for a positional uncertainty of
3 mm and a range uncertainty of 3%. For all OARs and the CTV we achieved a comparable or better dose
distribution using protons with respect to photon plans. A comparison of dose-volume histograms of the
photon and proton plans can be found in the supplementary material.

2.8. Unit fluence pCT scans

Besides the ground truth RSP maps, we simulated pCT scans with all pencil beam weights set to {2, = 1 and

933 protons per pencil beam, which resulted in about 360 million primary protons per tomography, an incident
proton fluence of 37 mm ™ (approximately 26 mm > after data cuts) and an imaging dose of 1.2 mGy. These are
typical values for experimental scans with this prototype scanner (Johnson et al 2016, Dickmann et al 2020a).
Throughout this paper these reconstructions are referred to as pCT and serve as a reference for a standard pCT
scan performed with a prototype pCT scanner today.

2.9. Objectives for fluence optimization

To optimize FMpCT scans we used the optimization algorithm described in section 2.3. The dose matrix D;;and
the variance matrix V;; were generated from the unit fluence scans described in section 2.8. To define the dose
and the variance penalties piD and pl.v, we calculated a ROI volume by thresholding the ground truth dose map.
The ROI was defined as all voxels with at least 10% of the prescription dose, which is in accordance to the
recommendation of the AAPM task group 119 for gamma analysis (Ezzell et al 2009, Song et al 2015). The ROI
volumes were 223 cm” for patient 1785 cm” for patient 2, and 321 cm” for patient 3.

The imaging dose objective was set to Dy ; = Do = 0 mGy throughout the volume, thus minimizing dose.
The variance objective was also set to a constant value V,;,; = Vo throughout the volume, which was chosen as
the 95th-percentile of variance values in the unit fluence scan inside the ROI and was therefore different between
the patients. Prescription values are listed in table 2.

Both pl.D and in were set to 0 outside of the patients’ skin. pl.v was also set to 0 outside of the ROI and to 100
inside the ROL. pl.D was set to 0.01 inside the ROT and to 1 outside of the ROI. Furthermore, we defined imaging
OARs where piD was increased to 20. For each patient, the imaging OARs are listed in table 2. The choice of pl.V
and piD was made empirically. With the relatively high piv we compensated for the ROI being smaller than the
complete volume, and made sure that V,; ; = V,p; Was achieved and not impaired by the dose minimization.
Thelow piD inside the ROI avoided too high doses for pencil beams that only intersected the ROI. By increasing
pl.D inside imaging OARs an additional dose saving should be achieved there. The minimum weight was set to
Winin = Wmin = 0.05 to ensure that at least 4 protons could be used for image reconstruction in each pixel on
average. The maximum weight was Winax = Wmax = 10, again to avoid too high doses inside the ROI.

2.10. Evaluation of image variance

To assess the performance of the proposed optimization algorithm to achieve V,,; inside the ROI, we performed
variance reconstructions of the simulated pCT and FMpCT data as described in section 2.2 and compared them to
Viobjinside the ROI, which was defined as the volume where piV > 0. To directly estimate the effect of fluence-
modulation on the RSP, we also calculated the mean RSP error inside the ROI with respect to the ground truth RSP.
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Figure 2. Cost function values as a function of the iteration number for the (a)—(c) bixel-wise optimization and (d)—(f) for the
subsequent pencil beam (PB) optimization averaged over 360 projections. Data are shown for each of the three patients.

2.11. Evaluation of treatment dose accuracy

To evaluate the dosimetric accuracy of pCT and FMpCT scans, we imported them to the TPS as additional image
sets. The therapeutic dose, which was originally optimized on the ground truth RSP map, was re-calculated on
pCT and FMpCT. We visually assessed resulting dose distributions for a slice at the center of the CTV as well as
with dose-volume-histograms computed by the TPS. Moreover, we calculated a passing rate for a relative dose
difference criterion of 1% applied to the difference of the re-calculated dose to the ground truth dose and divided
by the prescription dose. For the passing rate, the entire dose grid with voxels receiving more than 10% of the
prescription was considered.

2.12. Evaluation of range accuracy

To evaluate the dosimetric accuracy also in terms of proton range, we optimized a second set of treatment plans
on the ground truth RSP map with just a single field and prescribing a uniform dose to the CTV. The gantry
angle chosen for each patient s listed in table 1. The single field dose was re-calculated on pCT and FMpCT. The
dose calculation was performed with a dose grid of 1 mm x 1 mm x 3 mm. The range was calculated in beam-
eye-view for each voxel by determining the 80% dose-falloff. Thereby, we used linear interpolation to achieve
sub-millimeter precision. The beam-eye-view map of ranges of the pCT and FMpCT scan was then compared to
the ground truth range map for all voxels intersecting the CTV (for patient 1 the low dose CTV with 36 Gy).

2.13. Evaluation of imaging dose reduction

For all pCT and FMpCT scans, imaging doses were scored using GEANT4 as absorbed doses, summing
contributions from all projections. We calculated dose-volume-histograms as well as median doses for all OARs
as well as the ROIL Moreover, we also scored imaging dose for patient 2 using the simple binary fluence
modulation described in section 2.5.

3. Results

3.1. Dose and variance optimization

In figure 2 cost function values as a function of the iteration number both for the bixel-wise optimization and the
subsequent pencil beam optimization are shown for each of the three patients. In figures 2(a)—(c) the cost
function of the bixel-wise optimization is shown for 500 iterations. For all patients it reduces quickly within
100-200 iterations. For patient 1 the cost function is dominated by the contribution of the dose term (the first
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Figure 3. Image variance maps for the three patients for (a), (d), (g) pCT and (b), (e), (h) FMpCT scans overlaid on the corresponding
RSP maps. Each ROl is indicated by a solid white line delineation. (c), (f), (i) Profiles along the white dashed lines of the variance maps
with an indication of the ROI and the variance objective.

summand in equation (9)) while for patients 2 and 3 the variance term prevails. Even though for patients 1 and 3
one of the two contributions is an order of magnitude larger than the other, both reduce strongly within the first
100-200 iterations. In figures 2(d)—(f) the cost function of the pencil beam optimization averaged over all
projections is shown. The cost function converges quickly within less than 10 iterations.

All optimizations were performed on the hardware described in section 2.4. One matrix multiplication for
the evaluation of the bixel-wise optimization’s cost function took 54 ms and one iteration of the optimization
algorithm 302 ms. The total optimization time over 500 iterations was 151 s. The pencil beam optimization took
86 sin total or 238 ms per projection. The total optimization time, including creation of the optimization
matrices was 19 min.

3.2. Evaluation of image variance
Figure 3 shows image variance maps for all three patients for pCT scans (a), (d), (g) as well as for FMpCT scans
(b), (e), (h). While pCT scans have alow noise in homogeneous regions of the scan, noise is elevated close to the
hull, but also close to heterogeneities such as in the nasal cavity or the pharynx. The FMpCT scan shows a
homogeneous variance map inside the ROI and a sharp increase of variance outside. These observations are
confirmed in the profile plots (c), (f), (i) where pCT and FMpCT variances are compared. Inside the ROI,
FMpCT agrees well with its variance objective Vi, ;, which was the 95th percentile of variance values inside the
entire ROI volume of the pCT scan. Profiles for pCT are therefore generally below those of FEMpCT, even though
they agree in particular at the edges. For patient 3, the 95th percentile value of the pCT scan (and thus the
FMpCT variance target) was outside of the displayed slice and the two curves do not intersect. Outside of the
RO, variances for FMpCT increase sharply within a few centimeters.

The absolute mean RSP error relative to the ground truth RSP inside the ROI was below 0.6% for all patients
when comparing the pCT images to the ground truth, and below 0.8% for all patients when comparing the
FMpCT images to the ground truth.
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Figure 4. Treatment doses calculated on (a), (e), (i) the ground truth RSP maps and re-calculations of the dose on (b), (f), (j) pCT and
(¢), (g), (k) EMpCT scans. (d), (h), (1) Dose volume histograms for CTVs and selected OARs. Contours on top of the treatment plans
use the same colors as in the corresponding dose volume histogram. The dose volume histograms between the image sets only show
small differences and are mostly not distinguishable. Triangles on top of the dose volume histograms indicate the prescription doses.

Table 3. Dose difference passing rates in percent for a 1%
criterion comparing ground truth (GT) dose maps to those
evaluated on the pCT and FMpCT scans.

Comparison Patient 1 Patient 2 Patient 3
pCT versus GT 90.6 91.8 90.6
FMpCT versus GT 91.3 93.1 88.5
FMpCT versus pCT 98.3 99.7 98.9

3.3. Evaluation of dose accuracy

In figure 4 treatment doses are displayed for all three patients together with dose volume histograms. The ground
truth treatment dose (a), (e), (f) agrees well with the doses re-calculated on the pCT (b), (f), (j) and EMpCT (c),
(g), (k) scans. This is confirmed in the dose volume histograms (d), (h), (j) where most lines are not
distinguishable from each other. The largest difference can be seen for the left hippocampus of patient 2, which is
close to the end of the range of one treatment field. For the FMpCT scans (¢), (g), (k) an increased noise level can
be observed outside of the area covered by the treatment dose. However, even organs like the brain of patient 1
show a good agreement in terms of the dose volume statistics.

Table 3 shows passing rates for a 1% criterion on the absolute difference between doses calculated on the
three imaging sets. The lowest passing rate, thus the highest discrepancy of doses is observed for the comparison
of FMpCT versus the ground truth dose for patient 3. Passing rates between pCT and ground truth as well as
between FMpCT and ground truth are all around 90%, while passing rates between FMpCT and pCT are close
to 100%.

3.4. Evaluation of range accuracy

Table 4 shows passing rates for a 1 mm criterion on range differences between single-field uniform doses
calculated on the three imaging sets. All passing rates are well above 90% with some reaching 100%. The lowest
passing rate is observed for the comparison of FMpCT and the ground truth dose and best agreement is between
FMpCT and pCT. The table also shows mean absolute and mean range differences, which are all well below

0.5 mm. In general, a larger mean absolute difference correlates with a lower passing rate.
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Figure 5. Imaging doses in mGy for (a), (d), (g) pCT and (b), (e), (h) FMpCT scans for the three patients scored in a Monte Carlo
simulation. (c), (f), (i) For both datasets imaging dose volume histograms were calculated for important OARs.

Table 4. Range difference passing rates for a 1 mm criterion comparing ground truth (GT) range maps to those re-calculated on the pCT and
FMpCT scans together with corresponding mean absolute range differences and mean range differences.

Quantity Comparison Patient 1 Patient 2 Patient 3
Passing rate / % pCT versus GT 97.4 100.0 95.3
FMpCT versus GT 96.5 96.8 95.0
FMpCT versus pCT 100.0 97.5 99.9
Mean absolute difference / mm pCT versus GT 0.29 0.25 0.28
FMpCT versus GT 0.31 0.32 0.32
FMpCT versus pCT 0.15 0.17 0.05
Mean difference / mm pCT versus GT 0.00 0.04 0.27
FMpCT versus GT 0.15 0.20 0.31
FMpCT versus pCT —0.15 —0.16 —0.05

3.5. Evaluation of imaging dose reduction

In figure 5 imaging doses for pCT and FMpCT scans are shown for all three patients. The pCT scans (a), (d), (g)
show ahomogeneous dose ataround 1.2 mGy per scan with reduced doses in bones and the nasal cavity. In
contrast, FMpCT scans (b), (e), (h) show heterogeneous dose distributions with a clear dose reduction outside of
the ROIL. The dose generally reduces further away from the ROIL Imaging OARs listed in table 2, such as the right
eye of patient 1 or the spinal cord of patient 3, show a reduced dose compared to their direct vicinity. Moreover,
imaging dose inside the ROl is not homogeneous: it is elevated at the hull of the object and in general where
variance was increased in the pCT scans as shown in figure 3. Dose in these regions can be higher than in the
uniform fluence scans.
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Figure 6. Imaging doses in mGy for (a) pCT, (b) FMpCT and (c) a binary-modulated scan for patient 2. (d) For all datasets imaging
dose volume histograms were calculated for important OARs.

These observations are confirmed in the imaging dose volume histograms of figures 5(c), (f), (i) comparing
pCT and FMpCT scans. The pCT scans all show doses of around 1.2 mGy for all OARs and the ROL Lower doses
occur where the elemental composition of the OAR is different (i.e. the lower jaw of patient 3) or where parts of
air are included (some of the ROIs). As could be already seen visually, imaging doses for the FMpCT scan show
increased peak doses for the ROI and for organs overlapping with the ROI of up to 1.8 mGy. These increased
doses are limited to a small fraction of the ROI (Iess than 10%) and most of the ROI receives a reduced dose
compared to the pCT scan. All OARs (except for those overlapping with the ROI) have a strongly reduced
imaging dose in the FMpCT scan. The non-ROI volume, which contains all voxels inside the patient, but outside
the ROI, receives a clearly reduced dose in the FMpCT scan and no dose above the dose of the pCT scan, except
for patient 2, where 2.5% of the non-ROI volume receives a dose above 1.2 mGy.

Sinograms of the imaging fluence employed in all scans are included in the supplementary material.

In figures 6(a) and (b) imaging doses of the pCT and FMpCT scan for patient 2 are shown again. In addition,
figure 6(c) shows the imaging dose for a binary fluence modulation according to section 2.5. Imaging dose
volume histograms for the three scans are shown in (d). Inside the RO, imaging dose of the binary modulation is
equal to the pCT scan. The non-ROI region receives an imaging dose starting at the value inside the ROI and
slowly reducing towards lower values. For the eyes, which were furthest apart from the ROI, imaging dose is
considerably reduced, but still clearly above the imaging dose for FMpCT.

Table 5 summarizes median imaging doses for pCT, FMpCT and the binary-modulated scan. For the pCT
scans imaging doses are constant across all patients and equal inside and outside of the ROI. Imaging doses and
dose savings for the FMpCT scans are of comparable magnitude across the three patients. Outside of the ROI
about three quarters of the imaging dose could be saved. For certain OARs, the imaging dose saving reaches
values of — 80% or more. The binary fluence had the same imaging dose inside the ROI and a moderate dose
saving outside. For the eyes, which were furthest apart from the ROI, the dose saving reached up to —29%, but
was still considerably less compared to the FMpCT scan.

13



10P Publishing

Phys. Med. Biol. 66 (2021) 064001 ] Dickmann et al

Table 5. Median imaging doses in pCT, FMpCT and binary FMpCT scans for the ROI and relevant OARs. In parentheses the imaging dose
saving compared to pCT is given. Abbreviations: ROI—region-of-interest, | —left, r—right.

pCT FMpCT Binary
Region Dose/mGy Dose/mGy (saving/%) Dose/mGy (saving/%)
Patient 1 ROI 1.16 0.78 (—33) —
Non-ROI 1.16 0.24 (—80) —
r.eye’ 1.17 0.30 (—74) —
Brainstem® 1.19 0.15(—87) —
Brain 1.19 0.19(—84) —
Patient 2 ROI 1.17 0.77 (—35) 1.17(0)
Non-ROI .16 0.34(—71) 0.98 (—16)
l. eye® 1.17 0.28 (—76) 0.83(—29)
r.eye” 1.17 0.28 (—76) 0.85(—27)
L. optic nerve” 1.16 0.41 (—65) 1.07 (—8)
r. optic nerve® 1.16 0.41 (—65) 1.08 (=7)
Brain 1.19 0.45(—62) 1.17(—2)
Patient 3 ROI 1.14 0.72(—37) —
Non-ROI 1.14 0.33(=71) —
L eye® 1.15 0.22 (—81) —
r.eye” 1.15 0.27 (—=77) —
Spinal cord” 1.16 0.25(—78) —
Brain 1.17 0.56 (—52) —
Lower jaw 1.11 0.34 (—69) —
Average ROI 1.16 0.76 (—35) 1.17(0)
Non-ROI 1.15 0.30(—74) 0.98 (—16)

* imaging OAR.

4. Discussion

4.1. Dose and variance optimization

The cost functions of both optimizations reached their minimum quickly and consistently across patients.
While the bixel-wise optimization, which considered fluences from all angles at once, needed less than 200
iterations, the pencil beam optimization, which only considered fluences from one angle, reached convergence
within less than 10 iterations. For the bixel-wise optimization the final value of the cost function depended on
the patient and thus on the dose and variance objectives. While in this study we kept the penalties for dose and
variance the same for all patients, these are typically adjusted by the user for treatment plan optimization (which
is a similar task to fluence field optimization). The proposed method would allow to adapt these values to each
patient, but we opted to not modify the penalties in order to demonstrate this effect and the robustness of the
method. For patient 1 with the smallest ROI the cost function was dominated by the dose term while for the two
larger ROIs of patients 2 and 3 it was dominated by the variance term. This trend is in agreement with the fact
that for patient 1 less voxels contributed to the variance term and more to the dose term.

A difference to treatment plan optimization was that in this work it would not have been possible to avoid the
bixel-wise optimization and directly optimize pencil beam weights. While it would be possible to formulate the
dose in a given voxel as a linear combination of doses from single pencil beams, this is not possible for the
variance term of the cost function due to the inverse relationship between fluence and variance. The non-
overlapping nature of bixels was therefore required.

Due to the sparse implementation of the matrix multiplications, the evaluation of the cost function was
possible in a few hundred milliseconds even though the matrixhad N- M ~ 5 x 10'® entries (most of them
zero). The time needed for the fluence field optimization of one patient was mainly dominated by reading data
from disk and the subsequent calculation of the variance, dose and fluence matrices. In particular the matrix Py
in equation (14) required to query the pencil beam model for each pencil beam and each voxel of the fine grid.
Since these matrices are independent of the dose and variance objectives, they could be calculated offline as soon
as the uniform fluence pCT scan and the corresponding Monte Carlo simulation are available. The matrices
would then be available prior to the next imaging session reducing the optimization time needed to a few
minutes with the current configuration. Optimization time could further be decreased by reducing the number
of iterations from 500-200 or even 100 given that the cost function only slightly reduced beyond iteration 100.
This may reduce the time requirement to few tens of seconds. Since the code was not fully optimized for speed,
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further improvements (e.g. not calculating variance values where the variance weight is zero), may reduce the
optimization time to be comparable to the one needed for treatment planning. With this, fluence field
optimization for FMpCT may be feasible with respect to time within a clinical workflow.

The forward model from the last iteration of the bixel-wise optimization agreed well with the quantities
calculated from the subsequent Monte Carlo scans both for variance and imaging dose. A comparison is
included in the supplementary material.

4.2. Evaluation of image variance

Analysis of the uniform fluence pCT scans showed an elevated image variance close to heterogeneities as shown
previously in Dickmann et al (2019) using phantoms. Therefore, the subsequent FMpCT optimization used the
95th percentile uniform pCT variance as the variance objective inside the ROI. This way, pCT and FMpCT
images were comparable in terms of peak image variance. Using the proposed algorithm, image variance
objectives were met inside the ROI, where resulting variance maps were much more homogeneous compared to
pCT. Outside of the ROI variance increased sharply, as intended to achieve the desired dose saving.

4.3. Evaluation of dose and range accuracy

The dosimetric accuracy of pCT and FMpCT was satisfactory both in terms of re-calculation of the treatment
dose as well as the protons’ range for a single uniform dose treatment field. Passing rates with a 1% (for treatment
dose) or a 1 mm (for range) criterion were all above 88% with respect to the ground truth RSP image. In
particular, passing rates comparing dose and range between pCT and FMpCT were all above 97%. Therefore, the
principal contribution to dosimetric errors was caused by using pCT/FMpCT images instead of the ground
truth RSP map. Errors of the magnitude observed in this study (1% or below) are expected for pCT and
comparable to those introduced by the current state-of-the-art imaging using dual-energy x-ray CT (Dedes et al
2019). They also agree with the mean RSP error inside the ROI observed in the pCT and FMpCT images. Range
differences observed for FMpCT compared to the ground truth map were slightly larger compared to those of
pCT for some patients, but small compared to variations between patients. Therefore, a clear dosimetric
difference between pCT and FMpCT compared to the ground truth could not be shown. In fact, differences
between pCT and FMpCT compared directly were much smaller compared to the differences with the ground
truth RSP map. We therefore conclude that EMpCT scans maintain the full dosimetric value that pCT scans have
and confirm expected errors introduced by using protons for imaging (Meyer et al 2019).

4.4. Evaluation of imaging dose reduction

Using uniform fluence pCT, imaging doses were mostly constant across the patient while, as reported before,
variance distributions were not. Instead, using FMpCT optimization constant variance inside the ROI could be
achieved and imaging dose could be reduced outside of this ROI. However, because pCT and FMpCT image
quality were matched in terms of peak noise, homogeneous regions of the ROI were also imaged with reduced
imaging dose while regions with heterogeneities and increased noise in the uniform scan (like the nasal cavity)
received an increased imaging dose with FMpCT. The median imaging dose inside the ROI was reduced by 35%
on average over the three patients. However, this dose reduction is not very relevant in practice, since those
volumes will also receive a considerably higher treatment dose in each fraction.

Outside of the ROI, median imaging dose could be reduced by 74% on average compared to the uniform
fluence pCT scan. This dose saving was similar across the three patients (ranging from 71% to 80%), even
though treatment fields and consequently optimization targets were considerably different. The largest dose
saving was achieved for patient 1 who had the smallest ROI. Using the novel optimization allowed to further
reduce imaging dose to imaging OARs. Dose savings in imaging OARs reached up to 87%, however the dose
saving was less, the closer an OAR was located to the ROI. Estimates of the imaging dose volume statistics are
available as part of the optimization. A selection of imaging OARs and a trade-off between OAR dose and dose to
the remaining non-ROI tissue will need to be decided based on clinical criteria. In this study we selected the eyes,
the optical nerve, the brainstem and the spinal cord as critical organs. The eye is more sensitive to radiation-
induced damage which can cause cataract (Shore 2016). The other organs were selected as showcases and
eventually a physician would need to define imaging OARs, if any.

For patient 1, the median variance in the ROI was 3.45 x 10~ *. Assuming that this were the variance
objective instead of the peak variance 5.41 x 10~ * used in this study, we can estimate the resulting imaging doses
by simply scaling up the doses with the inverse ratio of the two variance values. This would result in an imaging
dose of 1.22 mGy instead of 0.78 mGy inside the ROI, which is a dose increase of 5%. Outside the ROI the
imaging dose would be 0.38 mGy instead of 0.24 mGy with a dose saving of —67% instead of —80%. This simple
linear scaling is potentially overestimating the dose since the optimizer may be able to further reduce it.
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Nevertheless, the dose saving is still relevant outside of the ROI and a slight dose increase in the ROl is irrelevant
asargued below.

Dose savings reported in Dickmann et al (2020) were up to 40% outside of the ROI and also matched the
peak variance inside the ROI with the uniform fluence scans. In comparison, dose savings achieved in this work
are considerably improved, for which we see two reasons: (1) the ROI based on the treatment doses covered a
smaller volume compared to the ROI in Dickmann et al (2020) and (2) the optimization algorithm in this work
can jointly minimize dose and optimize variance, while in Dickmann et al (2020) dose was only implicitly
minimized by prescribing a certain variance level outside of the RO, potentially leading to non-optimal results.

In general, imaging dose reductions (and increases) due to FMpCT need to be compared to the local
treatment dose: if a change in imaging dose is an order of magnitude lower than the treatment dose, it is probably
irrelevant. This holds true for the imaging dose increases of up to 0.6 mGy inside the ROI Assuming that
imaging were to be performed prior to every fraction, this dose increase is negligible compared to the treatment
dose per fraction. On the contrary, dose savings outside of the ROI were on average 0.9 mGy. Those, however,
need to be compared to the treatment dose outside of the ROI, which was between 180 and 250 mGy per fraction
at the border of the ROI (10% by definition) and dropped rapidly further away from the ROI. For most OARs the
treatment dose was so low that it was not determined by the TPS. While it is known that treatment planning
underestimates neutron dose and thus doses further away from the treatment field, it is likely that those doses
will be in the order of magnitude of few milli-Sievert (Schneider and Hilg 2015). Therefore, the imaging dose
saving achieved with FMpCT appears to be relevant. Nevertheless, a definitive answer to this question requires a
careful study including a precise calculation of the neutron dose during treatment.

This study did not investigate the potential impact of anatomical changes on image variance and dose, and
consequently on the FMpCT patterns. Translations and rotations are typically avoided for head and neck
patients using face masks. Additionally, internal anatomical changes may occur, as well as weight loss. Future
studies should investigate the impact of anatomical changes on the FMpCT scans. Should these be important,
mitigation strategies, such as repeated uniform fluence scans or updates of the uniform fluence scan using the
FMpCT data, need to be developed.

5. Conclusions

In this work we propose an algorithm with dose and variance objectives for fluence field optimization of proton
CT for particle therapy treatment planning. The optimization algorithm aims at minimizing imaging dose while
maintaining a certain variance within the treated area. Increased optimization penalties were given to imaging
OAR to further reduce imaging dose to susceptible structures. In a Monte Carlo study simulating an existing
pCT prototype scanner and realistic pencil beams, we showed that image variance objectives were met and
demonstrated that the resulting FMpCT images maintained the dosimetric accuracy compared to uniform
fluence pCT images based on the analysis of three pediatric head cases. Passing rates comparing pCT to FMpCT
fora 1% criterion on dose and a 1 mm criterion on range were well above 90%. Dose volume statistics showed
only minor differences even for organs outside of the FMpCT ROI. We therefore conclude that FMpCT using
optimization does not deteriorate image quality for treatment planning dose calculations. At the same time we
could demonstrate considerable dose reductions of 74% outside of the ROI on average outperforming a
previously used intersection-based modulation. These dose reductions are also relevant compared to the dose
per fraction outside of the beam path, which is generally low for particle therapy. Thus, fluence-modulated
proton CT with dose and variance objectives can be used to carefully tailor and generally reduce imaging dose
with a minor impact on therapeutic dose calculation accuracy of 0.3 mm or less in terms of average range.
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