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Background: Bruton tyrosine kinase inhibitors (BTKi) are used in B-cell malignancies

and in development against various autoimmune diseases. Since Btk is also involved

in specific pathways of platelet activation, BTKi might be considered to target

platelet GPVI/GPIb-mediated atherothrombosis and platelet FcγRIIA-dependent immune

disorders. However, BTKi treatment of patients with B-cell malignancies is frequently

associated with mild bleeding events caused possibly by off-target inhibition of Tec. Here,

we compared the platelet effects of two novel BTKi that exhibit a high (remibrutinib) or

low (rilzabrutinib) selectivity for Btk over Tec.

Methods and Results: Remibrutinib and rilzabrutinib were pre-incubated with

anticoagulated blood. Platelet aggregation and in vitro bleeding time (closure time) were

studied by multiple electrode aggregometry (MEA) and platelet-function analyzer-200

(PFA-200), respectively. Both BTKi inhibited atherosclerotic plaque-stimulated

GPVI-mediated platelet aggregation, remibrutinib being more potent (IC50 = 0.03µM)

than rilzabrutinib (IC50 = 0.16µM). Concentrations of remibrutinib (0.1µM) and

rilzabrutinib (0.5µM), >80% inhibitory for plaque-induced aggregation, also significantly

suppressed (>90%) the Btk-dependent pathways of platelet aggregation upon

GPVI, von Willebrand factor/GPIb and FcγRIIA activation stimulated by low collagen

concentrations, ristocetin and antibody cross-linking, respectively. Both BTKi did not

inhibit aggregation stimulated by ADP, TRAP-6 or arachidonic acid. Remibrutinib (0.1µM)

only slightly prolonged closure time and significantly less than rilzabrutinib (0.5 µM).
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Conclusion: Remibrutinib and rilzabrutinib inhibit Btk-dependent pathways of platelet

aggregation upon GPVI, VWF/GPIb, and FcγRIIA activation. Remibrutinib being more

potent and showing a better profile of inhibition of Btk-dependent platelet activation vs.

hemostatic impairment than rilzabrutinib may be considered for further development as

an antiplatelet drug.

Keywords: atherothrombosis, platelet-aggregation, bleeding, PFA, MEA

INTRODUCTION

Since the first description of a patient with recurrent
infections and deficiency of immunoglobulins termed
“Agammaglobulinemia” by Ogden Bruton in 1952 (1), it

took more than 40 years of research, until Bruton tyrosine

kinase (Btk) was identified in 1993 as the responsible protein
that is deficient in patients with X-linked agammaglobulinemia
(2, 3). Btk belongs to the Tec (tyrosine kinase expressed in

hepatocellular carcinoma) family of non-receptor cytoplasmic
tyrosine kinase, and contains five different protein interaction
domains: an amino terminal pleckstrin homology (PH) domain,
a proline-rich Tec homology (TH) domain, the SRC kinase
homology (SH) domains SH2 and SH3, and a kinase domain
(4). Btk is the best studied member of this tyrosine kinase
family and most homologous to Tec, the namesake of this
kinase family. Btk plays a crucial role in B-cell receptor
function and in immunoglobulin Fc- receptor signaling of
monocytes/macrophages and neutrophils (4). Since the approval
of ibrutinib, the covalent irreversible first in class Btk inhibitor
(BTKi) in 2013 for treatment of certain B-cell malignancies,
many more reversible and irreversible BTKi have evolved and
the spectrum of diseases that are targeted extends from specific
forms of B-cell malignancies to various autoimmune disorders
(5). Up to now four BTKi (ibrutinib, acalabrutinib, zanubrutinib,
and tirabrutinib) have been approved but at least further eight
BTKi are in clinical studies (5).

Btk is expressed not only in B-cells but also in various
hematopoietic cells including the megakaryocyte-platelet
lineage (6). Btk in platelets is involved in signaling of
specific glycoprotein receptors including glycoprotein (GP)
VI activation by collagen, GPIb activation by von Willebrand
factor (VWF), FcγRIIa activation by IgG immune complexes,
and CLEC-2 activation by podoplanin (5). Thus, Btk might
be a promising therapeutic target of platelet-related diseases,
and BTKi have indeed been proposed as novel antiplatelet
drugs as they inhibit selectively platelet GPVI/GPIb-stimulated
atherothrombosis (7, 8), platelet FcγRIIA-dependent immune
disorders (heparin-induced thrombocytopenia, vaccine-
induced immune thrombotic thrombocytopenia) (9, 10), and
podoplanin/CLEC-2 mediated venous thrombosis (11, 12).
Somewhat surprisingly, XLA patients do not show a bleeding
tendency (13). In contrast, mild bleeding events are frequent
in patients with B-cell malignancies treated with irreversible
covalent BTKi (ibrutinib, acalabrutinib, zanubrutinib, and
tirabrutinib) (5). The reasons are not clear but are probably
multifactorial. They might be related to the type of diseases

treated, but also caused by off-target inhibition as reviewed
recently (5).

Beside Btk the homologous kinase Tec is also expressed in
platelets. Whereas, FcγRIIa activation and VWF activation of
GPIb do not require Tec activation (5, 9), Tec plays a role in GPVI
activation. After GPVI-mediated platelet stimulation by high
dose collagen, both Btk and Tec support platelet aggregation.
Btk-deficient human platelets from patients with XLA and Btk-
deficient mouse platelets do not respond to low concentrations of
collagen or collagen-related peptide (CRP) indicating that Btk is
required for platelet activation after low-degree GPVI stimulation
(14, 15). Similar observations have been made by using low Btk-
specific concentrations of irreversible BTKi and the reversible
BTKi fenebrutinib which inhibits Btk but not Tec and applying
human atherosclerotic plaque which also induces only a low-
degree activation of GPVI (8, 9, 16–18). After stimulation with
high concentrations of collagen, Tec compensates for the absence
of Btk (as in XLA patients) or inhibition of Btk (as after platelet
pretreatment with Btk-selective concentrations of BTKi) and
preserves GPVI-stimulated platelet aggregation. Inhibition of
both Tec and Btk abrogates GPVI-activation (15). Since the
four approved irreversible covalent BTKi mentioned above have
limited selectivity for Btk over Tec as measured by biochemical
assays in vitro (5), and at higher concentrations prolong bleeding
time in vitro (19), it is assumed that therapeutic concentrations of
these BTKi inhibit in platelets irreversibly Tec in addition to Btk
thereby abrogating GPVI signaling. This might contribute to the
observed bleeding side effects.

Therefore, we hypothesized that off target effects of BTKi
with low Btk selectivity over Tec might explain bleeding of
BTKi, and investigated in the present study the effects of two
novel BTKi on Btk-mediated pathways of platelet aggregation
and bleeding time in vitro: the novel selective covalent BTKi
remibrutinib (LOU064), a very potent irreversible covalent BTKi,
which is highly selective for Btk and barely inhibits Tec (20), and
rilzabrutinib (PRN1008) an oral, reversible covalent BTKi which
inhibits Btk and Tec with similar IC50 values (21). Both BTKi
are in clinical studies of dermatological autoimmune diseases.
Rilzabrutinib inhibits very potently Btk and Tec in vitro (IC50
values, 1.3 and 0.8 nM, respectively) (22). It forms a reversible
covalent bond with Cys481 of Btk, and shows a fast association
and a very slow dissociation rate (23). Rilzabrutinib is in clinical
trials of pemphigus (24) and idiopathic thrombocytopenic
purpura (ITP), a disease exhibiting very low platelet counts
(<50.000/µl) and bleeding events. Here, it inhibits platelet
destruction mainly via the inhibition of autoantibody/FcγR
signaling in splenic macrophages (25). Unexpectedly, in a
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previous report clinically relevant concentrations of rilzabrutinib
showed no inhibition of platelet activation in vitro (26).

MATERIALS AND METHODS

Reagents
Remibrutinib (LOU064), rilzabrutinib (PRN1008) and
fenebrutinib (GDC-0853) were purchased from MedChem
Express (New Jersey, USA). Dimethyl sulfoxide (DMSO) was
from Sigma-Aldrich (Taufkirchen, Germany). Collagen was
from Takeda (Linz, Austria). ADP, ristocetin, arachidonic acid
(AA) and TRAP-6 (Thrombin Receptor Activator Peptide 6)
were obtained from Roche Diagnostics (Mannheim, Germany).
The anti-CD32 antibody AT10 (monoclonal mouse IgG1),
cross-adsorbed F(ab’)2-goat anti-mouse IgG (H + L) and the
anti-CD9 antibody Ts9 (monoclonal mouse IgG1) were from
ThermoFisher Scientific (Waltham, MA, USA).

Declaration of Helsinki
Informed consent was obtained from healthy volunteers, as
approved by the Ethics Committee of the Faculty of Medicine
of the University of Munich, and in accordance with the ethical
principles for medical research involving human subjects, as set
out in the Declaration of Helsinki.

Human Atherosclerotic Plaque
Homogenates
Atherosclerotic tissue specimens were obtained from patients
who underwent endarterectomy for high-grade carotid artery
stenosis. Specimen containing lipid-rich soft plaques were
collected. The atheromatous plaques were carefully dissected
under sterile conditions from other regions of the atherosclerotic
tissue. The plaques were weighed, homogenized with a glass
pestle and potter, then stored at −80◦C (27, 28). Plaque
homogenates from 5 patients were pooled.

Blood Collection
Whole blood from healthy donors who had not taken any
antiplatelet drug within 2 weeks was collected by cubital
venipuncture into blood tubes (double wall) from Verum
Diagnostica GmbH (Munich, Germany) containing hirudin
as anticoagulant (final hirudin concentration in blood: 200
U/ml corresponding to 15µg/ml) for platelet aggregation
measurements (29) or buffered trisodium citrate/citric acid
solution (citrate concentration 0.129 mol/L; S-Monovette 3.8mL
9NC/PFA from Sarstedt, Nümbrecht, Germany) for closure time
measurements with the PFA-200 (30). The blood was kept at
room temperature and measurements were performed with 3 h
after venipuncture.

Platelet Aggregation in Blood
Multiple electrode aggregometry (MEA) (Roche Diagnostics,
Mannheim, Germany) that monitors the change of conductivity
between two sets of electrodes (red and blue traces) caused
by the attachment of platelets was applied to measure platelet
aggregation, as described (29, 31). In brief, 0.9% NaCl
(300 µL) was placed in aggregometer cuvettes (06675590,
Roche, Mannheim, Germany) with aliquots (300 µL) of

hirudin-anticoagulated blood. BTKi or DMSO (solvent control;
0.6 µL) were added, and mixed well with pipet, covered,
and incubated for 1 h at 37◦C (19). Then, the cuvettes were
transferred into the device, platelet stimuli (collagen, ristocetin,
AT10 + Fab2, anti-CD9 antibody, TRAP-6, ADP, or AA) were
added at concentrations as detailed in the figure legends, stirring
was simultaneously started and aggregation was measured for
10min. Aggregation was recorded in arbitrary units (AU),
and cumulative aggregation (AU∗min) from 0 to 10min was
measured by quantifying the area under the curve. The traces
selected as representative and displayed in the Figures belonged
to a specific experiment whose values were closest to the mean.

IC50 values were obtained by non-linear fitting using the
following model:

Fifty= (Top+ Baseline)/2
Y = Bottom + (Top-Bottom)/(1 + 10∧((LogAbsoluteIC50-
X)∗HillSlope+ log((Top-Bottom)/(Fifty-Bottom)-1)))

Closure Time Measurement
The INNOVANCE R© PFA-200 System (Siemens Healthcare,
Erlangen, Germany), which simulates primary hemostasis
in vitro, provides rapid and precise assessment of platelet
dysfunction and bleeding risk (32, 33). DMSO (0.1%;
solvent control) or various concentrations of remibrutinib
or rilzabrutinib were pipetted (0.8 µl) into samples of citrate-
anticoagulated blood (0.8ml) (30) and preincubated for 1 h at
37◦C. The Dade R© PFA Collagen/EPI Test Cartridge was used,
and the time of complete plug formation was reported as “closure
time.” The normal range of closure time is assessed specifically
for each test center and was determined to be 84–170 s. The
normal range as recommended by the manufacturer (84–160 s)
has been slightly modified at our institution to 84–170 s based
on the measurement on 54 healthy unselected persons without
any medication according to the approved-level consensus
guideline from the Clinical and Laboratory Standards Institute
(CLSI EP28).

Statistics
The data are shown as mean ± standard deviation (SD) of the
indicated number of the experiments. Normal distribution of
values was assessed using the Shapiro-Wilk test. Parallel multi-
experimental conditions were analyzed by ordinary one-way
ANOVA, followed by Bonferroni’s test if the normality test was
passed, otherwise a Kruskal-Wallis test for unmatched and a
Friedman’s test for matched observations followed by Dunn’s test
were used. Side-by side comparisons were analyzed by Wilcoxon
matched-pairs signed rank test.

RESULTS

Remibrutinib (LOU064) and Rilzabrutinib
(PRN1008) Dose-Dependently Inhibit
GPVI-Mediated Platelet Aggregation in
Blood Triggered by Atherosclerotic Plaque
Diverse collagen type I and III fibers are the decisive plaque
components that induce platelet aggregation via activation
of GPVI (27, 28, 34). Blood was incubated with increasing
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FIGURE 1 | Effects of increasing concentrations of remibrutinib and rilzabrutinib on platelet aggregation in blood stimulated by plaque homogenate. Hirudin

anticoagulated blood was preincubated for 1 h at 37◦C with solvent control (DMSO, 0.1%), or increasing concentrations of remibrutinib (A,C,D) or rilzabrutinib (B,C,E)

(Continued)
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FIGURE 1 | and aggregation was recorded for 10min after stimulation by plaque homogenate (833µg/ml) (19). The dose-response curves of (A) remibrutinib and (B)

rilzabrutinib are shown. (C) Representative aggregation traces in red and blue for each electrode, respectively, are shown. (D,E) Bar graphs show the dose-dependent

delay in aggregation by (D) remibrutinib and (E) rilzabrutinib. Single data points are shown but are in part not visible due to overlap. Values are mean ± SD (n = 6).

Statistical analysis was carried out comparing against baseline (without BTKi) using the Friedman test followed by Dunn’s test (A–E). *p < 0.05, **p < 0.01, ***p <

0.001, ****p < 0.0001.

concentrations of remibrutinib or rilzabrutinib for 1 h prior
to plaque stimulation. Remibrutinib and rilzabrutinib inhibited
plaque-induced platelet aggregation with IC50 values of 0.03 and
0.16µM, respectively. Remibrutinib (0.2µM) and rilzabrutinib
(1µM) were able to block plaque-induced platelet aggregation by
>90% (Figures 1A,B). Accordingly, remibrutinib is more potent
than rilzabrutinib.

The aggregation tracings in Figure 1C and
panels in Figures 1D,E show a dose-dependent
increase in delay of aggregation (lag time) caused by
both inhibitors.

Effects of Remibrutinib and Rilzabrutinib
on Platelet Aggregation Stimulated by
Collagen, Ristocetin, FcγRIIA- and
G-Protein Coupled Receptor-Activation
Next the effects of remibrutinib and rilzabrutinib were
investigated on platelet aggregation induced by stimuli known to
activate Btk-dependent and Btk-independent platelet signaling
pathways. Concentrations of remibrutinib (0.1µM) and
rilzabrutinib (0.5µM) were chosen that inhibited atherosclerotic
plaque-induced platelet aggregation by 89 and 88%, respectively
(Figure 1A).

Figure 2 shows the results for platelet stimuli that induce
aggregation through a Btk-dependent mechanism (5). GPVI-
dependent aggregation was inhibited by remibrutinib and
rilzabrutinib by 91 and 94%, respectively, on low dose
collagen, and by 37 and 41%, respectively, on high dose
collagen (Figures 2A,B). Glycoprotein Ib/von Willebrand
factor (GPIb/VWF)-dependent ristocetin-induced platelet
aggregation was blocked by 95% by both BTKi (Figure 2C). The
inhibitory effects of remibrutinib and rilzabrutinib on GPVI-
and GPIb/VWF-dependent platelet aggregation were similar to
those of fenebrutinib (0.1µM) (Supplementary Figure 2),
which is a reversible and highly selective
Btk inhibitor.

Complete suppression of platelet aggregation by both BTKi
was also observed on FcγRIIA activation by crosslinking or anti-
CD9 antibody stimulation (Figures 2D,E). Due to the absence
of adenosine 5’-diphosphate (ADP) secretion from platelets (9),
anti-CD9 antibody stimulation showed a delayed aggregation
response and less maximal aggregation compared with CD32-
crosslinking (Figure 2E).

Remibrutinib and rilzabrutinib did not compromise Btk-
independent pathways of platelet aggregation stimulated by
GPCR activation with thrombin receptor-activating peptide
(TRAP), arachidonic acid (AA), or ADP under the conditions
tested (Figure 3).

Effect of Remibrutinib and Rilzabrutinib on
in vitro Bleeding Time
To investigate whether remibrutinib and rilzabrutinib
might impair primary hemostasis, the platelet function
analyzer PFA-200 was used. The instrument aspirates citrate-
anticoagulated blood under constant vacuum from a reservoir
through a capillary and a small hole in a membrane filter which
was coated in our experiments with collagen and epinephrine
(collagen/epinephrine cartridge). The time required to obtain
full occlusion of the aperture is reported as “in vitro closure
time” (32, 35). The PFA is used for routine screening of patients
with potential hemorrhagic risk and is very sensitive to monitor
aspirin intake (36, 37).

Closure time was slightly, but significantly prolonged by
0.1µM remibrutinib (Figures 4A,B) which suppressed >85%
Btk-dependent platelet aggregation after GPVI activation with
low dose collagen and after VWF/GPIb activation with ristocetin
(Figures 1A, 2A,C), but it did not exceed the upper limit of
the normal range (170 s). Higher concentrations of remibrutinib
(0.2 and 0.5µM) significantly and profoundly prolonged
closure time.

For rilzabrutinib it was found that a concentration of 0.2µM
which inhibited GPVI-dependent plaque-stimulated platelet
aggregation by 56% (Figure 1B) did not affect significantly the
closure time. A concentration of 0.5µM rilzabrutinib equipotent
to 0.1µM remibrutinib suppressed>90% Btk-dependent platelet
aggregation after low dose collagen- and ristocetin-stimulated
aggregation (Table 1; Figure 2) and significantly increased
closure time by 67% (Figures 4A,B). The closure time was
significanly more prolonged than by 0.1µM remibrutinib
(Figure 4B). A concentration of 1µM rilzabrutinib prolonged
bleeding time maximally. DMSO, the solvent of BTKi, did not
affect closure time as shown previously (9), and the DMSO
controls showed similar values at the beginning and the end of
the experiments (Figures 4A,B).

DISCUSSION

We demonstrate here in our study that (i) remibrutinib and
rilzabrutinib inhibit and delay dose-dependently atherosclerotic
plaque-induced GPVI-mediated platelet aggregation; (ii)
remibrutinib (0.1µM) and rilzabrutinib (0.5µM) also block
Btk-dependent GPVI-, GPIb/VWF- and FcγRIIa-stimulated
platelet aggregation; (iii) higher concentrations of remibrutinib
(≥0.2µM) and therapeutic concentrations of rilzabrutinib
(≥0.2µM) prolong the bleeding time in vitro as measured
by PFA-200.

According to the dose-response curve (Figures 1A,B), the
potency for platelet inhibition of low degree GPVI-induced
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FIGURE 2 | Effects of remibrutinib and rilzabrutinib on platelet aggregation in blood after stimulation by collagen, ristocetin or FcγRIIA activation. Hirudin

anticoagulated blood was preincubated for 1 h with DMSO or BTKi (remibrutinib 0.1µM, rilzabrutinib 0.5µM) prior to stimulation with (A) low dose collagen

(0.4–0.6µg/ml) that was titrated to induce a similar degree of platelet aggregation as plaque homogenate (833µg/mL) (19), (B) high dose collagen (4–6µg/ml) that

was 10× concentrations of the low dose collagen (8, 19), (C) ristocetin (0.5 mg/ml), (D) CD32 cross-linking (3min incubation with 2µg/ml AT10, plus 30µg/ml Fab2),

(Continued)
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FIGURE 2 | or (E) anti-CD9 antibody (1µg/ml). Representative MEA tracings (top panels) and bar graphs (bottom panels) are shown. Values are shown as mean ±

SD (n = 5). Statistical analysis was carried out using ordinary one-way ANOVA followed by Bonferroni’s test (B,D) or Kruskal-Wallis followed by Dunn’s test (A,C,E).

*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

FIGURE 3 | Effects of remibrutinib and rilzabrutinib on platelet aggregation in blood after stimulation by TRAP, ADP, or AA. Hirudin anticoagulated blood samples were

pretreated for 1 h at 37◦C with solvent control (DMSO, 0.1%), or BTKi (remibrutinib 0.1µM, rilzabrutinib 0.5µM) before stimulation with (A) TRAP (15µM), (B) ADP

(10µM), or (C) AA (0.6mM). Representative MEA tracings (top panels) and aligned dot blot bar graphs (bottom panels) are shown. Values shown are mean ± SD

(n = 5). Statistical analysis was carried out using ordinary ANOVA followed by Bonferroni’s test (A,B) or Kruskal-Wallis test followed by Dunn’s test (C), that did not

show significant differences.

platelet aggregation of remibrutinib (IC50 = 0.03µM) was
5 times higher than that of rilzabrutinib (IC50 = 0.16µM).
Compared with other BTKi (Table 1), remibrutinib is only
slightly less potent than fenebrutinib (IC50 = 0.016µM) and
ibrutinib (IC50 = 0.025µM) and more potent than zanubrutinib,
rilzabrutinib, tirabrutinib, acalabrutinib and evobrutinib. The
IC50 values of remibrutinib (IC50 = 0.03µM) and rilzabrutinib
(IC50 = 0.16µM) are 12-times and 2-fold lower than the
optimal plasma levels as determined in clinical phase 1 studies,
respectively (38, 39). Additionally, both inhibitors induced a

dose-dependent increase in delay of atherosclerotic plaque-
induced aggregation that was associated with the suppression of
aggregation in blood (Figure 1C). A delay was also shown in a
previous study using ibrutinib- and acalabrutinib-treated washed
platelets stimulated by collagen while the maximal aggregation
was unaffected (17).

Remibrutinib (0.1µM) and rilzabrutinib (0.5µM)
significantly suppressed by >90% GPVI-dependent aggregation
on low dose collagen, GPIb/VWF-dependent aggregation on
ristocetin stimulation, and FcγRIIA-dependent aggregation
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FIGURE 4 | Effect of remibrutinib and rilzabrutinib on bleeding time in vitro. Citrate anticoagulated blood samples were pre-incubated for 1 h at 37◦C with solvent

(DMSO, 0.1%) or increasing concentrations of remibrutinib or rilzabrutinib and then transferred to collagen/epinephrine cartridges. The in vitro closure time (CT) was

measured with the PFA-200. DMSO (1) and DMSO (2) control samples were measured at the beginning and end of the experiment, respectively. (A) Representative

PFA-200 tracings. (B) The aligned dot plot bar charts show CT values of different concentrations of remibrutinib and rilzabrutinib. Values are mean ± SD (n = 6).

Statistical analysis was carried out using the Wilcoxon matched-pairs signed rank test comparing against DMSO1 (*p < 0.05) or concentrations of remibrutinib

(0.1µM) and rilzabrutinib (0.5µM) that inhibited Btk-dependent pathways of platelet aggregation by >90% (#p < 0.05).
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TABLE 1 | IC50 values of remibrutinib, rilzabrutinib and other BTK inhibitors for

inhibition of low degree GPVI stimulated platelet aggregation, and comparison

with therapeutic drug plasma levels.

BTK Inhibitors IC50 (µM) Therapeutic drug

plasma level (µM)

Remibrutinib 0.03* 0.46a

Rilzabrutinib 0.16* 0.33b

Fenebrutinib 0.016* 0.6c

Ibrutinib 0.025# 0.31d

Zanubrutinib 0.094# 1.4e

Tirabrutinib 0.268# 1.96f

Acalabrutinib 0.372# 1.78g

Evobrutinib 1.20# Not known

*Hirudin-anticoagulated blood was pre-incubated with the BTKi for 1 h or 15min

(fenebrutinib, Supplementary Figure 1) prior to stimulation with plaque homogenate.
#Hirudin-anticoagulated blood was pre-incubated with the BTKi for 1 h before stimulation

with low collagen concentrations (0.2–0.5µg/ml). Platelet aggregation was measured by

multiple electrode aggregometry (MEA).
aRemibrutinib, 100mg q.d, optimal dose in phase I study (38).
bRilzabrutinib, 300mg b.i.d (39).
cFenebrutinib, 200mg q.d (40).
d Ibrutinib, 420mg q.d (41).
eZanubrutinib, 320mg q.d (42).
fTirabrutinib, 320mg q.d (43).
gAcalabrutinib, 100mg b.i.d (44).

upon CD32 cross-linking, but it had no effect on TRAP, AA, or
ADP stimulation as expected according to the results of previous
studies with other BTKi (7, 9, 16, 17), although it has to be stated
that a non-existing effect is difficult to prove and may depend on
the experimental conditions.

High dose collagen GPVI-dependent aggregation was
suppressed to a similar degree of about 30% with remibrutinib
(0.1µM), rilzabrutinib (0.5µM) and the Btk-selective reversible
BTKi fenebrutinib (0.1µM) (Supplementary Figure 2). This
may indicate that the concentrations and incubation conditions
of remibrutinib and rilzabrutinib used are selective for inhibition
of Btk and unlikely to also inhibit Tec in platelets. This
is unexpected considering the potent inhibition of Tec by
rilzabrutinib in vitro (22). Rilzabrutinib by inhibiting Tec in
addition to Btk would have shut-off GPVI signaling after high
collagen stimulation.

As shown in several studies, low-degree GPVI activation
only depends on Btk, while high dose collagen-induced GPVI
signaling is also dependent on Tec co-activation (9, 15, 19, 45).
In a previous study, 50 nM fenebrutinib was applied and only
suppression of platelet aggregation on low but not high dose
collagen stimulation was observed (9). Our different results may
be explained due to the higher concentration of fenebrutinib
(0.1µM) applied in our study providing a more complete
inhibition of Btk.

Our results show that the remibrutinib concentration to fully
inhibit Btk-dependent pathways of platelet aggregation (0.1µM)
is lower than the reported maximal plasma level (0.46µM) in a
phase I study after intake of 100mg q.d. for 12 days (38). Thus,
this concentration is expected to block completely Btk-dependent
signaling in platelets in vivo. The equivalent rilzabrutinib

concentration (0.5µM) is higher than the plasma Cmax reported
in clinical studies after therapeutic dosage for autoimmune
diseases (0.33µM) (Table 1) (39). Since the IC50 of rilzabrutinib
for inhibition of plaque-induced platelet aggregation in blood
was lower (0.16µM), it is likely that therapeutic concentrations
of rilzabrutinib inhibit Btk-dependent pathways of platelet
aggregation, but not entirely. Our results are in contrast to
findings showing no inhibition of ristocetin- and high dose
collagen- induced aggregation of platelet-rich plasma from
healthy donors and ITP patients pre-incubated with 1µM
rilzabrutinib for 15min in vitro (26, 46). The discrepancy might
be explained by differences of the experimental system used
(blood vs. PRP), different concentrations of collagen (low vs.
high) and exposure times of rilzabrutinib (long vs. short). We
selected a long exposure time (1 h), since this might better
simulate the in vivo situation after absorption of the drug,
and previous studies have shown that platelet inhibition with
irreversible BTKi increases with the exposure time (17, 19).

Bleeding is a frequent side effect of treatment with certain
irreversible BTKi such as ibrutinib and the second generation
BTKi acalabrutinib, zanubrutinib, and tirabrutinib used to treat
B-cell malignancies (5, 47–49). Exclusive inhibition of Btk should
not increase bleeding since XLA patients who are deficient of
Btk do not show an impairment of haemostasis (13). It has
been discussed that bleeding by these BTKi is related to off-
target inhibition of Tec, since this kinase is functionally involved
in GPVI-induced platelet activation (8, 15). By comparison, for
fenebrutinib, a reversible highly selective BTKi, which is the most
selective BTKi and which shows no inhibition of Tec (50), no
bleeding events were reported in clinical trials (non-Hodgkin
lymphoma, chronic lymphocytic leukemia, rheumatoid arthritis,
and systemic lupus erythematosus) (5). Also, fenebrutinib in
vitro, even at very high concentrations up to 1µM did not
prolong bleeding time measured by the PFA-200 (9).

The reversible BTKi fenebrutinib binds to an inactive
conformation of Btk (51). Also, remibrutinib which was
developed from fenebrutinib-like scaffolds to bind to the inactive
conformation of Btk (20, 51) showed a 175-fold higher affinity
for Btk over Tec in binding assays in vitro (20). Thus, it was
expected that remibrutinib would not increase in vitro bleeding
time measured by PFA-200, similar to fenebrutinib (9). However,
we observed that bleeding times in vitro were already slightly
but significantly increased after blood incubation with 0.1µM
remibrutinib (which inhibited>90% of Btk-dependent pathways
of platelet aggregation), and strongly prolonged by remibrutinib
concentrations of 0.2 and 0.5µM. The results for remibrutinib
are similar to a previous study, in which low concentrations of
the irreversible BTKi ibrutinib, zanubrutinib, acalabrutinib, and
tirabrutinib inhibited GPVI- dependent platelet aggregation by
>70%, but 2- to 2.5-fold higher concentrations of these BTKi
were required to significantly increase the bleeding time in vitro
(19). The increase of closure time was similar to that observed
after treatment with low dose aspirin (52).

In a phase I placebo controlled clinical trial of remibrutinib
(total 156 healthy subjects), mild self-limited bleeding events
were observed only in 4 persons in the multiple-ascending dose
cohorts with remibrutinib intake for 12 days. These included two
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subjects in the 600mg q.d. cohort with epistaxis and two subjects
in the 100mg cohort with trauma-triggered hematomas (38).

Rilzabrutinib in our study slightly but non-significantly
increased at 0.2µM closure time in the PFA device, the increase
was at 0.5µM pronounced (Figure 4B). Potent Tec inhibition
could contribute to the increased in vitro bleeding time (5);
however, the results of the aggregation studies upon stimulation
with high concentrations of collagen argue against simultaneous
Tec inhibition in platelets by 0.5µM of rilzabrutinib (see above).

Thus, the mechanisms underlying the increase of closure
times elicited by remibrutinib as well as rilzabrutinib are unlikely
to involve off-target inhibition of Tec. They could be related
to effects on the Btk protein itself. Recently it was found that
binding of certain irreversible BTKi (except fenebrutinib) to the
kinase domain had long-range allosteric effects on the SH2-and
SH3- regulatory domains changing their conformation toward an
activated state of the protein (53).

In contrast to remibrutinib, there was not a clear difference
of rilzabrutinib concentrations that inhibited Btk-dependent
pathways of platelet aggregation in the MEA and robustly
increased the closure time in the PFA; the concentration
of rilzabrutinib of 0.5µM does both. Maximal therapeutic
concentrations of rilzabrutinib (0.33µM) are expected to
significantly increase the closure time in the PFA device, but no
treatment-related bleeding had been noted in the ITP clinical
trial with rilzabrutinib (25), although the median platelet count
at study entry was only 14.173/µl (25). However, 7% (2/27) of
patients treated with rilzabrutinib had treatment-related epistaxis
as observed in the latest pemphigus clinical trial (24).

LIMITATIONS

Although our in vitro study has the advantage of reducing the
complexity of the experimental conditions, and the different
effects of the two BTKi studied on platelets in blood are obvious,
these data cannot directly be translated into the situation in vivo.
Clinical studies of platelet function ex vivo after oral intake of
therapeutic dosage are warranted to approach the in vivo effects
of remibrutinib and rilzabrutinib on platelets.

CONCLUSION

In the present study we found significant differences of the
two BTKi remibrutinib and rilzabrutinib on platelets that would
favor remibrutinib as a candidate for further development as
an antiplatelet drug to inhibit Btk-dependent platelet activation
pathways underlying atherothrombosis and certain platelet-
related immune disorders. Since de novo protein synthesis in

platelets is very limited and because low concentrations of
irreversible BTKi such as remibrutinib may covalently inactivate
platelet BTK already by a single exposure at low concentrations
during absorption, it is likely that low doses of such a selective
irreversible BTKi are effective in cardiovascular prevention
without affecting the immune system (7, 8, 54). Our study further
suggests that off-target effects on Tec are unlike to be involved
in the increase of closure time measured by PFA, and may not
explain the bleeding side effects elicited by BTKi.
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