CONTENTS

EDITORIAL

The Role of Surfactant-associated Proteins
Fred Possmayer
749

THIS MONTH IN THE RED JOURNAL
753

ARTICLES

Effects of Surfactant Protein-A on Surfactant Function in Preterm Ventilated Rabbits
Takako Yamada, Machiko Ikegami, Bannie L. Tabor, and Alan H. Jobe
754

Inhalation of Nitrogen Dioxide Fails to Reduce the Activity of Human Lung Alpha-1-Proteinase Inhibitor
David A. Johnson, Mark W. Frampton, R. Steve Winters, Paul E. Morrow, and Mark J. Utell
758

Inactivation of Chemotactic Factor Inactivator by Cigarette Smoke: A Potential Mechanism of Modulating Neutrophil Recruitment to the Lung
763

Functional Character and Augmentation of Lymphocytes in Regional Lymph Nodes of Patients with Lung Cancer
Yoh Watanabe, Yasuo Hashizume, Junzo Shimizu, Masayuki Yoshida, Shinichiro Watanabe, Takashi Iwa, Shunsuke Sakai, Shunsuke Migita, Hiroshi Sato, Tsugiyu Murayama, Saburo Koshimura, and Motoo Saito
769

Studies of an Antiendotoxin Antibody in Preventing the Physiologic Changes of Endotoxemia in Awake Sheep
Arthur P. Wheeler, William D. Hardie, and Gordon Bernard
775

Effect of Recombinant Hirudin, a Specific Inhibitor of Thrombin, on Endotoxin-induced Intravascular Coagulation and Acute Lung Injury in Pigs
Hans Hoffmann, Matthias Siebeck, Michael Spannagl, Marion Weis, Reinhard Geiger, Marianne Jochem, and Hans Fritz
782

Restored Hypoxic Pulmonary Vasoconstriction by Peripheral Chemoreceptor Agonists in Dogs
Robert Naeije, Philippe Lejeune, Jean-Luc Vachiery, Marc Leeman, Christian Melot, Roger Hallemans, Marion Delcroix, and Serge Brimouillé
789

Doppler Assessment of Pulmonary Hypertension Induced by Hypoxic Breathing in Subjects Susceptible to High Altitude Pulmonary Edema
Hikaru Yagi, Hiroyoshi Yamada, Toshio Kobayashi, and Morie Sekiguchi
796

Role of Molecular Diffusion in Conventional and High Frequency Ventilation
Robert A. Klocke, Alan R. Saltzman, Brydon J. B. Grant, Alan T. Aquillina, and Shaoping Zhang
802
Oxygen Supplementation during Exercise in Cystic Fibrosis
Patricia A. Nixon, David M. Orenstein, Scott E. Curtis, and Elizabeth A. Ross

Endogenous Opioids Modulate the Increase in Ventilatory Output and Dyspnea during Severe Acute Bronchoconstriction
S. Bellofiore, G. U. Di Maria, S. Privitera, S. Sapienza, J. Milic-Emili, and A. Mistretta

Indomethacin Does Not Inhibit the Ozone-induced Increase in Bronchial Responsiveness in Human Subjects
Rodney L. Ying, Kenneth B. Gross, Thomas S. Terzo, and William L. Eschenbacher

Effects of Deep Inhalation during Early and Late Asthmatic Reactions to Allergen
Riccardo Pellegrino, Benedetto Violante, Emanuele Crimi, and Vito Brusasco

The Effect of Repetitive Exercise on Airway Temperatures
Ileen A. Gilbert, Janie M. Fouke, and E. R. McFadden, Jr. (with the technical assistance of K. A. Lenner and A. J. Coreno, Jr.)

Effect of Long-term Treatment with an Inhaled Corticosteroid (Budesonide) on Airway Hyperresponsiveness and Clinical Asthma in Nonsteroid-dependent Asthmatics
Elizabeth F. Juniper, Patricia A. Kline, Michael A. Vanzieleghem, E. Helen Ramsdale, Paul M. O'Byrne, and Frederick E. Hargreave

The Relationship between Respiratory Impairment and Asbestos-related Pleural Abnormality in an Active Work Force
Jean Bourbeau, Pierre Ernst, John Chrome, Ben Armstrong, and Margaret R. Becklake

Asbestos Content of Lung Tissue, Lymph Nodes, and Pleural Plaques from Former Shipyard Workers
Ronald F. Dodson, Marion G. Williams, Jr., Carolyn J. Corn, Alessandro Brollo, and Claudio Bianchi

A Cost-Effectiveness Analysis of the Routine Use of Isoniazid Prophylaxis in Patients with a Positive Mantoux Skin Test
J. M. Fitzgerald and A. Gafni

Selective IgG Subclass Deficiencies and Antibody Responses to Pneumococcal Capsular Polysaccharide Antigens in Adult Community-acquired Pneumonia
Bertrand Herer, Pierre Ernst, John Chrome, Ben Armstrong, and Margaret R. Becklake

Epidemiology of Infection by Nontuberculous Mycobacteria: IX. Evidence for Two DNA Homology Groups among Small Plasmids in Mycobacterium avium, Mycobacterium intracellulare, and Mycobacterium scrofulaceum
Markus T. Jucker and Joseph O. Falkingham III

Quantitation of Mast Cells and Eosinophils in the Bronchial Mucosa of Symptomatic Atopic Asthmatics and Healthy Control Subjects Using Immunohistochemistry
Ratko Djukanovic, John W. Wilson, Karen M. Britten, Susan J. Wilson, Andrew F. Walls, William R. Roche, Peter H. Howarth, and Stephen T. Holgate

Timing of Corticosteroid Treatment: Effect on Lung Lymph Dynamics in Air Embolism Lung Injury in Awake Sheep

CASE REPORTS

Hypercarbic Periodic Breathing during Sleep in a Child with a Central Nervous System Tumor
Samuel T. Kuna, James S. Smickley, and Lesley C. Murchison

Central Airway Obstruction due to Cytomegalovirus-induced Necrotizing Tracheitis in a Patient with AIDS
Elaine M. Imoto, Ross M. Stein, Judd E. Shellito, and Jeffrey L. Curtis

Sarcoidosis Complicated by HIV Infection: Three Case Reports and a Review of the Literature
William S. Lowery, Warren L. Whitlock, Robert A. Dietrich, and Jonathan M. Fine

BRIEF COMMUNICATIONS

Ciliary Motility in Two Patients with Yellow Nail Syndrome and Recurrent Sinopulmonary Infections
Adelaida M. Miro, Viswanath Vasudevan, and Hemant Shah

Manual Ventilation Bags as a Source for Bacterial Colonization of Intubated Patients
David J. Weber, M. Brefetta Wilson, William A. Rutala, and Charlotte A. Thomann

STATE OF THE ART

Differential Roles of Opioid Receptors in Respiration, Respiratory Disease, and Opiate-induced Respiratory Depression
Jennifer E. Shook, W. David Watkins, and Enrico M. Camporesi
ANNOUNCEMENT

Effective with all new manuscripts submitted after January 1, 1990 the $50 manuscript processing charge will no longer be required. Instead, the AMERICAN REVIEW OF RESPIRATORY DISEASE will require page charges for original manuscripts of $40 per printed page. Authors will be billed for the charges.
Effect of Recombinant Hirudin, a Specific Inhibitor of Thrombin, on Endotoxin-induced Intravascular Coagulation and Acute Lung Injury in Pigs

HANS HOFFMANN, MATTHIAS SIEBECK, MICHAEL SPANNAGL, MARION WEIS, REINHARD GEIGER, MARIANNE JOCHUM, and HANS FRITZ

Introduction

Septicemia is frequently associated with intravascular coagulation and secondary organ failure, such as acute lung injury (1–3). Infusion of endotoxin (lipopolysaccharide [LPS]) into animals has been shown to cause an activation of the coagulation cascade and to cause acute lung injury characterized by pulmonary hypertension, pulmonary endothelial injury, increased pulmonary vascular permeability, and pulmonary edema (4–8). Serine proteases, such as thrombin, plasmin, or plasma kallikrein, generated during activation of the coagulation cascade have been shown to activate polymorphonuclear leukocytes (PMN) as well as to directly increase pulmonary vascular permeability (9–12). Thus, these proteases are thought to play a major role in the pathophysiology of LPS-induced acute lung injury. The response of thrombin infusion in animals resembles that seen after LPS administration in several respects, including pulmonary hypertension and increased pulmonary vascular permeability (10). The direct effects of thrombin in vitro include increases in endothelial permeability (13), vascular smooth muscle contraction (14), activation of multiple PMN functions (15), and thrombocyte aggregation from various cells (16–18). In vivo, the thrombin-induced cleavage of fibrinogen to form soluble fibrin, which subsequently polymerizes to form fibrin clots, may also be a causative factor in LPS-induced acute lung injury. Soluble fibrin causes pulmonary hypertension in isolated perfused rabbit lungs (19). In addition, thrombin may induce the release of tissue plasminogen activator from the endothelial cells and thereby activate plasmin (20). Fibrin degradation products (FDP) generated by plasmin are noxious agents in the lung and may increase vascular permeability (21). Plasmin may also lead to complement activation resulting in PMN chemotaxis (22). The sum of these actions suggests a prominent role of thrombin in the pathogenesis of LPS-induced acute lung injury.

In this study, we used the thrombin-specific inhibitor, recombinant hirudin, to investigate the role of thrombin in a porcine model of LPS-induced acute lung injury. Hirudin, the anticoagulant from the medical leech, is a single-chain Polypeptide composed of 65 amino acid residues with a molecular weight of 7,000 (23). Recently, recombinant hirudin (r-hirudin) has become available (24). r-Hirudin has the same inhibitory properties as the natural thrombin-inhibitory effectiveness of heparin depends on the concentration of AT III in plasma, which is low in cases of septic shock (30, 31).

The objectives of this study were (1) to examine whether hirudin administration would inhibit the action of thrombin-inhibitory effectiveness of heparin depends on the concentration of AT III in plasma, which is low in cases of septic shock (30, 31).

The objectives of this study were (1) to examine whether hirudin administration would inhibit the action of thrombin.

SUMMARY We hypothesized that thrombin activation may play a prominent role in endotoxin-induced secondary organ failure, such as acute lung injury. To test this hypothesis, we administered a thrombin-specific inhibitor, recombinant hirudin, in endotoxemic pigs. The pigs were anesthetized, mechanically ventilated, and prepared with Swan-Ganz and extravascular lung water (EVW) catheters. A total of 18 randomly selected animals received a pretreatment of 1,000 U/kg of hirudin, followed by a continuous infusion over 6 h of 500 U/kg/h given simultaneously with the infusion of 10 μg/kg/h of Salmonella abortus equi endotoxin. Another 18 animals received a continuous infusion over 6 h of endotoxin but did not receive hirudin. All animals were fluid resuscitated with 17 ml/kg/h of saline for the duration of the experiment. Data are expressed as the mean (95% confidence interval).

Hirudin reduced the endotoxin-induced consumption of plasma fibrinogen from 170 (138–205) mg/100 ml to 39 (21–67) mg/100 ml (p = 0.0001) and endotoxin-induced increases in the soluble fibrin in plasma from 343 (369 to 499) ng/ml to 236 (171 to 300) ng/ml (p = 0.0002). These data suggest an effective inhibition of the endotoxin-generated thrombin by hirudin. Furthermore, hirudin significantly reduced endotoxin-induced increases in pulmonary vascular resistance from 32 (27 to 37) kdyn x s x cm–5 x kg to 20 (15 to 25) kdyn x s x cm–5 x kg (p = 0.0015) and increases in EVW from 15.4 (13.2 to 17.6) ml/kg to 12.2 (10.0 to 14.4) ml/kg (p = 0.0298). The administration of hirudin also attenuated the endotoxin-induced loss of protein-rich fluid from the vasculature and reduced the plasma PMN elastase concentration in plasma. These results indicate that the administration of the thrombin-specific inhibitor hirudin can attenuate endotoxin-induced acute lung injury, suggesting an important role of thrombin in endotoxin-induced acute lung injury.

AM REV RESPIR DIS 1990; 142:782-788

(Received in original form March 9, 1989 and in revised form February 26, 1990)
bin generated during LPS infusion, and (2) to determine the effect of hirudin on acute lung injury following LPS infusion.

Methods

Animals

Anesthetized weaned miniature pigs of either sex (Minipig; Medical Service GmbH, Munich, FRG), weighing 18 to 23 kg, were used. The animals were fasted overnight, except for unlimited access to water. Only animals without signs of infection and with a baseline body temperature below 38.6°C, Hb above 7.0 g/100 ml, WBC 5,000 to 18,000/mm^3, and lung compliance/kg body weight greater than 1 were included. All animal procedures were approved by the Tierschutzreferat, Regierung von Oberbayern.

Anesthesia and Surgical Procedures

The animals were premedicated with 3 mg/kg of azaperone (Stresnil; Janssen, Neuss, FRG) and 3.75 mg/kg of metamizodichloride (Hypnodil; Janssen, Neuss, FRG) injected intramuscularly. Anesthesia was induced with 24 mg/kg of pentobarbital (Narcoren; Iffa Merieux, Laupheim, FRG) injected intravenously and maintained throughout the experiment by a continuous infusion of 0.5 mg/kg/h of piritramide (Dipidolor; Janssen, Neuss, FRG), and 4 mg/kg/h of pentobarbital. The animals were orally intubated (Tubus 6.5 mm, Portex, Hythe, UK) and mechanically ventilated (volume cycled) with 40% O_2, a respiratory rate of 20 breaths/min, and a tidal volume of about 12 ml/kg adjusted to Pao_2 29 to 33 mm Hg using a Servo Ventilator® 900C (Siemens-Elema, Solna, Sweden). To prevent hypothermia, we hyperinflated the animals every 2 min. A large-bore cannula and two central venous lines (Cavafix 0.8 × 1.4 mm × 70 cm; Braun, Melsungen, FRG) were placed in the left external jugular vein. A 7F Swan-Ganz catheter (7F thermomonitoring catheter; American Edwards Laboratories, Anasco, PR) was introduced via the right external jugular vein into a main branch of the pulmonary artery. A 5F lung water catheter (American Edwards Laboratories, Irvine, CA) was inserted through the right femoral artery into the abdominal aorta. After preparing the animals, we allowed a stabilization period of 60 min before taking baseline measurements. For fluid resuscitation, the animals received 25 ml/kg of Ringer's lactate during the stabilization period and a continuous infusion of 17 ml/kg/h during the observation period (this volume included the fluid needed for cardiac output (CO) and extravascular lung water (EVLW) measurements and for flushing the catheters). If needed, sodium bicarbonate (8.4%) was given according to the hourly blood gas analysis.

Experimental Protocol

After baseline measurements, 36 animals received a continuous infusion of 10 μg/kg/h of Salmonella abortus equi endotoxin (LPS, batch M6-N1 TEN, 5 mg/ml, kindly provided by Dr. C. Galanos, Max-Planck Institut für Immunologie, Freiburg i.Br., FRG). These animals were randomly assigned into two groups: 18 animals (with hirudin) received a pretreatment of 1,000 U/kg of recombinant hirudin (batch: rBH5-7001/2, specific activity 11,14 U/mg; Plantorgan, Bad Zwichsennahn, FRG) followed by a continuous infusion over 6 h of 500 U/kg/h given simultaneously with the infusion of LPS. Another 18 animals (w/o hirudin) did not receive hirudin but received a continuous infusion over 6 h of LPS and placebo. All treatments were given as an equal volume of 0.3 ml/kg/h. In addition, 6 control animals received not LPS but saline (n = 3) or r-hirudin (n = 3) according to the protocol of the corresponding LPS groups. Histologic and blood gas analysis were performed hourly. EDTA-anticoagulated or heparinized blood samples were drawn every hour and citrated (K_10 with 3.8% citrate) blood samples every 2 h. The blood was centrifuged at 1,500 × g for 10 min and the plasma aliquoted and kept at -80°C until measurement. After the end of the 6-h observation period, the surviving animals were sacrificed by the injection of 2.0 ± 0.05 g tetracainhydrochloride (=10 ml of 1% Evans blue (Sigma) dye solution intravenously. A_1 and A_2 were determined at 620 nm using a spectrophotometer with appropriate corrections for plasma background absorbance (32). TP was measured with the standard biuret method. Leukocyte (WBC) and platelet counts were determined on EDTA-anticoagulated blood samples using a hemacytometer (Neubauer Chamber). The activities of antithrombin III (AT III), prothrombin (PT), and antiplasmin (AP) in citrated plasma samples were determined using amidolytic assays with the specific chromogenic peptide substrates S-2238 (H-D-Phe-Pip-Arg-pNA, Kabi Diagnostica, Stockholm, Sweden), Chromozym® TH (Tos-Gly-Pro-Arg-pNA, Boehringer, Mannheim, FRG), and S-2251 (H-D-Val-Leu-Lys-pNA, Kabi Diagnostica, Stockholm, Sweden), respectively. The manufacturer's instructions were modified as previously described (4). Baseline plasma samples of all 36 animals were pooled and served as reference. AT III, PT, and AP activities are given as a percentage of the pool plasma value. Plasma fibrinogen was determined on citrated plasma samples using a functional turbidimetric test with barboxin (Fibrinogen Genetic; Boehringer, Mannheim, FRG). Fibrinogen data are presented as an percentage of the individual baseline value because we observed a considerable variance in baseline values. Soluble fibrin was measured on citrated plasma samples using a functional test employing the plasin-specific chromogenic substrate S-2251 (33). Leukocyte neutral proteinase inhibitor (LNPI) and LNPI-bound lysosomal PMN elastase (PMN elastase) in plasma were measured on citrated plasma samples using enzyme-linked immunosorbent assays (ELISA) as recently described (34, 35).

r-Hirudin in plasma was measured on citrated plasma samples using an ELISA modified for porcine plasma (36).

Statistical Analysis

We used a factorial analysis of variance to analyze the effect of hirudin administration on the parameters that we measured (37). We employed the paired Student's t test to make comparisons within groups. Differences were
considered significant at \(p < 0.05 \), and exact \(p \) values are given. We detected no significant differences in baseline levels of any parameter that we examined except in baseline WBC counts. Data are presented as mean (95% confidence interval) in the absence and presence of hirudin. When last measurements are presented, the last valid measurements of each animal were compared and the time of the measurement period was included as a covariate.

Results

Clotting Parameters

Infusion of LPS caused a steady decrease in prothrombin and antithrombin III activities in plasma. In the absence of hirudin, PT fell to approximately 65% of baseline by the last measurement; AT III decreased to approximately 80% of baseline (last measurement). Hirudin had no significant effect on the LPS-induced changes in PT or AT III activities in plasma (table 1). Plasma fibrinogen was 323 (295 to 350) mg/100 ml at baseline and decreased steadily following LPS infusion. Hirudin reduced the consumption of plasma fibrinogen from \(-110 (-138 \text{ to } -82) \text{ mg/100 ml} \) in the absence of hirudin to \(-39 (-67 \text{ to } -12) \text{ mg/100 ml} \) in the presence of hirudin. By the last measurement, plasma fibrinogen was 64 (57 to 71)% of baseline in the absence of hirudin and 87 (80 to 94)% of baseline in the presence of hirudin (\(p = 0.0001 \)). The data are shown in figure 1. Fibrinogen consumption was paralleled by an increase in the soluble fibrin in plasma. In the absence of hirudin, the soluble fibrin in plasma increased from 94 (65 to 124) ng/ml at baseline to 434 (369 to 499) ng/ml (last measurement), whereas in the presence of hirudin the increase in soluble fibrin was reduced to 236 (171 to 300) ng/ml (\(p = 0.0002 \); figure 2). Antiplasmin activities in plasma decreased gradually during LPS infusion to approximately 70% of baseline by the last measurement; no significant effect of hirudin was detected (table 1). The plasma level of hirudin was 72 (62 to 83) nmol/L at 2 h. A gradual further increase in the hirudin concentration in plasma was noted during the continuous hirudin infusion, with values of 104 (89 to 119) nmol/L by the last measurement. In control animals that did not receive LPS but received saline or hirudin, we detected no significant changes in PT, AT III, plasma fibrinogen, soluble fibrin in plasma, or AP activities in plasma during the 6-h observation period.

Physiologic Findings

The response in mean arterial pressure to LPS was similar in the absence or presence of hirudin. The \(\text{Pa} \) of both groups increased to approximately 9 mm Hg above baseline by 30 min and then dropped to approximately 30 mm Hg below baseline by 2 h. Thereafter, both groups remained hypotensive, showing \(\text{Pa} \) approximately 25 mm Hg below baseline by the last measurement (data not shown). Cardiac output decreased to approximately 80% of baseline by 1 h and then returned to approximately baseline level by 2 h in the absence and in the presence of hirudin. Thereafter, the \(\text{CO} \) in both groups showed a steady fall toward approximately 55% of baseline by the last measurement. No significant hirudin effect on \(\text{CO} \) was detected (data not shown). PVR was 4.4 (4.2 to 4.7) kdyn \(\times s \times cm^{-5} \times kg \) at baseline and

TABLE 1

<table>
<thead>
<tr>
<th>Clotting Parameters During Endotoxin Infusion in Pigs*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abundance of Hirudin</td>
</tr>
<tr>
<td>----------------------</td>
</tr>
<tr>
<td>Prothrombin, %</td>
</tr>
<tr>
<td>Base (n = 18)</td>
</tr>
<tr>
<td>Last (n = 18)</td>
</tr>
<tr>
<td>AT III, %</td>
</tr>
<tr>
<td>Base (n = 18)</td>
</tr>
<tr>
<td>Last (n = 18)</td>
</tr>
<tr>
<td>Antiplasmin, %</td>
</tr>
<tr>
<td>Base (n = 18)</td>
</tr>
<tr>
<td>Last (n = 18)</td>
</tr>
<tr>
<td>r-Hirudin, nmol/L</td>
</tr>
<tr>
<td>Base (n = 18)</td>
</tr>
<tr>
<td>Last (n = 18)</td>
</tr>
</tbody>
</table>

* Values are mean (95% confidence interval) given as a percentage of the standard porcine pool plasma; \(p = \) factorial ANOVA.

Fig. 1. Endotoxin-induced decreases in plasma fibrinogen in the presence (with hirudin, \(n = 18 \)) and absence of hirudin (without hirudin, \(n = 18 \)) in pigs. Endotoxin was given as a continuous intravenous infusion of 10 \(\mu \)g/kg/h. Hirudin was administered as an intravenous bolus injection of 1,000 U/kg before endotoxin, followed by a continuous infusion of 500 U/kg/h simultaneously with the endotoxin infusion. Hirudin significantly reduced the endotoxin-induced decrease in plasma fibrinogen (\(p = 0.0001 \)). Data expressed as a percentage of baseline value (mean [95% confidence interval], factorial ANOVA).

Fig. 2. Soluble fibrin in plasma during endotoxin infusion in the presence (with hirudin, \(n = 18 \)) and absence of hirudin (without hirudin, \(n = 18 \)) in pigs. The endotoxin-induced increase in the soluble fibrin was significantly reduced in the presence of hirudin (\(p = 0.0002 \)). Data are mean and 95% confidence interval (factorial ANOVA).

Fig. 3. Effect of endotoxin infusion on pulmonary vascular resistance (PVR) in the presence (with hirudin, \(n = 18 \)) and absence of hirudin (without hirudin, \(n = 18 \)) in pigs. Hirudin had no effect on the early (< 2 h) response but significantly (\(p = 0.0015 \)) reduced the increase in the later phase. Data are mean and 95% confidence interval (factorial ANOVA).
responded similarly initially to LPS in the absence and in the presence of hirudin. PVR increased to approximately three times baseline level by 1 h and then decreased to approximately 1.5 × baseline at 2 h in the absence and in the presence of hirudin. Therefore, PVR increased again, reaching 32 (27 to 37) kdyn × s × cm⁻² × kg⁻¹ at 2 h in the absence and in the presence of hirudin. Hirudin reduced the increase in EVLW to approximately 12.2 (10.0 to 14.4) ml/kg (p = 0.0299, figure 4). We calculated the total intravascular protein as the product of plasma volume times total protein concentration in serum, corrected for body weight. The IVP was 2.9 (2.7 to 3.1) g/kg at baseline. Hirudin reduced the loss of IVP during 4 h of LPS infusion from −0.76 (−0.98 to −0.54) g/kg to −0.49 (−0.72 to −0.26) g/kg. This effect was marginally significant (p = 0.0448, figure 5). In saline or hirudin control animals, no significant changes in Pao₂, CO, PVR, Cdyn, aaPO₂, EVLW, or IVP were noted during the observation period.

Hematologic Data

The peripheral leukocyte count (WBC) in the absence and in the presence of hirudin plummeted within 2 h after the start of the LPS infusion and remained low. The leukopenic response was not significantly different in the absence or presence of hirudin. However, since there was a significant difference in baseline WBC counts in the absence and in the presence of hirudin, interpretation of these results is limited (table 3). Circulating platelets decreased similarly in the absence and in the presence of hirudin to approximately 50% of baseline at the last measurement; hirudin had no significant effect (table 3). Saline and hirudin control animals did not show significant changes in WBC or platelets.

PMN Activation

We measured the concentrations of the cytosolic leukocyte neutral proteinase inhibitor (LNIPI) and of LNIPI-bound lysosomal PMN elastase in plasma to assess PMN activation and lysosomal discharge during LPS infusion. The LNIPI concentration was 150 (138 to 162) ng/ml at baseline and increased to approximately three times baseline level during LPS infusion. LNIPI by the last measurement was 450 (367 to 552) ng/ml in the absence and 395 (320 to 487) ng/ml in the presence of hirudin; this difference was not significant (p = 0.0798). PMN elastase concentrations in plasma increased from values below the detection limit (< 1 ng/ml) at baseline to 37 (27 to 47) ng/ml in the absence of hirudin, whereas in the presence of hirudin this increase was significantly reduced to 23 (13 to 33) ng/ml (p = 0.0137; figure 6). In saline and hirudin controls, the LNIPI concentration in plasma did not change and the PMN elastase concentration in pigs did not show significant changes in WBC or platelets.

TABLE 2

<table>
<thead>
<tr>
<th></th>
<th>Absence of Hirudin</th>
<th>Presence of Hirudin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(n = 18)</td>
<td>(n = 18)</td>
</tr>
<tr>
<td>AaPO₂, mm Hg</td>
<td>90 (80–99)</td>
<td>85 (76–94)</td>
</tr>
<tr>
<td></td>
<td>p = 0.4870</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 h</td>
<td>127 (106–148)</td>
</tr>
<tr>
<td></td>
<td>116 (95–136)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>p = 0.4783</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Last</td>
<td>185 (165–205)</td>
</tr>
<tr>
<td></td>
<td>162 (142–181)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>p = 0.1027</td>
<td></td>
</tr>
<tr>
<td>Cdyn/kg, ml/mm Hg/kg</td>
<td>1.07 (1.03–1.12)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.12 (1.08–1.17)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>p = 0.1332</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 h</td>
<td>0.75 (0.67–0.84)</td>
</tr>
<tr>
<td></td>
<td>0.81 (0.72–0.89)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>p = 0.3585</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Last</td>
<td>0.51 (0.45–0.56)</td>
</tr>
<tr>
<td></td>
<td>0.58 (0.53–0.64)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>p = 0.0863</td>
<td></td>
</tr>
</tbody>
</table>

Definition of abbreviations: AaPO₂ = alveolar-arterial O₂ difference; Cdyn/kg = lung dynamic compliance/body weight.

TABLE 3

<table>
<thead>
<tr>
<th></th>
<th>Absence of Hirudin</th>
<th>Presence of Hirudin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(n = 18)</td>
<td>(n = 18)</td>
</tr>
<tr>
<td>WBC, 1,000/mm³</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base</td>
<td>12.1 (10.4–13.7)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.5 (7.8–11.2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>p = 0.0340</td>
<td></td>
</tr>
<tr>
<td>2 h</td>
<td>3.2 (2.5–4.0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.4 (2.6–4.1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>p = 0.7926</td>
<td></td>
</tr>
<tr>
<td>Last</td>
<td>2.0 (1.6–2.5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.1 (1.6–2.5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>p = 0.8521</td>
<td></td>
</tr>
<tr>
<td>Platelets, 1,000/mm³</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base</td>
<td>410 (342–478)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>380 (314–446)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>p = 0.5325</td>
<td></td>
</tr>
<tr>
<td>2 h</td>
<td>265 (213–316)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>271 (221–321)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>p = 0.8711</td>
<td></td>
</tr>
<tr>
<td>Last</td>
<td>176 (131–221)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>203 (159–247)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>p = 0.3991</td>
<td></td>
</tr>
</tbody>
</table>

Values are mean (95% confidence interval); p = factorial ANOVA.
were below the detection limit (< 1 ng/ml) in all animals. At baseline, PMN elastase concentrations in plasma during endotoxin infusion in the presence (with hirudin, last valid measurements of each animal are presented. n = 18) and absence of hirudin (without hirudin, n = 18) in pigs. Mean and 95% confidence interval of the hirudin (p = 0.0137; factorial ANOVA). plasma was significantly smaller in the presence of hirudin (70 to 100 nmol/L, which equal 5 to 9 antithrombin units/ml. Since hirudin is a high-affinity inhibitor of thrombin that forms enzyme-inhibitor complexes in an equimolar ratio (25), this dosage ensures sufficient molar inhibitor concentrations if the thrombin concentration in plasma during activation of the coagulation cascade is assumed to be approximately 1 to 2 U/ml (40).

We determined the total intravascular protein as a product of the plasma volume and the plasma protein concentration to assess the loss of protein-rich fluid from the vasculature during LPS infusion. Hirudin reduced the loss of protein-rich fluid by approximately 36%, which suggests that thrombin inhibition by hirudin may reduce LPS-induced capillary leakage. Furthermore, hirudin attenuated the LPS-induced acute lung injury as evidenced by a smaller increase in PVR and in extravascular lung water. All animals showed the typical biphasic response in PVR to endotoxin (7, 8). Hirudin inhibited the increase in the later phase, in agreement with previous studies using native hirudin from the leech in endotoxic pigs (5). Hirudin also blunted the increase in EVLW that occurred during LPS infusion. This may be due to the reduced pulmonary pressor response or to less increase in permeability of the lung vasculature to protein; the results of the present study do not allow us to discriminate between these two possibilities. Despite reduced EVLW increases in the presence of hirudin, aApo 2 decreased to the same degree in the absence and in the presence of hirudin; this suggests that pulmonary edema was not of major importance in the deterioration of pulmonary gas exchange. These findings are in accordance with observations in other animal models of LPS-induced acute lung injury (7, 41) and indicate that arterial hypoxemia following LPS infusion is primarily a consequence of ventilation/perfusion inequalities.

It may be exceedingly difficult to determine the separate and specific mechanisms of the observed attenuation of acute lung injury in the presence of hirudin. Less consumption of plasma fibrinogen and a smaller increase in the soluble fibrin in plasma in the presence of hirudin may be one explanation. In isolated perfused rabbit lungs, soluble fibrin causes vasoconstriction and pulmonary hypertension (19). It is also conceivable, however, that less fibrin generation in the presence of hirudin resulted in less generation of fibrin degradation products (FDP). FDP released after the action of plasmin on fibrin are thought to contribute to the development of acute lung injury by increasing the permeability of the lung vasculature to protein (21, 42). We have previously shown that the infusion of a fibrin-derived peptide into pigs causes an increase in EVLW (43). However, there may be alternative explanations, other than inhibition of the proteolytic cleavage of fibrinogen by thrombin, for the observed hirudin effects. In this respect it is notable that in the absence of fibrinogen in isolated guinea pig lungs perfused with Ringer's albumin, hirudin also blocks the pulmonary pressure response and pulmonary edema formation after the injection of thrombin (44). In this and other models of thrombin-induced acute lung injury, as well as in models of LPS-induced acute lung injury, the pulmonary hemodynamic response has been shown to be mediated in part by the generation of cyclo-oxygenase-derived metabolites such as thromboxane (8, 44, 45). Thrombin is known to directly induce the in vitro generation of thromboxane from endothelial cells, vascular smooth muscle cells (16, 17), and PMN leukocytes and lymphocytes (18). Hirudin has been shown to abolish the thrombin-induced thromboxane generation from PMN leukocytes and lymphocytes in vitro (18). Likewise, hirudin inhibited the thrombin-induced contraction of vascular smooth muscles of isolated rabbit aorta and dog coronary

Mortality Rate

All control animals (n = 6) survived the 6-h observation period. Of 36 animals given LPS, 5 died between 2 and 4 h after the start of the LPS infusion. A total of 12 animals died between 4 and 6 h, resulting in an overall mortality rate of 17 of 36 (47%). In the absence of hirudin, the mortality rate was 10 of 18 (56%) and in the presence of hirudin 7 of 18 (39%), respectively. This difference was not statistically significant (Mantel-Haenszel test).

Discussion

The results of the present study show that hirudin reduces the consumption of plasma fibrinogen and the increase in soluble fibrin in plasma in a porcine model of endotoxemia. The administration of hirudin also attenuates the increase in pulmonary vascular resistance, the increase in extravascular lung water, and the loss of protein-rich fluid from the vasculature following LPS infusion. Furthermore, hirudin reduces the LPS-induced increase in PMN elastase concentration in plasma.

The LPS-induced consumption of coagulation factors in the present study was similar to that observed in septic patients (2, 30). The decrease in plasma prothrombin and plasma fibrinogen and the increase in soluble fibrin in plasma are evidence of the generation of thrombin. As expected, hirudin had no effect on the plasma prothrombin levels but prevent-
thrombin is complexed with hirudin (15). Although peripheral leukopenia does not seem to be affected by hirudin, we provide evidence that hirudin attenuated the lysosomal discharge of PMN leukocytes as determined by inhibitor-bound PMN

evidence that plasmin activation occurred similarly in the absence and in the presence of hirudin. One explanation may be that plasmin activation occurred similarly in the absence and in the presence of hirudin. Plasmin causes the cleavage of complement proteins and the formation of the complement-derived chemotactic peptides, C3a and C5a (22, 46). On the other hand, the thrombin molecule itself is a weak chemotactic agent and induces PMN aggregation (47); this effect is blocked when thrombin is complexed with hirudin (15).

Although peripheral leukopenia does not seem to be affected by hirudin, we provide evidence that hirudin attenuated the lysosomal discharge of PMN leukocytes as determined by inhibitor-bound PMN elastase concentrations in plasma. Plasma levels of LNI-bound PMN elastase were lower in the presence of hirudin than in the absence of hirudin. LNI, an inhibitor of neutral proteinases, was recently isolated and characterized from porcine PMN leukocytes (34). The occurrence of this inhibitor and of the LNI-PMN elastase complex in plasma has been identified as a marker of PMN leukocyte activation in porcine experimental septicemia (35). The data therefore demonstrate that hirudin reduces endotoxin-induced increases in PMN elastase in plasma, suggesting thrombin activation is an important factor in PMN activation after LPS infusion.

In conclusion, our data substantiate the role of thrombin in mediating acute lung injury following LPS infusion in pigs. Possible mechanisms involve the generation of soluble fibrin and FDP, a direct effect of thrombin, and the activation of PMN leukocytes. Administration of hirudin, a highly selective thrombin inhibitor, prevented the LPS-induced intravascular coagulation and attenuated the LPS-induced acute lung injury.

Acknowledgment

The writers thank Dr. C. Galanos for providing endotoxin, Dr. J. Bichler for his hirudin measurements, Sigrid Sokal for performing

References

Acknowledgment

The writers thank Dr. C. Galanos for providing endotoxin, Dr. J. Bichler for his hirudin measurements, Sigrid Sokal for performing

References

