Percutaneous Ap
G.G. TAILLY

Perinephric Absc.
J.R. MALDON
and A. MELIT

Prostate Split-Leg
Nephroscopic
and D.H. BAC

Pathologic-Anatomic
Shock Wave Lithotripsy. By G. SETZ, M.D., K. PFEIZER, M.D, B. NEISTA, M.D., W. DIPPEL, M.D., and T. GEBHARDT, M.D.

Inguinal Pelviscopy in the Examination of Pelvic Organs: Further Study. By A. SHAFIK, M.D.

Renal Injury by Extracorporeal Shock Wave Lithotripsy. By A.P. EVAN, Ph.D., L.R. WILLIS, Ph.D., B.A. CONNORS, B.A., J.A. McATEER, Ph.D., and J.E. LINGEMAN, M.D.

Parameters Influencing Renal Damage in Extracorporeal Shock Wave Lithotripsy: An Experimental Study in Pigs. By H. EL-DAMANHOURY, M.D., T. SCHAUB, M.D., M. STADTBÄUMER, M. KUNIS, S. STÖRKE, M.D., H. SCHILD, M.D., M. THELEN, M.D., and R. HOHENFELLNER, M.D.

Staghorn Stone Treatment with Extracorporeal Shock Wave Lithotripsy Monotherapy: Long-Term Results. By A.M. FUCHS, M.D., B.A. WOLFSON, M.D., and G.J. FUCHS, M.D.

Alexandrite Laser Lithotripter in Experimental and First Clinical Application. By H.M. WEBER, M.D., K. MILLER, M.D., J. RÜSCHOFF, M.D., J. GSCHWEND, M.D., and R.E. HAUTMANN, M.D.

Reduction of Shock Wave-Induced Tubular Alteration by Fosfomycin. By W.L. STROHMAIER, M.D., M. PEDRO, M.D., D.M. WILBERT, M.D., and K.-H. BICHLER, M.D.

Continued
Author Index for Volumes 1 through 5

A
Abbruzzese, M.R., 3:43
Abdel-Dayem, H.M., 2:23
Abdel-Hakim, A.M., 1:265
Ackerman, D.M., 2:333
Ackermann, D., 3:355
Ackermann. R., 5:293
Adams, J.R., 4:217
Adams, M.C., 5:245
Addonzio, J.C., 1:107, 3:85
Akins, E.W., 1:235
Albala, D.M., 5:277
Aldape. H.C., 3:115
Alexander, M.E., 5:273
Allhoff, E.P., 5:205
Alpi, G., 3:381, 5:49
Aman, H.M., 5:307
Anderson, P.A.M., 3:31
Anderson, P.A.M., 3:31

B
Baba, S., 1:227, 4:253
Baert, L., 5:301
Baffigo, G., 5:225
Bagley, C.M., 3:115
Bagley, D.H., 1:15
Bahar, R.H., 2:23
Bahnson, R.R., 1:61, 5:327
Balk, N., 5:195
Banno, J., 5:123
Barbaric, Z., 4:27, 5:337
Baretton, G., 3:439
Barker, M., 3:361
Baskin, L.S., 3:51, 4:49
Bass, R.B., 3:193
Bayo, A., 4:269
Bean, W.J., 1:173
Beard, J.H., 3:193
Begun, F.P., 3:81, 4:223
Behnia, R., 5:345
Belis, J.A., 4:331
Ben. A., 3:69
Bender, L., 4:365
Benetos, F.C., 5:197
Benkert, S., 3:315
Benson, C.B., 5:241
Benson, M.C., 1:153
Benson, R.C., 2:189
Bent, L., 4:365
Berger, N., 5:129
Berní, J.M., 5:201
Bertrann, H., 4:55
Beyer, D.C., 4:375, 4:389, 5:255
Bhatta, K.M., 3:433
Bihrle, R., 5:341
Bix, R., 1:153
Blasko, J.C., 3:115, 3:209
Bottacini, M.R., 4:315
Bottino, P., 2:1, 2:47, 3:367, 3:401, 4:241
Braun, E., 3:85
Brandt, T., 2:367
Brawer, M.K., 3:227
Brewer, S.L., 2:333
Brito, C.G., 5:341
Brown, M.W., 1:181
Brown, R.D., 3:265
Bub, P., 2:193, 2:375
Bueh, T., 5:117
Bundy, A.L., 5:241
Burns, J.R., 3:419, 4:123
Butler, M.R., 2:181
Butler, S.A., 3:167
C
Caione, P., 3:381
Canal, D.F., 5:341
Canto, R.J., 1:209, 2:63
Carbone, A., 5:225
Carey, P., 2:283
Carini, M., 1:249
Carson, C.C., 1:45, 1:181, 4:143
Carter, H.B., 1:37
Carter, S., 1:137
Carter, S.S., 3:147, 5:137
Cass, A.S., 5:191
Cassanelli, A., 5:49
Castañeda, F., 1:269, 5:123
Cavigilia, C., 2:1, 2:47, 3:367, 3:401, 4:241
Cerresoli, A., 5:61
Cerulli, N., 5:225
Chang, T.T., 3:125
Chao, P.W., 1:55
Chauvey, C.G., 1:1, 2:97, 1:17, 3:329
Cheval, M.J., 4:259
Chen, J., 4:199
Chiang, B., 2:107
Chinn, S.K.B., 5:345
Chokda, G.W., 5:333
Choyke, P.L., 4:393
Coleman, C.C., 5:229
Colón-Pérez, B., 1:209
Connors, B.A., 5:25
Cowley, B.C., 2:299
Coolsaet, B., 4:15
Conner, W.H., 3:193
Coplen, D.E., 3:163
Cord, J., 3:85
Costantino, A., 1:249
Coulson, W., 2:341
Cubell, V., 1:275
Cubler-Goodman, A., 5:13
Culkin, D.J., 4:217
Cunningham, D.L., 3:209
D
Daidoh, Y., 5:245
Dan, S.J., 2:279, 2:407
Das, A.K., 2:381
Daught, J.D., 1:173
David, R.B., 4:27
David, R.D., 3:255
Davies, B.L., 5:165
Davis, B.E., 4:379
Daykhovsky, L., 4:365
Debruyne, F.M.J., 4:353, 4:399
DeCennaro, M., 3:381
Deguchi, N., 1:227
Dejler, S.W., 3:43
Dennis, P.J., 4:331
DeRiese, W., 5:205
Dessouki, T., 5:223
Deutz, F.J., 2:215

Volume numbers precede page numbers.
Rutner, A.B., 2:55
Ross, L., 2:367
Rosell, D., 5:201
Ryan, R.C., 2:181

P
Pisani, E., 5:61
Pletzer, K., 5:17
Pliskin, M.J., 3:405
Pond, H.S., 3:193
Ponteromoli, P., 3:401
Politis, G.M., 1:99
Pollack, H.M., 4:129, 5:233
Porpaczy, P., 4:61
Potomivls, G., 5:301
Poulsen, A.L., 5:329
Priestley, J.B., 4:375, 4:389, 5:255
Pry, R.J., 1:235
Pryor, J., 2:283
Pumphrey, J.A., 4:175
Pupo, P., 2:1, 2:47, 3:367, 3:401, 4:241
Purcell, M.H., 4:259
Pye, S.D., 4:323

Q
Quesada, E.T., 5:315

R
Ramos, M.E., 1:209
Ramsay, J., 1:137
Ramsay, J.W.A., 5:137
Rannenbaum, M., 5:209
Rannikko, S.S., 2:77
Rassweiler, J., 2:173, 2:193, 2:375
Ravalli, R., 5:105
Ray, P.S., 5:251
Redha, F., 2:205
Reichel, E., 4:169
Reid, B.J., 3:43
Reid, R.E., 5:7
Resnick, M.I., 3:177
Ricciuti, G., 2:1, 2:47, 3:367, 3:381, 4:301, 4:241
Ricciuti, G.P., 5:49
Rich, M.A., 1:49, 4:117
Richardson, M.E., 5:217
Riehl, A.R., 1:37
Rigati, P., 1:197
Risius, B., 1:253
Ritchie, A.W.S., 4:323
Rittenberg, M.H., 1:161
Roberts, J., 2:141
Robles, J.E., 5:201
Rodan, B.A., 1:173
Rohrer, T.J., 4:331
Rosell, D., 5:201
Rosen, D.L., 3:433
Rosenblum, J., 1:123
Ross, L., 2:367
Royer, P., 5:137
Ruben, H., 2:215
Rubio, E., 4:269
Rüschhoff, J., 5:51
Rutherford, C.L., 3:193
Rutner, A.B., 2:55
Ryan, K.J., 4:37
Ryan, R.C., 2:181

S
Saha, M., 2:23
Sadi, M.V., 2:293
Saffioti, S., 5:401
Salmeri, S.A., 3:401
Salzman, B., 1:205, 4:279, 5:209
Sampain, F.J.B., 2:247
Sanchez, L.P., 5:201
Sanchez de Badajoz, E., 4:371, 5:157
Sandock, D., 4:315
Saslawsky, M., 2:367
Sauter, T., 3:287, 3:295
Scardino, P.T., 3:147, 5:251
Schacht, M., 2:367
Schaub, T., 5:37, 5:213
Schiff, S.F., 2:31
Schild, H., 5:37, 5:213
Schlick, R., 5:205
Schmidt, A., 2:173, 2:375
Schmidt, J.D., 3:37
Schmidt-Kloiber, H., 4:169
Schmiedt, E., 2:157
Schminter, S.P., 3:125
Schmitz-Drager, B., 5:293
Schoborg, T.W., 3:361
Schwab, D., 3:85
Schüller, J., 3:439
Schumacher, D., 3:209
Schuster, C., 2:157
Schweitzer, F.N., 5:327
Scott, J.W., 1:201, 2:163
Seibold, J., 2:173, 2:375
Seitz, G., 3:337, 5:17
Selikowitz, S.M., 2:55
Seline, P., 2:83
Selli, C., 1:249, 4:193
Senge, T., 3:315
Segura, J.W., 1:177
Shabsigh, R., 2:145, 3:185
Shafik, A., 3:21
Shalaby, M., 3:99
Shapiro, A., 4:235
Sheline, M.E., 4:129, 5:233
Sheridan, M.I., 3:43
Shiraiwa, K., 3:69
Shortliffe, E.D., 3:375
Siders, D.B., 3:125
Siegel, S.W., 1:253
Sigman, M., 2:41
Siragusa, R.J., 1:235
Sloane, B., 2:141
Smalley, D., 5:229
Smith, J.A., 2:403, 5:251
Smith, J.J., 5:99
Smith, R.B., 5:251
Snyder, J.A., 1:123
Snyder, H.M., 3:375
Sohn, M., 2:215
Sommer, K., 3:439
Sonda, L.P., 2:151
Soper, N.H., 4:247
Sotolongo, J.R., 1:205
Spires, S.M., 4:67

Spirnak, J.P., 5:237
Stadlbäumer, M., 5:37, 5:213
Stein, A., 5:289
Stein, B.S., 2:299
Steinbock, G.S., 2:333, 4:175
Stenzl, A., 2:19, 2:117
Stief, C., 5:205
Stillwell, T.J., 2:257
Stoller, M.L., 3:51, 4:49
Stone, A.M., 5:357
Stone, N.N., 5:251
Störkel, S., 5:37, 5:213
Stormont, T.J., 4:265
Streem, S.B., 1:253
Strohmaier, W.L., 5:57, 5:195
Sugiura, K., 4:253
Sutton, A., 2:35
Suzuki, K., 3:69
Swartz, R.C.E., 2:361
Sylvester, J., 3:209

T
Tachibana, M., 1:227
Talliy, G.G., 2:71, 5:1
Tanaka, T., 3:69
Taniguchi, T., 3:69
Tannenbaum, M., 5:209
Tazaki, H., 1:227, 4:253
Terry, W.J., 3:193
Thelen, M., 5:37, 5:213
Thomas, R., 2:141, 5:41, 5:217
Tietjens, E.K., 2:77
Timoney, A.G., 5:165
Tiselius, H.G., 2:137, 3:19, 3:391
Tolley, D.A., 2:27, 2:59, 4:323
Toliva, B.M., 5:7
Tumera, K.M., 2:189
Turp-Pedersen, S., 3:125
Train, J.S., 2:279, 2:407
Trinchieri, A., 3:61
Tsugawa, R., 3:69
Tucker, R.D., 2:271
Tuong, W., 1:107

U
Uchibori, M., 5:245
Uhlschmid, G., 2:205

V
Valdivia, J.G., 4:269
Velante, R., 5:323
Valer, J., 4:269
Van Arsdalen, K.N., 3:375, 4:129
Van Canh, P.J., 3:59
VanDeursen, H., 5:301
Vara-Thorbecke, C., 4:371
Vaughan, E.D., 1:37
Venable, D.D., 1:165
Verandering, A., 4:235
Villaroja, S., 4:269
Vögel, T., 5:293

W
Wakaki, M., 5:245
Waldenbaum, R.S., 5:197
Wall, I., 2:137
AUTHOR INDEX

Wand, H., 4:55
Wang, S., 2:151
Wang, N.S., 4:15
Wasserman, N., 1:269
Wassrynger, W., 1:19
Watson, G., 1:119
Weber, H.M., 5:51
Webster, G.D., 4:149
Weinberg, J.J., 2:355
Weinberg, R., 5:317
Weinerth, J.L., 1:45, 1:181, 2:381, 4:149
Weinstein, D., 4:279
Weiss, J.N., 2:389, 5:105, 5:113
Weiss, R.M., 1:243
Wese, F.X., 3:59
Westhauser, A., 2:153
Wheeler, J.S., 4:217
Wheeler, T.M., 3:147
Whelan, J.P., 1:189
Wick, M.R., 5:357
Wikert, G.A., 2:253, 3:405
Wiksell, H., 5:351
Wilbert, D.M., 5:57, 5:195
Willis, L.R., 5:25
Willscher, M.K., 4:97
Wilson, W.T., 4:135, 4:283, 4:347, 4:407
Windsor, R.B., 4:331
Winfield, H.N., 4:37
Wirth, B., 4:55
Wise, H.A., 2:235
Wise, K.L., 4:143
Wolfson, B.A., 5:45
Woodruff, R.D., 5:145
Y
Yachia, D., 2:385
Yip, Y.L., 5:155
Yoshimura, K., 4:253
Z
Zaccara, A., 3:381
Zagoria, R.J., 5:311
Zanetti, G., 5:61
Zaontz, M.R., 1:261
Zelch, M.G., 1:253
Ziegler, M., 3:337
Zudaire, J.J., 5:201
Reduction of Cost of Dornier HM3 Treatment by Using Refurbished Electrodes

R. SCHLICK, M.D., W. DE RIESE, M.D., CH. STIEF, M.D., M. DJAMILIAN, M.D., E.P. ALLHOFF, M.D., and U. JONAS, M.D.

ABSTRACT

Patients with urolithiasis were randomly assigned to treatment with either original (N = 138) or refurbished (N = 125) electrodes on the Dornier HM3 lithotripter. There were no significant differences in stone burden, position, or radiopacity; frequency of pretreatment stent insertion; or generator voltage and number of shock waves in the two groups. The immediate success rates for renal pelvis stones were 77% in both groups; the rates of caliceal stones were 88% (original electrodes) and 83% (refurbished electrodes) and the rates for ureteral stones 72% (original electrodes) and 80% (refurbished electrodes). These differences were not statistically significant. It should be possible to reduce the cost of extracorporeal lithotripsy without compromise of treatment quality by using refurbished electrodes.

INTRODUCTION

The first clinical destruction of a renal stone by extracorporeal shock wave lithotripsy (SWL) was performed in the early 1980s in Munich. During the ensuing years, SWL has become the most common procedure for the treatment of urolithiasis as the indications have been expanded to encompass more than 90% of all stones, including those in the middle and lower ureter.

Lingeman et al estimated the costs of the various treatments for urolithiasis in the United States in 1984 and 1985 and found that SWL was less expensive than open surgery or percutaneous nephrolithotomy (PNL). However, SWL and PNL were nearly the same cost, and the groups of patients treated with the two methods proved not to be comparable. Moreover, the different stone positions and the details of the effectiveness of treatment were not reported. Despite numerous publications concerning the clinical results of SWL, little information is available on the cost-effectiveness ratio.

With modified generator systems, it has become possible to provide anesthesia-free SWL for outpatients with a reduction in the cost, which might be of special interest in the US. In Germany, a reduction of the cost with this type of treatment has not been achievable so far. According to a new refurbishment process developed by Retrode, Inc. (Kennesaw, GA), the tips of the lithotripter electrodes are checked by a special optical device. The gap distance is corrected to within 0.0004 inch, and the Fl position and coaxial alignment are restored. The refurbishing process consists of more than 40 individual steps (Fig. 1). We undertook this study to determine whether the cost-effectiveness of a spark-gap lithotripsy system could be increased by using recycled electrodes without compromise of treatment effectiveness.

MATERIALS AND METHODS

Patients (N = 263) were randomly assigned to two groups, one (Group 1) being treated with the original electrodes (OE) and the other (Group 2) with refurbished electrodes (RE). The average age of the 138 patients in Group 1 was 56 years (range 19–81) (Table 1). Five patients suffered from inadequate disintegration of a stone during previous SWL. The average age of the 125 patients in Group 2 was 54 years (range 19–84). Four had previously undergone SWL and had residual concretements. Statistically, there were no significant differences between the two groups in stone mass, stone position, or radiopacity of the stones.
All patients underwent SWL with the Dornier HM3. The urologist in charge of the treatment did not know whether an OE or an RE was used. In both groups, PDA anesthesia was used in about 60% of cases (81 in Group 1 and 77 in Group 2). Auxiliary stenting was necessary before SWL in about 40% of both groups either because of obstruction (15 patients in Group 1, 12 in Group 2) or because of the large stone mass (41 and 40 patients, respectively). Documentation of the treatment result was done by plain film no later than 12 hours after SWL. Evaluation of the films was performed by a physician without knowledge of the electrode used. The outcome was rated very good if all fragments were <3 mm, good if all fragments were <5 mm, and poor if fragments >5 mm were seen.

Clinical Findings

There were no statistically significant differences in number of shock waves and generator voltage needed in the two groups (Table 2). Patients who had already been treated with SWL were not studied further because of their small number. With the OE, good to very good destruction was obtained in 80% of stones overall (Table 2). Insufficient destruction was seen for two renal pelvic, one caliceal, and three ureteral stones (4.5% of the total). With the RE, good to very good destruction was seen in 81% overall. Poor results were obtained with only two pelvic, one caliceal, and three ureteral stones (5%). Statistically, there were no significant differences.

RESULTS

Experimental Studies

In vitro experiments with a standardized stone model showed identical performance of the OE and RE in stone destruction (Fig. 2). The usable life-cycles of the two types were likewise found to be similar (Fig. 3). The pressure profiles at F2 were within the standard 10% to 15% statistical variation (Fig. 4).

DISCUSSION

Originally and today, electrodes are a source of additional cost in extracorporeal systems. For this reason, alternatives, including new machine designs, have been sought. One possibility is to recycle burned out electrodes, but if this is done, one should demand of the manufacturer a guarantee that the performance and effectiveness are similar to that of the originals.

Table 1. Characteristics of Stone Disease in Treated Patients

<table>
<thead>
<tr>
<th>Site</th>
<th>Group 1 (OE)</th>
<th>Group 2 (RE)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.</td>
<td>Mean Size (Range) (mm)</td>
</tr>
<tr>
<td>Renal pelvis</td>
<td>35</td>
<td>12.9 (5-24)</td>
</tr>
<tr>
<td>Calices</td>
<td>59</td>
<td>12.1 (5-25)</td>
</tr>
<tr>
<td>Ureter</td>
<td>39</td>
<td>8.9 (5-13)</td>
</tr>
</tbody>
</table>
USE OF REFURBISHED ELECTRODES FOR DORNIER HM3

FIG. 2. In vitro fragmentation comparison. A. Number of shocks needed to destroy 12-mm spherical test stone (\(<1.0 \times 1.4\) mm) completely. B. Crater volume produced in test stone by 100 shocks at 24 kV (40 nF) generator voltage. (Courtesy of Retrode, Inc.)

FIG. 3. Life cycles of new and refurbished electrodes. (Courtesy of Retrode, Inc.)

FIG. 4. Pressure profiles at F2 for new and refurbished electrodes. (Courtesy of Retrode, Inc.)

<table>
<thead>
<tr>
<th>TABLE 2. TREATMENT DETAILS IN TWO GROUPS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>OE</td>
</tr>
<tr>
<td>----------------------------------</td>
</tr>
<tr>
<td>Average</td>
</tr>
<tr>
<td>Renal pelvic stones</td>
</tr>
<tr>
<td>Generator voltage (kV)</td>
</tr>
<tr>
<td>No. of shock waves</td>
</tr>
<tr>
<td>Immediate success (%)*</td>
</tr>
<tr>
<td>Caliceal stones</td>
</tr>
<tr>
<td>Generator voltage (kV)</td>
</tr>
<tr>
<td>No. of shock waves</td>
</tr>
<tr>
<td>Immediate success (%)</td>
</tr>
<tr>
<td>Ureteral stones</td>
</tr>
<tr>
<td>Generator voltage (kV)</td>
</tr>
<tr>
<td>No. of shock waves</td>
</tr>
<tr>
<td>Immediate success (%)</td>
</tr>
</tbody>
</table>

*Good or very good fragmentation.
This first clinical study using refurbished electrodes showed similar effectiveness in stone destruction both experimentally and clinically. Problems such as ghost ignition, isolation meltdown, and cracking were not seen. Considering the relative costs of new and refurbished electrodes, a cost reduction of 30% to 40% can be obtained with recycled electrodes without impairing the quality of treatment. Thus, the idea of reducing costs by using refurbished electrodes is not utopian any more.

REFERENCES

Address reprint requests to:
R. Schlick, M.D.
Dept. of Urology
Hannover Medical School
Konstanty-Gutschow-Strasse 8
D-3000 Hannover, Germany