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Adipose tissue (AT) is no longer considered to be responsible for energy storage only

but is now recognized as a major endocrine organ that is distributed across different

parts of the body and is actively involved in regulatory processes controlling energy

homeostasis. Moreover, AT plays a crucial role in the development of metabolic disease

such as diabetes. Recent evidence has shown that adipokines have the ability to regulate

blood glucose levels and improve metabolic homeostasis. While AT has been studied

extensively in the context of type 2 diabetes, less is known about how different AT types

are affected by absolute insulin deficiency in type 1 or permanent neonatal diabetes

mellitus. Here, we analyzed visceral and subcutaneous AT in a diabetic, insulin-deficient

pig model (MIDY) and wild-type (WT) littermate controls by RNA sequencing and

quantitative proteomics. Multi-omics analysis indicates a depot-specific dysregulation

of crucial metabolic pathways in MIDY AT samples. We identified key proteins involved

in glucose uptake and downstream signaling, lipogenesis, lipolysis and β-oxidation to

be differentially regulated between visceral and subcutaneous AT in response to insulin

deficiency. Proteins related to glycogenolysis, pyruvate metabolism, TCA cycle and

lipogenesis were increased in subcutaneous AT, whereas β-oxidation-related proteins

were increased in visceral AT from MIDY pigs, pointing at a regionally different metabolic

adaptation to master energy stress arising from diminished glucose utilization in MIDY

AT. Chronic, absolute insulin deficiency and hyperglycemia revealed fat depot-specific

signatures using multi-omics analysis. The generated datasets are a valuable resource

for further comparative and translational studies in clinical diabetes research.
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INTRODUCTION

Adipose tissue is a major player in whole body energy
homeostasis and regulation of metabolic functions. It serves
as storage of surplus energy in the form of triglycerides in
adipocytes and controls lipid mobilization during fasting by
releasing free fatty acids (1, 2). With the discovery of adipocyte-
derived factors such as leptin, adiponectin, and resistin, adipose
tissue is increasingly recognized as a complex endocrine organ.
Via adipokine signaling, adipose tissue is able to communicate
with many organs like the liver, pancreas, muscle, and brain,
and is therefore able to modulate systemic metabolism (3–
6). Thus, adipose tissue dysfunction plays an important role
in the pathogenesis of metabolic disorders, such as obesity,
cardiovascular disease, insulin resistance, and diabetes mellitus
(7–9). How adipose tissue specifically contributes to the
pathogenesis of metabolic diseases is however highly complex
and varies between different fat depots (10–12). It is thought
that visceral adipose tissue is more likely to contribute to the
pathogenesis of insulin resistance and type 2 diabetes mellitus
(13, 14), while accumulation of subcutaneous fat has even been
reported to reduce metabolic disease risk (15–17).

Several recent studies have analyzed adipose tissue proteomes
in the context of type 2 diabetes mellitus to get a more global
understanding of adipose tissue (dys-)function in states of insulin
resistance and hyperinsulinemia (18–22). However, molecular
consequences of chronic insulin deficiency on adipose tissue
depots remain poorly explored.

As a large animal model for mutant INS gene induced diabetes
of youth (MIDY), we generated INSC94Y transgenic pigs, which
are characterized by reduced body weight and β-cell mass,
impaired insulin secretion with resulting hypoinsulinemia, and
elevated blood glucose levels (23). Moreover, the model develops
diabetes-associated alterations in heart (24), retina (25), immune
cells (26), and liver (27). For studying long-term consequences
of severe insulin-deficient diabetes mellitus (SIDD) (28), we
established a biobank of 2-year-old MIDY pigs and healthy
littermate controls following the principles of random systematic
sampling (29).

In the current study, we performed label-free quantitative
proteomics and RNA-sequencing of mesenteric visceral adipose
tissue (MAT) and abdominal subcutaneous adipose tissue
(SCAT). Using this holistic multi-omics approach, we report
marked adipose tissue depot-specific responses to insulin
deficiency and chronic hyperglycemia, and provide new insights
into the molecular pathology of insulin-deficient diabetes in
adipose tissue depots.

MATERIALS AND METHODS

Biological Samples
Adipose tissue samples were obtained from the Munich MIDY
Pig Biobank (29). Mesenteric visceral adipose tissue (MAT) and
abdominal subcutaneous adipose tissue (SCAT) samples were
collected from 2-year-old female MIDY pigs (n = 4) and female
WT littermates (n = 5) by systematic random sampling (30).
Tissue specimen were shock-frozen and stored at −80◦C. To

minimize variations induced by sample collection, two samples
collected from the same animal but from different areas, were
pooled separately for MAT and SCAT prior to Omics analysis.

Proteomics
Frozen tissue samples were homogenized in 1% sodium
deoxycholate (SDC) and 50mM ammonium bicarbonate (ABC)
using an ART-Miccra D-8 homogenizer (ART Prozess- &
Labortechnik) at a speed of 23,500 rpm for two cycles of
1min. Samples were kept on ice for 30min and centrifuged at
16,000 × g for 5min. The aqueous phase beneath the top lipid
layer was carefully taken and transferred to a new test tube.
Protein concentrations were determined using a NanoDrop ND-
1000 spectrophotometer (Marshall Scientific) at 280 nm. Fifty
microgram of protein was reduced with 4mM dithiothreitol
(DTT) and 2mM tris(2-carboxyethyl)phosphine (TCEP) at 56◦C
for 30min and alkylated with 8mM iodoacetamide (IAA) at
room temperature in the dark. DTT was added to a final
concentration of 10mM to quench residual IAA during 15min
incubation in the dark. Proteins were digested with 1 µg LysC
(Wako) for 4 h followed by digestion with 1 µg modified porcine
trypsin (Promega) for 16 h at 37◦C. SDC was removed by acid
precipitation as described elsewhere (31, 32).

Nano-liquid chromatography–tandem mass spectrometry
(LC–MS/MS) analysis was performed on an Q Exactive HF-
X mass spectrometer equipped with an UltiMate 3000 nano
LC system (Thermo Scientific) as previously described (33).
Briefly, 1.5 µg of peptides were separated on a 50 cm column
(PepMap RSLC C18, 75µm ID, 2µm; Thermo Scientific) using
linear gradients from 5 to 25% solvent B (0.1% formic acid in
acetonitrile) in 160min and from 25 to 40% solvent B in 10min
with a flow rate of 250 nl min−1. Spectra were acquired in data-
dependent mode in cycles of one full scan in the range of 300–
1,600 m/z at a resolution of 60,000, followed by MS/MS scans of
the 15 most intense peaks at a resolution of 15,000.

Raw MS data were processed with MaxQuant (v. 1.6.7.0),
using the integrated Andromeda search engine (34) and the
NCBI RefSeq Sus scrofa database (v. 2020-11-12). Identifications
were filtered to 1% false discovery rate (FDR) at peptide and
protein level. Statistics and data visualization were performed in
R (35). MS-EmpiRe was used to detect differentially abundant
proteins (36). Reverse peptides, contaminants and identifications
only by site were excluded for quantification. Proteins were
quantified with at least two peptides with a minimum of two
replicate measurements in each condition. For peptides with
measurements in all replicates of one condition and insufficient
measurements in the other condition, missing values were
imputed from normal distribution (shift= 1.8, scale= 0.3) using
the DEP package (37). Proteins were considered as significantly
changed in abundance with a Benjamini-Hochberg-adjusted P-
value < 0.05 and a fold change above 1.3.

Transcriptomics
After weighing the frozen tissue, corresponding volumes of ice-
cold Trizol reagent (Invitrogen Life Technologies) were added
(1ml Trizol reagent per 100mg tissue). Tissue was immediately
homogenized using the Heidolph Silents Crusher M. RNA of
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homogenized tissue was isolated using the Maxwell RSC miRNA
Tissue Kit (Promega). Manufacturer’s instructions were followed
except for the following changes: the homogenized tissue was in
Trizol to which corresponding volumes of 1-thioglycerol were
added. Isolated RNA was additionally digested with DNase I
(Thermo Scientific) and purified using Agencourt RNAClean XP
beads (Beckman Coulter) following manufacturer’s instructions.
Subsequently, the RNA was quantified (Nanodrop) and quality
controlled on an RNA 6000 Nano Chip using a Bioanalyzer
(Agilent). Finally, 120 ng high quality total RNA (RIN > 8.0)
was used for generating sequencing libraries using the Sense
mRNA Seq Library Prep Kit V2 for Illumina platforms (Lexogen)
following manufacturer’s instructions. Libraries were quantified
and quality controlled on the Bioanalyzer (Agilent) and finally
sequenced on an Illumina HiSeq1500 machine (single end read,
100 nt).

After demultiplexing obtained FastQ files, a head-crop was
performed in order to remove the 12 first bases using the
Trimmomatic tool (38). Mapping to the S.scrofa 11.1 reference
genome was performed using the short read gapped-mapper
STAR (39). Read quantification for each gene was performed
with HTSeq (40) using strict intersection mode and a minimum
alignment quality of 10. After filtering out low abundant genes
(mean counts < 10), DESeq2 (41) with outlier replacement
and independent filtering was used on the counts matrix to
calculate differential abundance. To remove a hidden technical
batch effect, Surrogate Variable Analysis (SVA) (42) was used to
estimate a batch variable that was added to the DESeq2 formula.

Bioinformatic Analysis
The STRING preranked enrichment analysis (43) was used
to functionally characterize proteome abundance alterations
between genotypes (MIDY vs. WT) and tissue types (SCAT
vs. MAT). Signed log-transformed P-values were used as
ranking metric and FDR stringency was set to 0.01. To
reduce redundancy, significant Gene Ontology (GO) biological
processes were grouped into similar ontological terms with
REVIGO (44) at an allowed similarity of 0.5 for the genotype
comparison and 0.4 for the tissue type comparison, respectively.

To integrate proteomics and RNA-seq data, protein
abundance ratios and DESeq2-normalized mRNA abundance
ratios for common identifications were combined and subjected
to a statistically controlled 2D annotation enrichment analysis
(45). Protein and RNA-seq abundance ratios were separately
rank-transformed and are shown as MIDY/WT proteome and
transcriptome score, respectively. Statistical enrichment was
determined by a two-dimensional generalization of the non-
parametric two-sample test. False discovery rate was controlled
by correcting for multiple hypothesis testing. The significant
cutoff for correlating, non-correlating and anti-correlating GO
and KEGG annotations was set to FDR < 0.1.

Leptin RIA
Serum leptin levels were measured using a multi-species leptin
radioimmunoassay (Cat. # XL-85K; EMDMillipore Corporation)
that has been validated for porcine samples (46). Data were

transformed to natural logarithms to approximate normal
distribution and analyzed by student’s t-test.

Histology and Quantitative Morphological
Analyses
For histological and quantitative morphological analyses of
adipocytes in WT and MIDY pigs, tissue samples were collected
from the SCAT and MAT adipose tissue depots, as described
previously (29, 30, 47). Isotropic uniform random (IUR) cryo-
sections (30, 47, 48) of 10µm nominal section thickness
were prepared and stained with the Periodic acid–Schiff (PAS)
reaction. Quantitative morphological analyses were performed,
using an automated stereology system with NewCast software
(Visiopharm, Denmark). In systematically randomly sampled
fields of view, adipocyte cross section profiles were sampled
with point-sampled-intercepts and unbiased counting frames
at 10x objective magnification (48, 49). The volume weighted
mean adipocyte volumes were determined, using the nucleator
method (50–52). Per case, 107 ± 6 measurements (mean ±

SD) were taken, on the average. For demonstration of the
adipocyte histomorphology, additional hematoxylin and eosin-
stained sections of paraffin-embedded adipose tissue samples
were prepared. The volume weighted mean adipocyte volumes in
SCAT and MAT adipose tissue depots were statistically analyzed,
using GraphPad PRISM (version 9.1.1., GraphPad Software,
USA). Data are presented as means and single values and
standard deviations. Data distributions were analyzed, using
Shapiro-Wilk tests. Mean adipocyte volumes in SCAT and MAT
adipose tissue depots of the same animals were compared,
using paired student t-tests (normally distributed data). Mean
SCAT- and MAT-adipocyte volumes of WT vs. MIDY pigs were
compared by student t-tests (normally distributed data). P-values
< 0.05 were considered significant.

RESULTS

Mass Spectrometry-Based Proteome
Analysis of Adipose Tissue Depots From
Insulin-Deficient Diabetic Pigs
To explore the molecular effects of chronic, absolute insulin
deficiency and hyperglycemia on AT depots, we performed
a label-free liquid chromatography-tandem mass spectrometry
analysis (LC-MS/MS) of MAT and SCAT samples fromMIDY (n
= 4) and WT (n= 5) animals.

We identified a total of 23,730 peptides from 2,851 proteins
with high confidence (FDR < 0.01). A full list of all
identified proteins can be found in Supplementary Table 1.
Unsupervised hierarchical clustering of normalized protein
intensities (Figure 1A) and a principal component analysis
(Figure 1B) show a clear separation of tissue types (MAT and
SCAT) and indicate clustering of genotypes (MIDY and WT).

Visceral Mesenteric vs. Subcutaneous
Adipose Tissue
We used an MS-EmpiRe workflow (36), to detect quantitative
proteome differences between the two adipose tissue types
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FIGURE 1 | Quantitative proteome analysis of mesenteric (MAT) and subcutaneous (SCAT) adipose tissue from MIDY and WT pigs. (A) Unsupervised hierarchical

clustering of normalized protein intensities of MAT and SCAT from MIDY (n = 4) and WT (n = 5) animals. The color code indicates normalized intensity values. (B)

Principal component analysis (PCA) indicates clustering of individual sample groups. Spots represent individual animals. Green and purple colors indicate MAT and

SCAT samples, and squares and triangles indicate MIDY and WT samples, respectively. (C,D) Volcano plots visualize the quantitative proteome alterations in MAT (C)

and SCAT (D) from MIDY vs. WT pigs. Red spots indicate differentially abundant proteins (fold-change > 1.3 and Benjamini-Hochberg-adjusted P-value < 0.05).

within genotype. In WT pigs, 331 proteins were found to be
differentially abundant (fold-change > 1.3 and Benjamini-
Hochberg-adjusted P-value < 0.05) between SCAT and
MAT (Supplementary Figure 1A, Supplementary Table 2).
In MIDY pigs, 371 proteins were significantly different in

abundance between the fat depots (Supplementary Figure 1B,
Supplementary Table 3).

A STRING pre-ranked functional enrichment analysis (43)
of proteome profiles from MAT and SCAT was done to reveal
tissue-specific signatures for WT and MIDY animals. From the
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FIGURE 2 | Functional characterization of adipose tissue depot differences between MAT and SCAT in WT and MIDY animals. Heatmap shows GO-term enrichment

in SCAT compared to MAT. Enrichment analysis was performed using a pre-ranked STRING analysis and an FDR cutoff of 0.01. Significantly enriched GO biological

processes were summarized with REVIGO by grouping semantically similar ontology terms. Arrows indicate regulation in SCAT.

GO biological processes database, 145 and 161 terms were found
in WT and MIDY, respectively, to be significantly enriched
(FDR < 0.01) in SCAT vs. MAT (Supplementary Tables 4,

5). Similar ontology terms were revealed with REVIGO (44)
and the resulting clusters are visualized in Figure 2. SCAT
from WT and MIDY animals showed, among others, a distinct
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enrichment of protein complexes involved in cell junction
assembly and organization, of collagens involved in extracellular
matrix organization and of actin filaments. On the other hand,
proteins related to mitochondrial respiration and to glucose and
lipid metabolism were overrepresented in MAT compared to
SCAT, the former more pronounced inMIDY and the latter more
pronounced in WT. Specifically, proteins involved in pyruvate
metabolism, TCA cycle, oxidative phosphorylation (OxPhos),
fatty acid biosynthesis and beta oxidation were consistently
increased in MAT of both WT and MIDY animals.

Adipose Tissues From Diabetic vs.
Non-diabetic Pigs
The quantitative comparison of both fat depot proteomes
from diabetic MIDY and non-diabetic WT animals led to
68 differentially abundant proteins (fold-change > 1.3 and
Benjamini-Hochberg-adjusted P-value < 0.05) in MAT
(Figure 1C, Supplementary Table 6) and 112 proteins in
SCAT (Figure 1D, Supplementary Table 7). In both AT
depots, retinol dehydrogenase 16 (RDH16) was the protein
with the highest abundance increase in MIDY, with log2
fold-changes of 3.3 in MAT and 3.6 in SCAT, respectively.
Likewise, further proteins involved in retinol metabolism
were increased in abundance, namely apolipoprotein A-IV
(APOA4) and aldo-keto reductase family 1 (AKR1C4) in both
AT depots, dehydrogenase/reductase 4 (DHRS4) exclusively in
MAT and retinol dehydrogenase 5 (RDH5) and retinol saturase
(RETSAT) exclusively in SCAT. The group of proteins with
the strongest decrease in both MIDY AT depots contained,
among others, a large number of serpin family A members
(e.g., serpin A3-6, serpin A3-8, and SERPING1) as well as
leucine-rich repeat (LRR)-containing proteins, e.g., biglycan
(BGN), fibromodulin (FMOD), and leucine rich alpha-2-
glycoprotein 1 (LRG1) linked to collagen fibril organization and
immune response.

To functionally characterize proteome alterations, a STRING
pre-ranked annotation enrichment analysis was performed on
both AT depot datasets. From the GO biological processes
database, 23 terms were significantly enriched (FDR < 0.01)
in MAT and 124 in SCAT, respectively (Figure 3A). Proteins
more abundant in MIDY vs. WT of MAT and SCAT
were enriched for terms related to fatty acid and lipid
metabolism as well as to mitochondrial respiration, while
proteins involved in extracellular matrix organization, immune
response and platelet degranulation are more likely to be
reduced in MIDY ATs. Terms related to processes relevant
for metabolite and energy production, e.g., citrate and purine
metabolism were predominantly enriched in the set of proteins
more abundant in MIDY vs. WT SCAT, while proteins with
reduced abundance were found to be involved in regulation
of coagulation and regulation of protein activation cascades.
The detailed results of the STRING analysis are provided in
Supplementary Tables 8, 9.

A strikingly large part of proteins commonly increased
in both tissue depots from MIDY pigs are known to be
involved in carbohydrate and lipid metabolism, e.g., pyruvate

carboxylase (PC), monoglyceride lipase (MGLL) and acetyl-CoA
acyltransferase 1 (ACAA1) (Figures 4A–C). Furthermore,
well-known metabolic and regulatory enzymes of glucose
import were significantly reduced in abundance in MIDY vs.
WT pigs, among them hexokinase-1 (HK1) in both depots
and solute carrier family 2, facilitated glucose transporter
member 4 (SLC2A4/GLUT4) in MAT only. Remarkably,
proteins associated with subsequent glucose metabolic
pathways (e.g., glycogenolysis, pentose phosphate pathway,
pyruvate metabolism, TCA cycle, and mitochondrial oxidative
phosphorylation) were consistently more abundant in SCAT
from MIDY compared to WT pigs. Although a similar trend was
visible for MAT, the changes were less pronounced, and the vast
majority was only significant in SCAT. A similar pattern was
observed for proteins involved in lipogenesis, the step to provide
free fatty acids from acetyl-CoA, where SCAT showed stronger
abundance alterations compared to MAT.

Integrative Analysis of Transcriptomics and
Proteomics Data
To investigate transcriptional regulation of insulin deficiency
and hyperglycemia on AT, we additionally performed RNA-
sequencing of the same tissue specimens from MIDY (n = 4)
and WT (n = 5) animals as used for proteomics experiments
(Supplementary Tables 10, 11). To detect correlated and
uncorrelated functional changes, we performed a 2D annotation
enrichment analysis of the transcriptome and proteome
data (Figures 3B,C) (45). We observed a highly concordant
enrichment (FDR < 0.1) of processes related to e.g., fatty
acid metabolism, TCA cycle and oxidative phosphorylation
in MAT and SCAT of MIDY pigs, and a concordant decrease
of terms related to extracellular matrix, the complement
system and coagulation cascades in both datasets. Notably,
in SCAT from MIDY pigs, we detected a strong enrichment
of genes involved in retinol metabolism on both the mRNA
and protein level. A discordant pattern could be observed
in SCAT, where proteins linked to translational regulation as
well as cytosolic large ribosomal subunits showed a decrease
in MIDY, while RNA expression levels were slightly elevated
in MIDY.

Histology, Quantitative Morphological
Analyses and Leptin Measurements
SCAT and MST adipose tissue samples of WT and MIDY
pigs displayed a regular histomorphology without evidence
of histopathological alterations. In both WT and MIDY
pigs, the (volume weighted) mean volumes of adipocytes
in the MAT were significantly larger than in the SCAT,
whereas the adipocyte volumes of corresponding adipose
tissue depots did not significantly differ in WT vs. MIDY
pigs (Supplementary Figures 2A,B). To address leptin
signaling, we measured serum leptin concentrations and
found significantly reduced levels (p = 0.03) in MIDY pigs
(Supplementary Figure 3).
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FIGURE 3 | Multi-omic functional characterization of MIDY adipose tissue (A) Annotation enrichment analysis of SCAT and MAT proteome alterations in MIDY.

Heatmap shows GO-term enrichment in MIDY compared to WT. Enrichment analysis was performed using a pre-ranked STRING analysis and an FDR cutoff of 0.01.

Significantly enriched GO biological processes were summarized with REVIGO by grouping semantically similar ontology terms. Arrows indicate regulation in MIDY.

(B,C) 2D annotation enrichment analysis showing the correlation of proteomics and transcriptomics data. Fold-changes in the proteome (x-axis) and transcriptome

(y-axis) are rescaled and shown as scores. Terms depicted in green dots show a common upregulation at the transcriptome and proteome level. Terms in orange

show a common downregulation. Purple dots indicate downregulation at the proteome level and upregulation of corresponding mRNA levels. Significant KEGG

pathways and Gene Ontology categories with FDR < 0.1 are shown.

DISCUSSION

Adipose tissue plays a central role in energy homeostasis and

metabolic function [reviewed in (2, 53)], and its development and

functions are regulated by insulin signaling (54). Metabolic and
functional characteristics differ between adipose tissue depots

and their specific contribution to metabolic health and disease
is extensively studied (9, 14, 55–57).

Proteomics provides holistic insights into adipose tissue
functions in health and disease. A number of studies investigated
proteome profiles of adipose tissue in type 2 diabetes mellitus
(18–22), which is characterized by insulin resistance and

hyperinsulinemia. However, holistic studies of adipose tissue in
insulin-deficient diabetes mellitus are lacking.

Therefore, we analyzed fat tissue samples from long-
term diabetic (2 years) INSC94Y transgenic pigs, a model for
mutant INS gene induced diabetes of youth (MIDY) (23), and
wildtype (WT) littermates. The samples were taken according
to the principles of random systematic sampling and archived
in the Munich MIDY pig biobank (29). To explore how
chronic, absolute insulin deficiency and hyperglycemia affect
transcriptomes and proteomes of different adipose tissue types,
a multi-omics analysis of MAT and SCAT from MIDY and WT
animals was performed.
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FIGURE 4 | Impaired carbohydrate and fat metabolism in MIDY SCAT and MAT. (A,C) Protein abundance alterations in MIDY compared to WT are color coded and

shown as log2 fold-change of MIDY/WT. Red circles represent an increased abundance and blue a decreased abundance in MIDY, respectively. Circle size correlates

with Benjamini-Hochberg-adjusted P-value. Only proteins with an adjusted P < 0.05 in at least one tissue depot are shown. Proteins that were not significant or not

detected in that tissue depot are grayed out. (B) Schematic representation of glucose and fat metabolism in adipose tissue. G6P, glucose-6-phosphate; G3P,

glyceraldehyde-3-phosphate; cAMP, cyclic adenosine monophosphate; PPP, pentose phosphate pathway; OxPhos, oxidative phosphorylation.

Proteome Signatures of Subcutaneous and
Visceral Adipose Tissue
Adipocytes in different adipose tissue depots have different
morphology and fulfill different tasks. They also differ in
their reaction toward obesity (adaptive growth patterns)—see
Stenkula and Erlanson-Albertsson (58) and recent quantitative
morphological analyses of adipose tissue in porcine biomedical
models by Theobalt et al. (59). In line with these findings we
found major histological differences between SCAT vs. MAT

tissue samples of MIDY and WT pigs. Moreover, using a

functional enrichment analysis of protein profiles fromMAT and

SCAT depots from WT and MIDY pigs, we detected distinct

proteomic patterns that reflect depot-specific functions. Among
the most enriched gene sets in SCAT vs. MAT were clusters

related to extracellular matrix (ECM) organization, including
significantly higher abundances of multiple subunits of type
I, IV, VI, XIV collagens, fibronectin, as well as B2 and A5
subunits of laminin. This agrees with previous DNA microarray
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and histological observations, suggesting that the ECM of SCAT
maintains a fibrous network connecting dermis and subdermal
tissues (60). Similarly, a depot-specific heterogeneity of adipose
tissue in ECM composition was reported in previous studies,
suggesting ECM as determining factor for adipogenic capacity
and a greater adipogenic potential for subcutaneous fat (61, 62).
Furthermore, we detected higher abundances of proteins related
to cell junction assembly, cell adhesion, and actin cytoskeleton
organization in SCAT compared to MAT, which additionally
highlights the structural function of SCAT.

The proteome of MAT revealed an enrichment of proteins
related to metabolic processes. In particular, glucose and lipid
metabolic pathways, including pyruvate metabolism, fatty acid
synthesis and degradation were found to be overrepresented.
Pertinent metabolic pathways, such as tricarboxylic acid (TCA)
cycle, oxidative phosphorylation, and fatty acid oxidation, are
localized in the mitochondria (63). In rats and humans, it was
shown that mitochondrial content is higher in visceral compared
with subcutaneous adipose tissue (64, 65). Accordingly, there was
a significantly higher abundance of proteins representing these
pathways in MAT. Taken together, our data support the notion
that MAT is metabolically more active and more sensitive to
mitochondrial substrate supply than SCAT.

Proteome Alterations Between MIDY and
WT Reflects Adipose Depot-Specific
Response to Insulin Deficiency and
Hyperglycemia
The comparison of SCAT and MAT from MIDY pigs with
age-matched WT controls revealed significant depot-dependent
transcriptome and proteome alterations related to glucose and
lipid homeostasis in both AT depots of MIDY pigs. Insulin
signaling is fundamental for the regulation of energy and lipid
metabolism in adipose tissue [reviewed in (66, 67)]. It promotes
glucose uptake into adipocytes by coordinating the translocation
of the glucose transporter type 4 (SLC2A4 alias GLUT4) from
intracellular sites to the cell surface (68). Impaired GLUT4
translocation is an early sign of developing insulin resistance and
type 2 diabetes mellitus (69).

In MAT from MIDY pigs, the abundance of GLUT4 was
significantly decreased compared to WT pigs, indicating that not
only themembrane translocation but also the absolute expression
level of GLUT4 is insulin dependent. Interestingly, GLUT4 was
not significantly altered in SCAT from MIDY pigs, suggesting
depot-specific regulatory mechanisms of its abundance. Indeed,
it was reported that, compared with SCAT, visceral AT has
increased insulin-stimulated glucose uptake (70–72) and that
insulin signaling was more pronounced in visceral AT than
in SCAT (73, 74). This suggests that in MIDY pigs, insulin
insufficiency has a stronger impact on GLUT4-mediated glucose
uptake in MAT than in SCAT.

The thioredoxin-interacting protein (TXNIP) was strongly
increased in abundance in the SCAT samples from MIDY pigs.
TXNIP transcription is induced by glucose and concurrently, the
TXNIP protein suppresses excess cellular glucose uptake. It is
therefore described as central regulatory element for acute energy

stress response (75). In MIDY pigs, the upregulation of TXNIP
can therefore be interpreted as a response of adipose tissue to
permanently elevated glucose levels.

After entering the cell, the initial step in glucose metabolism
is phosphorylation, catalyzed by hexokinases. Strikingly,
hexokinase 1 (HK1), a proposed key regulator of AT glucose
uptake (70), was found to be significantly decreased in both
MIDY AT depots. Overall, our data suggests an impaired glucose
import and a reduced glucose phosphorylation in MIDY MAT
and SCAT cells.

The HK1 reaction product glucose-6-phosphate (G6P) can be
metabolized in several alternative pathways, namely downstream
glycolysis, pentose phosphate pathway (PPP) and glycogen
metabolism (76). Surprisingly, despite the presumed reduced
glucose import and hexokinase-catalyzed phosphorylation in
MIDY AT depots, we detected a consistently higher abundance
of key enzymes acting in subsequent glycolytic steps as well
as in PPP in MIDY SCAT. This inverse correlation of reduced
glucose uptake and phosphorylation to G6P with a simultaneous
enhanced glycolytic degradation of G6P was previously described
as “hexokinase paradox” (77). A possible cause for a boosted
glycolytic degradation could be excess glycogenolysis, which
demands glycolytic enzymes for metabolizing glycogen-derived
G6P. The rate of glycogen breakdown is critically insulin-
dependent, and it was shown that during insulin deficiency,
glycogenolysis is increased (78). Indeed, we found elevated levels
of glycogen phosphorylase (PYGL), the rate-limiting enzyme
in glycogenolysis, as well as of multiple enzymes involved in
the activation of glycogenolysis such as creatine kinase B-type
(CKB) and adenylate kinase 2 (AK2), advocating a stimulated
glycogenolysis in MIDY SCAT.

Glycolysis leads to the generation of pyruvate, which can
enter the TCA cycle in mitochondria or can be reduced
to lactate by lactate dehydrogenase (79). The abundance of
lactate dehydrogenase (LDHA) was significantly increased in
MIDY SCAT, and did not change in MIDY MAT compared
to WT. Interestingly, Markan et al. also observed an increased
lactate production in epididymal adipocytes with elevated
glycogenolysis, suggesting a concurrent regulation (80). Since
excess lactate can cause intracellular acidosis, it can be released
to preserve continuity of glycolysis. An important compensatory
mechanism to regulate intracellular pH is the import of HCO−

3 ,
which can be interconverted to CO2, through the SLC4 family
of transporters. This reversible reaction is catalyzed by carbonic
anhydrases [reviewed in (81)]. Strikingly, both the bicarbonate
transporter SLC4A1 (alias AE1) as well as multiple carbonic
anhydrases (CA1, CA3, CA5B, CA2 as a trend) were detected at
increased levels in MIDY SCAT compared to WT, suggesting an
active regulation of pH in MIDY SCAT. An alternative use for
lactate was proposed recently, namely that it can serve as a rich
carbon source and fuel mitochondrial TCA cycle in normal and
tumor tissue (82).

Inside mitochondria, the pyruvate dehydrogenase complex
(PDC) converts pyruvate into acetyl-CoA to enter TCA cycle
for energy production. The consistent increase of PDC enzymes
including pyruvate dehydrogenase E1 subunits alpha and
beta (PDHA1 and PDHB), dihydrolipoamide S-acetyltransferase
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(DLAT) and dihydrolipoamide dehydrogenase (DLD), as well as
higher levels of citrate synthase (CS), the rate-limiting enzyme
of the TCA cycle, which catalyzes the condensation of acetyl-
CoA with oxaloacetate, indicate an enhanced TCA cycle flux
in MIDY SCAT compared to WT. As an alternative, pyruvate
can be transformed to oxaloacetate by pyruvate carboxylase (PC)
to replenish the TCA cycle intermediates (83). Accordingly, PC
levels were found to be increased in both AT depots, suggesting
an enhanced oxaloacetate generation to cover an increased
demand for pathway components.

Adipocytes serve primarily as energy storage for excess
nutrients and on the other hand regulate lipid mobilization and
distribution in the body. During de novo lipogenesis (DNL),
excess carbohydrates are converted into fatty acids (FA), which
can be stored as triacylglycerides within lipid droplets [reviewed
in (1, 84, 85)]. The main substrate for de novo synthesis of
fatty acids is acetyl-CoA, which can either be generated from
citrate by ATP-citrate lyase (ACLY) or from acetate catalyzed by
acetyl-CoA synthetase 2 (ACSS2). In the first and rate-limiting
step of DNL, acetyl-CoA is transformed into malonyl-CoA
by acetyl-CoA carboxylases (ACCs). Malonyl-CoA undergoes a
condensation reaction with acetyl-CoA by fatty acid synthase
(FASN) in the presence of PPP-produced NADPH to generate
triglycerides. In SCAT of MIDY pigs, we found elevated levels
of ACLY and ACSS2, which provide metabolic substrates for
lipogenesis. Consequently, we observed an increased abundance
of G6PD, the rate-limiting PPP enzyme, concomitant with
elevated levels of key lipogenic enzymes, such as ACACA/ACC1
and FASN. In contrast, FASN abundance was reduced in MAT
of MIDY pigs, suggesting a limited FASN-driven fatty acid
synthesis in this fat depot. This might be associated with
the significantly reduced levels of the GLUT4/SLC2A4 glucose
transporter in MAT of MIDY pigs, as it was shown that adipose
tissue lipogenesis strongly correlates with insulin sensitivity (86)
and that GLUT4 overexpression in mice led to an elevated AT
lipogenesis (87). To compensate the lack of fatty acids from
endogenous lipogenesis, MAT might obtain fatty acids from
exogenous uptake by passive diffusion or specialized transporters
(88–90). Using this route, fatty acids released from lipolysis might
be reimported via the so-called fatty acid recycling pathway (91).
Alternatively, consumption of lipid droplet reserves could help to
secure the endogenous FA pool.

Triglyceride turnover is crucial for lipid homeostasis in
adipose tissue. Breakdown of triglycerides via lipolysis enables
release of glycerol and non-esterified fatty acids (NEFAs) which
can serve as energy substrates in mitochondrial β-oxidation or
can be released and fuel energy metabolism in other organs (92,
93). It is known that insulin suppresses lipolysis and promotes
triglyceride storage in adipocytes by diminishing expression of
lipolysis-specific enzymes (94–96).

Consequently, in MIDY pigs, we observed an increase
of key enzymes involved in lipolysis in both AT depots,
among them hormone-sensitive lipase (LIPE alias HSL) and
monoglycerol lipase (MGLL alias MGL), which catalyze the
stepwise breakdown of triglycerides to glycerol and FAs (92, 97).
In this context, it is worth mentioning that enzymes involved in
retinol metabolism were increased in both AT depots of MIDY

pigs. In particular, retinol dehydrogenase 16 (RDH16), whose
expression is negatively regulated by insulin and which catalyzes
the first of the two-step reaction from retinol to retinoic acid (98),
was among the most significantly increased proteins in MIDY
AT. Remarkably, in the liver of MIDY pigs, together with elevated
levels of retinal and retinoic acid, RDH16 was also found to be
increased in abundance and was suggested as a key driver of
stimulated hepatic gluconeogenesis in MIDY pigs (27). Retinoid
action has tissue-specific differences and in AT, elevated retinoic
acid was shown to suppress adipogenesis (99) and promote
lipolysis (100, 101). It is therefore conceivable that the increase in
retinol metabolism promotes lipolysis in MIDY AT. Together, in
both depots, fat break-down and release potentially predominate
accumulation, which is supported by the absence of adipocyte
enlargement and by elevated levels of circulating free fatty acids
in MIDY pigs (27). β-oxidation is the central pathway for the
degradation of long-chain fatty acids and is often discussed in
the context of the pathophysiology of insulin resistance, diabetes,
and obesity [reviewed in (102)]. While β-oxidationmainly occurs
in mitochondria, peroxisomes are indispensable for metabolizing
very-long-chain fatty acids and branched-chain fatty acids (103).
Acetyl-CoA produced through oxidative degradation of FAs
can fuel the TCA cycle and oxidative phosphorylation to push
energy production. Our proteomics data showed that a variety
of enzymes, transporter and facilitating proteins involved in
fatty acid oxidation were increased in MAT and to a lesser
extent in SCAT of MIDY pigs. Increased mRNA levels of the
two acyltransferases, carnitine O-palmitoyltransferases 1 and 2
(CPT1A and CPT2), and carnitine acyl carnitine translocase
(SLC25A20), the key transporters for fatty acid import into
mitochondria (102), point toward an increased FA uptake via
the carnitine cycle in MAT from MIDY pigs. In the β-oxidation
cycle, we found increased levels of major enzymes involved in the
stepwise shortening of acyl-CoA in MAT of MIDY pigs, namely
the very long chain acyl-CoA dehydrogenase (ACADVL) and
the medium-chain 3-ketoacyl-CoA thiolase (ACAA2), as well as
the mitochondrial trifunctional subunits alpha (HADHA) and
beta (HADHB). Taken together, our data indicates that MAT
in MIDY pigs has increased capacities for mitochondrial uptake
and oxidative degradation of FAs. Following the concept of the
Randle cycle (104), the enhanced β-oxidation in MAT of MIDY
pigs might therefore be an adaptation to the reduced availability
of glucose, with a metabolic switch from glycolysis to fatty acid
oxidation. A potential key mediator thereby might be leptin, as it
was reported recently that hypoleptinemia promotes a shift from
carbohydrate to fat metabolism via the hypothalamic-pituitary-
adrenal axis, leading to increased AT lipolysis and hepatic
ketogenesis, which is necessary to maintain glucose homeostasis
and substrate supply during starvation (105). This hypothesis is
strongly supported by a reduction of leptin mRNA in MAT and a
significant reduction of circulating leptin levels in MIDY pigs.

Collectively, our multi-omics analysis of MAT and SCAT
of MIDY pigs revealed severe depot-specific dysregulations in
response to insulin deficiency. Our data indicates regionally
different metabolic adaptations to overcome energy stress caused
by reduced glucose utilization in MIDY adipocytes. This study
provides novel pathophysiologic insights and is an important
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resource for understanding adipocyte functions in insulin-
deficient diabetes.
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Supplementary Figure 1 | Volcano plots visualize the quantitative proteome

differences of SCAT vs. MAT in WT (A) and MIDY (B) animals. Red spots indicate

differentially abundant proteins (fold-change > 1.3 and

Benjamini-Hochberg-adjusted P-value < 0.05).

Supplementary Figure 2 | (A) Histology of MAT and SCAT adipose tissue depots

in WT and MIDY animals. Paraffin sections, hematoxylin and eosin staining. Bar =

100µm. (B) Volume weighted mean adipocyte volume in MAT and SCAT adipose

tissue depots in WT and MIDY animals. Data are means and standard deviations.

Data points corresponding to individual animals are indicated by individual

symbols. The mean adipocyte volumes in SCAT and MAT adipose tissue depots

of the same animals were compared, using paired student t-tests. ∗p < 0.05; ∗∗p

< 0.01. Mean SCAT- and MAT-adipocyte volumes of WT vs. MIDY pigs were

compared by student t-tests, as indicated. n.s., not significant (p > 0.05).

Supplementary Figure 3 | Absolute quantification of leptin levels in sera from WT

and MIDY pigs. The difference between the groups was evaluated using a student

t-test.

Supplementary Table 1 | Proteins Identified and quantified by

nano-LC-MS/MS-based proteomics.

Supplementary Table 2 | Results of MS-EmpiRe-based quantitative proteomics

of SCAT vs. MAT from WT animals. Proteins showing significant differences in

abundance between MIDY and WT animals (FDR < 0.05, fold-change > 1.3) are

marked with a “+.” Positive log2 fold changes means more abundant in the SCAT

group.

Supplementary Table 3 | Results of MS-EmpiRe-based quantitative proteomics

of SCAT vs. MAT from MIDY animals. Proteins showing significant differences in

abundance between MIDY and WT animals (FDR < 0.05, fold-change > 1.3) are

marked with a “+.” Positive log2 fold changes means more abundant in the SCAT

group.

Supplementary Table 4 | STRING functional enrichment analysis from SCAT vs.

MAT from WT animals. Direction “bottom” indicates enrichment in SCAT

compared to MAT, “top” indicates enrichment in MAT, and “both ends” indicates

enrichment on both sides of the ranked quantification data. Gene Ontology

biological processes with FDR < 0.01 are listed.

Supplementary Table 5 | STRING functional enrichment analysis from SCAT vs.

MAT from MIDY animals. Direction “bottom” indicates enrichment in SCAT

compared to MAT, “top” indicates enrichment in MAT, and “both ends” indicates

enrichment on both sides of the ranked quantification data. Gene Ontology

biological processes with FDR < 0.01 are listed.

Supplementary Table 6 | Results of MS-EmpiRe-based quantitative proteomics

of MIDY vs. WT pig visceral mesenteric adipose tissue. Proteins showing

significant differences in abundance between tissue depots of MIDY and WT

animals (FDR < 0.05, fold-change > 1.3) are marked with a “+.” Positive log2 fold

changes means more abundant in the MIDY group.

Supplementary Table 7 | Results of MS-EmpiRe-based quantitative proteomics

of MIDY vs. WT pig subcutaneous adipose tissue. Proteins showing significant

differences in abundance between tissue depots of MIDY and WT animals (FDR <

0.05, fold-change > 1.3) are marked with a “+.” Positive log2 fold changes means

more abundant in the MIDY group.

Supplementary Table 8 | STRING functional enrichment analysis from MIDY vs.

WT MAT. Direction “bottom” indicates enrichment in MIDY compared to WT, “top”

indicates enrichment in WT, respectively. Gene Ontology biological processes with

FDR < 0.01 are listed.

Supplementary Table 9 | STRING functional enrichment analysis from MIDY vs.

WT SCAT. Direction “bottom” indicates enrichment in MIDY compared to WT,

“top” indicates enrichment in WT, respectively. Gene Ontology biological

processes with FDR < 0.01 are listed.

Supplementary Table 10 | Transcriptome analysis of MIDY vs. WT pig visceral

mesenteric adipose tissue.

Supplementary Table 11 | Transcriptome analysis of MIDY vs. WT pig

subcutaneous adipose tissue.
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