Bimonthly publication

VOLUME 27
N° 3 - 1993

LA REVUE D'UROLOGIE POUR LE PRATICIEN

CONTENTS

SPECIAL ISSUE DEVOTED TO THE IMPOTENCE
Organized by Professor William von Niederhäusern
and by Doctor Jean-Marc Wisard

Curriculum vitae concerning Pr William von Niederhäusern (Genève, Suisse), and Dr Jean-Marc Wisard (Lausanne, Suisse) .. 111

Introduction. W. von Niederhäusern (Genève, Suisse), J.M. Wisard (Lausanne, Suisse) .. 113

Flaccidity and erection of the human penis: morphological data. Giuseppe Conti (Fribourg, Suisse) 115-121

Investigating erectile dysfunction: value, interest and limitations of various examinations. M. Wisard, S. Gabellon, D. Fournier, H.J. Leisinger (Lausanne, Suisse) .. 122-130

Neurological and neurophysiological investigation of impotent men. M.C. Scheiber-Nogueira (Strasbourg, France) .. 131-135

THERAPEUTIC METHODS

Revascularization of the penis in vascular impotence. D. Hauri (Zurich, Suisse) .. 144-151

Prostaglandin E1 - The chemical implant. G. de Boccad, Ch.H. Rochat (Genève, Suisse) 152-155

Value and limitation of mechanical devices for assisting erection in the treatment of erectile dysfunction. G. Gabellon, M. Wisard, H.J. Leisinger (Lausanne, Suisse) .. 156-159

Erection sparing prostatovesiculectomy for carcinoma of the prostate. D. Hauri (Zurich, Suisse) 160-165

PHYSIOLOGY

Intracavernous pressures increases and perineal muscles contractions in response to pressure stimulations of the glans penis. P. Lavoisier, R. Aloui (Lyon, France), M. Schmidt (Toledo-Ohio, USA), M. Gally (Villeurbanne, France) 166-171

Evidence for a perineal vascular response induced by glans penis pressure stimulation. P. Lavoisier, R. Aloui (Lyon, France), M. Schmidt (Toledo-Ohio, USA), M. Gally (Villeurbanne, France) 172-175

Quantification of smooth muscle tissue using fuzzy logic. S. Kasas (Fribourg, Suisse), M. Wisard (Lausanne, Suisse), K. Stoffel (Fribourg, Suisse) .. 176-178

Intracavernous application of SIN-I in rabbit and man: functional and toxicological results. M.F. Meyer, A. Tahir, H. Krah (Hannover, Allemagne), J. Staubesand (Fribourg, Allemagne), A.J. Becker, M. Kircher (Hannover, Allemagne), B. Mayer (Graz, Austria), U. Jonas, W.G. Forssmann, Ch.G. Stief (Hannover, Allemagne) .. 179-182

INSERTION OF PENILE IMPLANTS

Flexible penile implant in the restoration of erectile function. L. Subrini (Paris, France) .. 183-191

Biomechanical study of flexible penile implants. L. Subrini (Paris, France) .. 192-196

INFORMATIONS .. 130, 159, 178

ANALYSIS .. 155, 171

SUBSCRIPTION RATES .. 135

Each article is accompagnied with an English summary

The contents page of «ANNALES D'UROLOGIE» appears regularly in «CURRENT CONTENTS» and is indexed in the bibliographical publications of the CNRS (Paris), in the «INDEX MEDICUS», and the Computerized Documentation System MEDLINE; in the publications of the Institute for Scientific Information of Philadelphia, and «BIOLOGICAL ABSTRACTS» of the Biosciences Information Service.
INTRACAVERNOUS APPLICATION OF SIN-I IN RABBIT AND MAN: FUNCTIONAL AND TOXICOLOGICAL RESULTS

M.F. MEYER1,2, A. TAHER1, H. KRAH1, J. STAUDESAND1, A.J. BECKER1, M. KIRCHER1, B. MAYER4, U. JONAS1, W.G. FORSSMANN2, Ch.G. STIEF1

SUMMARY: The mode of action of the active metabolite SIN-I of the vasodilator prodrug molsidomine was studied in vitro and in vivo in corpus cavernosum of rabbit and man. SIN-I produces a dose-dependent relaxation of isolated human cavernous smooth muscle strips. In the rabbit, the intracavernous application of SIN-I increased the intracavernous pressure to a full erection (approximately 100 cm H2O). This response was highly reproducible. SIN-I was also injected intracavernously 6 times in five rabbits over 2 weeks; no inflammatory or fibrotic reactions were found on histology. SIN-I may be a reliable drug for the treatment of impotence without side-effects.

KEY-WORDS: SIN-I. — Relaxation of cavernous smooth muscle strips. — No inflammation and fibrosis.

INTRODUCTION

To induce an erection, the penile arteries and sinusoids have to dilate, thereby decreasing the resistance to penile blood flow [1]. However, the mechanism of penile smooth muscle relaxation has not been fully elucidated yet. Nitric oxide (NO), which is believed to account for the biological actions of endothelium-derived relaxing factor [2, 3] was recently suggested to be of importance in the regulation of penile smooth muscle tone, both in the flaccid state [4] and during erection [2, 4]. SIN-I causes its effects by « non-enzymatical liberation of NO » [5].
In view of the observations that NO is involved in mediating penile erection and that certain nitrovasodilators have been employed clinically to induce erection in impotent patients, the present study was initiated to assess the dose-dependent relation between the intracavernously applied SIN-I dose and the evoked penile erection in the rabbit model. As it was previously described the chronic application of the non-specific phosphodiesterase-inhibitor papaverine causes fibrosis and inflammation [6]. Therefore the present study was designed to evaluate the evoked penile erection in the rabbit model. As it initiated to assess the dose-dependent relation erection in impotent patients, the present study was dilators have been employed clinically to induce mediating penile erection and that certain nitrovasodilators.

MATERIALS AND METHODS

Organ bath experiments

Corpus cavernosum excised from human penis during penectomy for penile carcinoma or penile prosthesis implantations is dissected into small strips of 0.3×0.7 cm. The specimen are mounted under 0.5 g tension in organ chambers containing Krebs—bicarbonate solution at 37 °C gassed with 95% O$_2$ and 5% CO$_2$. Isometric contractions are measured using Statham transducers connected to Linseis polygraphs. The preparations are allowed to equilibrate for 60–90 min. After this period, norepinephrine or endothelin 10^{-7} M are added to contract the strips; after a stable tension is reached, SIN-I is added in doses between 10^{-9}–10^{-4} M.

Intracavernous application of SIN-I

To evaluate the effect of SIN-I in vivo, the rabbit model was chosen; we did not want to present human data since a patients response to any intracavernously applied drug is modified by his etiology of the erectile dysfunction he is suffering from.

After sedation with i.m. ketamine (10 mg), 9 animals (3.5 to 5 kg BW) were anaesthetized with i.v. pentobarbital (15 mg kg$^{-1}$) through a needle placed in an ear vein. The rabbits (New Zealand white rabbits) are placed in a supine position on a thermoregulated operating table (model IIA, Hugo Sachs Elektronik, Germany). Additional heat is provided with a heating lamp. The penile skin is removed by blunt dissection and a 21-gauge needle is inserted into the left corpus cavernosum for pressure recording. The needle is connected to a fluid line via a three-way stopcock which allows for the intracavernosal application of SIN-I. To prevent clotting, 50 I.U. heparin is given through this route every 2–3 hours. This dose of heparin is well below the dosis needed to induce changes in penile hemodynamics [7]. After the pressure returns to baseline, 1 ml saline is given intracavernosally in order to flush the drug away and to avoid clotting.

To study the effects of SIN-I the drug is administered intracavernously at dosages of 0.01, 0.02, 0.05 and 0.1 mg through the 21-gauge needle until in every animal a dose - response - curve is achieved.

Histopathological study

SIN-I of 0.1 mg is injected intracavernously 6 times in 5 rabbits in between 14 days. Then the rabbits are sacrificed. A long segment (3 cm) of the penis including the injected site is collected for light-microscopic examination, fixed in 10% neutral formalin solution and stained with HE and Masson - trichrome. For immunohistofluorescence the penile tissue is fixed by immersion in 4% formaldehyde at 4 °C overnight. Five minutes sections are cut on a Reichert-Jung microtome and incubated with antisera diluted 1 : 250 (NO-synthetase-antibody against neuronal NO-synthase, no staining of endothelial NO-synthase ; raised in rabbit). Bound antiserum is visualized with fluorescein-conjugated pig anti-rabbit IgG diluted 1 : 40.

Drugs

The following drugs are used: ketamine, pentobarbital, heparin, SIN-I, a gift from Dr Heenning and Dr Grewe, Cassella, Germany) NO-synthetase antiserum (Dr Meyer, Universität Graz), fluorescein-conjugated pig anti-rabbit IgG.

RESULTS

Organ bath study

Concentration response relationships of the effect of SIN-I on isolated human cavernous tissue are depicted in figure 1. The dose-response-curves for the relaxing effect of SIN-I on isolated human cavernous tissue precontracted with norepinephrine and as well as the effect of papaverin, a non-specific phosphodiesterase-inhibitor show that concentrations of 10^{-6} and 10^{-7} M SIN-I causes dose-dependent relaxations which are close to their maximum at 10^{-5} M. Papaverine showed the most potent effect at concentrations of 10^{-5} M and 10^{-4} M in a very small therapeutical width, shown by the step increase of the dose effect curve.

Intracavernous application of SIN-I

The intracavernous application of SIN-I induces a dosage - dépendent erectile response. A injection of 0.02 mg SIN-I evoked a full penile erection for 10 minutes. 0.05 mg induced a full erection for 16 minutes whereas the intracavernous application of 0.1 mg leads to a long-lasting response of full penile erection and persisted for about 84 minutes with severe side - effects concerning the systemic blood pressure (the blood pressure drops for about 45-50 cm H$_2$O in the first 4 minutes).
Histopathological study

It was shown by HE and Masson-Goldner stain that the cavernous tissue from the rabbits consists of loose sinusoid spaces separated by connective tissue trabecula containing bundles of smooth muscle cells, nerve fibers and arterioles. In the corpus cavernosum of the rabbits treated by repeated injections of SIN-I, nor local fibrosis neither any sign of inflammation was seen. The intracavernous tissue does not exhibit any hyperplasia including fibrous tissue and smooth muscle mass (fig. 2 a et b).

Immunofluorescence

The staining of the NO-synthetase-containing axons supplying penile smooth muscle is substantiated by immunocytochemistry as seen in figure 2c.

DISCUSSION

The present study shows that the NO-donor SIN-I induces a relaxation of the cavernous smooth muscle in vitro and in vivo. Previous studies showed that NO which is involved in the mechanism of penile smooth
After repetitive intracavernous injections of SIN-I in the rabbit no signs of fibrosis and/or inflammation are detected. These results may attribute to the anti-inflammatory effects as well as to the good tissue tolerability of the nitric oxide donor SIN-I. So when only a relatively low number of papaverine injections (n = 6) are performed, the low dose injections induce a marked cavernous inflammation and fibrosis [12]. So, intracavernous injection of SIN-I seems, at least, to be much better tolerated than papaverine. Further studies with more injections and different species have to be carried out before a final conclusion may be drawn.

Finally, we may emphasize that SIN-I seems to be an adequate therapeutic agent in the treatment of erectile dysfunction in terms of its therapeutic with and the nontoxic short-term effects concerning local degenerations after repeated applications. Future long-term studies in various species are necessary for the judgement of local toxicity.