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Fatty acid metabolism in poultry has a major impact on production and disease
resistance traits. According to the high rate of interactions between lipid metabolism
and its regulating properties, a holistic approach is necessary. To study omics
multilayers of adipose tissue and identification of genes and miRNAs involved in
fat metabolism, storage and endocrine signaling pathways in two groups of broiler
chickens with high and low abdominal fat, as well as high-throughput techniques,
were used. The gene–miRNA interacting bipartite and metabolic-signaling networks
were reconstructed using their interactions. In the analysis of microarray and RNA-Seq
data, 1,835 genes were detected by comparing the identified genes with significant
expression differences (p.adjust < 0.01, fold change ≥ 2 and ≤ −2). Then, by
comparing between different data sets, 34 genes and 19 miRNAs were detected as
common and main nodes. A literature mining approach was used, and seven genes
were identified and added to the common gene set. Module finding revealed three
important and functional modules, which were involved in the peroxisome proliferator-
activated receptor (PPAR) signaling pathway, biosynthesis of unsaturated fatty acids,
Alzheimer’s disease metabolic pathway, adipocytokine, insulin, PI3K–Akt, mTOR, and
AMPK signaling pathway. This approach revealed a new insight to better understand
the biological processes associated with adipose tissue.

Keywords: lipid metabolism, transcriptome, systems biology, interactive bipartite network, omics multilayer

INTRODUCTION

Total carcass fat of broilers varies depending on sex, poultry age, nutrition, and genetic factors
(about 12%) (Sakomura et al., 2005). The predominant fats stored in a broiler carcass include two
kinds of subcutaneous fat and ventricular fat (approximately 18 to 22% of carcass fat) stored in
the ventricular area (Crespo and Esteve- Garcia, 2001). For humans, as the foremost consumer
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of poultry meat, over-fat storage in skeletal muscle is associated
with metabolic diseases such as type 2 diabetes and cardiovascular
disease and subsequently will lead to the risk of a heart attack.
Fat production in poultry is a high-inheritance polygenic trait
regulated by various behavioral, environmental, and hormonal
factors (Le Mignon et al., 2009).

Many studies have identified genes related to storage lipids in
broilers (Lagarrigue et al., 2006; Pinto et al., 2010; Nones et al.,
2012). On the other hand, the integration of high-throughput
genomic DNA and RNA sequencing leads to the identification
of genomic regions that control traits at the whole genome
scale (Cesar et al., 2018). Some studies of two poultry groups,
obese [high fat (HF)] and lean [low fat (LF)], indicated genes
associated with lipogenic pathways (Ji et al., 2012, 2014). By
comparing expressed genes, numerous identified genes were
related to endocrine, hemostatic, lipolytic, and lipid transduction
(Resnyk et al., 2013).

In addition to identifying genes and pathways associated
with lipid metabolism, a holistic approach for gene expression
should be examined. MicroRNAs are regulatory molecules with
a length of 19–25 nucleotides (Bartel, 2004). Mature microRNAs
lead to decomposition or inhibit translation by complete or
partial coupling to target mRNAs (usually paired with the 3′UTR
region) (Iorio et al., 2011). We have witnessed the emergence of
various areas in biology. One of these areas is the application
of bioinformatics and systems biology and integrated multi-
omics data. In major systems biology, researchers have attempted
to identify the cellular system, formulate cell behaviors, and
then design a cell model by combining genomic, transcriptomic,
proteomic, and metabolomic layers (Cole et al., 2013). In this
regard, interactive bi-partite networks of gene–miRNA are used
in several studies to discover functional modules (Huang et al.,
2006; Bahrami et al., 2017a,b).

However, identification of upstream and downstream genes,
reconstruction of networks, bipartite interaction network of
gene–miRNA, and metabolic-signaling networks involved in
metabolism and adipose storage (particularly abdominal fat using
high-throughput data in broilers) have not been reported. Fat
storage in broilers is considered to be an important economic
trait concerning high growth rate. Based on previous studies of
fat metabolism in the body and signaling pathways related to fat
storage and transmission in laboratory species, it was assumed
that the two broiler groups of high-abdominal fat and low-
abdominal fat have gene expression differences in metabolism
and fat storage.

Accordingly, this study aims to use an integration of RNA-Seq
and microarray data approach to identify and classify candidate
genes and miRNAs involved in lipolysis and lipogenesis. In
addition to the comprehensive survey of lipid metabolism, this
study will focus on (1) reconstruction of the interactive bi-partite
network of gene–miRNA (bi-partite networks are a particular
class of complex networks, whose nodes are divided into two
sets of genes and miRNA), (2) identification of functionally
relevant modules (each of a set of genes or independent genes
that can be used to construct a more complex structure), and
(3) reconstruction of the metabolic-signaling network associated
with the process of metabolism and fat storage in broilers.

MATERIALS AND METHODS

Figure 1 and Supplementary Table 1 show the simple overall
workflow for analyzing and finding functionally relevant modules
with HF and LF storage in the broilers.

Poultry’s Tissue Preparation
The 18 chickens used in this study were divergently selected
based on the amount of carcass fat percentage at 42 days of
age (slaughtering time). Chickens were bred and raised at the
animal farm of Tehran University, Iran. Nine chickens were in
the HF group (>27% fat storage) and nine chickens in the LF
group (<10% fat storage). Each group was divided into three
subgroups with three chickens in each group. To eliminate other
environmental effects and sampling error, abdominal adipose
tissue samples of three chickens in each subgroup were pooled.
Therefore, we had three samples for HF and three samples for
LF chickens, separately. In this regard, both groups were placed
together and raised in floor pens (4.4 m × 3.9 m). Abdominal
adipose tissue samples were immediately pooled (before RNA
extraction), snap-frozen in liquid nitrogen, and stored at −80◦
C until further processing for RNA analysis.

RNA Extraction
Abdominal fat aliquots from six chickens (three HF and three LF
per age at 42 weeks) were homogenized, and total cellular RNA
was extracted using guanidine thiocyanate and CsCl gradient
purification, followed by DNase I treatment. The quality of RNA
was determined with an RNA 6000 Nano Assay kit and the
Model 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA,
United States). All samples used for RNA analyses had an RNA
integrity number (RIN) greater than 9.0.

MiRNA-Seq Library Preparation and
Sequencing
About 1 µg of total RNA from each sample was used to construct
a small RNA library using the TruSeq Small RNA Sample
Preparation kit (Illumina, San Diego, CA, United States). The
kit was used according to the manufacturer’s instructions, which
included ligating adapters to 3′ and 5′ end of the RNA molecules,
reversely transcribing and amplifying libraries, purifying cDNA,
and checking and normalizing libraries. All libraries were
sequenced at Génome Québec (Montréal, Canada) using the
HiSeq 2000 system (Illumina, San Diego, CA, United States) to
generate 50-bp single reads.

Data Mining
In the biological system and the reconstruction of biological
networks, namely, gene regulation, interactions, protein–protein
interaction (PPI), and metabolic networks, the first step is to
collect and evaluate the available data. In this regard, data
from this study were obtained by investigating and reviewing
related articles and collecting microarray and RNA-Seq data from
different databases, by searching the Gene Expression Omnibus
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FIGURE 1 | Schematic for analysis view of the workflow to reconstruct the metabolic pathways of abdominal fat storage in poultry. The main gene list was prepared
from three RNA-Seq and microarray data sets. The Gene–Gene Interaction Network (GGI), Gene Regulatory Network (GRN), and interactive bi-partite network of
gene–miRNA network were reconstructed using Cytoscape. Functional modules were detected using related plugin in Cytoscape and the metabolic-signaling
network using CellDesigner.

(GEO) database1 and ArrayExpress2 for abdominal fat in various
species, particularly for Gallus gallus domesticus. The accession
numbers for the RNA-Seq and microarray data sets are presented
in Table 1.

1www.ncbi.nlm.nih.gov/geo
2www.Ebi.ac.Uk/arrayexpress

Analysis of Microarray Data
Microarray data were pre-processed in software R, using package
Lumi (Du et al., 2008) and Affy (Gautier et al., 2004). The
processed data were then evaluated using packages Limma
(Ritchie et al., 2015), GEOquary (Davis and Meltzer, 2007),
and Biobase (Huber et al., 2015) (versions and parameters were
used for analysis of microarray and RNA-Seq presented in
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TABLE 1 | GEO accession numbers for RNA-Seq and microarray data sets.

No. No. sample(s) GSE Platforms Data type Contributor(s)

1 16 GSE49121 GPL16133 (Illumina
HiSeq 2000)

RNA-Seq Resnyk et al., 2017

2 24 GSE42980 GPL16133 (Illumina
HiSeq 2000)

RNA-Seq Resnyk et al., 2015

3 24 GSE37585 GPL1731 (DEL-MAR
14K Integrated

Systems)

Microarray Resnyk et al., 2013

4 24 GSE8812 GPL1731 (DEL-MAR
14K Integrated

Systems)

Microarray Resnyk et al., 2015

5 24 GSE45825 GPL1731 (DEL-MAR
14K Integrated

Systems)

Microarray Resnyk et al., 2017

6 8 GSE10052 GPL1731 (DEL-MAR
14K Integrated

Systems)

Microarray Byerly et al., 2010

7 28 GSE3867 GPL3265 (Chicken
cDNA DDMET 1700

array version 1.0)

Microarray Bourneuf et al., 2006

GEO, gene expression omnibus.

Supplementary Table 1). Among the number of identified genes,
the genes that were common in terms of five accession numbers
(related to microarray data sets) were identified; and the gene list
was considered as gene set 1 (Supplementary Table 2).

RNA-Seq Data and Statistical Analyses
Various programs were used to analyze the RNA-Seq data related
to the accession numbers. First, FastQC quality control software
(Andrews, 2010) was used to control the quality of existing
data. Sequences were trimmed for quality using Trimmomatic
software (Bolger et al., 2014). Boxplot graphing of pre- and
post-trimming reads confirmed the absence of outlier samples
based on read count. After trimming, reads were mapped to
the chicken genome assembly GRCg6a3 using Tophat (version
1.3.3) (Kim et al., 2013), followed by assembly and quantitation
using CuffDiff software (v2.2.1.6) (Trapnell et al., 2010). The
fragments per kilobase of exon per million fragments mapped
(FPKM) threshold for detection of a gene was set at FPKM > 0.5.
The resulting gtf files differential expression was assessed using
Cuffdiff. The two-sided p-value was corrected using the false
discovery rate (FDR), which accounts for multiple testing
procedures. Genes with an FDR-adjusted p-value (p ≤ 0.05) and
fold change ≥ 2 or ≤ −2 were considered to be differentially
expressed (DE) transcripts. The genes that were common in
terms of accession numbers (related to RNA-Seq data sets) were
identified and considered as gene set 2 (Supplementary Table 3).

Functional Gene Set Annotation and
Enrichment
Gene ontology (GO) analysis, canonical pathway, and
network identification were performed using Database for
Annotation, Visualization and Integrated Discovery (DAVID)4,

3http://ftp.ensembl.org/pub/release-102/fasta/gallus_gallus/dna/
4https://david.ncifcrf.gov/

Bioinformatics Resources 6.8 with (Huang et al., 2009) the
Kyoto Encyclopedia of Genes and Genomes (KEGG) database,
g: profiler5 (Raudvere et al., 2019), GeneCards6, and PANTHER
(Protein ANalysis THrough Evolutionary Relationships)
(Mi et al., 2012).

Main Gene List
Genes with significant differences related to microarray and
RNA-Seq data were examined and listed as gene set 1 and 2,
respectively. Finally, genes that were common in these two gene
sets were chosen as the main gene list.

Identification of miRNAs and Target
Genes
Accession number GSE122224, which is related to miRNA in
chicken and associated with lipid metabolism, was analyzed.
The potentially targeted genes were predicted using miRWalk
3.0 (Sticht et al., 2018). The platform integrates information
from different miRNA-target databases, including validated
information and prediction data sets: MiRWalk (Dweep
et al., 2014), miRDB7, miRMap (Vejnar and Zdobnov, 2012),
miRNAMap (Hsu et al., 2008), miRanda8, miRBridge (Tsang
et al., 2010), PICTAR29, Targetscan (Grimson et al., 2007),
PITA10, and RNA22 (Loher and Rigoutsos, 2012). The target
genes that were predicted by at least five mentioned tools
were chosen and submitted to DAVID, KEGG (the potential
KEGG), Reactome pathways, and PANTHER databases for the
enrichment target genes of each miRNA.

5https://biit.cs.ut.ee/gprofiler/gost
6https://www.genecards.org/
7http://mirdb.org/
8https://mirnablog.com/microrna-target-prediction-tools/
9https://pictar.mdc-berlin.de/
10https://tools4mirs.org/software/target_prediction/pita/
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Reconstruction of Omics Multilayered
Networks
The miRNA–gene network was reconstructed based on
the candidate genes, and the molecular interactions were
documented in related papers and online interaction databases.
PPI data were abstracted from the Biomolecular Interaction
Network Database (BIND11), Database of Interacting Proteins
(DIP12), Biological General Repository for Interaction Datasets
(BioGRID13), and Protein–Protein Interactions Database
(MIPS14). In addition, pathway data were obtained from searches
in pathway databases, such as STRING15 (Szklarczyk et al., 2018)
and GeneMania databases16 (Warde-Farley et al., 2010). Each
gene and miRNA was entered into the database, and resulting
interactions were imported to the networks using Cytoscape
3.7.2 (National Institute of General Medical Sciences, Bethesda
Softworks, Rockville, MD, United States) (Shannon et al., 2003).
Genes and miRNAs in generated networks are represented as
nodes, and the interactions between these nodes as edges. The
metabolic-signaling pathways involved in the lipid metabolism
and storage were reconstructed by different databases and Cell
Designer version 4.4.2 (Funahashi et al., 2008).

Modules and Hub Node Detection
For finding sub-graphs and hub nodes (nodes with a high
connectedness coefficient), MCODE, one of the Cytoscape
plugins, was used. MCODE finds clusters (highly interconnected
regions) in a network. Clusters mean different things in different
types of networks. For instance, clusters in a PPI network are
often protein complexes and parts of pathways, while clusters
in a protein similarity network represent protein families (Bader
and Hogue, 2003). MCODE effectively finds densely connected
regions of a molecular interaction network, many of which
correspond to known molecular complexes, based solely on
connectivity data. Given that this approach to analyzing protein
interaction networks performs well using minimal qualitative
information implies that large amounts of available knowledge
are buried in large protein interaction networks. More accurate
data mining algorithms and systems models could be constructed
to understand and predict interactions, complexes, and pathways
by taking into account more existing biological knowledge.
Structured molecular interaction data resources such as BIND
will be vital in creating these resources (Bader et al., 2003).

RESULTS

Differentially expressed genes were defined as those having a
significant adjusted p-value (<0.01), fold change (≥2, ≤−2), and
FDR (≤0.05). Statistical analysis of the time-course microarray
studies provided 1,451 significant genes from five data sets: the

11http://binddb.org
12https://www.uniprot.org/database/DB-0016
13https://thebiogrid.org/
14http://mips.helmholtz-muenchen.de/proj/ppi/
15https://string-db.org/
16https://genemania.org/

first data set (GSE37585: 612 DE genes), the second data set
(GSE8812: 107 DE genes), the third data set (GSE45825: 582 DE
genes), the fourth data set (GSE10052: 104 DE genes), and the
fifth data set (GSE3867: 46 DE genes). In the data analysis of
RNA-Seq, 1,867 genes were identified; and then 314 and 70 genes
were detected after considering the threshold (p.adjust < 0.01
and fold change > 2) of expression change in accession numbers
GSE49121 and GSE42980, respectively.

Identification of miRNAs
Overall, 34 miRNAs were identified in data analysis of
microRNAs differential expression, of which 19 upregulated
miRNA and 15 downregulated genes were detected by
considering the threshold (LogFC < −2, LogFC > 2, and
p.adjust < 0.01) for DE in the deposited accession number
(GSE122224) (Table 2).

Identification of Common Genes
Available in Gene Sets 1 and 2
Thirty-four genes were common in two gene sets 1 and 2
relating to microarray and RNA-Seq data sets, respectively. In
this regard, 16 and 18 genes were associated with lipogenesis
and lipolysis processes, respectively (Table 2).THBS1 and INSIG2
genes in the gene set were associated with the lipogenesis process;
and COLEC12, HMGCR, APP, and IRS1 genes were associated
with the lipolysis process, which was closely suppressed by
miRNAs (Table 2).

Main Gene List
Literature related to lipid metabolism was also reviewed to
increase study accuracy and seven genes. If the genes did not exist
in the list of evaluated data sets, they were selected and added to
the gene list. The selected seven genes included BACE1, BACE2,
PSEN1, PSEN2, PERP, SIK1, and LOC421682 genes. The list of
genes in Table 2 (41 genes) was named as the main gene list or
reference genes (Supplementary Table 4).

Gene–Gene Interaction Network, Gene
Ontology Terms, and Pathways
Figure 2 shows the network of the reconstruction of gene–gene
interactions (gene–gene interaction (epistasis) is the effect of one
gene on a disease or traits modified by another gene or several
other genes), GO (describes our knowledge of the biological
domain with respect to three aspects: Molecular Function,
Cellular Component, and Biological Process), terms, and
pathways. In this network, APP, SREBF1, HMGCR, FADS2, SCD,
ACAT1, FASN, HADHB, and EHHADH genes had the highest
interaction (connectedness) with other genes in the network.

Reconstruction of the Interactive
Gene–miRNA Bipartite Network
The network contains 49 nodes (including 32 genes and 17
miRNAs) and 95 edges. The reconstructed network with.cys
format was stored for further analyses (Figure 3).
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TABLE 2 | Genes and miRNAs, annotation, and genes involved in lipogenesis and lipolysis.

Lipogenesis Lipolysis

Gene Gene expression MiRNA expression Gene Gene expression MiRNA expression

Downregulation Upregulation Downregulation Upregulation Downregulation Upregulation Downregulation Upregulation

THBS1 * − gga-miR-6554-5p
gga-miR-6667-5p
gga-miR-6562-3p

COLEC12 * − gga-miR-6554-5p
gga-miR-6554-3p
gga-miR-6667-5p
gga-miR-3532-5p

gga-miR-466

ANXA7 * − gga-miR-466 RGS19 * − −

TMEM258 * − − HTR7L * − −

DHCR7 * − − G6PC * − −

FADS2 * − − HMGCR * gga-miR-1710 −

FASN * − − ACAT1 * − −

INSIG2 * gga-miR-7444-5p − ADH1C * − −

LCAT * − − APP * − gga-miR-6554-5p

MVD * − − EHHADH * − −

SCD * − − GAMT * − −

SREBF1 * − − HADHB * − −

APOA1 * − − HSD17B4 * − −

BCO2 * − − HSD17B6 * − −

CYP27A1 * − − IRS1 * − gga-miR-6554-5p
gga-miR-6562-3p

gga-miR-466

CYP2E1 * − − PHYH * − −

SLC2A2 * − − SOD3 * − −

TP53 * − −

UCP3 * − −

Upregulated and downregulated abdominal fat in genetically fat compared with lean chickens.
*Gene or miRNA was up-/downregulated in the biological processes.
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FIGURE 2 | The gene, gene ontology and pathway, and related interaction network involved in the abdominal fat storage of the poultry.

Important and Functional Network
Modules or Sub-Networks
According to interactive gene–miRNA bipartite network and
sub-networks or module finding analysis, three modules were
identified. These modules contained 31 genes and seven miRNA
as presented in Table 3. The table also presents important
signaling pathways and cellular processes (metabolic pathways)
(Figure 2). Module 1 contains 22 nodes (20 genes and two
miRNAs) and 47 edges (Figure 4). Module 2 contains 10 nodes
(five genes and five miRNAs) and 16 edges (Figure 5); and
Module 3 includes six nodes (six genes) and six edges (Figure 6).

Reconstruction of the
Metabolic-Signaling Network
Based on pathway analysis, the crucial pathways were identified
and reconstructed. For this purpose, the gene lists were first
input into DAVID and STRING to identify biological processes,
the involvement of cellular components, molecular functions,
and KEGG pathways that were significantly different between

two lines (to identify metabolic pathways and signaling).
Different genes express identified Pathways such as Notch
signaling pathways relating to Alzheimer’s disease, peroxisome
proliferator-activated receptor (PPAR), adipocytokine, insulin,
PI3K–Akt, mTOR, and AMPK signaling pathways. Finally,
resources were reviewed for each of the identified paths, using
different databases and Cell Designer software version 4.4.2; the
reconstruction is illustrated in Figure 7.

DISCUSSION

The prioritization of abdominal fat tissue in broiler chickens
to identify genes involved in metabolism and fat storage is
due to the fact that it can be as a proxy model in other
species and individuals of a species due to its specific metabolic
characteristics (Resnyk et al., 2015). The present study integrated
different data sets in distinguished conditions to identify the
most important genes involved in lipid metabolism. As a result,
we detected a total of 34 common genes that played roles in
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FIGURE 3 | Interactive bipartite network (gene–miRNA) affecting the abdominal fat storage and metabolism in the poultry. In this network, the quadrilateral points
represent genes, and the octagonal points represent miRNAs. About miRNAs and target genes, the edges indicate the suppressing role of miRNAs. The edges also
represent the gene–gene interactions. The green quadrilateral nodes represent the hub genes. Purple quadrilateral nodes are the genes with the highest suppression
by miRNAs.

TABLE 3 | Main, modules, genes, miRNAs, signaling pathway, and phenotypic explanations in the integrated gene–miRNA bipartite network involved in fat metabolism
and deposition.

Genes miRNAs

Module Downregulated Upregulated Downregulated Upregulated Signaling pathway Explanation

Main COLEC12, ANXA7,
SOD3, SIK1, UCP3,

ADH1C, SLC2A2, IRS1,
BACE2, PERP,

LOC421682, PHYH,
CYP27A1, HADHB,

THBS1, APOA1, BACE1,
ACAT1, HSD17B4,

EHHADH, APP, PSEN2,
PSEN1

LCAT, INSIG2, FADS2,
SCD, DHCR7, FASN,

SREBF1, MVD, HMGCR

gga-miR-454-3p,
gga-miR-7460-5p,
gga-miR-133a-5p,

gga-miR-1710,
gga-miR-1589,
gga-miR-22-5p,

gga-miR-7444-3p,
gga-miR-1657,

gga-miR-7444-5p

gga-miR-6562-3p,
gga-miR-3532-5p,
gga-miR-6667-5p,
gga-miR-6554-3p,
gga-miR-6562-5p,
gga-miR-3532-3p,
gga-miR-6554-5p,

gga-miR-466

PPAR/AMPK Fatty acid metabolism
Fatty acid degradation

Terpenoid backbone biosynthesis
Biosynthesis of unsaturated fatty

acids
Metabolic pathways
Alzheimer disease

1 UCP3, SLC2A2, APOA1,
IRS1, SOD3, ADH1C,
HADHB, EHHADH,

CYP27A1, HSD17B4,
ACAT1

SREBF1, INSIG2,
HMGCR, LCAT, FADS2,

FASN, SCD, MVD,
DHCR7

gga-miR-1710 gga-miR-6554-5p PPAR/AMPK Fatty acid metabolism
Fatty acid degradation

Terpenoid backbone biosynthesis
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FIGURE 4 | Module 1: 20 genes and two miRNAs in the interactive bipartite network of gene–miRNA. In this network, the quadrilateral points represent the genes,
and the octagonal points represent miRNAs. In this interactive bipartite network, the gene–miRNAs of quadrilateral nodes represent genes and octagonal nodes
represent miRNAs. For miRNAs and target genes, the edges indicate the suppressing roles of miRNAs. The edges of genes also indicate the gene–gene
interactions. The green quadrilateral nodes represent the hub genes. Purple quadrilateral nodes have the highest rates of suppression by miRNAs.

the main process of synthesis route control, metabolism and fat
storage, and signaling pathways of endocrine glands activated by
adipokines, AMPK, and PPAR.

The lower expression of a large number of genes associated
with the lipolysis indicated a reduction in decomposition of
fats and then an increase in the anabolism and fat storage
in broiler chickens, especially in abdominal fat tissue. On the
contrary, the higher expression of a large number of genes in the
gene set associated with the lipogenesis confirms the increase in
metabolism and abdominal fat storage.

In most similar studies published on different species, it has
been concluded that multi-omics data sets or omics multilayered
networks provide a valuable resource for comparative analyses
with other experimental data sets. Also, applications for data
integration and analysis can be demonstrated and provide novel
functional insights (Yao et al., 2015; Suravajhala et al., 2016; Hasin
et al., 2017; Arora et al., 2018; Backman et al., 2019; Dao et al.,
2019; Corral-Jara et al., 2020; Lee et al., 2020). In one study, an
attempt has been made to investigate the effects of a transgenic
supplement in mice using a molecular systems biology approach
and a combination of statistical tools using high-throughput
techniques. They concluded that the integration of omics data
provides better molecular insight into the relationships between
biological variables. Thus, such approaches can be effective in
detecting mechanical, molecular, and biochemical interactions
(Zhang et al., 2019).

Chickens with greater abdominal fat had hyperplasia and
hypertrophy of fat cells at younger ages compared with chickens
with lower abdominal fat. SREBF1, SREBF2, SCD, and FASN

were among the most important genes that play major roles
in fat storage and metabolism (Resnyk et al., 2013). THBS1,
ANXA7, APOA1, BCO2, CYP27A1, CYP2E1, and SLC2A2
genes were downregulated, whereas TMEM258, DHCR7, FADS2,
FASN, INSIG2, LCAT, MVD, SCD, and SREBF1 genes were
upregulated in the lipogenesis process. Additionally, COLEC12,
RGS19, ACAT1, ADH1C, APP, EHHADH, GAMT, HADHB,
HSD17B4, HSD17B6, IRS1, PHYH, SOD3, TP53, and UCP3 were
downregulated, whereas HTR7L, G6PC, and HMGCR genes were
upregulated in the lipolysis process. Briefly, hub genes in this
study were APP, SREBF1, HMGCR, FADS2, SCD, ACAT1, FASN,
HADHB, and EHHADH (Figure 2).

The APP gene was downregulated in the lipolysis process
because the APP gene is a cell surface receptor and an
extra-membrane precursor protein that is decomposed
by enzymes to form a number of peptides. Some of these
peptides are secreted and can be bound to an acetyl transferase
complex, APBB1/TIP60, to strengthen the transcription
activities, while other proteins create amyloid plaques in
brains of patients with Alzheimer’s disease (Almkvist et al.,
2019). It enhances the transcription through binding to
APBB1/KAT5 and inhibits Notch signals through interaction
with Numb.

Sterol regulatory element-binding transcription factor 1
(SREBF1) gene was upregulated in the lipogenesis process
because the SREBF1 is a protein-encoding gene. Fatty liver
disease is a SREBF1 gene-related disease; and the mTOR signaling
pathway is a pathway associated with SREBF1. Annotation of
this gene includes the DNA and chromatin binding transcription
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FIGURE 5 | Module 2: five genes and five miRNAs in the interactive bipartite network of gene–miRNA. In this network, the quadrilateral points represent genes; and
the octagonal points represent miRNAs. In this interactive bipartite network of gene–miRNA, quadrilateral nodes represent genes; and octagonal nodes represent the
miRNAs. For miRNAs and target genes, the edges indicate the suppressing roles of miRNAs. The edges of genes also indicate the gene–gene interactions. The
green quadrilateral nodes represent the genes with the highest gene–gene interactions with other genes in the network (or hub genes). Purple quadrilateral nodes
indicate the genes with the highest suppression by miRNAs.

FIGURE 6 | Module 3: six genes in interactive bipartite network of gene–miRNA. In this network, the quadrilateral nodes represent genes; and edges indicate the
gene–gene interaction effects. Green quadrilateral nodes represent the hub genes in the network. Blue nodes represent other genes in the network.
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FIGURE 7 | Schematic of the regenerated metabolic-signaling network associated with fat metabolism and storage using CellDesigner.

factor activity, and it regulates the rate of transcription of the
LDL receptor gene, fatty acid, and the cholesterol synthesis
pathway to a lesser extent (Stachowiak et al., 2013).

HMGCR or 3-hydroxy-3-methylglutaryl coenzyme A reductase
was downregulated in the lipolysis process because the HMGCR
gene is a protein-encoding gene; the Terpenoid backbone
biosynthesis pathway is a pathway associated with this gene
(Wang et al., 2018).

Fatty acid desaturase 2 gene was upregulated in the lipogenesis
process because the FADS2 gene is a protein-encoding gene with
pathways such as fatty acid beta-oxidation (peroxisome) and
alpha-linolenic acid metabolism. This gene is a part of the lipid
metabolic pathway that catalyzes the biosynthesis of unsaturated
fatty acids from unsaturated fatty acids of linoleic acid (18:2n-6)
and linolenic acid (18:3n-3) (Chen et al., 2019).

The Stearoyl-coenzyme a desaturase (SCD) gene was
upregulated in the lipogenesis process, as this gene encodes
the enzyme that is involved in the biosynthesis of fatty acids,
so that it is first responsible for the synthesis of oleic acid. The
produced protein belongs to the desaturase fatty acid family
(Calvo et al., 2019).

Acetyl-Coenzyme A acetyltransferase 1 (ACAT1) was
downregulated in the lipolysis process. This gene is a protein-
encoding gene that is involved in metabolic pathways of ketone
body metabolism and the Terpenoid backbone biosynthesis.
The gene plays a key role in the ketone body metabolism
(Chanyshev et al., 2018).

The FASN (Fatty acid synthase) gene was upregulated in the
lipogenesis process because this gene is a protein-encoding gene
with pathways such as the metabolism of water-soluble vitamins
and cofactors, as well as the enzymatic complex pathway of
AMPK. Therefore, upregulation of this gene is necessary for lipid
biosynthesis (Raza et al., 2018).

The Hydroxyacyl-CoA Dehydrogenase Trifunctional
Multienzyme Complex Subunit Beta gene was downregulated in
the lipolysis process. The HADHB gene is a protein-encoding
gene with pathways such as beta-oxidation of mitochondrial

fatty acids and biosynthesis of glycerophospholipids
(Diebold et al., 2019).

Enoyl-CoA Hydratase And 3-Hydroxyacyl CoA Dehydrogenase
genes were downregulated in the lipolysis process. The EHHADH
gene is a protein-encoding gene with pathways such as PPAR
alpha pathway and propanoate metabolism. The gene annotation
includes the binding of signaling receptors and oxidoreductase
activity (Assmann et al., 2016). Given the ontology expression
and functions of important and main genes in the network
of genes interactions, it can be stated that these genes are the
main genes in the metabolism and fat storage as well as the
signaling pathways of endocrine glands, especially AMPK and
PPAR signaling pathways.

In Figure 3, green quadrilateral nodes represent the genes
with the highest interaction in the network and are the main
candidates in lipid metabolism and storage. These nodes play
roles in the list of desired genes (reference), metabolic, and
signaling pathways. The genes with the highest repression levels
include THBS1, SIK1, COLEC12, and BACE1, respectively.

A combined biological system approach is used to detect
metabolic and signaling pathways associated with the interactive
bipartite network of gene–miRNA in the process of fat storage
and metabolism of broiler chicken. Fat stored in the skeletal
muscles plays a role in important metabolic processes such as
immune function, food consumption, hormone sensitivity, and
relevant signaling pathways (Jung and Choi, 2014).

In module 1, gga-miR-1710 suppressed the HMGCR gene and
gga-miR-1710 was downregulated. Its target gene represents the
increased expression in higher abdominal fat tissue compared
with lower abdominal fat tissue. The gene is classified into
a set of genes associated with the lipolysis process. Reducing
the expression of gga-miR-1710 and increased gene expression
of HMGCR leads to the lipolysis process, thereby reducing
abdominal fat. HMG-CoA reductase protein-encoding gene is the
cholesterol synthesis-limiting enzyme that regulates the product
of catalyzed reactions by reductase through a negative feedback
mechanism caused by sterols and non-sterol metabolites derived
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from mevalonate. The enzyme in mammalian cells is usually
suppressed by cholesterol derived from the construction and
destruction of low-density lipoprotein (LDL) through the LDL
receptor (Wang et al., 2018).

The SCD gene indicates a higher expression in larger
abdominal fat tissue compared with the lower abdominal fat
tissue. The SCD gene is put into the set of genes associated
with the lipogenesis process. Therefore, increasing the SCD gene
expression raises the amount of fat storage in the body, especially
in abdominal part. SCD gene (Stearoyl-coenzyme A desaturase)
is a protein-encoding gene with pathways including adipogenesis
and angiopoietin, such as the protein 8 regulatory pathway. It also
plays an important role in lipid biosynthesis and regulating the
expression of genes in the mitochondrial fatty acid oxidation and
lipogenesis cycle (Aali et al., 2016).

gga-miR-6554-5p suppresses the IRS1 gene. This miRNA has
higher expression; and its target gene shows a lower expression in
greater abdominal fat tissue compared with the lower abdominal
fat tissue. IRS1 gene is among the set of genes associated
with the lipolysis process. Therefore, increasing expression of
gga-miR-6554-5p miRNA decreases the IRS1 gene expression,
thereby reducing the amount of fat catabolism and increasing
the abdominal fat storage and anabolism. IRS1 gene encodes a
protein that is phosphorylated by insulin receptor tyrosine kinase.
Mutations in the gene are associated with type 2 diabetes and
insulin resistance (Song et al., 2019).

The SREBF1 gene shows the higher expression in greater
abdominal fat tissue compared with lower abdominal fat tissue.
The gene is among the set of genes associated with the lipogenesis
process. The higher SREBF1 gene expression increases the
abdominal fat storage and anabolism. SREBF1 genes encode the
Helix-Loop-Helix-Leucine Zipper (bHLH-Zip) that binds the
sterol-1 regulator. It is also found in the promoter for low-
density lipoprotein receptor gene and other genes in the sterol
biosynthesis (Stachowiak et al., 2013).

In this module, the HMGCR gene is suppressed by miRNAs.
The gene is associated with the lipolysis process. Therefore, its
suppression can prevent the fat tissue catabolism and lead to
the higher fat storage and anabolism in abdominal fat tissue of
broiler chickens. In this module, there are six genes, namely,
HMGCR, SREBF1, SCD, FASN, HADHB, and ACAT1 with certain
color (green), and have the highest interaction with other genes
involved in the module. The enzyme that is encoded by the
FASN gene is a multi-functional protein. Its main function is the
canalization of the synthesis of Palmitate from Acetyl-CoA and
Malonyl-CoA in the presence of NADPH to long-chain saturated
fatty acids. The ACAT1 gene encodes a topical mitochondrial
enzyme that catalyzes the reversible form of Acetoacetyl CoA
from two acetyl CoA molecules. Further, the HADHB gene
is responsible for encoding the beta subunit of mitochondrial
function protein and catalyzes the final three stages of the
mitochondrial beta-oxidation process of long-chain fatty acids
(Diebold et al., 2019).

The gene set of this module, as presented in Table 3, encodes
signaling pathways AMPK and PPAR as well as metabolic
pathways of fatty acid synthase, unsaturated fatty acid synthase,
and cholesterol metabolism pathways. Therefore, it can be

concluded that the module and genes involved in the process can
be functional modules associated with abdominal fat metabolism
and storage in broiler chickens.

The receptor increases the insulin-mediated glucose uptake
and improves the blood lipid profile by regulating lipid
metabolism, glucose, and free fatty acid oxidation. Target genes
of PPARs are related to several proteins that are necessary for
absorption, intercellular transfer, and beta-oxidation of fatty
acids. They include fatty acid transport proteins, the Fatty
Acid Translocase enzyme, and the synthase enzyme involved
in the production of acetyl CoA (for long-chain fatty acids)
and Carnitine palmitoyltransferase I (Brown and Plutzky, 2007).
PPARs play roles in the regulation of the gene transcription
process (P2) of fat cells, so that the lean and fat-free meat can
be produced by manipulation of the differentiation of fat tissue
cells and their fat content through these receptors.

The cellular response to insulin includes the regulation
of blood sugar levels by increasing the glucose uptake in
muscles and fat tissues in a way that energy is reserved in
fat tissue, liver, and muscle increase by stimulating lipogenesis,
glycogen synthesis, and protein synthesis. Insulin signaling
pathways decrease glucose production by the liver and the total
inhibition of energy stored through lipolysis, glycogenolysis,
and breakdown of proteins. This pathway also acts as a
growth factor and stimulates cell growth, differentiation, and
survival (Boucher et al., 2014). The insulin signaling pathway
is an important biochemical pathway that regulates some basic
biological functions such as glucose and lipid metabolism,
synthesis of proteins, cell proliferation and differentiation, and
apoptosis (Di Camillo et al., 2016).

The signaling pathway of phosphatidylinositol (PI3K)/protein
kinase B (Act) is involved in the regulation of many physiological
cell processes by activating effective cross-downstream molecules
that play important roles in the cellular cycle, growth, and
proliferation (Shi et al., 2019).

The Mammalian Target of Rapamycin (mTOR) signaling
pathway has both internal and external signals and acts as a
main regulator of cellular metabolism, growth, proliferation, and
survival. Exploration carried out over the past decade indicates
that the mTOR signaling pathway is activated in various cellular
processes such as tumor formation and angiogenesis, insulin
resistance, lipid metabolism, and lymphocyte T activation and is
regulated in human diseases such as cancer and type 2 diabetes
(Laplante and Sabatini, 2009).

In module 2, APP gene plays the main role. The gene is
suppressed by gga-miR-6554-5p. gga-miR-6554-5p represents the
upregulation; and its target gene represents the downregulation
in greater abdominal fat tissue compared with the lower
abdominal fat tissue. The APP gene is a set of genes associated
with the lipolysis process. Therefore, its repression by miRNAs
in humans is necessary. In poultry, its lower expression is
equivalent to a decrease in abdominal fat; and a decrease in
body fat is equivalent to an increase in proliferation performance
and other functional traits. Increased body weight or obesity
caused by increased body fat storage is characterized by excessive
accumulation of fat in the body and increased levels of adipokines
and inflammatory cytokines. This indicates an increased risk of
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Alzheimer’s disease, type 2 diabetes, and cardiovascular diseases.
It has been recently found that the gene expression level of APP
increases as brain tissue fat and fat storage tissues increase in the
body (Puig et al., 2017).

gga-miR-6554-5p and gga-miR-466 miRNAs suppress BACE1
gene. These two miRNAs represent the upregulation, and their
target genes indicate the downregulation in greater abdominal
fat tissue compared with lower abdominal fat tissue. BACE1 gene
encodes an enzyme that cuts the amyloid precursor protein (APP)
and produces amyloid beta peptides that cause amyloid plaque
in the brains of patients with Alzheimer’s disease (Faghihi et al.,
2008; Ghafouri et al., 2018).

gga-miR-6562-5p and gga-miR-3532-5p suppress the
PSEN1 gene. These two miRNAs indicate the upregulation;
and their target gene indicates the downregulation in
the greater abdominal fat tissue compared with the lower
abdominal fat tissue. PSEN1 encodes a protein that is called
Presenilin 1. Presenilins are APP regulators according to their
effects on gamma secretase as APP-decomposing enzymes
(Ramakrishnan et al., 2017).

PSEN2 gene, which has about 67% of similarity to PSEN1
gene, was identified after PSEN1 gene. PSEN2 gene indicated
a lower expression in greater abdominal fat tissue compared
with the lower abdominal fat tissue. PSEN2 gene is a protein-
encoding gene with associated diseases such as Alzheimer’s
disease and heart muscle diseases. It encodes the intermediate
signaling Presenilin and Wnt/Hedgehog/Notch pathways
(Muchnik et al., 2015).

gga-miR-3532-3p suppresses BACE2 gene. The miRNAs
indicate the upregulation; and their target gene, BACE2, indicates
the low expression in greater abdominal fat tissue compared
with lower abdominal fat tissue. BACE2 gene encodes a full
membrane glycoprotein that is known as an aspartic protease
(Yu and Jia, 2009).

In module 3, the MVD gene indicated a higher expression
in the greater abdominal fat tissue compared with the lower
abdominal fat tissue. The MVD gene is a set of genes associated
with the lipogenesis process. This gene encodes a mevalonate
diphosphate decarboxylase (MVD) enzyme. Its related pathways
include the protein metabolism and synthesis of available
substrates in the biosynthesis of N-glycans. The DHCR7 gene
is another important gene of this module, indicating the higher
expression in the greater abdominal fat tissue compared with
the lower abdominal fat tissue. DHCR7 or 7-dehydrocholesterol
reductase is a protein-encoding gene that plays a role in
eliminating an enzyme that creates a double bond of C (7–
8) in loop B of sterol and catalyzes the conversion of 7-
dehydrocholesterol to cholesterol. Cholesterol I biosynthesis and
vitamin D metabolism are its associated pathways. The TM7SF2
gene is an important paralog of this gene [see text footnote 6; 64].

Another important gene in this module, ACAT1 gene,
indicates low expression in greater abdominal fat tissue compared
with the lower abdominal fat tissue. This gene catalyzes
Acetoacetyl CoA using two acetyl coenzyme A molecules
(Chanyshev et al., 2018).

Given the roles of the three main genes involved in the
structure of this module as well as using the online database, this

module encodes metabolic pathways of cholesterol metabolism
and the metabolism of fatty acids.

In the Notch signaling pathway, the Notch receptor is
phosphorylated and activates the NICD gene in collaboration
with the PSEN1 gene as a γ-secretase complex. Inside the cell
nucleus, this gene encodes the sequence of the FABP7 gene
and triggers the construction of FABP7 mRNA by cooperation
with RBPJ/CBF1 complex. FABP gene is activated by two
phosphorylated receptors, called FATP and FATCDB6, in the
cell membrane. Thereafter, three signaling complexes, PPARα–
RXR, PPARβ–RXR, and PPARγ–RXR, are activated. These
signaling pathways encode genes related to the fat storage
and metabolism in the cell nucleus. These complexes in the
nucleus are related to lipid transport, lipogenesis, cholesterol
metabolism, and fatty acid oxidation, leading to the process
of lipid metabolism by transcription and translation of the
genes. In the signaling path of PPAR, PPARγ/RXR complex is
associated with the insulin-related signaling pathway through
the phosphorylated mTORC1 gene in the mTOR pathway. The
phosphorylation of this gene results in activation of PPARγ/RXR
complex. The AMPK signaling pathway is also associated
with the mTORC1 gene and has an inhibitory effect, in a
way that the AMPK pathway prevents the phosphorylation
of the mTORC1 gene, so that PPARγ/RXR complex is not
activated; and the lipid metabolism process (e.g., lipogenesis,
cholesterol, and oxidation metabolisms) is not performed.
Two signaling pathways, PPAR (the main pathway of lipid
metabolism) and AMPK (the main pathway of cellular energy
exchanges), are important in this metabolic-signaling network.
These two signaling pathways control each other by the
mTORC1 gene in the mTOR signaling path, so that increasing
or decreasing the intracellular energy levels of the AMPK
signaling pathway with an inhibitory or activating effect on the
mTORC1 gene can cause anabolism or catabolism of lipids in
cells (Figure 7).

According to the ontology and functions of genes, which
encode two signaling pathways, AMPK and PPAR, these two
pathways are the main pathways of cellular energy exchange and
lipid metabolism, respectively.

Peroxisome proliferator-activated receptors are transcription
factors belonging to the nuclear receptor superfamily, and they
are activated by long-chain unsaturated fatty acids with several
double bonds, eicosanoids, and lipid-lowering agents such as
fibrates. Among the unsaturated fatty acids with double bonds,
eicosapentaenoic acid (EPA) and docosahexaenoic acid have been
widely studied because of their ability to activate PPARs. The
expression profile of PPARα in different organs of poultry is
largely similar to that of mammals, in such a way that it expresses
similar functions of PPARα in poultry and mammals. PPARs
are nuclear hormone receptors that are activated by fatty acids
and their derivatives. Each of them is encoded in a separate
gene and bind fatty acids and eicosanoids. Ligand property
of PPAR–RXR heterodimers for fatty acids causes the binding
of these heterodimers to “Specific Receptor Elements” in the
promoter region of several genes and changes the transcription
of downstream genes involved in immune processes, lipid
metabolism, and cholesterol metabolism (Zoete et al., 2007).
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AMP-activated protein kinase (AMPK) is a serine/threonine
kinase that has a high protective system. The AMPK system
acts as a cellular energy sensor. When AMPK is activated, it
simultaneously inhibits the energy consumption in biosynthetic
pathways, such as protein, fatty acids, and glycogen synthesis, and
activates the catabolic pathways (breakdown) of ATP production,
including fatty acid oxidation and glycolysis (Miyamoto et al.,
2012). The reduced regulation of liver AMPK activity plays a
pathophysiological role in lipid metabolic disorders. However,
the signaling pathway of AMPK for regulation of cellular energy
balance is essential for the lipid metabolism, so that the pathway
activates the catabolism of fat in the shortage of energy in the
cell to provide the necessary rate of ATP. Therefore, the AMPK
is a main regulator of cell metabolism and metabolism organ in
eukaryotes, and it is activated by lowering the intra-cellular ATP
level. AMPK plays an important role in the growth regulation and
re-planning of cell metabolism (Mihaylova and Shaw, 2011).

CONCLUSION

The combination of omics data for obtaining and identifying
genes with differences in gene expression led to the successful
identification of 41 genes in the main process of metabolism
(anabolism and catabolism), fat storage, signaling pathways of
endocrine glands, and the cell membrane in abdominal fat
tissue for two groups of broiler chickens with higher and
lower abdominal fat storage. The same identified genes were
involved in the signaling pathways of endocrine glands; AMPK
and PPAR are associated with lipid metabolism and energy
catabolism and could be considered as the genes that were similar
in different species. The present study identified important
common genes relating to lipid metabolism and metabolic and
signaling pathways, and detected mechanisms associated with
lipid transfer by different cell membranes and tissues by an
explanation of relevant genes. Furthermore, the gene–gene and
gene–miRNA interactions were also examined by investigating
the biological system and reconstruction of various regulatory
and interactive networks that can affect the regulation of fat
metabolism and storage in poultry. They also facilitate better
understanding biology of metabolism and fat storage and the
discovery of potential molecular markers in poultry industry
programs to increase animal protein production efficiency and
reduce abdominal fat storage.
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