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a b s t r a c t 

Metabolic connectivity patterns on the basis of [ 18 F]-FDG positron emission tomography (PET) are used to depict 

complex cerebral network alterations in different neurological disorders and therefore may have the potential to 

support diagnostic decisions. In this study, we established a novel statistical classification method taking advan- 

tage of differential time-dependent states of whole-brain metabolic connectivity following unilateral labyrinthec- 

tomy (UL) in the rat and explored its classification accuracy. 

The dataset consisted of repeated [ 18 F]-FDG PET measurements at baseline and 1, 3, 7, and 15 days ( = maximum 

of 5 classes) after UL with 17 rats per measurement day. Classification in different stages after UL was performed 

by determining connectivity patterns for the different classes by Pearson’s correlation between uptake values 

in atlas-based segmented brain regions. Connections were fitted with a linear function, with which different 

thresholds on the correlation coefficient (r = [0.5, 0.85]) were investigated. Rats were classified by determining 

the congruence of their PET uptake pattern with the fitted connectivity patterns in the classes. 

Overall, the classification accuracy with this method was 84.3% for 3 classes, 75.0% for 4 classes, and 54.1% for 

5 classes and outperformed random classification as well as machine learning classification on the same dataset. 

The optimal classification thresholds of the correlation coefficient and distance-to-fit were found to be |r| > 0.65 

and d = 4 when using Siegel’s slope estimator for fitting. 

This connectivity-based classification method can compete with machine learning classification and may have 

methodological advantages when applied to support PET-based diagnostic decisions in neurological network 

disorders (such as neurodegenerative syndromes). 
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. Introduction 

Machine-supported diagnostic evaluation procedures are receiving
ncreasing attention in all fields of medicine and have already been
sed in various imaging techniques ( Cai et al., 2020 ). Especially in
hree-dimensional imaging, computer-based diagnostic approaches are
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ogical diseases, such as dementia or neurodegenerative movement dis-
rders have their origin and associated functional impairment not in dis-
inct brain regions but in a network of connected brain regions created
y complex interactions ( Huber et al., 2020 ; Jalilianhasanpour et al.,
019 ). Dynamic whole-brain connectivity changes also appear dur-
ng adaptive brain plasticity following peripheral and central nervous
ystem lesions ( Grosch et al., 2020 ). Most studies investigating net-
ork connectivity used functional magnetic resonance imaging (fMRI)
 Galvin et al., 2011 ; Kenny et al., 2012 ; Peraza et al., 2016 ) and positron
mission tomography (PET) ( Grosch et al., 2020 ; Sanabria-Diaz et al.,
013 ) for data acquisition. Whereas fMRI connectivity patterns can in
rinciple be determined on a single subject level by measuring time se-
ies, metabolic connectivity information based on PET tracer measure-
ents is often derived in a population-based approach, as already shown

or different pathologies such as Alzheimer’s disease ( Morbelli et al.,
013 ), Parkinson’s disease ( Ge et al., 2020 ), or Lewy body dementia
 Huber et al., 2020 ). Population-based metabolic connectivity patterns
an be determined by Pearson’s correlation or sparse inverse covari-
nce estimation (SICE) ( Grosch et al., 2020 ; Huang et al., 2010 ). A re-
ent study suggested Kullback-Leibler divergence similarity estimation
KLSE) as a method to derive single subject connectivity ( Wang et al.,
020 ). Generally, metabolic connectivity patterns describe large-scale
erebral networks and therefore, they could be used for image-based
lassification of pathological or functional states. SICE and KLSE were
nvestigated with respect to their applicability to classification tasks
 Huang et al., 2010 ; Wang et al., 2020 ). However, to our knowledge,
o metabolic connectivity classification relying on Pearson’s correla-
ion has been described. On the other hand, different approaches im-
lementing machine learning classification based on image-derived fea-
ures were reported ( Liu et al., 2015 ; Liu et al., 2018 ). In this study, we
erived the cerebral connectome from [ 18 F]-FDG PET by Pearson’s cor-
elation and evaluated a novel statistical classification method, which
ould be capable of classifying single subjects by their regional cere-
ral glucose metabolism (rCGM). For benchmarking, we compared its
erformance to state-of-the-art machine learning classifiers. Therefore,
e used an established rat model of unilateral labyrinthectomy, which
as been shown to induce a process of central vestibular compensa-
ion characterized by different stages of cerebral metabolic connectivity
ver time to define distinct classes ( Grosch et al., 2020 ). Single subjects
ere classified by testing the congruence of their connectivity patterns

o those of the different classes. It was hypothesized that the incorpo-
ation of connective information into classification could yield higher
ccuracies than classifying on univariate PET uptake values. 

. METHODS 

.1. Experimental setup 

The dataset used in this study was taken from two previous studies
 Lindner et al., 2017 ; Lindner et al., 2019 ) investigating the time course
f vestibular compensation after unilateral labyrinthectomy (UL) in the
at. Data included five PET measurements, at baseline and at days 1, 3,
, and 15 after surgery. These time points were defined as five classes.
he experimental procedures, protocols, and environment were identi-
al and only animals without specific drug treatment were used. Mea-
urements with incorrect tracer application, misplacement of the rat, or
mage artifacts were discarded, resulting in 17 successful imaged ani-
als per time point. Male Sprague-Dawley rats (mean 400 + - 20 g, age
 months at time of UL, Charles River Ltd, UK), were housed two ani-
als per cage and granted free access to food and water. The housing

oom was temperature- and humidity-controlled with a 12 h light/dark
ycle. Female rats exhibit cycle-dependent changes in cerebral activity
nd were therefore not investigated in this study ( Barth et al., 2015 ;
trauss, 2020 ). 

All animal experiments were approved by the government of Upper
avaria and performed in accordance with the guidelines for the use of
2 
iving animals in scientific studies and the German Law for the Protec-
ion of Animals. 

The rats received a left-sided chemical UL by injection of bupivacaine
nd p-arsanilic acid inducing an acute vestibular syndrome as described
arlier ( Anniko and Wersall, 1977 ; Beck et al., 2014 ; Magnusson et al.,
002 ; Vignaux et al., 2012 ; Zwergal et al., 2017 ). Animals were anes-
hetized with 1.5% isoflurane in O 2 delivered up to 1.2 l/min O 2 via
 mask. For surgical analgesia, 1.5 mg/kg meloxicam was injected s.c.
efore and 3 days after surgery. An additional 5 ml saline was injected
.c. as a bolus. After local anesthesia with 1% bupivacaine hydrochlo-
ide, a left paramedian incision was made to expose the lamboidal ridge
nd the external ear canal. The external ear canal was opened just an-
erior to the exit point of the facial nerve. With a 26-gauge needle, the
ympanic membrane was perforated caudally to the hammer shaft, and
bout 0.150 ml of a 20% bupivacaine solution was instilled into the
ympanic cavity. For about 2 min the bupivacaine solution was aspi-
ated and instilled slowly again multiple times. The same procedure
as followed to instill 0.150 ml of a 10% solution of p-arsanilic acid,
hich irreversibly desensitized the primary sensory cells of the inner
ar ( Vignaux et al., 2012 ). After the last thorough aspiration, the wound
as closed by skin suture, and for preventive antibiosis, 2 mg/kg mar-
ofloxacin was injected s.c. for 3 days. 

.2. PET imaging 

Sequential [ 18 F]-FDG PET images of the rats were acquired at base-
ine and 1, 3, 7, and 15 days post UL. Anesthesia was induced with isoflu-
ane (as described above) and a cannula was placed in a lateral tail vein
or [ 18 F]-FDG bolus injection (in 0.5 ml saline). Then, the animals were
wakened and were allowed to move freely for an uptake period of 30
in until anesthesia was induced again with isoflurane (1.8%) for the
ET scan. Two animals per scan were positioned in the Siemens Inveon
ET scanner (Siemens Healthineers, Erlangen, Germany) and were kept
arm with a heating pad. In order to avoid head movement, the head po-

ition was fixed using a custom-made head-holder. Emission data were
ecorded for 30 min followed by a 7-min transmission scan using a rotat-
ng [ 57 Co] point source. Upon recovery from anesthesia, the rats were
eturned to their home cages ( Beck et al., 2014 ; Lindner et al., 2019 ). 

.3. Image processing 

Emission recordings were reconstructed using an Ordered Subsets
xpectation Maximization (OSEM-3D) algorithm with decay correction,
catter correction, attenuation correction, dead time correction, and sen-
itivity normalization (Siemens Healthineers, Erlangen, Germany) yield-
ng a 128 × 128 × 159 image matrix ( Fig. 1 a). For attenuation cor-
ection, the corresponding transmission measurement at the end of the
mission scan was used. The voxel dimensions of the reconstructed im-
ges were 0.78 × 0.78 × 0.80 mm 

3 ( Zwergal et al., 2016 ). Radioactivity
istribution in the reconstructed images was used as a surrogate of the
egional cerebral glucose metabolism (rCGM). Cropping and a template-
ased rigid coregistration into Px Rat (W. Schiffer) atlas space was per-
ormed ( Schiffer et al., 2006 ) using PMOD medical image analysis soft-
are (PMOD Technologies LLC, RRID: SCR_016547, v4.004) ( Fig. 1 b).
n isotropic Gaussian filter with 0.8 mm FWHM and whole-brain nor-
alization was applied in order to achieve comparability between all

mages. Images were segmented into 57 brain regions using W. Schif-
er’s rat brain atlas ( Fig. 1 c). The brain blood flow region of this atlas
epicts a brain vessel and was therefore not included for further process-
ng. Mean normalized activity values were extracted for each brain re-
ion using PyRadiomics ( Van Griethuysen et al., 2017 ) Python package
 Fig. 1 d) and the dataset tested for normal distribution with Jarque-Bera
est to proof applicability of Pearson’s correlation. 
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Fig. 1. Data processing. a-c) Images were acquired, reconstructed, cropped, registered, filtered, normalized, and segmented. d-f) Normalized mean activity values 

for 57 brain regions were extracted, a correlation matrix calculated using Pearson’s correlation, and the results filtered by r- and p-thresholds or sparsity to determine 

the class-specific connectome (adapted from Grosch et al. 2020 ). 

Table 1 

Parameter sets for thresholds of correlation coefficient r, connection density s (sparsity), linear fitting algorithms, and thresholds on the single subject 

distance d from fitted functions for classification. 

Parameter Options 

r-thresholds |0.5|, |0.55|, |0.6|, |0.65|, |0.7|, |0.75|, |0.8|, |0.85| 

s-thresholds 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.15, 0.2, 0.25 

linear fit least-square / Sen‘s slope / Siegel’s slope 

d-thresholds 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0,5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0,10.5, 11.0, 11.5, 12.0, 12.5, 13.0, 13.5, 14.0, 14.5, 15.0 
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.4. Connectivity pattern-based classification 

Metabolic brain connectivity patterns can be derived with various
ethods ( Yakushev et al., 2017 ). In this work, they were determined in a
opulation-based approach by pairwise correlation of normalized mean
ptake values in 57 segmented brain regions with Pearson’s correlation
s described earlier ( Grosch et al., 2020 ), resulting in 57 × 56 / 2 = 1596
ndividual correlation pairs stored in a correlation matrix ( Fig. 1 e). The
orrelation matrix was filtered by two different approaches: by applying
 threshold to the correlation coefficient r and second by applying a den-
ity s (sparsity) threshold ( Tsai, 2018 ). Subsequently, the entries left in
he correlation matrix were filtered according to their statistical signif-
cance level p. For this purpose, a false discovery rate (FDR) correction
nder dependency was applied to correct the initial 𝛼 level of 0.05 for
ultiple comparisons ( Benjamini and Yekutieli, 2001 ). All correlations
eeting the requirements were considered as connections ( Fig. 1 f) in

he classification procedure described below. 

.4.1. r- and s-thresholds 

The classification performance was evaluated using different thresh-
ld values on the correlation coefficient r and the connection density
 as indicated in Table 1 . For the r-threshold, the same tests were per-
ormed without taking the absolute values in the r-thresholds, thus just
3 
llowing positive correlations to be recognized as connections. On the
ther hand, the sparsity threshold s permits a percentage of the total
umber of correlations to be seen as connected, whereby the correla-
ions with the highest absolute value of the correlation coefficient were
sed preferentially. As sparsity generally does not set requirements on
he correlation coefficient, an r-threshold of r > |0.5| was applied addi-
ionally to ensure reasonability of the following linear fitting. 

.4.2. Linear fitting 

Pearson’s correlation coefficient r is a measure of the linear rela-
ionship between the uptake values from two different brain regions
 Benesty et al., 2009 ). All connected pairs of brain regions were fitted
ith a linear function as they meet the applied thresholds on the corre-

ation coefficient ( Fig. 2 a). Fitting was performed with ordinary least-
quare approximation (LS) and two algorithms more robust to outliers in
he datasets, Sen’s slope estimator (Sen) ( Sen, 1968 ) and Siegel’s slope
stimator (Siegel) ( Siegel, 1982 ). The results were tested for indepen-
ent and identical distributed and normal distributed residual errors
ith the Durbin-Watson test and the Jarque-Bera test, respectively. The

lassification performance was evaluated for all three algorithms by de-
ermining the accuracy and the area under the receiver operating char-
cteristic curve (ROC-AUC). The latter was determined as one-versus-
est macro average to enable multi class evaluation. 
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Fig. 2. Examining connectivity on single subject level by evaluating the distance from a linear fit in connections determined in a population based approach. a) Fitting 

a linear function to the mean normalized activity values from two correlating brain regions. b) Check validity of a connection by applying a distance d-threshold. c) 

Threshold could be static or dynamic, whereby the dynamic threshold depends on the root-mean-square error (RMSE) of the underlying distribution. 
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.4.3. Classification procedure 

Pattern-based classification was performed by comparing the uptake
alues in segmented brain regions of a single subject to the connectivity
atterns of all available classes. Therefore, different sets of linear func-
ions were fitted according to the connectivity patterns in the classes as
escribed above. Subsequently, a new subject was represented by points
n the coordinate systems of the fits and its Euclidean distances d from
he linear functions were determined. In order to extract the matching
onnections on a single-subject level, these distances were filtered by a
hreshold ( Fig. 2 b). The subject was classified by evaluating the percent-
ge of valid connections in each class, where the class with the highest
ercentage of matching connections was assigned to the subject. 

.4.4. d-thresholds 

The classification performance was investigated by two approaches
o the distance-to-fit threshold d, first by using static thresholds and sec-
nd by using dynamic thresholds, depending on the root-mean-square
rror (RMSE) of the fits. The RMSE is an error measure describing the
recision of a fitted function to the underlying data, and thus is unique
or each fit. The static d-thresholds are indicated in table 1 and dynamic
-thresholds were achieved by multiplying the static d-thresholds with
he individual RMSE of each fit ( Fig. 2 c). 

.4.5. Classification performance 

Each measurement day represents a class with 17 subjects per class.
e investigated the algorithm’s capability to classify into three classes

baseline, days 3 and 15), into four classes (baseline, days 1, 3, and
5), and into five classes (baseline, days 1, 3, 7, and 15). Classifica-
ion performance was measured in a leave-one-out manner by fitting
he linear functions in each class on 16 subjects and using the omitted
ubjects (one from each class) to test the classification results. The fit-
ing and testing were repeated 17 times and the overall classification
ccuracy was reported. The theoretical accuracies when classifying by
hance were 33%, 25%, and 20% for the 3-class, 4-class, and 5-class
lassification, respectively. 

.5. Machine learning classification 

Another approach to image classification is provided by ma-
hine learning methods. In this study we used a support vector ma-
hine (SVM) and a random forest classifier (RFC) to benchmark our
onnectivity-based classification results, which were set up with SciKit-
earn ( Pedregosa et al., 2011 ) in Python. SVM and RFC are well-
stablished supervised learning classifiers and popular in the field of
4 
rain disorders ( Du et al., 2018 ; Sarica et al., 2017 ). Supervised learn-
ng algorithms take labelled samples as an input for their learning rou-
ine and later aim to find the correct label on previously unseen samples
 Pisner and Schnyer, 2020 ). In this study, the subjects are the samples
nd represented by the mean normalized activity values in 57 differ-
nt brain regions, the so-called features. The labels are the measure-
ent days corresponding to the images. Linear, polynomial, radial-basis-

unction (RBF) and sigmoidal kernels were investigated for the SVM.
FC hyperparameters ranged from 50 to 500 trees and maximal depth

rom 10 to unlimited. 
Both classifiers were implemented in a stratified 5-fold nested cross-

alidation with univariate select k-best feature selection to reduce the 57
eatures to 10. Hyperparameter tuning was performed with randomized
earch in 100 iterations and scoring was based on accuracy or ROC-
UC. The reported accuracy was calculated as the mean accuracy from

he five outer folds and the ROC-AUC as one-versus-rest macro average
ver the five classes accordingly. 

.6. Data availability 

Data and code reported in this article will be shared with any appro-
riately qualified investigator upon request. 

. Results 

The classification performance was evaluated with different ap-
roaches to reduce the number of connections used for classification,
amely different thresholds on the correlation coefficient r and the nu-
eric sparsity s. The classification accuracies and ROC-AUCs were deter-
ined for different values of each threshold individually. Furthermore,

he impact of the distance-to-fit threshold d was investigated with static
nd dynamic (RMSE-dependent) values. Here, two different connectiv-
ty filter setups were used: First, applying an r-threshold of r > 0.65 (r-
ltered) and second applying r- and s-thresholds of r > 0.5 and s = 0.05
s-filtered). All tests were performed with three different linear fitting
lgorithms (Least square fitting / Sen’s slope estimator / Siegel’s slope
stimator) and with varying complexity with regard to the number of
lasses (3, 4, and 5 classes). 

For 3-class classification, the classification accuracy with different
hresholds of the correlation coefficient r reached 74.5% (LS), 70.6%
Sen), and 74.5% (Siegel) and deteriorated for lower and higher thresh-
lds ( Fig. 3 a). Rejecting negative correlations resulted in maximum clas-
ification accuracies of 72.5% (LS), 68.6% (Sen), and 76.5% (Siegel)
 Fig. 3 b). Reducing the number of connections via sparsity thresholds
esulted in classification accuracies of up to 72.5% (LS), 70.6% (Sen),
nd 76.5% (Siegel) ( Fig. 3 c). 
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Fig. 3. Classification accuracy in dependence on the correlation filter thresholds for three, four, and five classes and with different fitting algorithms. a) Absolute 

value of the correlation coefficient r with static d = 2. b) Signum of the correlation coefficient r with static d = 2. c) Percentage sparsity of the total number of 

correlation pairs with r > 0.5 and static d = 2. Three-class, four-class, and five-class classification are indicated as solid line, dashed line, and dotted line, respectively. 

Least-square fitting (LS), Sen’s slope estimator (Sen), and Siegel’s slope estimator (Siegel) are colored in blue, black, and orange, respectively. 

Fig. 4. Classification accuracy in dependence on the distance-to-fit threshold d for three, four, and five classes and with different fitting algorithms. a-b) static and 

dynamic d with r-filter of r > 0.65, c-d) static and dynamic d with s-filter of r > 0.5 and s = 0.05. Three-class, four-class, and five-class classification are indicated as 

solid line, dashed line, and dotted line, respectively. Least-square fitting (LS), Sen’s slope estimator (Sen), and Siegel’s slope estimator (Siegel) are colored in blue, 

black, and orange, respectively. 
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Moreover, the classification accuracy with respect to the distance-to-
t d reached 84.3% (LS), 78.4% (Sen), and 82.4% (Siegel) when using
tatic thresholds and r-filtering ( Fig. 4 a). With dynamic d thresholds and
-filtering, accuracies of 66.7% (LS), 66.7% (Sen), and 66.7% (Siegel)
ere achieved ( Fig. 4 b). Using s-filtered connectivity patterns resulted

n classification accuracies of up to 80.4% (LS), 76.5% (Sen), and 78.4%
Siegel) for static d thresholds ( Fig. 4 c) and 68.6% (LS), 66.7% (Sen),
nd 66.7% (Siegel) for dynamic d thresholds ( Fig. 4 d). For r-filtering
nd static d-thresholds, the ROC-AUC values showed a course related
o those of the corresponding accuracies and reached 0.883 (LS), 0.871
Sen), and 0.889 (Siegel) ( Fig. 5 a). The ROC curves for the best perform-
ng parameters (|r| > 0.65 and static d = 4) were plotted in Fig. 5 b. As
epicted in Figs. 3 , 4 , and 5 , classification with 4 and 5 classes mirrored
5 
he results of 3-class classification at a lower level (see appendix A for
etails). 

As a benchmark, the classification accuracy and the ROC-AUC of the
VM and the RFC were evaluated on the identical input features. The
esults are shown in Table 2 . 

. Discussion 

In this study, we investigated a novel, [ 18 F]-FDG PET-based classifi-
ation approach relying on class differences in metabolic brain connec-
ivity patterns. Classes were defined as compensation stages after uni-
ateral labyrinthectomy in the rat. The main findings were: 1) Single-
ubject classification based on metabolic connectivity patterns deter-
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Fig. 5. Receiver operating characteristic (ROC). a) Area under the ROC curve (ROC-AUC) in dependence on the static distance-to-fit threshold d with |r| > 0.65. b) 

ROC curves for the best performing parameters |r| > 0.65 and static d = 4 (FPR = false positive rate, TPR = true positive rate). Three-class, four-class, and five-class 

classification are indicated as solid line, dashed line, and dotted line, respectively. Least-square fitting (LS), Sen’s slope estimator (Sen), and Siegel’s slope estimator 

(Siegel) are colored in blue, black, and orange, respectively. 

Table 2 

Classification performance measured as accuracy and area under the receiver operating char- 

acteristic curve (ROC-AUC) with different kernels of a support vector machine (SVM) and a 

random forest classifier (RFC). 

Classifier 

3 classes 4 classes 5 classes 

Accuracy ROC-AUC Accuracy ROC-AUC Accuracy ROC-AUC 

SVM (linear) 76.5% 0.915 65.9% 0.839 49.4% 0.786 

SVM (polynomial) 70.9% 0.875 66.2% 0.851 50.6% 0.778 

SVM (RBF) 74.5% 0.935 69.0% 0.861 51.8% 0.795 

SVM (sigmoidal) 74.5% 0.916 65.9% 0.847 54.1% 0.773 

RFC 74.4% 0.891 64.8% 0.847 50.6% 0.792 
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ined with Pearson’s correlation is feasible. 2) Taking negative corre-
ation coefficients into account yields higher classification accuracies.
) Robust linear fitting with Siegel’s slope estimator results in over-
ll higher classification accuracies than using least-square approxima-
ion or robust Sen’s slope estimator. 4) Static d-thresholds reach higher
lassification accuracies than dynamic d-thresholds. 5) Metabolic brain
onnectivity-based classification can outperform state-of-the art ma-
hine learning methods. 

.1. Optimization of classification parameters 

Various connectivity-based classification approaches have been re-
orted in the field of fMRI ( Anderson et al., 2011 ; Du et al., 2018 ;
ielsen et al., 2013 ). fMRI provides multiple images from the same
atient by measuring time series, which can be used to determine
onnectivity patterns on a single-subject level by Pearson’s correla-
ion ( Liu et al., 2015 ). In molecular imaging, especially in PET, clas-
ification approaches relying on sparse inverse covariance estimation
SICE) or Kullback-Leibler divergence similarity estimation (KLSE) have
een investigated on Alzheimer’s disease datasets ( Huang et al., 2010 ;
ang et al., 2020 ). Another common method to analyze brain con-

ectivity patterns is to apply a population-based approach with static
ET images and Pearson’s correlation ( Grosch et al., 2020 ; Sanabria-
iaz et al., 2013 ). In comparison to the usually reported population-
ased approaches to metabolic brain connectivity, KLSE provides the
pportunity to determine connectivity patterns on a single-subject level
ithout the assumption that brain regions have linearly correlating up-

ake patterns, which on the other hand is the basis for the proposed
6 
lassification method. As Pearson’s correlation coefficient is a measure
f the linear correlation of two variables, fitting a linear function to the
ormalized mean uptake values of pairs of brain regions is reasonable
s long as sufficiently strong requirements on the correlation coefficient
nd the corresponding statistical significance are met ( Benesty et al.,
009 ). In this study, the application of different r thresholds resulted
n an approximately concave-shaped curve of classification accuracies,
hich declined for higher r-thresholds as the number of connections
ropped and for lower thresholds as the linearity of the used connec-
ions decreased ( Fig. 3 a, 3 b). This effect was visible for 3-class, 4-class,
nd 5-class classifications, which indicates robustness of the method
or varying r-thresholds while statistical significance of the correla-
ion is given. Furthermore, taking negative correlations into account re-
uced noise in the classification accuracies as the number of connections
sed for classification has an important impact on the classifier perfor-
ance. Nevertheless, connections without sufficient statistical signifi-

ance were filtered by their p-value after FDR correction for multiple
omparisons to exclude random effects. We performed further inves-
igations on distance-to-fit thresholds d with |r| > 0.65. On the other
and, sparsity filtering ( Fig. 3 c) yielded constant accuracies for higher
alues as the number of connections is not determined by the sparsity
nymore, but by the additionally applied filters on the correlation co-
fficient and the statistical significance. The decrease of accuracies for
tricter s-thresholds is again related to the lower number of connec-
ions included for classification, indicating that a reasonable number of
onnections needs to be contained in the connectivity pattern in order
o reach higher classification performance independent of the filtering
ethod. In the end, the choice of the thresholds needs to be a trade-
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ff between sufficiently high requirements on the correlation coefficient
nd the number of connections passing the filter. These settings depend
n the dataset (number of samples, number of brain regions) and have
o be tuned for every application individually. 

The accuracy in relation to the distance-to-fit threshold d revealed
 roughly concave course over the observed parameter range in all in-
estigated conditions ( Fig. 4 ), whereby the peak positions were differ-
nt, indicating the necessity of tuning this threshold to an optimum for
very application and every dataset. As seen in Fig. 4 a and 4 c, the ac-
uracies dropped for very low d-thresholds rapidly because hardly any
onnections were determined as valid on the single-subject level. For
igher d-thresholds the accuracies decreased steadily because random-
ess of valid connection increased. The r-filtered connectivity patterns
esulted in an overall higher maximum performance for all fitting algo-
ithms than using sparsity filtering. The overall accuracy using dynamic
-thresholds ( Fig. 4 b, d) was lower than that using static values; never-
heless dynamic thresholding outperformed classification by chance sig-
ificantly (33% in 3-classes, 25% in 4-classes, and 20% in 5-classes). As
ptake values were normalized to the whole brain prior to classification,
 static threshold is reasonable and avoids potential uncertainties in the
MSE-based threshold induced by outliers. When comparing the three

inear fitting algorithms, Siegel’s slope estimator and least-square fitting
n average performed better than Sen’s slope estimator. As robustness
o outliers might be less important in highly controlled preclinical ex-
erimental setups, we assume that robust fitting performs better than
east-square fitting in clinical datasets. 

We state that in this dataset r-filtering with |r| > 0.65 in combination
ith a static d-threshold of d = 4 and Siegel’s slope estimator for linear
tting yield the most robust and reliable classification results with this
ovel technique. These values ensure adequate linearity in the underly-
ng dataset and sufficient statistical significance to exclude randomness.

.2. Benchmarking classification performance 

Machine learning was successfully applied to and evaluated on
arious PET datasets for disease classification ( Garraux et al., 2013 ;
iu et al., 2018 ; Vandenberghe et al., 2013 ). In order to benchmark
ur novel method, we set up SVM and RFC classifiers with 5-fold nested
ross validation, as described above, and evaluated the classification
erformance on the same set of features as used for connectivity analy-
is. Machine learning classification relies on individual features, the nor-
alized uptake in individual brain regions, whereas our method instead

akes the metabolic connectome into account. The connectivity-based
lassification achieved performances slightly above machine learning
lassifiers (e.g. accuracy 80.4% versus 76.5% for 3 classes). An increase
n the number of classes is equivalent to rising demands on the algorithm
nd therefore classification into more classes yielded lower classifica-
ion accuracies. Nevertheless, both methods performed well compared
o classification by chance. This indicates that the calculated connectiv-
ty patterns were well suited as the basis for classification and compa-
ably simple linear fitting of a population could outperform non-linear
achine learning methods especially in small datasets where machine

earning methods tend to underfit. The main advantage of our method is
he incorporation of PET-based metabolic connectivity information into
lassification tasks. Nevertheless, the identification of proper cohorts
ith low class-label noise in the fitting procedure is essential and limits

he classification performance in both machine learning and connectiv-
ty classification. Furthermore, our method determines the connectome
ased on linear relationships between the brain regions, whereas ma-
hine learning classifiers could learn non-linear relationships as well.
his limits the performance of our method as possible non-linear con-
ections could be missed. The non-linearity of the connectome needs to
e investigated in future studies to possibly use other curve fitting mod-
ls for classification. One advantage of machine learning classification
s that the dataset does not need to fulfil the assumptions for linear fit-
ing. Our dataset fulfils the assumptions, but that is not necessarily the
7 
ase for other datasets. The small sample size of our UL dataset, which is
n line with the governmental animal protection regulations, also limits
he possibility to evaluate the algorithms on test datasets. That is why
e implemented cross-validation procedures. 

.3. Clinical relevance of connectivity-based classification in nuclear 

edicine 

The proposed algorithm aims to distinguish classes by analyzing
etabolic brain connectivity patterns. Classes could, for example, repre-

ent different diseases related to brain network dysfunction (such as dis-
inct neurodegenerative syndromes), but also different cerebral network
tates during disease progression or recovery in defined disease cohorts.
n this study, we investigated the classification performance on a longi-
udinally recorded [ 18 F]-FDG PET dataset in a group of rats after UL as
 well-established paradigm. Acute unilateral vestibular damage results
n a rapid process of adaptive brain plasticity, called vestibular compen-
ation, which is reflected in dynamic changes of connectivity patterns
n parallel with behavioral recovery ( Grosch et al., 2020 ; Zwergal et al.,
016 ). The varying connectivity patterns at five time points before and
fter UL enabled us to consider each day of PET imaging as a different
lass. The highly controlled experimental environment and procedures
ed to zero class-label noise; therefore, the dataset is perfectly suited to
nvestigating classification techniques. A potential drawback of preclin-
cal imaging are the small dimensions of the experimental subjects (e.g.
ats), and the limited spatial resolution of the small-animal PET scanner
 Visser et al., 2009 ). Even though we tried to minimize error sources
e.g. positioning errors in the scanner were countered with a custom-
ade head-holder), classification performance could be improved in
uman imaging by enhancing connectivity calculations through better
mage acquisition conditions. Furthermore, clinical PET scanning does
ot require patient anesthesia, which could influence the imaged brain
etabolism in our rat model. We tried to minimize this potential in-
uence by waking up the animals for the 30 min tracer uptake period.
nother potential limitation in the translation of the proposed technique

o clinical datasets could be the influence of sex on the classification re-
ults, as this was not investigated in this study due to the lack of female
nimals in the experimental setup. 

On the other hand, automated data analysis to support clinical diag-
osis in human datasets may be challenging because of lower labelling
ccuracy and potential multiple neurological pathologies present in one
atient. For a future clinical application of connectivity-based classifica-
ion approaches in [ 18 F]-FDG PET neuroimaging, it is advantageous that
he practically relevant disorders such as different dementia or hypoki-
etic syndromes, are increasingly considered as complex network disor-
ers. For neurodegenerative disorders, such as Alzheimer’s disease (AD),
ewy body dementia (LBD), or Parkinson’s disease (PD), a contribution
f network changes to functional decline (e.g. in cognitive domains or
otor domains) was convincingly shown ( Ge et al., 2020 ; Huber et al.,
020 ; Morbelli et al., 2013 ). Furthermore, in clinical practice [ 18 F]-FDG
ET still is the cornerstone of diagnostic imaging assessment in demen-
ia (e.g., AD versus non-AD syndromes, or PD versus atypical parkinso-
ian syndromes). For those network disorders, our classification method
ased on metabolic connectivity incorporates knowledge about inter-
ctions within the brain, which accesses more information than solely
ptake values in brain regions or single voxels. It thereby represents a
hole brain ‘meta’-view of [ 18 F]-FDG PET data, which surpasses visual
r semi-automated (e.g. z-score) analysis. In consequence, as the investi-
ated classes exhibit strong variations in the connectome due to the un-
erlying disease pattern, classification relying on metabolic connectivity
ould potentially enhance clinical diagnosis in neurological network dis-
ases, whereby this method extends the field of metabolic connectome-
ased disease classification. Other methods (SICE and KLSE) were inves-
igated on AD datasets, including only brain regions especially affected
y the disease. There may be other neurological disorders in which the
 priori reduction of brain regions based on pathophysiological studies
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s more challenging. In this instance, a data driven detection of brain
onnections in the whole brain such as in our study may have advan-
ages. On the other hand, SICE and KLSE but not the proposed method
ere validated on imbalanced datasets, which regularly appear in clin-

cal settings ( Huang et al., 2010 ; Wang et al., 2020 ). Transferring our
reclinical results to human datasets of patients suffering from neurolog-
cal diseases could potentially add another powerful imaging biomarker
f metabolic changes to the diagnostic evaluation in a wide range of
ntities. 

. Conclusion 

This novel Pearson’s correlation-based method enables classification
f single subjects by metabolic connectivity analysis with a diagnos-
ic accuracy that outperforms machine learning classifiers in a preclini-
al dataset. Classes were derived from functional network changes due
o adaptive brain plasticity following peripheral vestibular damage in
he rat. Further evaluation in human datasets of propagated neuro-
sychiatric network disorders is needed to potentially transfer this tech-
ique to clinical diagnostics in nuclear medicine applications. 
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PPENDIX A 

A.1. 4-class classification 

The classification accuracy with different thresholds of the correla-
ion coefficient r reached 64.7% (LS), 63.2% (Sen), and 60.3% (Siegel)
nd deteriorated for lower and higher thresholds ( Fig. 3 a ). Rejecting
egative correlations resulted in maximum classification accuracies of
0.3% (LS), 52.9% (Sen), and 57.4% (Siegel) ( Fig. 3 b ). Reducing the
umber of connections via sparsity thresholds resulted in classifica-
ion accuracies of up to 64.7% (LS), 51.5% (Sen), and 55.9% (Siegel)
 Fig. 3 c ). 

Moreover, the classification accuracy with respect to the distance-to-
t d reached 75.0% (LS), 67.6% (Sen), and 70.6% (Siegel) when using
tatic thresholds and r-filtering ( Fig. 4 a ). With dynamic d thresholds and
-filtering, accuracies of 52.9% (LS), 52.9% (Sen), and 55.9% (Siegel)
ere achieved ( Fig. 4 b ). Using s-filtered connectivity patterns resulted
8 
n classification accuracies of up to 70.6% (LS), 63.2% (Sen), and 67.6%
Siegel) for static d thresholds ( Fig. 4 c ) and 57.4% (LS), 57.4% (Sen),
nd 55.9% (Siegel) for dynamic d thresholds ( Fig. 4 d ). For r-filtering
nd static d-thresholds, the ROC-AUC values showed a course related
o those of the corresponding accuracies and reached 0.863 (LS), 0.835
Sen), and 0.842 (Siegel) ( Fig. 5 a ). 

A.2. 5-class classification 

For 3-class classification, the classification accuracy with different
hresholds of the correlation coefficient r reached 44.7% (LS), 47.1%
Sen), and 40.0% (Siegel) and deteriorated for lower and higher thresh-
lds ( Fig. 3 a ). Rejecting negative correlations resulted in maximum clas-
ification accuracies of 43.5% (LS), 36.5% (Sen), and 38.8% (Siegel)
 Fig. 3 b ). Reducing the number of connections via sparsity thresholds
esulted in classification accuracies of up to 42.4% (LS), 38.8% (Sen),
nd 38.8% (Siegel) ( Fig. 3 c ). 

Moreover, the classification accuracy with respect to the distance-to-
t d reached 51.8% (LS), 51.8% (Sen), and 54.1% (Siegel) when using
tatic thresholds and r-filtering ( Fig. 4 a ). With dynamic d thresholds and
-filtering, accuracies of 42.4% (LS), 40.0% (Sen), and 43.5% (Siegel)
ere achieved ( Fig. 4 b ). Using s-filtered connectivity patterns resulted

n classification accuracies of up to 52.9% (LS), 54.1% (Sen), and 54.1%
Siegel) for static d thresholds ( Fig. 4 c ) and 44.7% (LS), 47.1% (Sen),
nd 44.7% (Siegel) for dynamic d thresholds ( Fig. 4 d ). For r-filtering
nd static d-thresholds, the ROC-AUC values showed a course related
o those of the corresponding accuracies and reached 0.777 (LS), 0.762
Sen), and 0.761 (Siegel) ( Fig. 5 a ). 
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