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Inflammatory bowel disease (IBD) is a recurrent chronic inflammatory condition of the

intestine without any efficient therapeutic regimens. Gut microbiota, which plays an

instrumental role in the development and maturation of the immune system, has been

implicated in the pathogenesis of IBD. Emerging evidence has established that early-life

events particularly maternal influences and antibiotic treatment are strongly correlated

with the health or susceptibility to disease of an individual in later life. Thus, it is proposed

that there is a critical period in infancy, during which the environmental exposures bestow

a long-term pathophysiological imprint. This notion sheds new light on the development

of novel approaches for the treatment, i.e., early interventions, more precisely, the

prevention of many uncurable chronic inflammatory diseases like IBD. In this review, we

have integrated current evidence to describe the feasibility of the “able-to-be-regulated

microbiota,” summarized the underlying mechanisms of the “microbiota-driven immune

system education,” explored the optimal intervention time window, and discussed the

potential of designing early-probiotic treatment as a new prevention strategy for IBD.
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INTRODUCTION

Inflammatory bowel disease (IBD), including ulcerative colitis and Crohn’s disease, is a life-long
disease once onset. It is characterized by recurrent intestinal inflammation, causes cumulative
and progressive damages to the bowel wall, and consequently leads to intestinal dysfunction,
obstruction, or perforation that require surgical intervention (1). IBD affects millions of people
in North America and Europe, and the incidence is increasing alarmingly with the progression of
global urbanization, particularly in the newly industrialized areas, such as Asia (2). Though the
last decades have witnessed a great advancement of medicines for IBD, especially the successive
launch of different biologics anti-TNF, anti-adhesion agents, and anti-IL-12/23 p40 antibody, etc.,
a proportion of patients are still not amenable to any medications. Some lose response over time,
some have to frequently change drugs due to severe adverse effects, and none of the regimens
is available to reverse the intestinal damages (3). Therefore, new therapeutic strategies are in
great demand.
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Several epidemiological studies have established a positive
correlation between the early-life exposures and the future risks
of IBD, including the mode of delivery (4), the feeding types
(5), the childhood hygiene (6), and the antibiotic use (7). All
of which are important environmental factors associated with
gut microbiota alterations. In infancy, the gut microbiota is less
diverse and resilient and more sensitive to the modulation. The
succession of gut microbiota parallels with the development of
the gut immune system and directs the health outcome via the
education of immunity (8). As unstable and sensitive as the infant
bacterial community structure is, it also opens up a “window
of opportunity” for the associated intervention (8, 9). From this
perspective, reducing the environmental incursions or facilitate
the gut microbiota equilibrium within an optimal time frame can
be a new therapeutic strategy for IBD. In this review, we will
first describe the postnatal development of gut microbiota and
the intestinal immune system, taking macrophages (MP) as an
example. Then, we will summarize current evidence depicting the
“window of opportunity” for the gut microbiota modulation, and
finally discuss the potential of designing early probiotic treatment
as a new prevention strategy for IBD.

GUT MICROBIOTA OF NEWBORNS

The mammalian gastrointestinal (GI) tract accommodates
the highest density of the microbial community on earth,
more precisely in the distal part where up to 100 trillion
microorganisms inhabit. It is far beyond the number of
eukaryotic cells of the host that holds itself (10). A healthy
adult intestine harbors 100s of bacterial species, including
the dominant genera Bacteroides, Clostridium, Prevotella,
Faecalibacterium, Eubacterium, Ruminococcus, Peptococcus,
Peptostreptococcusm, and Bifidobacterium, which are affiliated
to the four major phyla, i.e., Bacteroidetes, Firmicutes,
Proteobacteria, and Actinobacteria (11, 12). Despite the
considerable variation among individuals detected in the
microbiome, Arumugam et al. (10) have identified three
distinct clusters of gut microbiota driven by discriminative
genera such as enterotype1-Bacteroides, enterotype2-Prevotella,
and enterotype3-Ruminococcus, which applies to the global
microbiome of human beings and is generally stable over time
and in geography (13).

Gut microbiota shows an age-dependent succession
difference. Unlike the stable enterotypes in adults and the
deterioration occurring in old age (13), the gut microbial
ecosystem of newborns is characterized by rapid changes
in bacterial abundance, diversity, and large interindividual
variability of community composition (14). Conventionally,
the human GI tract is first colonized by bacteria from the
immediate environment. Often, by the maternal vagina and
feces-associated microbes including Lactobacillus and Prevotella
in infants of vaginal birth, or by bacteria from maternal skin
and the surroundings represented by Staphylococcus in babies
of cesarean delivery (15). Of note, recent studies have also
reported the microorganisms detections in the placenta (16)
or amniotic fluid (17). Nevertheless, facultative anaerobes,

predominantly Escherichia coli and other bacteria that belong to
Gammaproteobacteria are the first gut colonizers. Subsequently,
the oxygen in the intestinal microenvironment is exhausted by
these bacteria and becomes anaerobic that favors the growth
of strict anaerobes such as Bifidobacterium, Clostridium, and
Bacteroides, which constitute an early community of low
diversity. The aerobic to anaerobic transition seems to occur
very rapidly, as the obligate anaerobes can be detected to occupy
the intestine at the first week after birth (18). Thereafter, the
Bifidobacterium genus presents its diversity and prevalence in the
gut microbiome of young infants at the age of 7–42 days (19–21).
Given that, human milk is enriched with non-digestible human
milk oligosaccharides (HMOs) and the infant Bifidobacteria
are proficient at utilizing HMOs as the sole carbon source,
by dedicating a sizable fraction of the genome to encode the
proteins associated with the HMOs metabolism (12). Finally,
the introduction of solid foods during weaning (at about 6
months old) primes the infant gut microbiota to adapt to an
adult diet, which results in a significant increase in the bacterial
community diversity and complexity, accompanied by climbing
of Bacteroidetes and a decline of Bifidobacterium (22). However,
a recent study suggests that the cessation of breastfeeding, rather
than the solid food introduction, determines the maturation
of the microbiome into an adult-like phenotype. It is usually
around 1 year of age for human beings, thereafter, the gut
microbiota becomes relatively resilient and stable at the age of
3 (8, 14). Notably, two longitudinal cohort studies of Spanish
and Swedish infants revealed an overall directionality of gut
microbiota changes toward their mothers, both compositionally
and functionally within the first 12 months (18, 23).

INTESTINAL MACROPHAGE AND EARLY
MICROBIAL IMPRINTING

Constantly exposed to the extremely complicated gut microbiota,
the intestine also prepares itself with the largest compartment
of the immune system (24, 25), which consists of the organized
lymphoid tissue [Peyer’s patches (PPs), solitary isolated lymphoid
tissues (SILTs), and the draining lymph nodes], along with
the scattered effector cells distributed in the lamina propria
(LP) and the epithelium (26). Interestingly, although partially
programmed before birth, the LP and the epithelium are devoid
of mononuclear cells at birth (26).

Among the effector immune cells, the intestinal MPs are
the most plastic population. Located directly underneath the
surface epithelium in the LP, they serve as sentinels of the
first line of defense, are responsible for the bacterial antigen
presentation, and discriminating the innocuous agents from the
pathogenic insults in the gut lumen, and clearing apoptotic
and senescent epithelial cells (27). MP are important players in
maintaining gut homeostasis and contribute to IBD pathogenesis
(28). Discrete populations of MPs are also found in the
submucosa and muscularis mucosa throughout the GI tract,
together which exhibit a variety of functions to ensure the proper
immune reactions (29). Apart from being highly phagocytic and
producing TNF-α, IL-1, and IL-6 in response to inflammation,
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the intestinal MPs also mediate mucosal tolerance by secreting
the anti-inflammatory cytokine IL-10, thereby promote the
regulatory T-cell population (28, 30), suggesting a case of innate
immunity that controls adaptive immunity. The introduction of
the “macrophage-waterfall” of Ly6Chi monocytes, which develop
progressively into CX3CR1

hi-MHCIIhi resident cells based on
CD64 expression, makes it possible to more accurately identify
the intestinal resident MPs (28). The gut MPs represent a mixed
population, constantly replenished by the blood monocytes
originated from the bone marrow (29). During the neonatal
period, the MPs derived from embryo and yolk sac predominate
the cell pool (31), but only the latter is found to be replaced
by cells from a series of development including the chemokine
receptor CCR2-dependent recruitment of Ly6Chi monocytes,
downregulation of Ly6C, and upregulation of F4/80, CD64, and
CX3CR1 expressions, as well as obtaining the MHCII phenotype.
This process-driven largely by the microbiota, occurs during
weaning and peaks during the third week of life in mice, whereas
germ-free mice are found to have fewer MP in the gut wall, and
its turnover can be suppressed by antibiotics (29).

The phenotypic and functional identity of the MPs is
imprinted by the local environment. Microbiota as a whole is an
important stimulus for monocyte-MP differentiation (32). While
the number and the subsets diversity change during intestinal
inflammation and infection (27, 29). It is suggested that the gut
MPs are susceptible to environmental (re)programming, even
with the matured phenotype. There is a causal link between the
intestinalMPs and IBD, where the alteredmonocyte-macrophage
differentiation impairs the resolution of intestinal inflammation
in patients with IBD, leading to the chronic relapse in individuals
with the genetic predisposition (33). On the other hand, we
postulate in this study that the targeted MPs polarization of the
intestinal microenvironment, by therapeutic strategies like the
probiotic usage at an early stage, may induce sustained intestinal
immune protection. This is supported by a recent study by Danne
et al. (34) thatHelicobacter hepaticus-polysaccharides induced an
anti-inflammatory MP response.

CRITICAL TIME WINDOWS EXIST

As discussed above, the microbial colonization of the gut of an
infant represents the de novo assembly of a bacterial community
with functional attributes similar to adults. It usually takes 2–
3 years for humans and 4–6 weeks for mice (22). Important
changes are witnessed during weaning when the solid food is
gradually introduced to a suckling mammal while withdrawing
the milk of its mother (9, 35). This leads to a “weaning reaction”
of the immune system against the microbiota alterations. A
proper “weaning reaction” is associated with changes in the
global gene expression in the intestine, such as genes encoding
defensins, chemokine receptors, and mucins. Furthermore,
commensal microbiota induces gene upregulations of the pro-
inflammatory cytokines TNF-α and IFN-γ during weaning at 3
weeks of age in mice (9). An elevation of IL-1β expression was
also observed in 21-days old rats at weaning (36). In contrast, the
inhibition of “weaning reaction” in mice using antibiotics led to

a “pathological imprinting” of the immune system, which cannot
be reversed after weaning (9).

It is, therefore, instrumental that the microbiota establishes
its mutually beneficial cohabitation with the host in the time
window of early life, whereas the perturbations may result in
potentially persistent immune abnormalities (8, 37). Several
genome-wide association analyses and large-scale cohort studies
reveal that exposure to antibiotics in childhood especially during
the first year of life is associated with increased susceptibility
to IBD and allergy (7, 37, 38). Furthermore, a meta-analysis
demonstrates that breastfeeding is associated with lower risks
of IBD, with even lower disease incidence in infants under 12
months breastfeeding regimen than 6 months (39). A study
employing surrogate markers of childhood hygiene (e.g., fewer
siblings and living in urban areas) revealed that individuals raised
in a sanitary environment are at a higher risk of IBD later
in life (6). In contrast, children raised close to farm animals
develop less inflammation and allergies, which supports the
“hygiene hypothesis” (40). In germ-free mice, the immunological
abnormality can be reversed by introducing the commensal
bacteria from a healthy counterpart but only as an early-life
intervention (41). Furthermore, Cox et al. (35) found that
temporal antibiotics administration causes a transient microbiota
perturbation in mice infancy but induces a long-term metabolic
phenotype. These results highlight the importance of the early-
life microbial perturbations vs. the early-life intervention, with
the emphasis on gut microbiota modulation (8, 37). There is a
saying that “who started the trouble should end it.” It appears
that several aspects of immune development are indeed more
permissive to the microbial-mediated changes during early life,
and that specific bacterial taxa are crucial in these interactions.

THE POTENTIAL OF PROBIOTICS FOR
EARLY INTERVENTION

Because gut microbiota perturbation is one of the major
causes of IBD and the modulation is a goal, it is relevant to
consider using probiotics as a therapeutic strategy. Indeed, live
microorganisms given personally produce health benefits, are
defined as “probiotics” and have intrigued humans for centuries
(42). In particular, the probiotic effects in IBD treatment have
been studied to reverse the dysbiosis-associated inflammation
(43). Although having been added widely in snacks, drinks,
infant formulas, and consumed as health supplements, the
clinical use of probiotics as therapeutics and their effects are
still less demonstrated (42). The protective effects in animal
models of IBD and in vitro studies were robust as seen
by several conventional probiotic strains, e.g., Bifidobacterium
infantis, Lactobacillus plantarum, and Lactobacillus reuteri, as
well as verified by novel strains Lactobacillus helveticus PI5
and Lactobacillus salivarius LA307 (44). All of them point
to the efficacy and proficiency in strengthening the intestinal
epithelial barrier and improving the immune functions and the
microbiome (45). However, their clinical effects with patients
with IBD were poorly verified. In a meta-analysis study, no effect
was observed on probiotic-induced remission or prevention of
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relapse in Crohn’s disease, whereas some beneficial effects were
shown in patients with colitis (46).

One enigma is whether or not the probiotic bacteria could
colonize the intestine by peroral administration, if so for
how long they could stay in place after the administration
is removed. This would challenge the actions of probiotics
when regarded as contact-dependent (47). As aforementioned,

the established microbiota in adulthood remains quite stable
albeit the fluctuation under drastic changes (10). A recent
study demonstrates that human targeted probiotics exhibited
low-level mucosal colonization in SPF mice, due to resistance
from the indigenous microbiome (48). Several studies found a
decline of probiotic bacteria detection in the fecal microbiota
shortly after the administration cessation (49, 50). In human

FIGURE 1 | Critical time window: gut development and regulation. (A,B) Schematic summary of early-life environmental factors that impact the gut microbiota

establishment of an individual and drive its phenotype toward health or IBD. Typical phylum-level of microbiota composition in healthy individuals in different life stages

and the window of opportunity for possible modulation. (C) Gut resident macrophage ontogeny in the steady-state. A representative image of colon macrophage

(green), interacting with Escherichia coli (red, left panel).
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beings, the probiotics differentially affect the “permissive” and
“resistant” individuals, which features a personal effect of
combined factors including microbiota variation and host gene
signatures associated with immune responses and metabolism
(48). This could be a possible explanation for the ambiguous
effects achieved in clinical trials of IBD-probiotic treatments.
In both humans and mice, the probiotics are seen to induce
changes in microbiome and host GI transcriptome, despite the
limited colonization (48). The mechanisms behind this and the
causality of the microbiome in IBD onset warrant further studies.
In this regard, approaches combining high-resolution single-cell
RNA sequencing/scRNA-seq of inflammatory lesions with the
clinical characterization of patients with IBDmay provide deeper
insights (51). Interestingly, using scRNA-seq, Aschenbrenner et
al. (52) revealed that bacteria exposure induces functional IL-
10 resistance in monocytes and a hyperinflammation-associated
IL-23 production in patients with severe ulcerative colitis.

Surprisingly, several recent studies have described enhanced
probiotic colonization within or post-antibiotic treatment,
suggesting that probiotics were more likely to act in the
“microorganism less abundant” niches (53, 54), as a property
that can be found in the gut microbiota during early life.
Furthermore, Schultz et al. (55) have shown that administration
of Lactobacillus rhamnosus GG to pregnant women causes
infantile colonization for up to 24 months and increased
the bifidobacteria diversity in neonates. During the postnatal
period, L. reuteri DSM 17938 treatment is shown to promote
lactobacilli growth while inhibiting that of E. coli in infants
with colic (56). This is confirmed to be effective as an
infantile colic intervention. The probiotic treatment is also
considered well-tolerated and safe in preterm infants, to
prevent necrotizing enterocolitis and all-cause mortality (57).
However, there are very few longitudinal studies concerning
the probiotic intervention in infants and track their IBD
susceptibility growing up. It is recently shown that infants
born to IBD mothers exhibited altered gut microbiome
from the first week after birth to at least 3 months old,
causing aberrant adaptive immune responses (58). This again
underlines the urgency of early microbiota modulation for
IBD prevention.

We suggest that a better understanding of the gut microbiome
signature in infant exposure to maternal influences changes
of diets and medications using the readily available next-
generation sequencing tools could help to develop predictive
markers and guide the selection of the probiotic strain
fitted for the potential early-life intervention. For instance,
giving probiotic Bifidobacterium strains to the IBD mother-
delivered babies, who displayed a depletion of bifidobacteria
in the first week of life (58) to promote their health, or
use a combination of probiotic strains to enrich the gut
microbiota with low diversity, like in the cesarean section-
delivered newborns (15) and formula-fed infants (39). For
early antibiotic perturbations associated with the increase of
opportunistic pathogens, a probiotic designed to target the
corresponding bacterial taxa (e.g., Gammaproteobacteria) should
be considered. In addition, probiotics can also be tailored
for metabolic reprogramming, for instance, to restore a lipid

dysregulation caused by dysbiosis during a disrupted “weaning
reaction.” For those breast-fed, virginally delivered, full-term
healthy babies, who are not exposed to antibiotics but could
still suffer from IBD, the probiotic strains should be selected
according to the normal gut microbiota succession trend
discussed above. For example, with the probiotic strains from
Actinobacteria given before weaning and those from Firmicutes
afterward. Meanwhile, the characteristics of the gut microbiome
in adult patients with IBD should be used as a reference for
early intervention.

CONCLUSION

Because gut microbiota is implicated in human and animal
health and disease, an essential goal of this review is to better
understand the assembly and community composition of the
microbiota with a special emphasis on the early-life period.
Unlike the adult microbiota, which is relatively resistant
to perturbations and stable over time, the gut microbial
ecosystem of the newborn is characterized by rapid changes
in bacterial community composition, with lower diversity
and lower complexity. Therefore, a convergence in gut
microbiota succession, environmental stimuli for the time
being, and maturation of the immune system decide the
disease susceptibility in later life (Figure 1). Especially for
IBD that is life-long and is featured by recurrent chronic
intestinal inflammation and dysregulation of the immunity
toward commensal bacteria. Since the immune system is
more permissive to microbial-mediated changes during the
early-life period, specific probiotic bacteria could be the key
to the potential modulation. This early-life period (i.e., from
born till the microbiota reach an adult phenotype) opens up
an exciting “window of opportunity.” However, it should be
carefully defined, categorized, and evaluated. Stable and resilient
gut microbiota in an adult but with pathological imprinting
can be detrimental in many aspects. This may explain why
there are “permissive” and “resistant” patients with IBD
to medications.
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