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Background: Bovine respiratory disease (BRD) is the most common disease in the beef
and dairy cattle industry. BRD is a multifactorial disease resulting from the interaction
between environmental stressors and infectious agents. However, the molecular
mechanisms underlying BRD are not fully understood yet. Therefore, this study aimed
to use a systems biology approach to systematically evaluate this disorder to better
understand the molecular mechanisms responsible for BRD.

Methods: Previously published RNA-seq data from whole blood of 18 healthy and 25
BRD samples were downloaded from the Gene Expression Omnibus (GEO) and then
analyzed. Next, two distinct methods of weighted gene coexpression network analysis
(WGCNA), i.e., module–trait relationships (MTRs) and module preservation (MP) analysis
were used to identify significant highly correlated modules with clinical traits of BRD and
non-preserved modules between healthy and BRD samples, respectively. After identifying
respective modules by the two mentioned methods of WGCNA, functional enrichment
analysis was performed to extract the modules that are biologically related to BRD. Gene
coexpression networks based on the hub genes from the candidate modules were then
integrated with protein–protein interaction (PPI) networks to identify hub–hub genes and
potential transcription factors (TFs).
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Results: Four significant highly correlated modules with clinical traits of BRD as well as
29 non-preserved modules were identified by MTRs and MP methods, respectively.
Among them, two significant highly correlated modules (identified by MTRs) and six
nonpreserved modules (identified by MP) were biologically associated with immune
response, pulmonary inflammation, and pathogenesis of BRD. After aggregation of
gene coexpression networks based on the hub genes with PPI networks, a total of
307 hub–hub genes were identified in the eight candidate modules. Interestingly, most of
these hub–hub genes were reported to play an important role in the immune response and
BRD pathogenesis. Among the eight candidate modules, the turquoise (identified by
MTRs) and purple (identified by MP) modules were highly biologically enriched in BRD.
Moreover, STAT1, STAT2, STAT3, IRF7, and IRF9 TFs were suggested to play an
important role in the immune system during BRD by regulating the coexpressed genes
of thesemodules. Additionally, a gene set containing several hub–hub genes was identified
in the eight candidate modules, such as TLR2, TLR4, IL10, SOCS3, GZMB, ANXA1,
ANXA5, PTEN, SGK1, IFI6, ISG15, MX1, MX2, OAS2, IFIH1, DDX58, DHX58, RSAD2,
IFI44, IFI44L, EIF2AK2, ISG20, IFIT5, IFITM3, OAS1Y, HERC5, and PRF1, which are
potentially critical during infection with agents of bovine respiratory disease complex
(BRDC).

Conclusion: This study not only helps us to better understand the molecular mechanisms
responsible for BRD but also suggested eight candidate modules along with several
promising hub–hub genes as diagnosis biomarkers and therapeutic targets for BRD.

Keywords: bovine respiratory disease, RNA-seq, weighted gene co-expression network, protein-protein interaction,
hub-hub genes

INTRODUCTION

Bovine respiratory disease (BRD) is the most common and costly
infectious disease in the beef and dairy cattle industry. It causes
70–80% morbidity and 40–50% mortality in feedlot cattle in the
United States (Edwards, 2010; Tizioto et al., 2015). BRD is a
multifactorial disease, and its onset is usually associated with
stress factors (nutritional or environmental risk factors) and the
presence of infectious agents (Gagea et al., 2006; Grissett et al.,
2015). Stress factors such as weaning, shipping distance, and
commingling that negatively affect the immune system, can
predispose cattle to a primary infection (Snowder et al., 2006;
Timsit et al., 2016b). Infection is commonly caused by bovine
respiratory disease complex (BRDC) including the viral and
bacterial pathogens, which can affect the upper and lower
respiratory system (Ellis, 2001; Caswell, 2014; Kirchhoff et al.,
2014). Clinical diagnosis of BRD is made by visual observations
and is usually based on clinical signs such as high rectal
temperature, depression/lethargy, nasal or ocular discharge,
increased respiration rate, reduced feed intake, and reduced
average daily gain (Amrine et al., 2013; Behura et al., 2017).
However, this method has low detection sensitivity and
specificity, and the diagnosis is often made without identifying
the cause of the disease (White and Renter, 2009; Timsit et al.,
2016a). On the other hand, among the animals that are vaccinated
against BRD, approximately 75% of them are protected (Hodgins
et al., 2002), and the animals that are diagnosed based on clinical

signs are treated with antimicrobials (Wilkinson, 2009).
Moreover, excessive use of antimicrobial therapies for BRD
facilitates the antibiotic resistance of microbes (Schaefer et al.,
2007; Portis et al., 2012). In addition to vaccination and
antimicrobials, other intervention methods such as nutritional
manipulation and processing procedures have a limited effect on
reducing morbidity and mortality rates, and despite extensive
studies, BRD is still an issue (Taylor et al., 2010). Although the
predisposing factors, viral and bacterial agents that cause BRD are
relatively well known, the pathogenic mechanisms of BRD, the
molecular immune response of the host to infection, and their
association with the disease outcomes are not fully understood yet
(Taylor et al., 2010; Johnston et al., 2019). Also, due to insufficient
knowledge of the disease mechanisms, it is not possible to develop
an effective method to identify animals with BRD (Sun et al.,
2020). Therefore, understanding the infection dynamics and
identification of new candidate biomarkers involved in BRD
can help to better understanding the molecular mechanisms
of BRD.

Functional genomic methods such as RNA-sequencing-based
transcriptomics can provide a global gene expression profile, and
their use in BRD studies can accelerate the understanding of
disease mechanisms and the development of diagnosis (Rai et al.,
2015). Several transcriptome studies have been performed on
BRD in various tissues, such as the lung, bronchial lymph nodes
(Behura et al., 2017; Johnston et al., 2019), and whole blood
(Jiminez et al., 2021; Scott et al., 2021). For example, Sun et al.
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(2020) reported differentially expressed genes (DEGs) in the
blood tissue as biomarkers to recognize BRD cattle at entry,
such as MX1, IFIT3, ISG15, OAS2, and IFI6 involved in the
interferon signaling pathway. Moreover, Tizioto et al. (2015)
identified 142 DEGs that were located in quantitative trait
locus regions associated with BRD risk. The most common
application of differential expression analysis is to identify
DEGs between different conditions. On the other hand, it is
known that the differential expression analysis focuses only on
the individual effect of genes. However, genes and gene products
do not work individually but interact in complex gene networks
(Liu et al., 2020). Therefore, individual evaluation of gene
expression may not explain the cause of complex diseases such
as BRD.

Systems biology is one of the suitable methods to better
understand the mechanism of diseases (Darzi et al., 2021) and
other complex traits (Salleh et al., 2018). In systems biology, there
are various computational methods based on the network
approach, and one of the fundamental aspects of the network
approach in systems biology is the construction of gene
coexpression networks using high-throughput gene expression
data (Kadarmideen andWatson-Haigh, 2012). In this regard, one
of the most widely used methods for building gene coexpression
networks is weighted gene coexpression network analysis
(WGCNA) (Langfelder and Horvath, 2008). The WGCNA
method identifies clusters of coexpressed genes (also called a
module) based on correlation patterns between expression
profiles of genes across samples (Langfelder and Horvath,
2008). Furthermore, the WGCNA identifies highly connected
genes (hub genes) by calculating intramodular gene connectivity,
which are centrally in their modules and can be involved in
important roles during the disease (Bakhtiarizadeh et al., 2018).
The WGCNA approach has been used successfully in different
disease studies in humans (Wang Y. et al., 2020), cattle (Yan et al.,
2020), swine (Wilkinson et al., 2016), mice (Rangaraju et al.,
2018), chickens (Liu and Cai, 2017), and sheep (Kadarmideen
et al., 2011). One of the most widely used methods of WGCNA is
module–trait relationship analysis. In this method, after
identifying the modules across samples, module–trait
relationships are calculated according to the correlation
between module eigengenes and traits of interest, and finally,
significant modules are identified (Kommadath et al., 2014;
Sabino et al., 2018). Moreover, WGCNA provides another
unique network-based method called module preservation
analysis. This method focuses on determining network
topology changes across different conditions. For example, it
can be checked whether the network density and topological
pattern of the modules identified in normal samples (as a
reference) are preserved in the disease samples (as a test)
(Langfelder et al., 2011). In this regard, the differences in the
topology of these two networks indicate a significant perturbation
of the coexpression patterns by the disease. Thus, the
nonpreserved modules between these conditions, as well as
their hub genes may exert crucial roles in the pathological
processes of the disease (Mukund and Subramaniam, 2015;
Riquelme Medina and Lubovac-Pilav, 2016; Bakhtiarizadeh
et al., 2020).

In the present study, we used previously published RNA-seq
data (Jiminez et al., 2021) and the WGCNA method for
constructing weighted gene coexpression networks to better
understand the molecular regulatory mechanisms responsible
for the immune response to BRD. It should be noted that in
the current study we used two distinct WGCNA methods to
identify key modules, their hub genes, hub–hub genes, and
regulatory factors involved in BRD: 1) module–trait
relationships analysis across all samples to identify significant
highly correlated modules with clinical traits of BRD, and 2)
module preservation analysis between healthy samples (as
reference set) and BRD samples (as test set) to identify
nonpreserved modules between these conditions. The main
hypothesis was that significant highly correlated modules with
clinical traits of BRD (identified by the first method) and
nonpreserved modules between healthy and BRD samples
(identified by the second method) may contain potential
functionally related genes and identifies biological regulatory
systems involved in pathological processes of BRD, and it is
also expected that these twomethods confirm each other’s results.

MATERIALS AND METHODS

Datasets
RNA sequencing data from feedlot cattle with and without BRD
were obtained from the Gene Expression Omnibus (GEO)
database at the National Center for Biotechnology Information
(NCBI) under the accession number of GSE162156. Moreover,
clinical traits of BRD were obtained from the supplementary
material section of the original paper (Jiminez et al., 2021) and
then filtered for useful measurements. The data included samples
from the whole blood of 25 and 18 mixed-breed beef heifers with
and without BRD, respectively. An Illumina HiSeq 4000 platform
was used to generate 43 paired-end (2 × 100 bp) libraries that
included 18 healthy and 25 BRD samples. More information
about the data can be found in the original paper (Jiminez et al.,
2021).

RNA-Seq Data Analysis and Preprocessing
Quality control of the raw sequencing data was performed using
FastQC1 (version 0.11.9). Raw reads were then trimmed by
removing low-quality bases and adaptor sequences using the
Trimmomatic software (version 0.39) (Bolger et al., 2014) with
the following options: ILLUMINACLIP: Adapter. fa:2:30:10,
LEADING:20, TRAILING:20, and MINLEN:60. To confirm
quality improvements, the clean reads were checked again
using FastQC. Then the Hisat2 (version 2.2.1) (Kim et al.,
2015) software was used for aligning the clean reads to the
latest bovine reference genome (ARS-UCD1.2) with default
parameters. To calculate counts of uniquely mapped reads to
annotated genes based on the bovine GTF file (release 104), the
python script HTSeq-count (version 0.13.5) (Anders et al., 2014)
was applied using intersection-strict mode. All count files were
then merged and finally, a raw gene expression matrix was
created containing read counts information of all genes for all
samples.
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Weighted Gene Coexpression Network
Analysis
Raw gene expression matrix obtained from the previous steps was
normalized to log-counts per million (log-cpm) using the “voom”
function of the limma package (version 3.46.0) (Smyth, 2005).
This normalization method opens access for the gene expression
data generated by the RNA-seq analysis, to various
computational methods, such as WGCNA (Law et al., 2014).
Because the low-expressed or low-variance genes usually
represent sampling noise and correlations based on these
genes are not significant, genes with <1 CPM (counts per
million) in at least five samples were removed. In addition,
genes with a standard deviation >0.25 were selected for further
analysis. Weighted gene coexpression network analysis was
performed based on the functions of the WGCNA R package
(version 1.70) (Langfelder and Horvath, 2008).

Module–Trait Relationships Analysis
To identify significant highly correlated modules with clinical
traits of BRD, all 43 samples (18 healthy and 25 BRD) were used
for module–trait relationships (MTRs) analysis. Because the gene
coexpression analysis is very sensitive to outliers, the distance-
based adjacency metrics of samples was calculated and samples
with a standardized connectivity < −2.5 were removed,
considered as an outlier. In addition, samples and genes with
>50% missing entries and genes with zero variance were
identified and excluded from the WGCNA analysis. In this
study, a signed weighted coexpression network was
constructed in which correlation values between 0 and 1 are
considered and values <0.50 are considered as negative
correlation, and values >0.50 are considered as positive
correlation (van Dam et al., 2017). Signed networks considers
only positively correlated genes, and especially, network
construction based on this method leads to more significantly
enriched modules (Mason et al., 2009). Furthermore, bi-weight
mid-correlation coefficient was used for the coexpression
network construction since it is more robust to outliers in
comparison to the Pearson correlation (Zheng et al., 2014).
Briefly, a correlation matrix of expression values was
constructed using pairwise bi-weight mid-correlation
coefficients between all pairs of genes across the selected
samples. Then, the correlation matrix at β � 10 as a soft
threshold (power) was transformed into weighted adjacency
matrix. Subsequently, the weighted adjacency matrix was
transformed into topological overlap matrix (TOM), which
considers each pairs of genes concerning all other genes by
comparing their connections with all other genes in the
network (interconnectedness). In other words, the genes in a
module share strong interconnectedness (Zhang and Horvath,
2005; Li and Horvath, 2006; Yip and Horvath, 2007). Finally,
average linkage hierarchical clustering analysis was performed by
the topological overlap-based dissimilarity matrix (1-TOM) as
input, and modules were identified by dynamic hybrid tree
cutting algorithm. Then the modules with the highly
correlated eigengenes were merged. The above steps were
performed using automatic, one-step network construction

and module detection function “blockwiseModules” of the
WGCNA R package with the following parameters: power �
10, corType � “bicor,” maxBlockSize � 12,000, networkType �
“signed,” TOMType � “signed,” minModuleSize � 30,
reassignThreshold � 0, and mergeCutHeight � 0.25. Next, in
order to identify the BRD-related modules, the correlation
between the clinical traits of BRD and module eigengenes (the
first principal component of the expression matrix for a given
module) was taken using Pearson correlation coefficient. The
cutoff of significant moderately or highly correlated modules with
clinical traits of BRD was defined as p-value < 0.05 and 0.30 < |R|
< 0.50, and p-value < 0.05 and |R| > 0.50, respectively. Moreover,
gene significance (GS), which is a criterion for biological
association of a gene with an interest trait was calculated for
each gene through the correlation between gene expression
profile and clinical traits of BRD.

Module Preservation Analysis
In this method, based on the assumption that BRD may cause a
topological change in the coexpression patterns of the healthy
samples, and that nonpreserved modules between the healthy and
disease samples may be biologically related to BRD, the healthy
samples (n � 18) were selected as a reference set for construction
the coexpression network and modules detection. So, after outlier
detection, removing them, and set β � 13 as a soft threshold,
automatic module detection function “blockwiseModules” of the
WGCNA was used for a signed network construction, as well as
identification of modules in healthy samples with following
parameters: networkType � “signed,” TOMType � “signed,”
corType � “bicor,” mergeCutHeight � 0.25, power � 13,
maxBlockSize � 12,000, minModuleSize � 30, and
reassignThreshold � 0. After identifying the modules, module
preservation analysis was performed using the “module
Preservation” function of WGCNA R package to investigate
whether the network density and connectivity patterns of the
modules were preserved between the healthy and BRD samples.
For this purpose, two composite preservation statistics were
investigated using a permutation test (based on 200 random
permutations). The first preservation composite statistic was
Zsummary that was calculated from a combination of several
preservation statistics, which investigated whether the mean
connection strength among all genes in a module (known as
network density) identified in the healthy samples remain highly
connected in the disease samples and it also evaluates whether the
sum of the connection strengths for a gene with other network
genes (known as connectivity) in the healthy samples are similar
in the disease samples (Langfelder et al., 2011). A higher value of
Zsummary indicates strong preservation between conditions
(healthy vs. BRD). However, Zsummary increases with
increasing module size, Therefore, it is strongly dependent on
the module size (Langfelder et al., 2011). The second preservation
composite statistic used is medianRank, which is a module size-
independent statistic; this rank-based measure relies on observed
preservation statistics. Unlike Zsummary, modules with low
medianRank values are highly preserved between conditions.
In this study, modules with Zsummary > 10 and medianRank
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< 8, 5 < Zsummary ≤ 10 andmedianRank < 8, and Zsummary ≤ 5
or medianRank ≥ 8 were considered as highly-preserved,
semipreserved, and nonpreserved, respectively.

Functional Enrichment Analysis and
Transcription Factors Prediction
To determine which modules are biologically related to BRD, all
genes in each module were analyzed for Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways
using the Enrichr web tool (Chen et al., 2013). The cutoffs of
significant terms were defined as adjusted p-value <0.05
(correction by the Benjamini–Hochberg method). Moreover,
to identify potential regulatory factors in the modules, the
genes of each module were aligned to bovine transcription
factors (TFs) set from the AnimalTFDB3.0 database (Hu et al.,
2018).

Hub Genes Identification and
Protein–Protein Interaction Network
Construction
Highly connected genes (hub genes) in a coexpression module are
suitable candidates for explaining behavior and biological
function of that module. In other words, highly connected
intramodular hub genes have the highest degree of connection
in a module and are central to modules in a network, and
compared with other genes, they have more biological
relevance to the module functions (van Dam et al., 2017). In
this regard, module membership (MM) also known as eigengene-
based connectivity kME for each gene was calculated by the
WGCNA R package through the correlation between the gene
expression profile and the module eigengenes. Next, this criterion
was used to identify hub genes in the significant highly correlated
modules with clinical traits of BRD that were identified by the
MTRs method and nonpreserved modules that were identified by
the MP method. In fact, the MM assesses how well the genes of a
module correlate with the characteristics of that module. Genes
with kME ≥ 0.7 were considered as highly connected hub genes in
the respective modules. Furthermore, to investigate the
connections of proteins encoded by the hub genes, Search
Tool for the Retrieval of Interacting Genes (STRING) database
(version 11.0) (Szklarczyk et al., 2018) was used and the
protein–protein interaction (PPI) network of the hub genes
was attained for further analysis.

Hub–Hub Gene Detection and Network
Visualization
For detection of the highly connected and central genes in the PPI
network based on the hub genes (hub–hub genes), cytoHubba
application (version 0.1) was used (Chin et al., 2014). This
application is a cytoscape plugin and explores important genes
and subnetworks in a given biological network such as the PPI
network by several topological analysis methods including local-
based and global-based methods. Local-based methods only
considers the direct neighborhood of a gene, including degree

(Deg), maximum neighborhood component (MNC), density of
maximum neighborhood component (DMNC), clustering
coefficient (CC), and maximal clique centrality (MCC)
methods. Global-based methods focus on the shortest paths,
such as closeness (Clo), eccentricity (EcC), radiality (Rad),
bottleneck (BN), stress (Str), and betweenness (BC) methods
(Chin et al., 2014). These 12 topological analysis methods were
used separately to rank 60 important genes in each PPI network
that were derived from the hub genes. Next, for rank aggregation
of important genes lists, RankAggreg R package (version 0.6.6)
was used based on cross-entropy (CE) algorithm and genetic
algorithm (GA) (Pihur et al., 2009). Finally, the common genes
between these two methods were considered as hub–hub genes.
Significant highly correlated modules (identified by MTRs) and
nonpreserved modules (identified by MP) that were biologically
associated with BRD were visualized using Cytoscape (version
3.7.1) (Cline et al., 2007).

RESULTS

RNA-Seq Data Analysis
A summary for the RNA-seq data analysis pipeline and the steps
for constructing the weighted gene coexpression network is
presented in Figure 1. RNA-seq data included 43 samples (18
healthy and 25 BRD), and there was a mean of 31.781 million
paired-end (2 × 100 bp) reads per sample. A total of 1.366 billion
reads were analyzed and after trimming, a total of 1.352 billion
clean reads were obtained (approximately 31.469 million clean
reads per sample). On average, 95% of all clean reads were
mapped to the bovine reference genome (ranging from 92 to
97%). Moreover, a mean of 82% of all clean reads were uniquely
mapped to the bovine reference genome. The details about RNA-
seq data, trimming, and mapping summary of all samples is
provided in Supplementary Table S1. Finally, after applying
various parameters to filter the low-expressed and low-variance
genes, a total of 10,099 genes were further used in the WGCNA
analysis. A list of filtered genes along with the normalized values
of their expression is provided in Supplementary Table S2.

Module–Trait Relationship Analysis
To prevent the negative effects of outlier samples on gene
coexpression network analysis, after identifying the outliers,
two samples (GSM4943645 and GSM4943656) with a
standardized connectivity score < −2.5 were removed
(Figure 2A). The weighted adjacency matrix was constructed at
β � 10 whose scale-free topology fitting index (R2) was ≥0.80
(Figure 2B). After network construction, 12 coexpressionmodules
(excluding grey module with 690 uncorrelated genes) were
identified through hierarchical clustering and dynamic hybrid
tree cutting with an average size of 784 genes. The turquoise
and tan modules were the largest and smallest module with 2,592
and 72 genes each, respectively (Supplementary Table S3). In
Figure 3A, a clustering dendrogram is presented in which the
branches represent the modules that are labeled with a specific
color by the WGCNA R package. Clinical traits related to BRD
that were used in MTRs included clinical signs measurements of
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BRD such as rectal temperature (°C), haptoglobin level (g/L),
respiratory rate (per min), and average daily gain. The sample
dendrogram and trait heatmap of clinical traits related to BRD
across all samples are presented in Figure 3B. The results of MTRs

indicate that the rectal temperature, haptoglobin level, average
daily gain, and respiratory rate have eight, eight, six, and two
significant modules, respectively. Among the significant modules
are as follows: MEpurple (R � −0.63, p � 1e−05), MEblue (R �

FIGURE 1 | Schematic pipeline for RNA-seq data analysis and weighted gene coexpression network construction in this study.
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−0.71, p � 2e−07), MEbrown (R � −0.55, p � 2e−04), and
MEturquoise (R � 0.7, p � 3e−07) modules were significantly
highly correlated and MEyellow (R � −0.41, p � 0.008), MEtan
(R � −0.32, p � 0.04), MEgreenyellow (R � 0.37, p � 0.02), and
MEpink (R � −0.38, p � 0.01) modules were significantly
moderately correlated with rectal temperature, respectively
(Figure 3C). Also, MEpurple (R � −0.64, p � 8e−06), MEblue
(R � −0.75, p � 1e−08), MEbrown (R � −0.55, p � 2e−04), and
MEturquoise (R � 0.72, p � 1e−07) modules were significantly
highly-correlated and MEyellow (R � −0.42, p � 0.006), MEtan
(R � −0.31, p � 0.04), MEblack (R � 0.33, p � 0.04), and MEpink
(R � −0.34, p � 0.03) modules were significantly moderately
correlated with haptoglobin level, respectively (Figure 3C).

Moreover, MEpurple (R � 0.64, p � 8e−06), MEblue (R � 0.53,
p � 4e−04), MEbrown (R � 0.53, p � 4e−04), and MEturquoise
(R � −0.59, p � 6e−05) modules were significantly highly
correlated, and MEred (R � −0.34, p � 0.03) and MEgreen
(R � 0.34, p � 0.03) modules were significantly moderately
correlated with average daily gain, respectively (Figure 3C).
The MEturquoise (R � 0.32, p � 0.04) and MEbrown (R �
−0.32, p � 0.04) modules were significantly moderately
correlated with respiratory rate, respectively (Figure 3C), but
no significant highly correlated modules were found for this
trait. Then, the significant highly correlated modules were
selected for downstream analysis. Briefly, the turquoise, blue,
brown, and purple modules with module sizes of 2,592, 1,691,

FIGURE 2 | Sample clustering to detect outliers and network topology analysis. (A) All samples except GSM4943645 and GSM4943656 were clustered and then
selected for module–trait relationships analysis. (B) Scale-free topology fitting index (left) and mean connectivity (right) for different soft-threshold powers (β). For
module–trait relationships analysis, coexpression network was constructed at β � 10 whose scale-free topology fitting index (R2) was ≥0.80. (C) All samples except
GSM4943661 and GSM4943667 were clustered and then selected for module preservation analysis. (D) Scale-free topology fitting index (left) and mean
connectivity (right) for different soft-threshold powers (β). For module preservation analysis, co-expression network was constructed at β � 13 whose scale-free topology
fitting index (R2) was >0.80.
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1,214, and 141 genes, respectively, were identified as significantly
highly correlated modules with rectal temperature, haptoglobin
level, and average daily gain (Figure 3C).

Functional Enrichment Analysis of Highly
Correlated Modules
In order to understand the biological performance of the significant
highly correlated modules with clinical traits of BRD, functional

enrichment analysis was performed and a total of 356 biological
process and 129 KEGG pathways were significantly enriched in the
respective modules. The turquoise module had the highest number of
enriched terms and pathways, including 305 biological processes and
116 KEGG pathways. The most significant GO term and KEGG
pathway in the turquoise module were “neutrophil-mediated
immunity” (GO:0002446, adjusted p-value � 7.45E−55) and
“Lysosome” (adjusted p-value � 5.16E−13), respectively. On the
other hand, 19 biological processes and 13 KEGG pathways were

FIGURE 3 | Module–trait relationships analysis. (A) Gene hierarchical clustering dendrogram of 12 detected modules based on a dissimilarity (1-TOM) measure
across all samples, the y-axis represents the coexpression distance and the x-axis represents the genes. The branches indicate the modules, and each module is
marked with a separate color, the gray module encompass genes that are not assigned to any of the modules. (B) Sample dendrogram and trait heatmap of clinical traits
related to BRD across all samples. The gradient fromwhite to red indicates the low to high level of the respective traits in the samples. (C)Module–trait relationships
between detected modules and clinical traits of BRD. Module–trait relationships are obtained by calculating the correlation between the traits and the module
eigengenes. The red and blue colors indicate strong positive correlation and strong negative correlation, respectively. Rows represent module eigengene (ME) and
columns indicate clinical traits of BRD. Rect. Temp, rectal temperature (°C); Haptog. Level, haptoglobin level (g/L); Resp. Rate, respiratory rate (per min), ADG, average
daily gain. Asterisks corresponds to significant highly correlated values.
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significantly enriched in the purple module. The most significant GO
term and KEGG pathway in the purple module were “cellular defense
response” (GO:0006968, adjusted p-value � 2.27E−09) and “natural
killer cell-mediated cytotoxicity” (adjusted p-value � 2.09E−06),
respectively. Only 32 biological processes were enriched in the blue
module, and no biological process or KEGGpathwaywas significantly
enriched in the brown module. The top 20 significant biological
process terms for turquoise, blue, and purplemodules are presented in
Figure 4A. Moreover, the complete information of the functional
enrichment analysis for the significant highly correlatedmodules with
clinical traits of BRD is provided in Supplementary Table S4. Based
on the functional enrichment analysis, among the significant highly

correlated modules with clinical traits of BRD, turquoise and purple
modules were associated with BRD mechanisms and host immune
response. To identify potential TFs that may control transcription of
coexpressed genes in the modules, a total number of 100 and 11 TFs
were found in the turquoise and purple modules, respectively
(Supplementary Table S5).

Hub and Hub–Hub Gene Detection in Highly
Correlated Modules
In this study, coexpressed genes in both turquoise and purple
modules (as significant highly correlated as well as biologically

FIGURE 4 | Functional enrichment analysis results. (A) The top 20 significant biological processes for significant highly correlated and biologically related modules
to bovine respiratory disease (BRD). Color and size and each point represent −log2(FDR) and number of genes for each term, respectively. (B) The top 15 significant
biological processes for significant enriched nonpreserved modules. Color and size and each point represent −log2(FDR) and number of genes for each term,
respectively.
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related modules with BRD) were further evaluated. The MM versus
GS plots of these modules are presented in Figure 5, which shows a
strong correlation between GS and MM. In other words, the most
significant genes with clinical traits of BRD are often the central
genes in the respective modules. More information about GS for
clinical traits of BRD can be found in Supplementary Table S6.

Highly connected intramodular hub genes often have high levels of
MM and may play an important role in BRD. So, in this regard, a
total of 1,476 and 114 hub genes were identified in turquoise and
purple modules, respectively (Supplementary Table S7). Then, the
connection of proteins encoded by these hub genes in each module
was examined and the PPI network related to the hub genes in

FIGURE 5 | Scatterplots of module membership (MM) versus gene significance (GS) plots. (A–D) module membership versus gene significance for rectal
temperature, haptoglobin level, average daily gain, and respiratory rate in the turquoise module, respectively. (E–H) module membership versus gene significance for
rectal temperature, haptoglobin level, average daily gain, and respiratory rate in the purple module, respectively.
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turquoise and purple modules was obtained. Interestingly, PPI
networks based on the hub genes in the turquoise and purple
modules were of high density based on the STRING database
information. The PPI network based on the hub genes in the
turquoise module is presented in Figure 6. Hub–hub genes,
which were highly connected in the respective coexpression
modules and also are central genes in the hub genes-based PPI
networks, can be considered as prognostic and therapeutic targets in
BRD development. Here, a total of 42 and 23 hub–hub genes were
found in turquoise and purple modules, respectively (Table 1).

Module Preservation Analysis
For module preservation analysis, healthy samples were used as a
reference set to construct the weighted gene coexpression network.
Two samples, GSM4943661 and GSM4943667 were identified as
outliers based on the distance adjacencymetrics of samples and then

removed (Figure 2C). For network construction, the soft threshold
power was set to 13 which showed high scale-free topology (R2 >
0.80; Figure 2D). Using WGCNA, a total of 36 modules were
identified in the healthy samples. The modules had different sizes
ranging from 40 in the yellowgreen module to 1,163 in the turquoise
module. In addition, the grey module contained 247 genes that were
not assigned to any of the othermodules (Supplementary Table S8).
The identified modules in the healthy samples with different colors
as branches of the hierarchical clustering dendrogram and the
relationship between them are presented in Figures 7A,B,
respectively. Next, for the module preservation analysis, we used
the BRD samples as a test set to investigate whether the network
density and connectivity pattern of the modules identified in the
healthy samples were preserved in the BRD samples. The results of
the preservation analysis showed that based on the thresholds set in
theMaterials andmethods section, six modules, including lightgreen

FIGURE 6 | Protein–protein interaction (PPI) network based on the hub genes of the turquoise module (identified by module–trait relationships method). Larger
nodes and orange octagons represent hub–hub genes and transcription factors, respectively.

Frontiers in Genetics | www.frontiersin.org October 2021 | Volume 12 | Article 75383911

Hasankhani et al. WGCNA on Bovine Respiratory Disease

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


(Zsummary � 26, medianRank � 1), magenta (Zsummary � 24,
medianRank � 5), pink (Zsummary � 20, medianRank � 7), grey60
(Zsummary � 19, medianRank � 2), midnightblue (Zsummary� 17,
medianRank � 7), and darkred (Zsummary � 11, medianRank � 4),
were identified as highly preserved modules, and one module,
yellowgreen (Zsummary � 5.8, medianRank � 7) was identified
as a semipreserved module (Figure 7C). Interestingly, in agreement
with our hypothesis, of the 36 modules identified, 29 modules were
non-preserved between healthy and BRD samples, indicating that

their connectivity pattern and topological structure have been
affected and changed by the BRD (Figure 7C). Skyblue
(Zsummary � 1.5, medianRank � 36), darkmagenta (Zsummary
� 2.1, medianRank � 34), and darkolivegreen (Zsummary � 3.6,
medianRank � 24) modules were identified as the most non-
preserved modules between healthy and BRD samples,
respectively (Supplementary Table S9).

Functional Enrichment Analysis of Highly
Preserved, Semipreserved, and
Nonpreserved Modules
Tounderstand the biological significance and the functional difference
between highly preserved, semipreserved, and nonpreservedmodules,
all the 36 modules were subjected to GO terms and KEGG pathway
analysis, and a total of 521 biological processes and 158 KEGG
pathways were significantly enriched. Enrichment analysis of four
highly preserved modules that included magenta, pink, grey60, and
midnightblue revealed a total of 108 and 27 biological processes and
KEGG pathways, respectively. Among them, the magenta module
with 37 biological processes and 17 KEGG pathways was identified as
the most significant enrichedmodule. The other two highly preserved
modules, including lightgreen and darkred, showed no biological
process or KEGG pathway enrichment. Moreover, one biological
process was enriched in the yellowgreen module as the only
semipreserved module. The complete information of the functional
enrichment analysis for the highly preserved and semipreserved
modules is provided in Supplementary Table S10. On the other
hand, among the nonpreserved module, 13 modules including blue,
brown, cyan, darkmagenta, darkorange, green, greenyellow, lightcyan,
paleturquoise, purple, red, salmon, and yellowwere enriched in at least
one biological process or KEGG pathway (significantly enriched
nonpreserved modules). Furthermore, functional enrichment
analysis of the significantly enriched nonpreserved modules
identified a total of 412 biological processes and 131 KEGG
pathways. The top 15 significant biological process terms for
significantly enriched nonpreserved modules are presented in
Figure 4B. In addition, the complete information of the functional
enrichment analysis for the nonpreserved modules is provided in
Supplementary Table S11. Based on the enrichment results, among
the significantly enriched nonpreserved modules, six nonpreserved
modules including blue, greenyellow, purple, red, salmon, and yellow
were associated with pathogenic mechanisms of BRD and immune
response. Also, based on the bovine transcription factors set from the
AnimalTFDB3.0 database, a total number of 37, 18, 25, 55, 26, and
39 TFs were identified in blue, greenyellow, purple, red, salmon, and
yellow modules, respectively (Supplementary Table S12).

Hub and Hub–Hub Gene Identification in
Nonpreserved Modules
Six nonpreserved modules were identified as potential candidate
modules and biologically related to BRD based on the module
preservation and functional enrichment analysis, respectively.
Then, MM measures were used to identify intramodular hub
genes as important and central genes in these modules. A total
number of 326, 251, 216, 145, 131, and 99 hub genes were

TABLE 1 | List of the hub–hub genes in the turquoise and purple modules as
significant highly correlated and biologically related modules with bovine
respiratory disease (BRD) along with their module memberships (MM) and gene
significance (GS) for rectal temperature (identified by module–trait relationships
analysis).

Module

Turquoise Purple

Genes MM GS Genes MM GS

GAPDH 0.85 0.56 PRF1 0.97 −0.54
IL10 0.93 0.68 KLRK1 0.92 −0.71
STAT3 0.89 0.65 IL2RB 0.95 −0.62
MAPK1 0.81 0.66 LCK 0.85 −0.55
CASP3 0.81 0.51 ITK 0.82 −0.60
LAMP1 0.86 0.56 EOMES 0.82 −0.64
FN1 0.72 0.45 KLRD1 0.88 −0.52
MAPK14 0.91 0.64 CD40LG 0.81 −0.52
TLR4 0.93 0.67 NCR1 0.91 −0.58
TLR2 0.89 0.50 CCL5 0.92 −0.49
CD68 0.90 0.65 LOC618565 0.74 −0.36
RAC1 0.76 0.37 TBX21 0.93 −0.64
CD44 0.77 0.49 CD8A 0.88 −0.62
JAK2 0.87 0.55 RUNX3 0.83 −0.68
IL1B 0.86 0.50 XCL2 0.74 −0.30
CTSD 0.85 0.65 CCR8 0.95 −0.64
MMP9 0.93 0.62 CX3CR1 0.90 −0.57
GRB2 0.82 0.42 SH2D1A 0.86 −0.65
ANXA5 0.81 0.46 GPR55 0.82 −0.76
TYROBP 0.96 0.66 CTSW 0.92 −0.57
PTPN6 0.79 0.51 KIR2DS1 0.72 −0.34
RAB5C 0.90 0.57 NKG7 0.93 −0.54
SOD2 0.93 0.77 CD96 0.95 −0.61
BECN1 0.81 0.41 — — —

WAS 0.94 0.68 — — —

LAMTOR2 0.87 0.75 — — —

CYBA 0.86 0.56 — — —

SOCS3 0.94 0.66 — — —

ALDOA 0.93 0.67 — — —

SPI1 0.96 0.61 — — —

RETN 0.78 0.47 — — —

MYD88 0.93 0.68 — — —

VWF 0.77 0.63 — — —

PKM 0.97 0.66 — — —

ORM1 0.80 0.62 — — —

STOM 0.91 0.52 — — —

BCL2L1 0.81 0.70 — — —

HSP90AA1 0.89 0.72 — — —

MMP25 0.96 0.67 — — —

LAMP2 0.91 0.57 — — —

PSEN1 0.82 0.47 — — —

IL18 0.81 0.58 — — —

Note that the rectal temperature is one of the most important and widely used clinical
signs of BRD.
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detected in blue, yellow, red, purple, greenyellow, and salmon
modules, respectively. The complete list of the hub genes in the
nonpreserved modules can be found in Supplementary Table S13.
Hub genes-based PPI networks extracted from the STRING database
identified 303 nodes (proteins) and 2,942 edges (interactions) for the
blue module, 204 nodes and 1,085 edges for the yellow module, 183
nodes and 982 edges for the red module, 131 nodes, and 1,905 edges

for the purple module, 121 nodes and 716 edges for the greenyellow
module, and 91 nodes and 345 edges for the salmon module
indicating high connection density of proteins encoded by the
genes of these modules. Figure 8 represents the PPI network of
the purple module as the nonpreserved and potential biologically
BRD-related module. Additionally, based on the PPI networks
obtained by hub genes, a total number of 48, 51, 48, 49, 27, and

FIGURE 7 |Module preservation analysis. (A) Gene hierarchical clustering dendrogram of 36 detected modules based on a dissimilarity (1-TOM) measure across
healthy samples as reference set, the y-axis represents the coexpression distance and the x-axis represents the genes. The branches indicate the modules, and each
module is marked with a separate color, the gray module encompass genes that are not assigned to any of the modules. (B) Eigengene adjacency heatmap indicate
relationship among all the modules. (C) The medianRank preservation statistics of the modules. The y-axis and the x-axis represent medianRank values and
module size, respectively. Each point indicates a module labeled by a respective color. The green dashed line represents the medianRank threshold (medianRank ≥8).
(D) The Zsummary preservation statistics of the modules. The y-axis and the x-axis represent Zsummary values and module size, respectively. Each point indicates a
module labeled by a respective color. The red dashed line represents the Zsummary threshold (Zsummary ≤5). Modules with Zsummary ≤5 or medianRank ≥8 were
considered as nonpreserved between healthy and BRD conditions.
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19 hub–hub genes were found in the blue, yellow, red, purple,
greenyellow, and salmon modules, which can be potential
biomarkers and candidate disease genes in the etiology and the
diagnostics of BRD (Table 2). PPI networks of significant highly
correlated modules (identified by MTRs) and nonpreserved modules
(identified by MP) that were biologically associated with BRD are
available in Supplementary Figure S1.

DISCUSSION

BRD is a multifactorial disease that results from the interaction of
environmental stressors and infectious agents of BRDC (Gagea
et al., 2006). BRDC includes the viral pathogens such as bovine
respiratory syncytial virus (BRSV), bovine parainfluenza type 3
virus (BPIV-3), bovine viral diarrhea virus (BVDV), bovine
coronavirus (BCV), and bovine herpes virus type 1 (BHV-1)
that affect upper respiratory system and also contain the bacterial
pathogens Trueperella pyogenes, Mycoplasma bovis, Pasteurella
multocida, Histophilus somni, Bibersteinia trehalosi, and
Mannheimia haemolytica, which can affect the lower

respiratory system (Caswell, 2014; Kirchhoff et al., 2014).
Despite numerous studies, BRD is still the most common
disease and the leading cause of morbidity and mortality in
the cattle industry (Taylor et al., 2010). Understanding the
molecular mechanisms involved in the bovine immune
response to BRD is necessary given the persistence of the
disease in recent years. Combining high-throughput
technologies with various computational methods based on the
network approach, can provide an exceptional opportunity to
better understand the pathological processes of diseases and the
molecular mechanisms of the host immune responses
(Kadarmideen and Watson-Haigh, 2012). In this study, we
combined gene expression matrix obtained by RNA-seq data
analysis with two co-expression network-based methods of
WGCNA, module–trait relationships, and module preservation
analysis, to identify potential gene modules and candidate genes
involved in molecular processes induced by BRD.

Module–Trait Relationships Analysis
Module–trait relationship analysis identified four significant
highly correlated modules including turquoise, purple, blue,

FIGURE 8 | PPI network based on the hub genes of the purple module (identified by module preservation method). Larger nodes and orange octagons represent
hub–hub genes and transcription factors, respectively.
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and brown with clinical traits of BRD. Functional enrichment
analysis indicated that three of the four (75%) identified modules
including blue, purple, and turquoise modules had significant
enriched terms and pathways. This shows the power and high
accuracy of signed networks in separating the modules from each
other and identifying more significantly enriched terms or
pathways in the modules. The significant enriched terms in
the blue module were mostly related to basic cellular activities

including “tRNA transport,” “transcription DNA-templated,”
“DNA metabolism,” “macromolecule biosynthetic,” and “cell
cycle.” On the other hand, the turquoise and purple modules
had many biological processes and KEGG pathways closely
related to the BRD mechanisms. So, our focus on the
turquoise and purple modules (identified by MTRs method) as
significant highly correlated and key biologically related modules
to BRD.

TABLE 2 | List of the hub–hub genes of the nonpreserved and biologically BRD-related modules that were identified by module preservation analysis.

Modules

Blue Greenyellow Purple Red Salmon Yellow

LAMP1 STAG2 ISG15 RAB11FIP2 IL2RB C5AR1
LAMP2 PIK3CA STAT1 TNF KLRK1 IL1B
TLR4 SMURF2 IFIH1 MAU2 PRF1 UBA52
PSAP PTEN RTP4 UNKL ITGAL PTAFR
ANXA5 ADAM10 USP18 TAF1 CCL5 IL15
C3 TSPAN13 DDX58 NR2C2 CCR5 GRB2
PSEN1 SNX27 IRF7 LCK GZMA CD68
RAP1B KLHL11 MX1 CD2 NCR1 PLEK
CTSB PIP5K1B PARP9 ARIH2 RUNX3 SOCS3
STOM SOS2 DHX58 ZFYVE20 S1PR5 NFKBIA
ACTR2 SNX13 IFI35 TSC1 CX3CR1 MYD88
BECN1 MGAT4A RSAD2 ITK NKG7 ANXA1
CAT YES1 IFI44 SMC5 IL12RB2 FCAR
NPC2 GSK3B IFI44L LCP2 GZMB CYTH4
CD86 SGK3 UBA7 PHF8 CCR8 CRKL
ATG7 UBE2R2 UBE2L6 JAK3 PDCD1 HECW2
VPS35 TMEM30A EIF2AK2 RIC1 TRPM2 RAF1
PRCP HECTD1 IRF9 SETDB1 TMEM63A IL18RAP
RAB1A TSPAN33 ISG20 FMR1 GZMH GADD45B
RAB5A RNF217 MX2 PLCG1 — FAS
GAA ROCK1 XAF1 CHD3 — CNR2
MGST1 TAB2 PARP14 FBXO4 — CCR1
CCR2 PDP1 PARP12 FBXL20 — HCAR3
CD59 WAPAL IFIT5 PIK3CD — SNX18
CTSC WAC STAT2 FBXO21 — SGK1
ACTR1A PI4K2B TRIM21 TIA1 — IFNAR2
TLR7 SERPINE2 OAS1X TNRC6A — VNN2
LYZ — HERC6 TLR3 — DDIT3
GM2A — CMPK2 POGZ — WDFY3
CST3 — ZBP1 PDPR — IFNGR2
TNFRSF1B — DTX3L CRAMP1L — PPP2R5A
CAPZA1 — ZNFX1 RERE — SELL
RAB6A — IFITM3 RAB11FIP4 — KDM4B
ARF1 — RNASEL CD6 — NCF1
FTL — SAMD9 ZC3H11A — LOC407171
APLP2 — GBP4 TNFRSF10D — ARRDC4
PECAM1 — TRIM25 UBP1 — TARM1
ATF6 — MB21D1 SLC37A3 — VASP
CSF2RB — OAS1Y IKBKE — SLC2A3
RAB18 — HERC5 STAT5A — BST1
SPTLC1 — ADAR NAA16 — MCL1
KTN1 — GBP7 ZBTB43 — NFAM1
SHISA5 — OAS2 CAMSAP1 — TNIP1
MOSPD2 — IFI6 TWF1 — GADD45A
CD163 — FOXS1 ABI2 — NUDT3
ATP6V1A — PML VAMP5 — MEFV
IFNAR1 — CD53 CDC7 — MXD1
CAPN2 — CHMP5 UPB1 — LONRF3
— — GPR97 — — KDM6B
— — — — — ICAM3
— — — — — TCN1
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Coregulated genes in the turquoise module were closely
related to the mechanisms of the innate immune system as the
first defense line against BRD and this shows the great importance
of this module during BRD development. We also found a
number of enriched terms related to the adaptive immune
system in this module. After infection with various viral or
bacterial pathogens, extensive complex interactions begin
between the host and the pathogen (Kumar et al., 2011).
Pathogens produce various molecules known as pathogen-
associated molecular pattern (PAMPs) to continue their life
cycle and pathogenic activity (Janeway and Medzhitov, 2002;
Tang et al., 2012). These PAMPs are recognized by pattern
recognition receptors (PRRs) in the host, which are proteins
expressed by key innate immune system cells such as neutrophils,
macrophages, monocytes, dendritic cells, and epithelial cells
(Medzhitov, 2007; Yuki and Koutsogiannaki, 2021). Upon
recognition of PAMPs by PRRs, a cascade of signaling
pathways is induced, leading to an inflammatory response and
subsequent rapid response of the innate immune system to
eliminate the pathogens (Lee and Kim, 2007; Kawai and Akira,
2010). In this regard, the turquoise module had important KEGG
signaling pathways as well as their downstream biological
processes associated with PRRs and inflammatory response
including “Toll-like receptor signaling pathway,” “MyD88-
dependent Toll-like receptor signaling pathway,” “TRIF-
dependent Toll-like receptor signaling pathway,” “C-type lectin
receptor signaling pathway,” “NOD-like receptor signaling
pathway,” “NF-kappa B signaling pathway,” and “MAPK
signaling pathway.”

Toll-like receptors (TLRs) are the most important signaling
maker PRRs and act as the primary sensors of pathogens (Iwasaki
and Medzhitov, 2004; Akira et al., 2006). The Toll-like receptor
signaling pathway is activated through the recognition of PAMPs
by membrane and cytoplasmic TLRs (Kumar et al., 2009; Blasius
and Beutler, 2010; Heidarzadeh et al., 2020). The TLR signaling
pathway is divided into two distinct pathways, including the
MyD88-dependent and the TRIF-dependent signaling pathway,
depending on the type of TLR sensitized and subsequently
equipped adapters (Takeuchi and Akira, 2010). All TLRs
family (TLR1 to 10), except TLR3, activate the MyD88-
dependent Toll-like receptor signaling pathway, which
activates the NF-kappa B signaling pathway and MAPK
signaling pathway to produce proinflammatory cytokines and
chemokines (Takeda and Akira, 2005; Lin et al., 2010; Kawasaki
and Kawai, 2014). On the other hand, TLR3 as well as TLR4
activate the TRIF-dependent Toll-like receptor signaling
pathway, which leads to induce production of
proinflammatory cytokines and type I interferons by activating
NF-κB and IRF3/IRF7 transcription factors (Takeda and Akira,
2005; Lin et al., 2010; Kawasaki and Kawai, 2014). Various studies
in cattle diseases such as bovine tuberculosis (Nalpas et al., 2015),
Johne’s disease (Ferwerda et al., 2007; Wang et al., 2019),
endometritis (Turner et al., 2014), and mastitis (Luoreng et al.,
2018; Islam et al., 2020) have reported the TLR-signaling pathway
being induced during these diseases. A previous study also
reported that the Toll-like receptor signaling pathway was
activated during different challenges with a group of BRDC,

including BoHV-1, BRSV, BVDV, Mannheimia haemolytica,
and Pasteurella multocida (Tizioto et al., 2015).

C-type lectin receptor signaling pathway is another pattern
recognition receptor related pathway that is activated by CLRs
membrane receptors by identifying different carbohydrates such
as mannose, glucan, and fucose in viruses, bacteria, and fungi and
activates MAP kinases, the transcription factor NF-AT, and NF-
κB that eventually induces the production of proinflammatory
cytokines (Geijtenbeek and Gringhuis, 2009; Takeuchi and Akira,
2010). Recent studies have examined the importance of C-type
lectin receptors in human infectious diseases (Lugo-Villarino
et al., 2018; Zhao et al., 2019). NOD-like receptors are
cytosolic receptors that can detect a wide range of bacteria,
viruses, and other pathogens that enter the cytoplasm (Franchi
et al., 2009). These receptors, like Toll-like receptors activate the
NF-kappa B and MAPK signaling pathways, regulate the
production of inflammatory cytokines such as IL-1β, and can
also induce apoptosis (Chen et al., 2009; Banse et al., 2013).

The NF-kappa B signaling pathway is a key pathway that acts
as a major mediator in inflammatory responses. Activation of the
NF-κB transcription factor induces the transcription of many
genes that encode proinflammatory cytokines and chemokines
such as IL-1β, IL-6, TNF-α, IL-12p40, and cyclooxygenase-2
(Oeckinghaus and Ghosh, 2009; Liu et al., 2017). In addition,
a study investigated the effect of SH protein expressed by the
BRSV genome on the lack of NF-κB phosphorylation in the host,
which reduces the production of proinflammatory cytokines and
thus modulates the immune system (Pollock et al., 2017). The
MAPK signaling pathway is another key mediator pathway
during inflammation that regulates cytokine production by
phosphorylating and activating certain kinases (Salojin and
Oravecz, 2007). Several transcriptomics and proteomics studies
have reported MAPK signaling pathway activity during BRD
(Tizioto et al., 2015; Behura et al., 2017; Liyang et al., 2021).

Furthermore, other important immune-related terms
identified in the turquoise module include “JAK-STAT
signaling pathway,” “TNF signaling pathway,” “PI3K-Akt
signaling pathway,” “regulation of interferon-gamma
production,” and “positive regulation of interleukin-8
secretion.” The JAK-STAT signaling pathway is one of the
most important intracellular signaling pathways that regulates
communication between cytokine transmembrane receptors and
the nucleus and is involved in many biological processes in the
body, such as immune regulation, cell differentiation/
proliferation, apoptosis, and keep homeostasis in inflammatory
conditions (O’Shea et al., 2012; O’Shea et al., 2015; Xin et al.,
2020). This pathway, mediates cytokine responses through
binding of cytokines such as IL-6/12/17/23, as well as type I
(alpha and beta), and II (gamma) interferons to their respective
receptors at the cell surface and activation of STATs transcription
factors to regulate their target genes in the nucleus (Charles Jay
and Eric, 2009). Interferons by activating this pathway, can cause
antiviral conditions (Horvath, 2004b; a). BoHV-1, as an
infectious agent of BRDC, has the ability to suppress the host
immune system by expressing the UL41 gene and subsequently
increase its viral replication. The UL41 blocks the JAK-STAT
signaling pathway by suppressing STAT1 expression. Thus, this
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virus has the ability to deal with the antiviral condition resulting
from the JAK-STAT signaling pathway (Ma et al., 2019). On the
other hand, Ma et al. (2020) reported that Bta-miR-2890, by
directly targeting BoHV-1 UL41, increases STAT1 and JAK1
expression and, thus, opens the JAK-STAT signaling pathway
as well as prevent viral replication. This suggests the importance
of JAK-STAT signaling pathway during viral infections.

The PI3K–Akt signaling pathway is a key pathway in all
mammalian cells that is involved in several processes, such as
cell growth, migration, proliferation, and metabolism as well as
the role of this pathway in regulatory T-cell development and
memory CD8 T-cell differentiation, has been reported (Kim and
Suresh, 2013; Pompura and Dominguez-Villar, 2018). It has also
been suggested that some genes in the PI3K–Akt signaling
pathway may play an important role in eliciting downstream
cascades in lung lesions during BRD (Behura et al., 2017). Tumor
necrosis factor (TNF) is a proinflammatory cytokine that is
mainly secreted by macrophages and alerts other cells during
the inflammatory response. TNF is also known to be a major
regulator of the production of proinflammatory cytokines and
has been considered as a therapeutic target for the treatment of
some inflammatory diseases such as rheumatoid arthritis and
inflammatory disease (Liu, 2005; Parameswaran and Patial,
2010). The TNF signaling pathway plays an important role in
the control of inflammation, immunity, and cell survival (Rana
et al., 2019). It has been shown that one of the strategies for
bacterial survival and immunosuppression by Mycoplasma bovis
is to inhibit TNF-α and interferon-gamma production (Mulongo
et al., 2014).

Interleukin-8 is a chemokine, that is expressed in various cells
especially in macrophages. IL8 is responsible for the induction of
chemotaxis and causes guided migration of neutrophils to the site
of infection (Remick, 2005). An increase in IL8 expression has
been observed in challenges with BRSV and Mannheimia
haemolytica as well as a significant association between
increased expressions of IL8 with lung lesions. Therefore, it
has been suggested that IL8 antagonist drugs be used to
prevent inflammatory lung lesions (Caswell et al., 1998;
Malazdrewich et al., 2001; Singh et al., 2011; Redondo et al.,
2014).

In response to signaling proinflammatory cytokines and
chemokine such as IL8, neutrophils are the first cells to
migrate from the blood to the infection site (Kolaczkowska
and Kubes, 2013). These cells play an important role in killing
extracellular pathogens through phagocytosis (Nordenfelt and
Tapper, 2011; DeLeo and Allen, 2020). Neutrophil-related
biological processes and KEGG pathways in the turquoise
module included “neutrophil mediated immunity,” “neutrophil
degranulation,” “neutrophil activation involved in immune
response,” and “neutrophil extracellular trap formation.”
However, neutrophils play an important role in the
pathogenesis of BRD by destruction and damaging lung tissue
during infection (McGill and Sacco, 2020). Moreover, neutrophils
release their nuclear DNA and related proteins in the extracellular
environment through NETosis, a unique form of cell death that
leads to the formation of neutrophil extracellular traps (McGill
and Sacco, 2020). NETs trap and kill bacteria, fungi, viruses, and

parasites. In addition to their antimicrobial role, NETs can also
play a role in the pathogenesis of inflammatory diseases
(Papayannopoulos, 2018). Furthermore, evidence suggests that
NETs play a role in the host defense in response to Mannheimia
haemolytica and Histophilus somni infection (Aulik et al., 2010;
Hellenbrand et al., 2013). The findings also indicate that
Mycoplasma bovis, through its endonucleases, is able to digest
NETs and escape the immune system (Gondaira et al., 2017).
However, Cortjens et al. (2016) showed that NETs has the ability
to trap respiratory syncytial virus (RSV), but their excessive
accumulation leads to airway obstruction, which can
contribute to RSV pathogenesis (Cortjens et al., 2016).

We also identified several microbicidal mechanisms, including
“Phagocytosis,” “Fc gamma R-mediated phagocytosis,”
“Phagosome,” “Lysosome,” and “phagosome maturation” in
the turquoise module. In the immune system of multicellular
organisms, phagocytosis is a cellular process for the elimination
of pathogens and dead cell debris, and is an essential for
maintaining tissue homeostasis (Flannagan et al., 2012). Fc
gamma R (FcγR) receptors are glycoproteins found on the
surface of immune cells such as neutrophils, macrophages, and
natural killer cells that stimulate phagocytosis through antigen-
binding IgG antibodies (Rosales, 2017). Phagocytosis involves
several stages. After ingestion of pathogens or foreign particles by
immune cells, the ingested particles become specialized vacuoles
and distinct organelles called phagosomes. During the stage called
phagosome maturation, the lysosome fuses with the phagosome
membrane, and its contents are poured into the phagosome, and
an organelle called phagolysosome is formed. This newly formed
organelle contains enzymes that can break down the digested
particles (Canton, 2014; Levin et al., 2016; Uribe-Querol and
Rosales, 2020). Because of the importance of phagocytosis
pathway in inducing an innate and adaptive immune response,
pathogens use specific strategies to control and suppress
phagocytes (Srikumaran et al., 2007). Mannheimia haemolytica
and Pasteurella multocida use their toxins and extracellular
components to kill phagocytes, thus preventing phagocytosis
and subsequently releasing the reactive oxygen metabolite
contents of the phagocytes, which exacerbates pulmonary
inflammation (CUSACK et al., 2003). Research also shows that
Mycoplasma bovis has the ability to survive long-term in necrotic
lung lesions and phagocytic cells by overcoming phagocytosis
(Kleinschmidt et al., 2013). Moreover, virulent isolates of
Histophilus somni have the ability to survive in phagocytic
cells by interfering with phagosome–lysosome maturation (Pan
et al., 2018). In addition to the bacterial agents of the BRDC,
viruses such as BVDV, PIV3, and BRSV have the ability to inhibit
phagocytosis by macrophages (Bell et al., 2021).

The turquoise module also identified some of the major
pathways associated with programmed cell death, including
“Apoptosis” and “Necroptosis.” Apoptosis is the first type of
programmed cell death that clears cells infected with pathogens
(especially viruses) to prevent them from replication and spread
(Amarante-Mendes et al., 2018). For example, a previous study
showed that apoptosis of BRSV-infected epithelial bronchial cells
is an effective way to clear the virus (Viuff et al., 2002) as well as it
has been suggested that apoptosis may play a role in modulating
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airway inflammation during BRSV infection (Cristina et al.,
2001). On the other hand, the BHV-1 uses the products of the
LR gene to prevent apoptosis of infected cells and can therefore
proliferate sufficiently in infected cells (Geiser and Jones, 2005;
Srikumaran et al., 2007). Moreover, BHV-1 inhibits the efficient
immune response by infecting CD41+ T-cells and inducing
apoptosis in them (Jones and Chowdhury, 2010). Bacterial
pathogens also have the ability to survive and manipulate
intracellular mechanisms of host cells to escape the immune
system. A recent study showed that Mycoplasma bovis has the
ability to inhibit the apoptosis of infected bovine alveolar
macrophages by increasing the expression of several anti-
apoptotic genes (Maina et al., 2019). Necroptosis is a
programmed form of inflammatory cell death (necrosis) that
actively causes cell death of infected cells or the propagation of
danger signals to stimulate the immune system. However,
uncontrolled necroptosis may lead to the pathogenesis of
inflammatory diseases. For instance, the findings show that
RSV, through the activation of necroptosis, lead to
neutrophilic cell death (Muraro et al., 2018). Bedient et al.
(2020) showed that the RSV causes cell death of alveolar
macrophages through various cell death mechanisms such as
necroptosis, pyroptosis, and apoptosis, which can contribute to
the pathogenesis of the RSV and exacerbate inflammation in the
lungs (Bedient et al., 2020).

Interestingly, we identified the terms “regulation of nitric
oxide biosynthetic process,” “positive regulation of nitric oxide
metabolic process,” and “positive regulation of nitric oxide
biosynthetic process” in the turquoise module. Nitric oxide
(NO) is a natural molecule with antimicrobial properties that
is produced by most mammalian cells (Crepieux et al., 2016).
Several studies have shown the antibacterial and antiviral
properties of NO during BRD, and it has also been
demonstrated that NO therapy, as a non-antibiotic-based
treatment can be a safe and effective method to control BRD
(Regev-Shoshani et al., 2013; Regev-Shoshani et al., 2014).
Another study demonstrated that NO reduced levels of
proinflammatory cytokines, such as IL-1β and TNF, thereby
limiting inflammation during BRD. On the other hand, NO
increases the ability of the host to detect pathogens by
increasing the expression of TLR4 gene (Sheridan et al., 2016).

We also identified some pathways in the turquoise module
associated with the adaptive immune system such as “B-cell
receptor signaling pathway”, “positive regulation of activated
T-cell proliferation,” “Th1/Th2 cell differentiation,” and “Th17
cell differentiation.” B cells are vital cells for the humoral
response, and research shows that the B-cell receptor signaling
pathway is one of the most important pathways in the immune
system of animals to respond to infection with viral agents of
BRDC (Tizioto et al., 2015). T cells are essential cells for cell-
mediated immunity and include several subtypes that play a
variety of roles, including killing virus-infected cells, secreting
interferon-gamma, and other cytokines (Platt et al., 2006). The
importance and application of helper and cytotoxic T cells in viral
clearance in the first and second challenges with BVDV have been
investigated. The results show that these T cells in the second
challenge with BVDV have the ability to quickly clear the virus

(Silflow et al., 2005). Furthermore, T cells have been reported to
be critical for the response to BRSV infection (Gaddum et al.,
2003).

Intramodular hub genes (especially hub–hub genes) are highly
correlated with the biological function of the module. In this
regard, hub–hub genes identified in the turquoise module, such as
FN1, MAPK14, PSEN1 (Neupane et al., 2018), IL-1β, IL-18
(Taylor et al., 2014), MYD88 (Dubbert et al., 2013), SOD2
(Hofstetter and Sacco, 2020), CTSD (Gray et al., 2019), JAK2
(Amat et al., 2019; Chao et al., 2019), CD68 (Lee et al., 2009), and
TLR2 (Mariotti et al., 2009; Tizioto et al., 2015) have been
reported as important genes in previous BRD studies. SOCS3
hub–hub gene was another key gene identified in the turquoise
module. This gene blocks both the production and signal
transduction of type I and II interferons by disrupting the
JAK/STAT signaling pathway (Akhtar and Benveniste, 2011).
Several studies have shown that viral agents of BRDC disrupt
interferon-dependent antiviral responses in the host by inducing
the expression of SOCS1 and SOCS3 and subsequently provide a
suitable condition for their survival and proliferation (Akhtar and
Benveniste, 2011; Ye et al., 2015; Zheng et al., 2015; Alkheraif
et al., 2017; Salem et al., 2019). These findings indicate the
importance of the SOCS3 gene as a therapeutic target for
infections caused by BRDC viral agents.

Moreover, other important hub–hub genes in the turquoise
module included IL10 and TLR4. Interleukin-10 (IL10) is an anti-
inflammatory cytokine that inhibits inflammatory responses
initiated by proinflammatory cytokines and subsequently
regulates inflammation (Pestka et al., 2004). Therefore, some
studies show that increasing the expression of IL10 regulates the
inflammatory response during BRD (Molina et al., 2014; Gondaira
et al., 2015; Rodríguez et al., 2015). On the other hand, Risalde et al.
(2011) showed that BHV-1 secondary infection in BVDV-infected
cows suppressed IL10 expression, which leads to exacerbate the
inflammatory response and more severe clinical lesions (Risalde
et al., 2011). Furthermore, failure in upregulation of IL10
expression level due to weaning and transport is associated with
a doubling of BRDmortality (Hodgson et al., 2005). TLR4 is one of
themost important cell surface PRRs that induces an inflammatory
response in response to lipopolysaccharide (LPS) derived from
Gram-negative bacteria by activation of different signaling
pathways (Ciesielska et al., 2021). However, overexpression and
abnormal activation of TLR4 leads to chronic and acute
inflammatory disorders such as endotoxemia and sepsis in
human and equine (Werners and Bryant, 2012; Kuzmich et al.,
2017). Also, due to the key role that TLR4 plays in activating the
signaling pathways that lead to the secretion of proinflammatory
cytokine, this gene has been suggested as a very attractive
therapeutic target for inflammatory diseases, such as sepsis in
human and equine (Werners and Bryant, 2012; Kuzmich et al.,
2017). Moreover, a significant correlation has been reported
between increased TLR4 expression level and increased
mortality during BRD (Hodgson et al., 2012). Therefore, these
results indicate a key role for IL10 and TLR4 during BRD that can
be further explored as important targets.

Among the detected TFs, STAT3 is one of the most important
hub–hub TFs identified in the turquoise module. Signal
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transducer and activator of transcription 3 (STAT3) is a
transcription factor belonging to the STAT protein family that
regulates various biological activities such as apoptosis,
angiogenesis, differentiation, cell proliferation, inflammation,
and the immune response (Furtek et al., 2016). In different
studies, STAT3 has been suggested as a key gene involved in
various bovine diseases (Jaslow et al., 2018; Villaseñor et al., 2019;
Bakhtiarizadeh et al., 2020). Moreover, several transcriptomic
studies have identified STAT3 among the top DEGs in response to
infection with agents of BRDC, indicating its important role
during BRD (Wu et al., 2017; Chao et al., 2019).

Several functional terms identified in the purple module
included “Natural killer cell-mediated cytotoxicity,” “T-cell
receptor signaling pathway,” “cellular defense response,”
“Chemokine signaling pathway,” and “T-cell activation.”
Interestingly, in addition to the antiviral activity of T cells that
have been discussed above, the T-cell receptor signaling pathway
has also been observed in challenges with Mannheimia
haemolytica, which indicates the importance and participation
of T cells in responding to different types of pathogens (Tizioto
et al., 2015). In agreement with the previous studies, PRF1
(Johnston et al., 2021a), LCK (Smirnova et al., 2009), NCR1
(Osman and Griebel, 2017), CCL5 (N’jai et al., 2013), CD8A
(Knapek et al., 2020; Lebedev et al., 2021), CCR8 (Lopez et al.,
2020), CX3CR1 (Salem et al., 2019), and TBX21 hub–hub TF
(Johnston et al., 2019) were identified as highly connected genes
in the purple module and have been reported as immune-related
genes during BRD. For instance, the PRF1 hub–hub gene is an
important gene that encodes the perforin-1, which is present in
cytotoxic T-lymphocytes (CTLs) and natural killer cells (NK
cells) and is involved in cytolysis and the regulation of the
immune system. This gene has been suggested by Johnston
et al. (2021a) as one of the biomarkers for diagnosis of
subclinical BRD from blood samples.

Module Preservation Analysis
Module preservation analysis and functional enrichment showed
that six modules (blue, greenyellow, purple, red, salmon, and
yellow) first changed their connectivity pattern and network
density due to BRD and second, were biologically related to
the BRD development. As expected, highly preserved and
semipreserved modules were more active in basic and general
cellular activities such as “Ribosome,” “rRNA processing,” “DNA
packaging,” “peptide biosynthetic process,” and “translation.”
Therefore, based on highly preserved and semipreserved
modules, it is not possible to explain the molecular
mechanisms involved in BRD. On the other hand, the six
mentioned nonpreserved modules were closely related to the
immune system and the pathogenesis of BRD.

Functional terms in the blue module were mostly related to the
innate immune system, including “lysosome,” “phagosome,” “Fc
gamma R-mediated phagocytosis,” “leukocyte transendothelial
migration,” “Toll-like receptor signaling pathway,” “Chemokine
signaling pathway,” “neutrophil activation involved in immune
response,” “activation of MAPK activity,” and “positive
regulation of NF-kappaB import into nucleus.” The leukocyte
transendothelial migration is one of the important steps of the

innate immune system in triggering the inflammatory immune
response and the migration of the first immune response cells
such as neutrophils to the sites of infection (Getter et al., 2019;
Bakhtiarizadeh et al., 2020) which that chemokines control
cellular responses at inflammatory sites through this pathway
(Krishnan et al., 2004). In agreement with similar BRD studies
(Tizioto et al., 2015; Behura et al., 2017; Johnston et al., 2021c;
Lebedev et al., 2021), the leukocyte transendothelial migration
was identified as one of the important pathways of the immune
system in the blue module. Additionally, some of the hub–hub
genes identified in the blue module have also been reported in the
previous BRD studies, including TLR4 (Scott et al., 2021),ANXA5
(Mitchell et al., 2008), C3, PSEN1 (Neupane et al., 2018), CTSB,
CD59, FTL (Nilson et al., 2020), CAT (Joshi et al., 2018), TLR7,
CD86 (Palomares et al., 2014), ATG7 (Lipkin et al., 2016), and
IFNAR1 (Amat et al., 2019). For example, stresses from weaning,
transport, and commingling reduced the expression level of the
ANXA5 (hub–hub gene) and, thus, lead to an increase in
apoptotic cells in the lungs or epithelial lining fluid, which can
increase the susceptibility of cattle to a primary infection
(Mitchell et al., 2008).

Coexpressed genes in the greenyellow module were enriched
in KEGG pathways and biological process such as “T-cell receptor
signaling pathway,” “focal adhesion,” “leukocyte transendothelial
migration,” and “regulation of cell motility.” These pathways have
also been observed in previous transcriptomic studies in response
to infection with the agents of BRDC (Tizioto et al., 2015; Behura
et al., 2017). Among the hub–hub genes identified in the
greenyellow module, the PTEN gene plays an important role
in the pathogenesis of BRD. Research has shown thatMicroRNA-
26b induces the NF-kB signaling pathway by directly targeting
PTEN, which exacerbates inflammation in the lungs during
infection with Gram-negative bacteria (Zhang et al., 2015).
Moreover, other hub–hub genes in the greenyellow module
including ADAM10 (Neupane et al., 2018), MGAT4A
(Johnston et al., 2021b), and GSK3B (Chao et al., 2019) were
identified as important genes involved in BRD.

Functional enrichment analysis revealed that the purple
module was enriched in the “NOD-like receptor signaling
pathway,” “C-type lectin receptor signaling pathway,” “RIG-I-
like receptor signaling pathway,” and “necroptosis” KEGG
pathways as well as “inflammatory response,” “type I
interferon signaling pathway,” “positive regulation of type I
interferon production,” “interferon-gamma-mediated signaling
pathway,” and “cellular response to interferon-gamma” biological
processes. RIG-I-like receptors are important cytoplasmic PRRs
that detect intracellular viruses through their genomic RNA
(Takeuchi and Akira, 2010). Recognition of PAMPs by RIG-I-
like receptors initiates the RIG-I-like receptor signaling pathway,
which activatesNF-κB and IRF3/IRF7 transcription factors which
subsequently lead to the production of proinflammatory
cytokines and type I interferons (Kumar et al., 2011). Type I
(IFN-α and IFN-β) and II (IFN-γ) interferons are cytokines that
are the first line of defense against viral infections that play a key
role in the development of antiviral states during the immune
response (Platanias, 2005). Type I interferons are polypeptides
that are secreted from virus-infected cells and activate

Frontiers in Genetics | www.frontiersin.org October 2021 | Volume 12 | Article 75383919

Hasankhani et al. WGCNA on Bovine Respiratory Disease

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


antimicrobial states in infected cells and healthy neighboring cells
to prevent the proliferation and growth of infectious agents,
especially viruses. They also promote antigen presentation,
increase the activity of natural killer cells, and activate the
adaptive immune system (Ivashkiv and Donlin, 2014).
Furthermore, type II interferon, whose major producers
include natural killer cells, T cells, macrophages, dendritic
cells, and B cells play a key role in regulating many protective
functions such as inducing antiviral states, enhancing
antimicrobial functions, increasing leukocyte trafficking, effect
on cell proliferation, and apoptosis (Kak et al., 2018).

Several recent studies have shown that the type I interferon
signaling pathway has been identified as a key pathway in cows
with BRD atfeedlot entry, which indicates that animals show
antiviral responses at the entry stage (Sun et al., 2020; Johnston
et al., 2021a; Scott et al., 2021). Interestingly, some of the
important hub–hub genes, which are involved in anti-viral
interferon response were identified in the purple module, such
as IFI6, ISG15, MX1, OAS2, IFIH1, DDX58, DHX58, RSAD2,
IFI44, IFI44L, EIF2AK2, ISG20, MX2, IFIT5, IFITM3, OAS1Y,
and HERC5, have been suggested by these studies as potential
biomarkers for diagnostic and prediction of subclinical BRD at
early stage of infection (Sun et al., 2020; Johnston et al., 2021a;
Scott et al., 2021). Additionally, some of the key hub–hub TFs
that regulate the expression of coexpressed genes in this module,
and play critical roles in interferon antiviral responses during
BRD, were included IRF9, STAT1, STAT2 (Sun et al., 2020), and
IRF7 (Johnston et al., 2019). Type I interferons activate the IFN-
stimulated gene factor 3 (ISGF3) complex during JAK/STAT
signaling pathway. This complex consists of three transcription
factors STAT1, STAT2, and IFN-regulatory factor 9 (IRF9),
which induce the expression of antiviral genes (Ivashkiv and
Donlin, 2014). In addition to type I interferons (IFN-α and IFN-
β), type II interferons (IFN-γ) also cause the formation of
STAT1-STAT1 homodimers, which, following
phosphorylation and after being transferred to the nucleus,
induce the expression of antiviral genes (Platanias, 2005; Kak
et al., 2018). Besides, several studies have demonstrated that
cytoplasmic localized infected cell protein 0 (bICP0) encoded by
the BHV-1 (a viral agent of BRDC), through interaction with
IRF7, disrupts the activity of the IFN-β promoter (Saira et al.,
2007; da Silva et al., 2011; Jones, 2019). Moreover, one study
demonstrated that BPIV-3 had a negative effect on the JAK/
STAT signaling pathway by reducing phosphorylation of STAT1,
thereby inhibiting the production of antiviral molecules (Eberle
et al., 2016). These explain why the STAT1, STAT2, IRF9, and
IRF7 transcription factors are highlighted in this module as very
important regulators. Other members of the purple module,
including USP18, OAS1X, CMPK2, GBP4 (Nilson et al., 2020),
IFI35 (Sun et al., 2020), PARP14 (Oguejiofor et al., 2015), RTP4
(Johnston et al., 2019), and TRIM21 (Quick et al., 2020), have
also been observed in different BRD studies that may play an
important role in the immune system in response to BRDC
agents.

In agreement with the previous studies, functional terms
including “VEGF signaling pathway,” “T-cell receptor
signaling pathway” (Tizioto et al., 2015), and “C-type

lectin receptor signaling pathway” as well as hub–hub
genes including LCK (Smirnova et al., 2009), TLR3 (Marin
et al., 2016), TIA1 (Johnston et al., 2021b), TNF (El-Deeb
et al., 2020), and STAT5A hub–hub TF (Lin et al., 2015)
demonstrate the importance of the red module during BRD.
Furthermore, the salmon module was mainly enriched in
“cellular defense response,” “regulation of immune
response,” “leukocyte cell–cell adhesion,” and “natural
killer cell-mediated cytotoxicity.” Recent studies have
demonstrated that some of the hub–hub genes in the
salmon module, such as CCR5 (Salem et al., 2019), CCR8
(Amat et al., 2019; Lopez et al., 2020), CX3CR1 (Scott et al.,
2021), ITGAL, IL12RB2 (Neupane et al., 2018), NCR1 (Osman
and Griebel, 2017), CCL5 (N’jai et al., 2013), and PRF1
(Johnston et al., 2021a) tend to participate in BRD.
Additionally, GZMB gene, which plays a major role in
stimulating cytotoxic T-cell responses and limiting virus
replication in the host (Jiminez et al., 2021), was found
among hub–hub genes in the salmon module. Granzyme
B-protein, which is encoded by this gene, is an important
serine protease that is expressed in cytotoxic T-lymphocytes
(CTL) and natural killer (NK) cells and kills viral infected
cells through apoptosis (Xu et al., 2018). GZMB was the most
highly upregulated gene in the bronchial lymph node in
response to BRSV infection, indicating a close relationship
between this gene and the response to viral infection
(Johnston et al., 2019). This gene has also been found to
be among the DEGs with the highest expression in animals
that are resistant to BRD (Scott et al., 2020). The GZMB gene
is likely to play an important role in the host defense against
BRSV infection and maybe other BRDC viral agents, and
changes in this gene are critical for BRD resistance and
susceptibility (Johnston et al., 2019), as shown, the
presence of polymorphisms in the GZMB gene in mice
caused the cytotoxic T cells to lose their ability to kill viral
infected cells (Andoniou et al., 2014).

The yellow module showed that its genes were enriched in
some important biological processes and KEGG pathways
associated with BRD such as “neutrophil activation involved in
immune response,” “regulation of inflammatory response,”
“positive regulation of T-cell proliferation,” “MAPK signaling
pathway,” “NF-kappa B signaling pathway,” “apoptosis,” “TNF
signaling pathway,” “JAK-STAT signaling pathway,” and
“Cytokine-cytokine receptor interaction.” Furthermore,
examination of the relationship between the hub–hub genes of
this module and BRD showed that many of these genes, such as
IL1B (Behura et al., 2017), IL15 (Leach et al., 2012; Amat et al.,
2019), CD68 (Buchenau et al., 2010; Hermeyer et al., 2011),
SOCS3 (Ye et al., 2015; Zheng et al., 2015), NFKBIA, RAF1,
SGK1 (Chao et al., 2019), ANXA1 (Mitchell et al., 2008), MYD88
(Dubbert et al., 2013), FAS (Xu et al., 2012), CCR1 (Lindholm-
Perry et al., 2018), IFNAR2 (Schlender et al., 2000), NFAM1,
NUDT3 (Johnston et al., 2021b), and SLC2A3 (N’jai et al., 2013)
as well as DDIT3 hub–hub TF (Wang S. et al., 2020) have
important effects on the interaction between the host and the
pathogen. For example, stressful stimuli directly increase the
expression level of the SGK1 (hub–hub gene), and
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consequently an upregulation in the expression of this gene leads
to stimulate BoHV-1 and HSV-1 replication (Kook and Jones,
2016; Zhu et al., 2017). Therefore, the use of SGK inhibitors may
be a suitable strategy to reduce BoHV-1 and HSV-1 replication
(Kook and Jones, 2016).

These findings demonstrate the relevance of the
mentioned modules as well as their genes, especially
hub–hub genes and TFs as important candidates in the
development of BRD, helping us to better understand the
molecular mechanisms responsible for the immune response
to BRD. Further researches are needed to more closely
examine the biological behavior and functions of these
modules and their genes during BRD.

CONCLUSION

Given that BRD is the main cause of morbidity and mortality
in beef and dairy cattle and has a potential impact on economic
losses in the livestock industry, a systems biology approach was
used to further investigate the molecular mechanisms of BRD
as well as to identify diagnosis biomarkers and therapeutic
targets for BRD. In this study by using WGCNA distinct
methods (MTRs and MP) and functional enrichment
analysis, we identified eight candidate modules that are
involved in the immune response and BRD pathogenesis. It
is noteworthy that both WGCNA methods showed a similar
ability to identify candidate modules during BRD, confirming
each other results. Integrated coexpressed hub genes of eight
candidate modules with PPI networks, allowed us to identify
hub–hub genes that act as central genes in both coexpression
and PPI networks and may be important candidates during
BRD development. In total, we identified 307 hub–hub genes
in eight candidate modules, most of which were potentially
involved in BRD. These genes along with other members of the

eight candidate modules could be important targets in the
pathogenesis of BRD for future researches. Therefore, more
research is needed to validate the hub–hub genes reported in
this study, especially those whose role in the immune system in
response to BRD is still unclear.
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