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Abstract

While some individuals age without pathological memory impair-
ments, others develop age-associated cognitive diseases. Since
changes in cognitive function develop slowly over time in these
patients, they are often diagnosed at an advanced stage of molecu-
lar pathology, a time point when causative treatments fail. Thus,
there is great need for the identification of inexpensive and minimal
invasive approaches that could be used for screening with the aim
to identify individuals at risk for cognitive decline that can then
undergo further diagnostics and eventually stratified therapies. In
this study, we use an integrative approach combining the analysis
of human data and mechanistic studies in model systems to identify
a circulating 3-microRNA signature that reflects key processes
linked to neural homeostasis and inform about cognitive status. We
furthermore provide evidence that expression changes in this signa-
ture represent multiple mechanisms deregulated in the aging and
diseased brain and are a suitable target for RNA therapeutics.
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Introduction

Impaired cognitive function is a key hallmark of age-associated

neurodegenerative diseases and is often one of the first clinical symp-

toms. However, changes in cognitive function develop slowly over time

and while some individuals develop pathological memory impairment,

others exhibit preserved cognitive function until old age, a phenom-

enon that has been referred to as cognitive reserve (Stern, 2012). As a

result, pathological memory decline is often only diagnosed at an

already advanced stage of molecular pathology. Bona fide examples are

age-associated neurodegenerative diseases such as Alzheimer’s disease

(AD), the most common form of dementia in the elderly. The failure to

detect risk individuals at an early stage of molecular pathology is

considered to be a major reason why, for example, causative treat-

ments for AD have so far failed in clinical trials (Schneider et al, 2014;

Abbott & Dolgin, 2016). Thus, there is an urgent need for molecular
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markers that could inform about subtle changes in cognitive status,

with the aim to detect individuals that are at risk for developing demen-

tia to allow for earlier interventions. In order to be applicable in the

context of routine check-up screenings in a primary care setting, such

markers need to be comparatively inexpensive, easy to screen, and

predictive as to the identification of the individuals at risk. Such indi-

viduals could then be subjected to further diagnostics viamore invasive

and time-consuming examinations such as the analysis of cere-

brospinal fluid (CSF) as well as functional and structural brain imaging

(Molinuevo et al, 2018). Recent data suggest that biomarkers

reflecting, for example, specific pathologies linked to neurodegenera-

tive conditions might also be measured in blood (Olsson et al, 2016;

Blennow, 2017; Jack et al, 2018; Li & Mielke, 2019), and indeed, blood

would be a suitable body fluid for screening approaches. However,

age-associated cognitive diseases are multifactorial. Thus, in addition

tomarker for specific pathologies, there is an additional need formolec-

ular biomarker that could inform about the variable combinations of

environmental and genetic factors that affect cognitive reserve and the

progression to age-associated cognitive decline. A recent line of

research indicates that circulatingmicroRNAsmight serve as diagnostic

biomarker for various disorders (Witwer, 2015), including brain

diseases (Rao et al, 2013; Galimberti et al, 2014; Hill & Lukiw, 2016;

Kumar et al, 2017). MicroRNAs are 19–22 nucleotide long RNA mole-

cules regulating protein homeostasis via binding to a target mRNA,

thereby causing its degradation or inhibition of translation (Gurtan &

Sharp, 2013). MicroRNAs are particularly interesting as potential

biomarker since changes in a few microRNAs can reflect complex

alterations in cellular homeostasis and could therefore indicate the

presence of multiple pathologies (Zampetaki et al, 2012; Fischer,

2014a; Condrat et al, 2020). Moreover, microRNAs are extremely

stable in cell-free environments; are resistant to thaw–freeze cycles

(Mitchell et al, 2008; Zampetaki et al, 2012; Rao et al, 2013); and

have been implicated with learning and memory function, dementia,

and AD (H�ebert et al, 2008; Zovoilis et al, 2011; Aksoy-Aksel &

Schratt, 2014; Jaber et al, 2019). In addition, RNA therapeutics is

emerging as a promising approach to treat CNS diseases (Roovers et

al, 2018) and there is evidence that microRNAs may be useful targets

for stratified RNA-based therapies (Zovoilis et al, 2011; Banzhaf-

Strathmann et al, 2014; Salta & De Strooper, 2017; Hanna et al,

2019). Despite these promising data, the identification of a microRNA

panel that could inform about cognitive status, help to detect patients

at risk for developing cognitive impairment, and would serve as a

drug target has been challenging. In this study, we combine the anal-

ysis of model systems and human cohorts to identify a circulating 3-

microRNA signature that informs about differences in cognitive func-

tion and could help to identify patients at risk for developing demen-

tia. We furthermore provide evidence that the signature informs

about multiple patho-mechanisms linked to cognitive decline and is

a suitable target for RNA therapeutics.

Results

Identification of circulating microRNAs linked to cognitive
function in healthy humans

A valuable approach to identify molecular biomarker is the compar-

ison of healthy individuals and patients. The fact that this

comparison depends on prior measures used to make a diagnosis

could be a particular problem to identify people at risk of age-

associated cognitive diseases, since molecular changes often occur

years before clinical symptoms manifest and the diagnosis is made

(Stern, 2009; Beason-Held et al, 2013; Sperling et al, 2014). There-

fore, we decided to use an alternative approach, aiming to identify

molecular marker that correlates with subtle differences in the

cognitive status in healthy individuals. As a starting point, we took

advantage of the fact that cognitive abilities vary in young healthy

individuals (Deary et al, 2009). We hypothesized that microRNAs

linked to inter-individual differences in cognition among healthy

individuals might be a useful starting point to identify molecular

marker for cognitive function, with the aim to subsequently refine

candidate microRNAs via different filtering approaches including

the analysis of suitable model systems and patients (Fig EV1). In a

pilot experiment, we compared various methods of blood collection

and RNA isolation followed by small RNA sequencing. We

concluded that the collection of blood via PAXgene tubes (Qiagen)

is a suitable approach that also allows the comparable analysis of

human and mouse blood and thus would benefit the cross-

correlation of human data and mechanistic studies performed in

disease models (Appendix Fig S1). Since previous studies suggest

that specific cognitive abilities start to decline in humans already in

the late 30s (Schaie, 1993; Park et al, 2002), we recruited young

healthy individuals (age: 25.95 � 5.1 years, mean � SD, n = 132;

Dataset EV1) that were subjected to a battery of six different cogni-

tive tests (Budde et al, 2018). Total blood was collected via Pax

gene tubes from all participants at the time of memory testing, and

small RNAome sequencing was conducted (Fig 1A). To identify

microRNAs that correlate with cognition, we first calculated for each

of the 132 individuals a composite cognitive score (weighted cogni-

tive performance) based on factor analysis which confirmed the

expected variability in cognitive function (Fig 1B). Next, after

adjusting sequencing data for sex effect, we performed a weighted

microRNA co-expression analysis to identify expression modules.

We then asked whether any of these microRNA modules correlate

with the weighted cognitive performance and detected 4 modules,

of which 3 modules were significantly linked to cognition (Fig 1C,

Appendix Fig S2). The turquoise and blue modules were negatively

correlated with cognitive performance while the brown module

showed a positive correlation with cognition (Fig 1C, Dataset EV2).

Of note, the expression of these modules did not correlate to

number of years in school or status for total education (e.g., high

school education + professional degree) (Fig 1C). Next, we

performed a KEGG-pathway analysis for the confirmed mRNA targets

of the 3-microRNA modules (Dataset EV3). While care has to be taken

when interpreting such data, we reasoned that such analysis would be

a suitable first approach to help us design further experiments, with

the aim to eventually define more specific candidate microRNAs. We

selected the top 30 significant pathways (adjusted P-value < 0.05)

from each individual cluster and then asked whether these pathways

would also be detected within the other clusters. When considering

the common pathways, we identified 23 highly significant pathways

that were detected across all 3 clusters (Fig 1D, Dataset EV3). We

noticed that many of these pathways reflect biological functions linked

to age-associated memory impairment such as the mTOR signaling

(Heras-Sandoval et al, 2011), stem cell function (Oh et al, 2014), the

AGE-RAGE pathway (Frimat et al, 2017), MAPK signaling
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Figure 1. Circulating microRNA expression levels correlate with cognitive function in healthy humans.

A Experimental approach for the detection of blood microRNAs that correlate with memory function in healthy humans. This cohort includes 132 healthy and young
individuals (74 males and 58 females, age: 25.95 � 5.1 years). Participants took part in cognitive tests and donated blood samples (PAXgene tubes).

B Weighted cognitive score of the 132 individuals shows the expected variability. Bar and error bars indicate mean � SD.
C MicroRNAs having at least 5 reads in 50% of the samples were considered for downstream co-expression analysis. Co-expression analysis revealed 3 microRNA

clusters that were significantly linked to weighted cognitive performance. Number of microRNAs in each module is given in parentheses next to module name. Co-
expression modules are represented in rows, while each column refers to a phenotypic trait. Each cell contains the corresponding correlation coefficient and P-value
(denoted inside parentheses). Color code represents Pearson’s correlation. Expressions of the modules are not correlated with sex, number of years at school, or status
of total education.

D The analysis of the experimentally validated mRNA targets of the microRNAs belonging to 3 clusters identified in (C). Downstream analyses on those genes reveal that
they control pathways related to aging and age-related functions known to play a role in cognition. Venn diagram displays 23 of the top 30 significant pathways are
common among three modules. Dot plot represents the top 23 common significant pathways across three modules. Size of the dot represents number of genes
belonging to each pathway term while the color represents the statistical significance.
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(Huentelman et al, 2018), or immune-related functions such as TNF-

alpha signaling (Lindbergh et al, 2020). This observation is in line

with the view that aging is the major risk factor for cognitive decline

and dementia. Moreover, since accelerated or aberrant brain aging

has been discussed as a process linked to dementia (Franceschi et al,

2018), our observation also hints to the possibility that even in young

and healthy individuals, differences in cognitive function might be

mechanistically linked to subtle changes in molecular processes asso-

ciated with the aging process. On the basis of this hypothesis, we

reasoned that cognitive aging could be a bona fide experimental

approach to further filter the detected microRNAs for molecular

biomarker candidates that reflect cognitive status.

Identification of circulating microRNAs in longitudinal mouse
model for age-associated memory decline

To further filter the microRNAs within the clusters, we wanted to

employ relevant model system that would allow us to study the

blood and brain. Although no animal model can fully recapitulate

cognitive diseases in humans, age-associated memory decline is a

well-established and highly reproducible phenotype observed in

laboratory rodents and in humans and affects similar brain regions

such as the hippocampus (Wolf et al, 2001; Peleg et al, 2010; Fjell et

al, 2014; Duzel et al, 2016; Dicks et al, 2019). Moreover, our pilot

data showed that the highly expressed circulating microRNAs

common in mice and humans are comparable in expression and that

we can reliably measure circulating microRNAs in living mice (see

Appendix Fig S1). Thus, we decided to employ mice as a model for

age-associated memory decline for our further analysis, since this

would also allow us to perform longitudinal and eventually mecha-

nistic experiments. We reasoned that the subsequent comparison of

human and experimental data from aging mice could help to further

filter the list of microRNAs for potential molecular biomarkers of

cognitive status. To study cognition in mice, we employed the

Morris water maze paradigm, which is a well-established test for

spatial reference memory and furthermore enables the sensitive and

repeatable measure of several comparable cognitive domains in

mice and in humans (Havas et al, 2011; Illouz et al, 2016; Lacz�o et

al, 2017). In cross-sectional studies, impairment of spatial reference

memory in mice can be detected at 16 months of age when

compared to 3-month-old mice, while the comparison of 3- versus

12-month-old mice did not reveal differences among age-groups

(Peleg et al, 2010; Stilling et al, 2014). Thus, we hypothesized that

analyzing mice from 12 until 16.5 months of age should allow us to

detect cognitive decline in a longitudinal setting. To avoid any effect

associated with the first exposure to the water maze paradigm, 12-

month-old mice were habituated to the training procedure. Subse-

quently, all mice were subjected to water maze training followed by

a memory test and blood collection every 1.5 months (Fig 2A).

Importantly, the longitudinal collection of blood from the orbital

sinus of mice did not affect vision in the water maze paradigm,

which is a pre-requisite to perform the test (Appendix Fig S3). We

also collected blood in a group of aging mice that were not subjected

to memory training in order to control for effects that the training

may have on the circulating microRNAome (Appendix Fig S4A).

The escape latency during the training procedure—a common

measure of spatial learning ability—was significantly impaired

when comparing mice at 16.5 months of age to their performance at

13.5 or 15 months of age (Fig 2B). For a more sensitive analysis, we

employed a modified version of the MUST-C algorithm to measure

the different spatial strategies that represent hippocampus-

dependent and cognitively demanding as well as hippocampus-

▸Figure 2. Identification of circulating microRNAs informative about memory decline in mice.

A Experimental design of the water maze experiment. At 12 months of age, male mice were subjected to the water maze training protocol in order to habituate the
animals to the procedure. Subsequently, mice were subjected to water maze training followed by a probe test at 13.5, 15, and 16.5 months of age. The platform
position was altered during each training procedure. Blood was collected upon completion of each water maze procedure. A visual cued test was performed after the
first and after the last blood collection when mice were 12 and 16.5 months of age, respectively.

B Escape latency during water maze training when mice were 13.5, 15, or 16.5 months of age (n = 10 each group). Two-way ANOVA followed by Tukey´s multiple
comparisons test revealed significant effects of training trials (P-value < 0.0001) and age (***P-value 0.0004) on the performance. On days 1 and 2, there was a
significant (P-value < 0.05) difference between mice at 13.5 versus 16.5 months and 15 versus 16.5 months of age (n = 10 each group). On the 5th day of training,
there was a significant difference observed between 15 and 16.5 months of age. Density plot (Right) shows the occupancy pattern of mice at different time points of
aging. Occupancy signal on the platform was the least at 16.5 months, suggesting mice at the given age failed to locate the platform.

C Analysis of the different search strategies during the water training sessions. Note that especially at 16.5 months of age mice adopt hippocampal independent search
strategies indicative of impaired cognitive function.

D The cumulative cognitive score calculated for each day on the basis of hippocampal-dependent strategies was significantly impaired when comparing mice at
16.5 months of age to their performance at 15 or 13.5 months of age. Data are normalized to 13.5-month group (ordinary one-way ANOVA, Tukey`s multiple
comparison test). N = 10 mice/group, **P < 0.01.

E Heat map showing the expression pattern of 55 aging responsive microRNAs significantly deregulated during the course of aging. All data are shown in comparison
with the expression level at 12 months of age. All microRNAs having at least 100 reads in 50% of the samples were filtered prior to differential expression analysis.

F Expressions of these 55 microRNAs and cognitive performances along aging were used to identify microRNA features linked to cognition. Three independent
approaches [e.g., random forests (RF) with leave-one-out cross-validation, RF with multivariate bootstrapping, and support vector machine (SVM)] find seven
common microRNAs that explain cognitive variability assayed in the water maze test.

G Color map showing that the 7 microRNAs identified in (F) are present in the co-expression modules significantly linked to cognition in healthy humans as described
in Fig 1.

H Heat map showing the enrichment of mRNA targets of the 7 microRNAs shown in (G) with a gene set identified by GWAS studies linking genes to cognition in
healthy humans (Davies & Harris, 2018). Note that target genes of miR-181a-5p, miR-148a-3p, and miR-146a-5p are significantly overlapped in a hypergeometric test
(fold enrichment > 1.5 and FDR <0.05). *P = 0.02, **P = 0.0008, ***P = 2.267e-05.

I Gene ontology analyses of miR-181a-5p, miR-148a-3p, and miR-146a-5p predicted targets reveal top significant processes linked to neuronal function and
inflammation. Heatmap represents the top 5 significant biological processes. Color code represents adjusted P-value.

Data information: Bars and error bars indicate mean � SEM.
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independent strategies (Illouz et al, 2016). Our results indicate that

specifically between 15 and 16.5 months of age, mice adopt search

strategies indicative of impaired cognitive ability (Fig 2C). Thus,

there was a notable reduction in “direct”, “corrected”, and “short

chaining” search strategies that reflect hippocampus-dependent

cognitive functioning. On the other hand, strategies independent of

hippocampus-dependent cognitive ability such as “long chaining”,

“circling”, and “random” increased at 16.5 months of age (Fig 2C).

In line with this observation, the cognitive score, which was calcu-

lated on the basis of the different search strategies during the train-

ing procedure, was significantly reduced when comparing mice at

16.5 months to their performance at either 13.5 or 15 months of age

(Fig 2D). Similar data were obtained in the probe test to assay

memory retrieval (Appendix Fig S5). Since all mice were able to find

the platform rapidly in a visually cued test performed at 12 and

16.5 months of age (see Appendix Fig S3), and also the analysis of

swimming speed did not reveal any significant differences, these

data show that age-associated defects in spatial reference learning

can reliably be detected in mice between 13.5 and 16.5 months of

age. Next, we subjected blood-derived RNA collected from at all

time points to small RNA sequencing. The corresponding data were

filtered (microRNAs > 100 reads in 50% samples) and fit to a likeli-

hood ratio test model and adjusted for hidden confounding factors

to detect microRNAs that were differentially expressed during the

aging process using the expression at 12 months of age as a refer-

ence point.

We also controlled for microRNAs that were potentially affected

by the training procedure applying a similar analytical workflow
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(Appendix Fig S4A–C). Thereby, we detected 55 differentially

expressed circulating microRNAs during aging (Fig 2E,

Appendix Fig S4, Dataset EV4). To identify among these 55 micro-

RNAs the ones that would inform best about cognitive status and

cognitive decline, we employed the sequencing and cognitive data

to perform an unbiased multivariate microRNA feature selection.

First, we constructed a composite score from the different water

maze features using principal component analysis (PCA). To iden-

tify microRNAs that inform about memory performance, we

subjected these scores along with the expression data of the 55

microRNAs to 3 independent methods for feature selection, namely

random forest approaches using multivariate bootstrapping or

multivariate leave-one-out cross-validation (Looc) and a support

vector machine approach. Importantly, all 3 methods identified a

common 7-microRNA signature linked to age-associated memory

performance consisting of let-7b-5p, miR-181a-5p, miR-146a-5p,

miR-192-5p, miR-30a-3p, miR-148a-3p, and miR-130b-3p (Fig 2F,

Dataset EV5). These seven microRNAs were also among the age-

related differentially expressed microRNAs with high expression

(average read counts: > 100), when an alternative differential

expression analytical approach with low filtration (> 1 read in 50%

samples) was performed (Appendix Fig S4D, Dataset EV4). All 7

microRNAs were part of either the brown or blue co-expression

module that was significantly correlated to cognitive performance in

healthy humans (Fig 2G). These data suggest that the 7 microRNAs

are bona fide candidates for circulating biomarkers of cognitive

status and reserve. Encouraged by these findings, we decided to

further validate the significance of the 7 microRNAs using another

human dataset. Recent GWAS studies identified 709 genes that are

associated with general cognitive function in healthy individuals

(Marioni et al, 2018). When we asked whether target genes of any

of the 7 microRNAs would be enriched among the 709 genes linked

to cognition in humans (Dataset EV6), we observed that targets of

miR-181a-5p, miR-146a-5p, and miR-148a-3p were significantly

overrepresented (Fig 2H). Further analyses suggested that the top 5

significant biological processes affected by the predicted targets of

these 3 microRNAs (Dataset EV7) are linked to neuronal plasticity

(e.g., synapse organization, vesicle-mediated transport in synapse),

GTPase-mediated signal transduction, protein localization to cell

periphery, and the response to transforming growth factor beta

(TFG-beta) (Fig 2I, Dataset EV8). This finding suggests that the 3

microRNAs can control key processes that are linked to cognitive

function that are deregulated during age-associated cognitive

decline, including synaptic function and inflammatory processes.

Furthermore, comparing the list of predicted target genes to the

SynGO database (Koopmans et al, 2019) revealed a significant

enrichment for pre- and postsynaptic processes (Dataset EV9).

Nevertheless, care has to be taken when interpreting an analysis

based on predicted target genes. These results should therefore be

viewed as an exploratory approach to guide further experiments.

Elevated levels of the 3-microRNA signature are linked to
impaired neuronal integrity

We decided to further explore for the role of the 3 microRNAs in

cognitive function and their relevance in the predicted biological

processes. First, we tested whether the 3-microRNA signature would

indeed help to detect differences in cognitive function in our

longitudinal mouse model for age-associated memory decline.

Therefore, we devised a statistical framework to test the co-

expression of the 3 microRNAs using its eigen expression, which

represents a solid method to decompose gene expression data into a

singular value based on linear transformation (Alter et al, 2000).

The eigen expression of the 3-microRNA signature significantly

increased in aging mice between 13.5 and 15 months of age and

plateaued at 16.5 months of age (Fig 3A). Since significant learning

impairment was observed only upon 16.5 months of age (Fig 3B;

See also Fig 2), these data indicate that increased expression of the

3-microRNA signature precedes detectable memory impairment in

aging mice. The 3 microRNAs of the identified signature are also

highly expressed in the brain (Ludwig et al, 2016) and the fact that

they were also linked to brain-related processes prompted us to test

their role in the brain directly. To this end, we performed small

RNA sequencing of the hippocampal sub-regions CA1, CA3, and

dentate gyrus (DG) and the anterior cingulate cortex (ACC) isolated

from 3- and 16.5-month-old mice (Fig EV2). Similar to the data

obtained in blood samples, the expression of the 3-microRNA signa-

ture was significantly increased in the brains of cognitively impaired

16.5-month-old mice (Fig 3C, Appendix Fig S6). These data support

our hypothesis that altered blood levels of the 3 microRNAs may

inform about relevant patho-mechanisms in the brain. To investi-

gate this further, we analyzed cell type-specific expression of the

three microRNAs using primary cell cultures and found that that

miR-181a-5p is highly expressed in neurons, which is in line with its

reported role in synaptic plasticity (Saba et al, 2012; Stepniak et al,

2015) (Fig 3D). miR-148a-3p is also enriched in neurons, and its

increased expression has been associated with neurodegenerative

conditions (Wang et al, 2016; Chen et al, 2019), while miR-146a-5p

is relatively more enriched in microglia, but still expressed in

neurons (Fig 3D), which agrees with previous data reporting a role

of this microRNA in inflammatory processes (Maschmeyer et al,

2018; Mitjans et al, 2018). This expression pattern of the 3 micro-

RNAs was confirmed when we analyzed previously published small

RNA-seq datasets for corresponding cell types. Our finding that the

3 microRNAs are correlated to cognitive function in healthy humans

and increase prior to age-associated memory decline in aging mice

suggests that their elevated level might be detrimental. Thus, we

decided to test the impact of the 3 microRNAs in the relevant cell

types by increasing their levels via lipid nanoparticles containing

the corresponding mimic oligonucleotides. Based on the relative

enrichment in the different neural cells, we administered miR-181a-

5p and miR-148-3p mimics to hippocampal neuronal and miR-146a-

5p to immortalized microglia cultures and subsequently performed

RNA sequencing. We observed substantial changes in gene expres-

sion (Fig 3E). Gene ontology analysis revealed that the top signifi-

cant processes related to downregulated genes were linked to

neuronal plasticity and learning and memory in case of miR-181a-5p

and miR-148-3p mimics (Fig 3F, Dataset EV10). Increasing miR-

146a-5p levels in the microglia culture caused the downregulation of

genes linked to ncRNA processing and protein folding (Fig 3F,

Dataset EV10). When we analyzed the upregulated genes, we

observed that miR-181a-5p and miR-148-3p affected gene linked to

the extracellular matrix, while the top 5 increased biological

processes in response to elevated levels of miR-146a-5p were linked

to endoplasmic reticulum stress and metabolic functions (Dataset

EV10). Since miR-146a-5p was enriched in microglia cells, we also
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specifically analyzed upregulated stress and immune-related biologi-

cal processes. We observed several significant processes related to

cellular stress and inflammation that were increased in response to

treatment with miR-148a-3p and especially miR-146a-5p mimics

(Fig 3G). That increased level of miR-146a-5p can contribute to

inflammation-related processes was further confirmed by qPCR

showing the upregulation of the pro-inflammatory cytokines IL-

1beta, IL-6, and TNF-alpha, while the anti-inflammatory cytokine

IL-10 was decreased (Fig 3H). In sum, these data support the

hypothesis that increased levels of the 3 microRNAs represent multi-

ple mechanisms linked to a low cognitive reserve and a risk to

develop cognitive decline. To further substantialize this finding, we

compared our gene expression data to transcriptome and proteome

datasets previously linked to neurodegenerative diseases. Of course,

care has to be taken when interpreting the comparison of datasets

that have been generated via different experimental platforms. Espe-

cially, microarray studies are biased by probe design, while RNA-

seq is characterized by a wider dynamic range. Interestingly, the

genes deregulated in response to miR-146a-5p overexpression signif-

icantly overlapped with immune response genes recently reported

by eQTL analysis (Gjoneska et al, 2015) confirming a role of miR-

146a-5p in neuroinflammation (Fig 3I). To a lesser extent, this was

also true for miR-148a-3p-regulated genes, while no overlap of the

eQTL data was found for genes regulated by miR-181a-5p, which is

in line with the data linking miR-148a-3p and specifically miR-181a-

5p to neuronal processes (Fig 3I). We also compared our transcrip-

tomic findings to gene expression datasets from CK-p25 mice, a

mouse model for AD-like neurodegeneration (Fischer et al, 2005) as

well as gene expression and proteome data from human AD

patients. We observed that the genes and proteins downregulated in

AD patients strongly overlapped with the downregulated genes

observed in response to miR-148a-3p and especially miR-181a-5p

(Fig 3I). In conclusion, these data further confirm the hypothesis

that increased levels of the 3 microRNAs reflect key processes

important to neuronal and synaptic integrity that are known to be

deregulated in cognitive diseases.

To provide further evidence for this interpretation, we decided

to directly analyze the role of the 3-microRNA signature in synap-

tic organization and plasticity. Primary hippocampal mouse

cultures that contain neuronal and glia cells were treated with a

mixture of mimic oligonucleotides representing the 3-microRNA

signature (3-miR-mix). (Fig 4A). This treatment led to a signifi-

cant increase in individual miR levels (Fig EV3). We first

analyzed the number of synapses via STED microscopy to detect

colocalization of the pre- and postsynaptic marker proteins synap-

tophysin 1 (Syph1) and postsynaptic density protein 95 (PSD-95).

Delivery of the 3-miR-mix reduced the number of synapses using

2 independent quantification methods (Fig 4B). In line with this

◀ Figure 3. Expression changes in 3-miR signature reflect aberrant neuronal and immune processes.

A Eigenvalue of the 3-microRNA signature measured in the mice that performed longitudinal water maze training. Note the significantly increased expression of the
signature already at 15 months of age, suggesting that increased expression levels precede detectable cognitive impairment. Number of biological
replicates = 10/group, unpaired two-sided Wilcoxon rank test.

B Cognitive score measured in the same mice reveals cognitive decline between 15 and 16,5 months of age (P-value 0.0079). Number of biological
replicates = 10/group, unpaired two-sided Wilcoxon rank test.

C Eigenvalue showing the expression of the 3-microRNA signature in the hippocampus of 3 and cognitively impaired 16.5-month-old mice. Number of biological
replicates (3 months = 8, 16.5 months = 9), unpaired two-sided Wilcoxon rank test.

D (Top) Relative enrichment of the three microRNAs across different cell types. Quantitative expression of microRNAs in primary hippocampal neurons, primary
astrocytes, and primary microglia. miR-146a-5p is significantly enriched in microglia, while miR-148a-3p and miR-181a-5p are significantly enriched in neurons.
N = 5/group, Two-way ANOVA, Tukey’s multiple comparisons test, *P < 0.05, **P < 0.01. Bars and error bar indicate mean � SEM. (Bottom) miRNA expression in
different cell types of mouse brain stem. The data were retrieved from Hoye et al (2017).

E Overexpression of microRNAs in relevant cell types for 48 h followed by genome wide RNA-seq analysis. miR-181a-5p was overexpressed in primary hippocampal
neurons, while miR-146a-5p was overexpressed in microglia culture. Immortalized microglial cell line was used for this purpose. Given that miR-148a-3p was highly
enriched in neurons (D), primary hippocampal neurons were treated with the corresponding miR-148a-3p mimic. PCA plot shows that the mimic- and control-
treated samples cluster distinguishingly separate from one another. Volcano plot displays the genes significantly deregulated in mimic-treated samples compared
with control samples (FDR < 0.05). Red color indicates the upregulated genes while the blue color represents the genes those were downregulated.

F Gene ontology analyses for up- and downregulated genes. Panel F summarizes top significant up- and down-regulated biological processes corresponding to each
microRNA and comparison among them. Overexpression of miR-181a-5p and miR-148a-3p led to downregulation of genes related to cognition and synaptic
functions, while downregulated genes due to increased expression of miR-146a-5p represent ncRNA processing, defense response, and protein folding mechanisms.
The upregulated genes due to overexpression of these microRNAs represent several processes including extracellular matrix, endoplasmic reticulum stress.

G Comparison of increased stress and inflammatory responses related significant biological processes among microRNAs. Interestingly, miR-146a-5p overexpression in
microglia led to increased expression of inflammatory-related genes. Overexpression of both miR-146a-5p and miR-148a-3p can increase stress-related responses.
Size of the dot represents the number of genes belonging to the given process, and the color represents the P-value after multiple corrections.

H qPCR analysis confirms the overexpression of pro-inflammation-related genes (IL-1β, IL-6, TNF-alpha) due to overexpression of miR-146a-5p. Expression of anti-
inflammatory gene, IL-10 was downregulated in mimic-treated cells compared with the controls. Unpaired t-tests, two-tailed, ****P < 0.0001, ***P < 0.001,
**P < 0.01, *P < 0.05. Bars and error bar indicate mean � SEM. Number of biological replicates: 5–6/group.

I Hypergeometric overlap of the up- and downregulated genes (E) with gene sets from different datasets. We calculated enrichment of the deregulated genes relative
to those gene sets and used a Fisher’s exact test P-value after multiple adjustments to estimate the significance of the overlap. Immune-related genes based on
expression quantitative loci (eQTL) were retrieved from a previous study. RNA-seq data from CK-p25 mice at 2 and 6 weeks after induction were retrieved from
GSE65159, and up- and downregulated genes compared with littermate controls were determined after differential expression (significant genes; adjusted P-
value<0.05). Up- and downregulated transcripts in human AD patients compared with control subjects were determined by analysis of the available data
(GSE44770). Proteins those are over- and reduced-expressed in AD patients compared with controls were retrieved from a previous study. Overlap analysis for the up-
and downregulated genes due to overexpression of microRNAs was performed to those separately from the disease conditions. Human orthologs of the mouse
deregulated genes were used to perform the overlap analysis in human datasets. Color code represents fold enrichment. *FDR < 0.05, **FDR < 0.01, ***FDR < 0.001.

Data information: In the boxplots in (A, B, C), the centerline indicates the median, while the upper and lower lines represent the 75th and 25th percentiles, respectively.
The whiskers represent the smallest and largest values in the 1.5× interquartile range.
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observation, administration of the 3-miR-mix led to a significant

reduction in the number of dendritic spines (Fig 4C). A similar

reduction in dendritic spines and neuronal network activity was

observed when the microRNAs were individually overexpressed

(Fig EV3B and C). Next, we decided to test whether the observed

structural alterations would translate into altered neuronal
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Figure 4. Increased expression of 3-microRNA signature perturbs synaptic organization and neuronal activity.

A Primary hippocampal neurons were treated with a mixture of 3-miR mimic or control oligonucleotides, and follow-up analyses (imaging, electrical recordings) were
performed.

B Functional mature synapses were quantified via co-localizations of pre- (synaptophysin 1) and the postsynaptic (PSD-95) markers and compared between 3-miR-mix
and control groups. Scale bar: 10 μm. Two independent methods (SynQuant and Colocalization) were used for quantification. 3-miR-mix reduced the number of
functional synapses compared with controls (n = 24–30 images)

C Dendrite labeling and quantification. Dendritic spines were stained with Dil. Scale bar: 10 μm. Spine density and total spine length are substantially reduced in 3-
miR-mix-treated primary neurons compared to those treated with scrambled RNA (n = 49–97 images)

D Hippocampal neurons were cultured in a multielectrode array (MEA) plate equipped with sixteen electrodes. Spontaneous activity of the neurons was recorded at
every 3 h (10 min/session) for 24 h. Weighted mean firing rate, number of bursts, and network bursts are significantly decreased in neurons treated with 3-miR-mix
compared with control.

E The aberrant neuronal firing activity (weighted mean firing rate) and reduced number of bursts and network bursts were observed across the 24 h of time period.

Data information: For panels B, C, D, E, following statistical test has been applied: Unpaired t-tests, two-tailed. Bars and error bars in these plots indicate mean � SEM.
*P < 0.05, ****P < 0.0001
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network plasticity. To this end, primary hippocampal cultures

were grown on microelectrode array (MEA) plates to measure

spontaneous extracellular potentials. Cultures were treated with

the 3-miR-mix or scrambled RNA, and spontaneous activity was

recorded for 24h (every 3 h for 10 min). Administration of 3-miR-

mix led to aberrant neuronal activity. Namely, the mean firing

rate, number of bursts, and network bursts were all severely

impaired (Fig 4D), an effect that was observed across the entire

24h of recoding (Fig 4E). Taken together, these data show that

increased expression of the 3-microRNA signature impairs neural

plasticity and provides further evidence that the analysis of this

signature in blood might inform about mechanisms linked to

cognitive function.

A 3-microRNA signature informs about cognitive status

The above-described findings encouraged us to test whether the 3-

microRNA signature could help to detect alterations in cognitive

function in humans. In a first approach, we analyzed the expression

of the 3-microRNA signature in individuals of different age-groups

in a cross-sectional setting. Similar to the data obtained in mice, we

find evidence that the signature might increase in blood prior to the

detection of significant cognitive impairment (Fig EV4; Dataset

EV11). Encouraged by these findings obtained from healthy

humans, we decided to further test the performance of the 3-

microRNA signature in cognitive diseases. First, we analyzed a

previously published small RNA dataset (Kayano et al, 2016)

obtained from plasma samples that were collected from patients suf-

fering from mild cognitive impairment (MCI). We like to mention

that this dataset was generated via qPCR array technology that is

biased by probe design and has a different dynamic range when

compared to sequencing-based approaches. Since the 3 microRNAs

of our signature were detectable in this dataset, we decided to

conduct the analysis. The 3-microRNA signature was significantly

increased in MCI patients when compared to age-matched healthy

individuals (Fig 5A). To confirm this observation, we performed

small RNA sequencing from blood samples (total blood collected via

PAXgene tubes) obtained from control individuals and MCI patients

of the DELCODE study (Jessen et al, 2018; Dataset EV12). No signif-

icant variability in cognitive function between male and female was

observed in DELCODE cohort (P = 0.86) (Dataset EV12). We found

that the expression of the 3-microRNA signature was significantly

increased in MCI patients (Fig 5B). Please note that we removed

three samples from the dataset after automatic detection of outliers

based on low-quality Z-score. It turned out that these were 3 MCI

patients with 2.5 standard deviations below the average expression

of the 3-microRNA signature, and it is worth mentioned that these

individuals did not convert from MCI to AD when reanalyzed

2 years later. Interestingly, data on the CSF levels of Aβ42/40 and

phospho-Tau were available for most of the analyzed control and

MCI patients of the DELCODE study. When we compared the abil-

ity to distinguish the same control individuals from MCI patients

via our 3-microRNA signature in blood to the analysis of Aβ42/40
ratio measured in CSF, the 3-microRNA signature performed

equally good, while levels of phospho-Tau did not yet reveal signif-

icant changes (Fig EV5). Although the 3-microRNA signature

significantly differed among controls and MCI patients, the expres-

sion was rather variable at the individual level (Fig 5A and B).

Therefore, we subjected the data to an unbiased hierarchical clus-

tering analysis and observed two main clusters within the MCI

patients, representing patients with either low (low expression

cluster) or high expression level (high expression cluster) of the 3-

microRNA signature (Fig 5C). On the basis of our mouse experi-

ments, it is tempting to speculate that also in humans, individuals

with high blood levels of the 3-microRNA signature might be more

likely to undergo further cognitive decline. In line with this

hypothesis, we observed that specifically those MCI patients that

were part of the “high expression cluster” showed a significant

negative correlation of the 3-microRNA signature to cognitive func-

tion (Fig 5D). These data further support the hypothesis that high

▸Figure 5. Expression of 3-microRNA signature in human patients.

A–F All data have been adjusted for age, gender, and other latent covariates for downstream eigenvalue calculation. (A) Eigenvalue showing the increased expression of
the 3-microRNA signature in blood plasma samples of age-matched MCI (n = 23) patients compared with controls (n = 27). (B) Expression of 3-microRNA signature
is increased in PAXgene blood samples of MCI patients (n = 71) compared with controls (n = 65) from the DELCODE cohort. (C) Clustering of eigen expression
identifies two expression clusters in MCI patients based on elbow method of detecting optimum number of clusters. (D) Patients representing the cluster with
higher expression of 3-miR eigenvalue show negative correlation with their weighted cognitive score (cor = 0.444, P = 0.004). In contrast, patients with low
expression of 3-miR signature did not show significant correlation with the cognitive score (P = 0.73). (E) Eigenvalue showing the expression of the 3-microRNA
signature in MCI patients for those the follow-up diagnostic data assessed 2 years after was available. 15% of these MCI patients developed Alzheimer´s disease
(AD), while the rest 85% patients remained with MCI (stable MCI). The boxplot depicts the increased expression levels of 3-miR signature in patients who converted
to AD (n = 8) compared with those that had stable MCI (n = 47). (F) Increased expression of 3-microRNA signature in cerebrospinal fluid (CSF) of MCI patients
(n = 9) compared with controls (n = 26). Wilcoxon rank test, P-value is given on the corresponding panel. In the boxplots in (A, B, E, F), the centerline indicates the
median, while the upper and lower lines represent the 75th and 25th percentiles, respectively. The whiskers represent the smallest and largest values in the 1.5×
interquartile range.

G Human bioengineered neuronal organoids (BENOs) were treated at DIV 60 with the 3-miR-mix or corresponding controls for 24 h, and RNA-seq was performed
from prepared RNA. Volcano plot displays the significant deregulated genes in BENOs after over-expressing the 3-miR-mix (FDR < 0.05).

H Gene ontology shows top 10 significant up- and downregulated processes based on the differentially expressed genes. X-axis represents the -log10 of adjusted
P-value.

I A meta-analysis for 3-microRNA signature was performed across different datasets. The upper part shows the human datasets, while the lower part shows the
investigated mouse datasets. In addition to the datasets presented in our study, we also employed cortical small RNAome data (GSE8998) from a fronto-temporal
dementia (FTLD) mouse model at a presymptomatic state (Swarup et al, 2018). Standardized mean difference (SMD) of zero indicates no effect. Deviation from zero
would indicate either an increase or a decrease in the eigen expression for the 3-microRNA signature. Asterisks represent the adjusted P-value across studies
(length = 15). *P < 0.05, **P < 0.01. Standardized mean difference (SMD) of 3-microRNA signature is given along with the corresponding lower and upper intervals.
A large pooled standardized mean difference (1.44) for 3-microRNA signature was observed across species, and the overall effect in both species (Z = 5.33) was
highly significant (P < 0.001).
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circulating levels of the 3-microRNA signature may indicate a low

cognitive reserve and higher risk for cognitive decline. We were

able to directly test this hypothesis—at least in part—in MCI

patients of the DELCODE study, since follow-up phenotypic data

were available for some—but not for all—of the individuals

(n = 53). Thus, we asked whether high levels of the 3-microRNA

signature would be associated with the future conversion from

MCI to AD. We were able to compare the expression level of the 3-

microRNA signature in MCI patients that converted from MCI to

AD within 2 years after blood collection (n = 8) to MCI patients

that did not progress to AD within the same time period (n = 45).

Although we cannot exclude that some MCI patients would convert

from MCI to AD at a later time point, our analysis revealed that the

expression of the 3-microRNA signature was significantly higher in

MCI patients that converted to AD 2 years after blood collection,

when compared to those characterized by stable MCI diagnosis

(Fig 5E). Since our animal experiments suggest that increased

blood levels of the 3-microRNA signature are paralleled by corre-

sponding changes in the brain, we asked whether the signature

would be also increased in the brains of humans suffering from

MCI. Since the analysis of post-mortem human brain tissue is often

confounded by post-mortem delay, RNA quality, and other factors,

we decided to analyze data from cerebrospinal fluid (CSF) of living

MCI patients. Thus, we compared data from probands that did not

suffer from cognitive diseases and age-matched individuals diag-

nosed with mild cognitive impairment (MCI) as a proxy for the

expression of microRNAs in the brain. The analysis of correspond-

ing small RNA sequencing data revealed that the expression of the

3-microRNA signature was significantly increased in MCI individu-

als (Fig 5F). Considering the mechanistic studies we performed in

mice, these data suggest that altered levels of the 3-microRNA

signature control cellular processes essential for cognitive function

also in the human brain. To test this hypothesis more directly, we

employed human bioengineered neuronal organoids (BENOs)

(Zafeiriou et al, 2020) that were treated with the 3-miR-mix

followed by RNA sequencing. In line with the data obtained in

mouse cultures, we observed that elevated levels of the 3-

microRNA signature induced gene expression changes and

related biological processes linked to cellular stress, while genes

representing synaptic function-related processes were decreased

(Fig 5G and H).

Taken together, our findings suggest that the 3-microRNA signa-

ture could be suitable molecular marker to inform about cognitive

status and reserve and help to detect individuals at risk to develop

dementia. In fact, the 3-microRNA signature was consistently dereg-

ulated in a meta-analysis performed on 15 different human and

mouse datasets and revealed a highly significant pooled effect

(z = 5.33, P < 0.001) and standardized mean difference of 1.44

[lower interval: 0.91, upper interval: 1.98] (Fig 5I). The 3-microRNA

signature outperformed an analysis conducted with all 7 microRNAs

initially identified after feature selection (Appendix Fig S7, see also

Fig 2), as well as single or combinations of two microRNAs of the 3-

microRNA signature, further supporting the specificity of the signa-

ture (Appendix Fig S7). We also analyzed a set of 1000 random 3-

microRNA combinations selected from the 55 aging responsive

microRNAs that were initially used for feature selection (see Fig 2E).

Again, the 3-microRNA signature outperformed (Z-score: 5.25,

adjusted P-value: 0.0.0001 [method = “BH”, n = 1,000],

standardized mean difference 1.71 [0.64–2.78], significant in all

datasets tested) all 1,000 random combinations (Dataset EV13). In

line with this result, a random set of 3 microRNAs (1,000 random

combinations were tested) selected from the human microRNAome

of healthy individuals from PsyCourse cohort (See Fig 1) (overall

effect, statistical significance after multiple adjustments, number of

datasets to be deregulated) than the experimentally curated 3-

microRNA signature reported in this study (Dataset EV14). We also

analyzed a previously reported blood-based 12-microRNA signature

that was detected by comparing AD patients to healthy controls

(Leidinger et al, 2013). This signature was deregulated in CSF from

MCI patients (Appendix Fig S8A) but it was not consistently regu-

lated across the datasets employed in the meta-analysis

(Appendix Fig S8). These data support our initial hypothesis that

circulating microRNA signatures that were identified to reliably

distinguish AD patients from controls might not be suitable for the

early detection of individuals at risk for cognitive decline. Moreover,

when we tested three microRNAs from a previously described

microRNA-piRNA signature that was observed in CSF exosomes

from MCI patients (Jain et al, 2019; Appendix Fig S8B), we

observed similar outperformance for the 3-microRNA signature

described in the current study.

The three-microRNA signature is a target for RNA therapeutics in
dementia

Our finding that the 3-microRNA signature is increased not only in

blood but also in the brain of cognitively impaired mice and in CSF

of MCI patients suggests that targeting this signature in the CNS

might be a suitable approach for RNA therapeutics. Our data

showed that the 3-microRNA signature is increased in 3 different

hippocampal sub-regions of aged mice as well as in the ACC (see

Fig 3D, Appendix Fig S8). Previous data support the view that the

hippocampus is a brain region affected early in humans that develop

age-associated memory impairment (Wolf et al, 2001; Dicks et

al, 2019). Furthermore, hippocampus-dependent age-associated

memory decline can be measured in mice (Peleg et al, 2010). There-

fore, we decided to study and target the hippocampus as a first

approach. An inhibitor mix (anti-miR-mix) containing inhibitory

oligonucleotides against miR-181a-5p, miR-146a-5p, and miR-148a-

3p led to decreased level of microRNAs both in vitro (Appendix Fig

S9A and B) and in vivo when injected into the hippocampus of mice

(Appendix Fig S9C and D). Thus, we used lipid nanoparticles

containing the anti-miR-mix and administered these particles to the

hippocampal CA region of 16.5-month-old mice (anti-miR-mix

group). Mice of the same age (old-control group) and 3-month-old

young mice (young-control group) that were injected with corre-

sponding scrambled oligonucleotides served as control (Fig 6A).

Five days post-injection, mice were subjected to the water maze

training to test spatial reference memory. Mice of the old-control

group displayed a significantly increased escape latency, when

compared to the young-control group indicating impaired spatial

reference memory (Fig 6B and C). Notably, old mice injected with

the anti-miR-mix performed comparable to young mice, suggesting

improved hippocampus-dependent memory function (Fig 6B and

C). Of note, in an independent experiment, young mice injected

with the anti-miR-mix did not show difference in performance when

compared to a control group (Appendix Fig S10). We analyzed the
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search strategies during the training procedure in greater detail and

observed that mice of the old-control group less efficiently adapted

hippocampus-dependent search strategies when compared to young

mice and old mice treated with the anti-miR-mix (Fig 6D). This

effect was significant, when we analyzed the search strategies by

calculating a cumulative cognitive score on the 5 days of training

(Fig 6E). During a probe test, mice of the old-control group

displayed a reduced number of platform crossings when compared

to the young-control group, suggesting impaired memory retrieval

(Fig 6F). In contrast, old mice injected with the anti-miR-mix

performed similar to young mice (Fig 6F). qPCR analysis performed

at the end of the experiment confirmed the persisted downregula-

tion of three microRNAs in the hippocampal CA region when the

anti-miR-mix was injected. Expression in the corresponding

hippocampal dentate gyrus was not affected, indicating specificity of

the injection procedure (Appendix Fig S11A). These data suggest

that an RNA-based therapeutic approach targeted toward the 3-

microRNA signature can improve memory function in cognitively

impaired old mice. Considering that the 3-microRNA signature was

also increased in MCI patients, we decided to test its therapeutic

potential also in a disease model for AD. We employed APPPS1

mice, a well-established model for amyloid deposition that displays

hippocampus-dependent memory impairment at 6–8 months of age

(Radde et al, 2006; Ag�ıs-Balboa et al, 2017; Martinez-Hernandez et

al, 2017). Similar to the experiments outlined in aged mice, we

reasoned that targeting the hippocampus would be a suitable first

approach. We performed small RNA sequencing of hippocampal

tissue obtained from APPPS1 mice at 4 and 8 months of age, repre-

senting time points before and after the onset of detectable

memory impairment. Our data reveal that the 3-microRNA signa-

ture is significantly increased already at 4 and also at 8 months of

age when comparing APPPS1 to age-matched control mice (Fig 6

G). Encouraged by this observation, we decided to test whether

administration of the anti-miR-mix could ameliorate memory

impairment in APPPS1 mice. We decided to employ 7-month-old

APPPS1 mice and injected the anti-miR-mix into the hippocampal

CA (APP anti-miR-mix group). As control groups, we injected age-

matched APPPS1 (APP-control group) and wild-type mice (WT

control group) with a mix of corresponding scrambled oligomers.

When we subjected mice to the water maze training, the anti-miR-

mix group was able to significantly improve the escape latency in

APPPS1 mice (Fig 6H and I), suggesting that the anti-miR-mix

ameliorates memory impairment in a mouse model for AD. This

effect was also obvious when we analyzed in detail the different

search strategies. Thus, APP mice failed to adapt hippocampus-

dependent learning strategies, while APP mice treated with the

anti-miR-mix displayed an increase in such strategies similar to

wild-type control mice (Fig 6J). This effect was also highly signifi-

cant when we analyzed the cumulative score of the search strate-

gies at the 5 days of training (Fig 6K). Furthermore, improved

memory retrieval during the probe test was observed in anti-miR-

mix-treated APP mice (Fig 6L). Similar to the data obtained in

aging mice, qPCR analysis performed at the end of the experiment

confirmed the downregulation of three microRNAs in the injected

◀ Figure 6. Targeting the 3-microRNA signature reinstates cognitive function in mouse models for dementia.

A Experimental design. Inhibitor mixture for 3 microRNAs (anti-miR-mix), namely miR-181a-5p, miR-148-3p, and miR-146a-5p was injected into the hippocampal CA of
male wild-type mice prior to behavioral testing. As control, scrambled siRNAs were injected as described above. Experiments were performed in two mouse models
representing aging and Alzheimer´s disease (AD).

B Escape latency during the water maze training comparing 3-month-old (young-control, n = 18) mice and 16,5-month-old (old-control, n = 18) mice injected with
scrambled control oligonucleotides and 16,5-month-old mice injected with microRNA inhibitors (old miR-inhibitor mix, n = 20). Bars and error bars indicate
mean � SEM.

C Escape latency on final day of water maze training was impaired improved in old mice treated with the microRNA inhibitors mix. Young-control (n = 18,
19.3 � 15.23, mean � SD); old-control (n = 18, 36.31 � 15.38, mean � SD); old-inhibitor (n = 20, 22.78 � 13.85, mean � SD).

D Depiction of the search strategies during the water maze training.
E The cumulative cognitive score calculated for each day on the basis of hippocampal-dependent strategies was significantly impaired when comparing mice old-

control mice to young-control mice. Data are normalized to young-control group. Bars and error bars indicate mean � SEM. Number of mice: young-control, n = 18;
old-control, n = 18; old miR-inhibitor mix, n = 20.

F Number of visits to the platform during the probe test. young-control (5.2 � 2.5, mean � SD); old-control (2.7 � 1.83, mean � SD); old-inhibitor (5.0 � 2.3,
mean � SD). All mice were male. Number of mice: young-control, n = 18; old-control, n = 18; old miR-inhibitor mix, n = 20.

G Eigenvalue showing the expression of the 3-microRNA signature in the hippocampus of 4- and 8-month-old APPPS1-21 mice. The centerline indicates the median,
while the upper and lower lines represent the 75th and 25th percentiles, respectively. The whiskers represent the smallest and largest values in the 1.5× interquartile
range. Number of mice: 5–6/group.

H Escape latency during the water maze training comparing 7-month-old wild-type mice (WT control, n = 17, male: 9, female: 8) and APPPS-21 mice (APP-control,
n = 8, male: 6, female: 2) injected with scrambled control oligonucleotides and APPPS1-21 mice injected with microRNA inhibitors (APP miR-inhibitor mix, n = 12,
male: 8, female: 4). Bars and error bars indicate mean � SEM.

I Escape latency measured on the last day of water maze training was reduced in APP-control mice. However, learning performance was rescued in APP miR-inhibitor
mix mice. WT control: 20.43 � 10.33 (mean � SD), APP-control: 40.92 � 17.33 (mean � SD), and APP miR-inhibitor mix: 22.04 � 9.96 (mean � SD). Sex did not affect
the data. Number of mice: WT control, n = 17, male: 9, female: 8; APP-control, n = 8, male: 6, female: 2; APP miR-inhibitor mix, n = 12, male: 8, female: 4.

J Depiction of the search strategies during the water maze training in experimental groups.
K The cumulative cognitive score calculated for each day on the basis of hippocampal-dependent strategies was significantly impaired when comparing WT control

mice to APP-control mice. Data are normalized to WT control group. Bars and error bars indicate mean � SEM. Number of mice: WT control, n = 17, male: 9, female:
8; APP-control, n = 8, male: 6, female: 2; APP miR-inhibitor mix, n = 12, male: 8, female: 4.

L Comparison of the number of visits to the platform during probe test. WT control: 4.76 � 1.82 (mean � SD), APP-control: 2.5 � 2.5 (mean � SD), and APP miR-
inhibitor mix: 3.41 � 2.15 (mean � SD). Bars and error bars indicate mean � SEM. Number of mice: WT control, n = 17, male: 9, female: 8; APP-control, n = 8, male:
6, female: 2; APP miR-inhibitor mix, n = 12, male: 8, female: 4.

Data information: (B, H) Mixed-effects analysis followed by Tukey’s multiple comparison test. (C, E, F, I, K, L) One-way ANOVA followed by Dunnett´s multiple
comparisons test. (G) Unpaired t-tests, two-tailed. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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CA region, while the dentate gyrus was not affected (Appendix Fig

S11B). In conclusion, these data support the view that targeting

the 3-microRNA signature could be a suitable strategy for a

biomarker-guided RNA therapy toward dementia. It is, however,

interesting to mention that although we observed that increasing

the levels of the 3-microRNA signature appears to be detrimental

to neural function and that targeting all 3 microRNAs using anti-

miRs can ameliorate cognitive decline in model systems, miR-

148a-3p was initially observed within the brown co-expression

module that was positively correlated to cognition in young

healthy humans (see Fig 1). Thus, further research on the specific

function of this microRNA in the CNS across lifespan in humans

and mammalian model systems is needed to fully appreciate its

role in learning and memory function.

Targeting the 3-microRNA signature partially reinstates
transcriptional homeostasis in disease models

While microRNAs control cellular homeostasis at the level of tran-

scriptional networks, aberrant gene expression is key hallmark of

cognitive diseases including AD (Fischer, 2014b). Thus, we hypoth-

esized that reinstatement of memory function in aged and in

APPPS1 mice might—at least in part—be due to the action of the

anti-miR-mix on hippocampal gene expression. To test this, we

performed RNA sequencing from hippocampal tissue of aged and

APPPS1-21 mice that received either control RNA or the anti-miR-

mix (Fig 7A). Wild-type littermates treated with control RNA were

used as additional control. First we analyzed the data from the

experiment employing aged mice and performed Weighted Gene Co-

expression Analysis (Langfelder & Horvath, 2008). We identified 29

different co-expression modules in the entire RNA-seq dataset of

which 4 represent neuronal cluster (Appendix Fig S12A). While

three of these modules were unaffected among groups (Appendix

Fig S12B), the MEblue module paralleled our behavioral findings

and was significantly deregulated when comparing the young-

control to the old-control group, whereas its expression was

partially reinstated to the level of the young-control group in

response to anti-miR-mix treatment (Fig 7B). Gene ontology analy-

sis revealed that the genes of the Meblue module represent

processes linked to synapse organization and cognition (Fig 7C,

Dataset EV15). We confirmed the expression of three representative

genes, namely LRKK2, Cadm3, and Slc6a11 (Fig 7D). In the RNA

sequencing data obtained from APPPS1 mice, weighted Gene Co-

expression Analysis (Langfelder & Horvath, 2008) allowed us to

detected 26 different co-expression modules. Of these modules,

MElightgreen and MEblue overlapped with neuronal gene set with

high significance (Appendix Fig S12C). However, only the MElight-

green module was significantly deregulated when comparing the

WT control group to the APP-control group (Fig 7E, Appendix Fig

S12D), while its expression was partially normalized to control

levels in the APP anti-miR-mix group (Fig 7E). The genes within the

MElightgreen module represent processes linked to synaptic func-

tion, similar to the genes for the MEblue module detected in aged

mice (Fig 7F, Dataset EV15). Indeed, we confirmed the differential

expression in control and APPPS1-21 mice via qPCR for two repre-

sentative genes, namely AFF2/FMR2 that encodes the fragile X

mental retardation protein and Hivep3 which encodes the transcrip-

tion factor kappa-binding protein 1 (Fig 7G). Moreover, genes from

MEblue (aging, see Fig 7B) and MElightgreen (APP, see Fig 7E)

modules show 35% (Fisher´s exact test, ****P < 0.0001) and 38%

(Fisher´s exact test, ****P < 0.0001) overlap to genes having 3’ UTR

binding sites for miR-146a-5p, miR-148a-5p, or miR-181a-5p

(Dataset EV16) and we have confirmed the regulation of selected

candidate genes via a luciferase assay (Appendix Fig S13). In sum,

these data suggest that targeting the 3-microRNA signature can help

to reinstate—at least in part—transcriptional homeostasis in 2 dif-

ferent animal models for cognitive decline.

Discussion

We provide evidence that a circulating 3-microRNA signature corre-

lates with cognitive function, is linked to cognitive decline, that the

3 microRNAs regulate processes important for neuronal plasticity in

the adult brain and that the signature serves as a target for RNA

therapeutics. These data provide unprecedented evidence for the

view that the blood microRNAome could be suitable as molecular

biomarker for neuropsychiatric and neurodegenerative diseases

(Rao et al, 2013; Galimberti et al, 2014; Hill & Lukiw, 2016; Kumar

et al, 2017; Swarbrick et al, 2019; Roy et al, 2020). However, it is

important to reiterate that our approach did not aim to identify

microRNA biomarker that can distinguish patients suffering from a

specific brain disease from controls. Rather, we employed an inte-

grative approach starting with the analysis of cognitive variability in

healthy humans and subsequently used multiple filtering steps with

the aim to specifically identify microRNAs that could inform about

the cognitive status and reserve and help to detect individuals at risk

for pathological memory impairment. Our approach is therefore dif-

ferent to previous studies including data from our group (Jain et al,

2019) that were based on the comparison of microRNAs or other

small non-coding RNAs expressed in blood or CSF samples from

patients and controls (Kumar et al, 2017). While the previous data

are valid, we reasoned that the reported candidates may not be opti-

mal for screening approaches with the aim to detect individuals at

risk for developing cognitive decline. Although a single research

paper cannot conclusively answer this issue, using our approach we

eventually identified 3 microRNAs as a signature. These are miR-

181a-5p, micro-RNA148-3p, and miR-146a-5p. The eigen expression

of this signature increases in the blood of aging mice prior to cogni-

tive decline, and we obtained evidence that it is also altered in aging

humans prior to the detection of non-pathological cognitive decline.

While the data from mice represent a longitudinal study, the data

from aging humans were based on a cross-sectional analysis. Our

experimental approach was designed to circumvent this issue, since

corresponding data in humans are difficult to obtain. Nevertheless,

longitudinal human data would eventually be necessary to further

support our findings. It should also be mentioned that despite the

obvious advantages provided by the combined analysis of human

and mouse data in a feed-forward feed-backward approach, in such

an experimental setting we will only detect microRNAs that are

conserved between mice and humans. Moreover, care has to be

taken when comparing neuropsychological assessment of cognitive

function in humans to spatial reference memory measured in the

water maze paradigm in mice. It is nevertheless tempting to specu-

late that aging humans with high circulating levels of the 3-

microRNA signature are more likely to develop future cognitive
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Figure 7. The 3-microRNA signature is a target for RNA therapeutics to treat neuronal dysfunction.

A Experimental outline. Anti-miR-mix of the 3 microRNAs was injected into the dorsal hippocampus of the mice as previously described. RNA-seq data were generated
from dorsal hippocampal tissues and compared to those treated with control scrambled oligonucleotides.

B Weighted gene co-expression analysis of hippocampal RNA-seq data identified the MEblue gene cluster that is decreased when comparing 3-month-old mice (young-
control) to cognitively impaired 16.5-month-old mice (old-control) with a scramble control oligonucleotide injected. Treating old mice with the miR-inhibitor mix (old
miR-inhibitor mix) reinstated gene expression of this cluster, at least in part (n = 6–7, Kruskal–Wallis test).

C Gene ontology reveals that the MEblue cluster is linked to cognition and synapse organization.
D qPCR assay for several synaptic genes (LRKK2, Cadm3, and Slc6a11) confirms reinstatement of gene expression with anti-miR-mix (n = 5–7, Kruskal–Wallis test).
E Weighted gene co-expression analysis of hippocampal RNA-seq data identified a MElightgreen gene cluster that is decreased when comparing wild-type control (WT

control) to APPPS1-21 mice (APP-control) and was reinstated in APPPS1-21 mice-treated miR-inhibitor mix (n = 6–7, Kruskal–Wallis test).
F Gene ontology reveals that the MElightgreen cluster is linked to cognition and synapse organization.
G qPCR data show rescue of AFF2/FMR2 and Hivep3 expression in APP/PS1 mice treated with inhibitor cocktail (n = 6–7, Kruskal–Wallis test).

Data information: *P < 0.05, **P < 0.01, ***P < 0.001. Bars and error bars indicate mean � SEM. In boxplots (B, E), the centerline indicates the median, while the upper
and lower lines represent the 75th and 25th percentiles, respectively. The whiskers represent the smallest and largest values in the 1.5× interquartile range.
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diseases. In line with this, the circulating 3-microRNA signature also

differed when comparing control to MCI patients and was also

increased in MCI patients who converted to AD within the next

2 years. While it will be important to substantialize these data via

further studies, our findings are supported by a number of previ-

ous observations. For example, increased circulating levels of miR-

181a-5p were detected in age-matched individuals with mild cogni-

tive impairment when compared to healthy controls via qPCR analy-

sis of plasma samples (Nagaraj et al, 2017). Another study reported

elevated miR-181a-5p levels in a mouse model for AD (Rodriguez-

Ortiz et al, 2014), suggesting that miR-181a-5p levels generally

increase in correlation with cognitive decline and would further

increase in case of disease progression. Similar data have been

reported for miR-148a-3p that was altered in serum samples of AD

patients when compared to control individuals (Dong et al, 2015),

while serum levels of miR-146a-5p were found to correlate with

disease severity in AD patients (Maffioletti et al, 2020). Another

recent study analyzed 9 microRNAs in human plasma samples via

qPCR and found that miR-146a and miR-181a are increased in MCI

patients that progress to AD within 2 year (Ansari et al, 2019).

However, the available literature on microRNAs—including miR-

146a-5p and miR-181a-5p—as biomarkers for AD is conflicting

(Herrera-Espejo et al, 2019). One reason might be that these studies

analyzed single microRNAs and did not consider a signature based

on—for example—the eigen expression. This view is supported by

our analysis of the 3-microRNA signature for its performance across

15 mouse and human datasets. While miR-146a-5p or the combina-

tion of miR-146a-5p and miR-181a-5p was also significantly altered

in some datasets, the results were rather heterogeneous and only

the combination of all 3 microRNAs of the signature yielded consis-

tent data. This view is in line with our data, suggesting that the 3

microRNAs reflect multiple, yet inter-dependent key processes

linked to cognitive function and decline, such as neuronal plasticity

and neuroinflammation. Hence, the importance of each individual

microRNA may differ among individuals. Since the combined signa-

ture takes into account various inter-linked patho-mechanisms, it

outperforms the analysis of single microRNAs or other combina-

tions. In fact, the 3 microRNAs were deregulated in brain tissue of

mouse models for cognitive diseases prior to disease onset, namely

in models for AD, FTLD, and in human CSF samples from MCI

patients. These data support the view that our signature does not

reflect any specific neurodegenerative disease but informs about

cognitive status and the risk to develop cognitive decline and even-

tually dementia. At the functional level, we were able to demon-

strate that manipulating the expression levels of the 3 microRNAs in

mouse neural cultures and in human brain organoids leads to patho-

logical alterations related to cellular stress pathways, inflammation,

synaptic plasticity, and neuronal network activity. We like to state

that despite the obvious advantages in performing molecular stud-

ies, brain organoids and mice are model systems that cannot fully

recapitulate cognitive decline in humans. Nevertheless, the data are

in line with previous findings linking miR-181a-5p to neuronal func-

tion. For example, calorie restriction led to a downregulation of

miR-181a-5p, which was linked to improved neuronal integrity

(Khanna et al, 2011). These data are of particular importance since

calorie restriction ameliorates age-associated memory impairment

(Means et al, 1993; Dong et al, 2016). In turn, elevated levels of

miR-181a-5p were implicated in cell death after cerebral ischemia,

whereas low levels were associated with neuronal survival (Ouyang

et al, 2012; Moon et al, 2013; Xu et al, 2015). In addition, miR-181a-

5p was found in synapses, where it controls surface levels of key

mRNAs linked to memory function such as AMPA-type glutamate

receptor (Saba et al, 2012) or CamKII (Sambandan et al, 2017).

While there are no data on the role of miR-148a-3p in brain func-

tion, miR-146a-5p has been linked to neuroinflammatory processes

(Saba et al, 2014), which is in line with our data showing that over-

expression of miR-146a-5p in immortalized microglia cells induced

inflammatory pathways. It will also be interesting to study the

molecular processes that control the expression of the 3 microRNAs

in future experiments. In sum, these data further support the view

that microRNAs are very suitable molecular biomarker since

changes in their expression reflect alterations of multiple cellular

pathways. In case of the 3-microRNA signature, these are mecha-

nisms related to neuronal plasticity and inflammation. Thus, analy-

sis of the 3-microRNA signature as a molecular marker for cognitive

status and reserve could be a complimentary approach to the analy-

sis of blood biomarkers reflecting specific AD pathology or neurode-

generation (Olsson et al, 2016; Blennow, 2017; Jack et al, 2018; Li &

Mielke, 2019; Preische et al, 2019). This view is further supported

by our finding that the 3-microRNA signature measured in blood

from MCI patients and controls is performing similar to the CSF

analysis of the Aβ42/40 ratio—an established AD biomarker—at a

time point when phospho-tau levels are still similar among groups.

Similar to these established AD and neurodegeneration marker,

there is also evidence that CNS-derived microRNAs can be released

to the circulation and could thus reflect CNS-related processes

(Liang et al, 2012; Zhang et al, 2017; Lepko et al, 2018). Support for

the view stems from our findings that targeting the 3-microRNA

signature via anti-miRs partially ameliorates aberrant hippocampal

gene expression and improved memory function in two mouse

models for cognitive decline. Nevertheless, future research will need

to specifically address the question if the altered expression of the 3-

microRNA signature in blood is directly linked to corresponding

expression changes in the brain. Support for this view stems from

data showing that microRNAs are released from brain cells via

extracellular vesicles (EV) (Xu et al, 2017; Men et al, 2019) and that

such brain-derived Evs can be detected in blood (Fiandaca et al,

2015). In our study, we analyzed RNA from whole blood samples

via Pax Gene tubes that should include all RNAs present in blood,

including RNA from EVs. However, we cannot exclude the possible

that the observed changes in the 3-microRNA signature in blood

originate from other organs or blood cells and that the concomitant

regulation in blood and brain is only a coincidence. Another possi-

bility that cannot be excluded at present is that changes in the

composition of blood cells contribute to the observed expression

changes. In addition, while we analyzed data from mice and

humans, it will be interesting to study the role of the 3 microRNAs

in cognitive aging in other mammals.

Our findings are of particular importance, since RNA-based ther-

apeutics are gaining increasing interest (Rupaimoole et al, 2017;

Hanna et al, 2019) and first RNA drugs have been recently approved

for clinical use or are in phase III clinical testing (Editorial, 2019).

The analysis of circulating microRNAs that inform about CNS mech-

anisms may therefore also be suitable to develop corresponding

stratified RNA-based therapies. Indeed, several promising clinical

studies support the use of RNA-based drugs for CNS disease
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(Bennett et al, 2019; Tabrizi et al, 2019). While especially for stud-

ies that are based on ASOs targeting the expression of disease-

causing genes, the therapeutic mechanisms are obvious, the precise

mechanisms by which targeting the reported 3-microRNA signature

ameliorates cognitive decline in the employed mouse models need

to be further studied in future research. It will in this context also be

interesting for future research to link the expression of the 3-

microRNA signature to pathological changes observed via structural

and functional brain imaging, which should allow us to more

precisely link the observed therapeutic effect to other brain regions

in addition to the hippocampus (Lee et al, 2019). Since age-

associated memory decline and AD pathogenesis are due to complex

combinations of risk factors, it is likely the observed therapeutic

effect is also linked to the regulation of several molecular processes,

which is in agreement with the function of microRNAs.

The fact that the analysis of circulating microRNAs is minimal

invasive that microRNAs are stable in cell-free environments and

are rather resistant to procedures that would normally cause RNA

and protein degradation further supports their potential as suitable

biomarker. Moreover, the quantitative analysis of microRNAs is

comparatively easy and highly reproducible. While in this study, we

employed small RNA sequencing and qPCR approaches, recent data

suggest that alternative methods such as lateral flow assays can be

used for microRNA quantification (Zheng et al, 2018). Moreover,

there is evidence that microRNA levels assayed via qPCR from

venous blood and plasma are comparably to the levels obtained via

the analysis of capillary blood obtained from a finger-prick (Vliegen-

thart et al, 2017). These data support the idea that the analysis of

the 3-microRNA signature could be suitable to develop a point-of-

care or even home-based test that would allow minimal invasive

and low-cost screening approaches that inform about molecular

processes related to the cognitive reserve and help to detect individ-

uals at risk for cognitive decline. While such a test would not be

specific for any cognitive disease, the analysis of blood-based

biomarker should be considered as a first step in a multistep process

to identify individuals at risk for pathological memory decline. Risk

individuals could then undergo more detailed diagnostic tests that

are not suitable for general screening approaches such as the analy-

sis of CSF biomarker or brain imaging. In conclusion, the

microRNA-based screening approach presented in this study could

improve the early detection of individuals at risk for pathological

cognitive decline and increase the chance for efficient therapeutic

intervention using either existing therapeutic strategies or novel

RNA-based approaches targeted toward the 3-microRNA signature.

Materials and Methods

Animals

Male C57B/6J wild-type mice were purchased from Janvier Labs.

All animals were single housed in standard cages on 12-h/12-h

light/dark cycle with food and water ad libitum. All experiments

were performed according to the protocols approved by local ethics

committee. 12-month-old mice were received and divided into two

groups: hom ecage and learning. Mice performing water maze train-

ings belonged to learning group while the home cage group did not

perform any behavior test. APP/PS1-21 mice used in this study were

from Tg(Thy1-APPSw, Thy1-PSEN1*L166P)21Jckr colony. Mice of 3

and 16.5 months were sacrificed by cervical dislocation, and whole

brain was isolated in ice-cold Dulbecco’s phosphate-buffered salt

(DPBS, PAN-biotech GmbH) supplemented with EDTA-free protease

inhibitor cocktail (Roche). The ACC, CA1, CA3, and DG regions

were micro-dissected, snap-frozen in liquid nitrogen, and stored at

−80°C.

Human subjects

All experiments involving human data were approved by the local

ethics committee and conformed to the NIH Belmont report.

Informed consent was obtained for all subjects. For finding

microRNA modules linked to cognition, we analyzed 132 healthy

individuals who participated in the PsyCourse study (Budde et al,

2018). Briefly, adult healthy individuals were recruited for this study

as control participants. The following neuropsychological tests were

performed: digit span (forward and backward), digit symbol test,

trail making test, and the multiple choice vocabulary intelligence

test (MWT-B); for details, see Budde et al (2018). Samples were

excluded from the study if they had ever been detected as patient

for mental and behavior disorder of ICD-10 diagnoses. The study

was approved by the local ethics committee which was in accor-

dance with the declaration of Helsinki. A composite score consider-

ing all the psychological tests was calculated following a similar

approach previously described (Hassenstab et al, 2015). Briefly, for

exploratory factor analysis on cognitive test scores, number of opti-

mum latent factors (n = 3) was determined based on model fit score

RMSEA 0.02 and parallel analysis (Franklin et al, 1995). Next,

exploratory factor analysis was performed using fa function of psych

package and the results were visualized using fa.diagram function

of psych package. Based on results from factor analysis, cognitive

tests were grouped into three cognitive domains. Based on the low

loadings (< 0.4) on the factors, multiple choice vocabulary intelli-

gence and trail making test error-A tests were discarded from the

analysis. First domain was measured by trail making tests and digit

symbol test. Similar factor analysis-based domain consisting of trail

making test and digit symbol test was reported and termed as execu-

tive function domain in previous study (Hayden et al, 2011). Second

domain comprised of digits forward, digits backward and could be

described as “working memory” domain. Errors in trail making tests

(part B) were part of the third cognitive domain. Having the cogni-

tive domains defined, individual test score was standardized by

subtracting the mean from the score and dividing by the standard

deviation. Next, the standardized test scores were used to calculate

a cumulative domain-specific cognitive score and finally, domain-

specific cumulative scores were averaged to obtain a global-

weighted cognitive performance score. Higher- and lower-weighted

scores represent good and poor performance, respectively. A cohort

of patients with mild cognitive impairment and healthy subjects

were recruited from the longitudinal cognitive impairment and

dementia study (DELCODE) (https://www.dzne.de/en/research/

studies/clinical-studies/delcode/; Jessen et al, 2018).

Water maze

A circular pool (diameter 1.2 m) was filled with white opaque

water. An escape platform (11 × 11 cm) was submerged below the
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water surface in the center of one of the four quadrants (target

quadrant). The position of the platform was maintained for all swim

trails throughout the test. At 12 months, first water maze training

was performed to habituate mice with the training environment.

Animals were tested for visual performance by putting a colored cue

on the platform. In order to do the spatial memory-learning test and

to check cognitive flexibility, during the later training sessions at

13.5, 15 months, and 16.5 months, platform was put at the center of

a new quadrant. However, the position of platform was kept

unchanged throughout the corresponding training session. Different

visual cues on four sites of the pool were not changed during train-

ing trials either. The swimming behavior of the mice was recorded

by a camera set on top of the water pool and was analyzed by

VideoMot2 (TSE). At each training session, mice were trained to

swim to the hidden platform in four daily trials, starting from pseu-

dorandomly varied locations. Each trial consisted of 60 s. If mouse

failed to find the platform in due time, it was gently guided to it.

Once reaching the platform, the mouse was allowed to have rest for

15 s. After four consecutive trials per day, each mouse was returned

to its home cage where it rested until the next day of training. Sixty-

second long probe trial was performed without the platform after

each training session at a given month. After last probe test

performed at 16.5 months, animals were tested for visual acuity

again. Similar experiment was performed for aging and APP/PS1

mice treated with scrambled control and anti-miR-mix. For data

analysis, features from TSE VideoMot2 software were used. For

occupancy plot, 50 × 50 grids defined a bin and number of mouse

crossing through each grid was summed up. Densities were calcu-

lated from the ratio of total number of crossings through each grid

and total number of crossings in the bin. For plotting, a smoothened

technique was applied to the densities and minimum and maximum

densities out of all experimental groups were taken into considera-

tion during normalization step. For in-depth feature analysis from

water maze data, a modified version of MUST-C algorithm was used

(Illouz et al, 2016). In addition to the features described in original

paper, we extracted additional features from raw water maze data

including total coverage, distance from centroid to platform, and

path efficiency. The definition of the features extracted from water

maze data is as follows: (i) Average proximity to platform: mean of

Euclidean distances from all positions to the platform. (ii) Distance

from centroid to platform: Euclidean distance between center of all

positions and platform. (iii) Sum of absolute angles: sum of angles

between pairs of sequential vectors. (iv) Mean distance from

perimeter: mean distance to the closest point on the pool‘s perime-

ter. (v) Total duration: total time mice spent in searching the plat-

form. (vi) Number of quadrant changes: total number of quadrant

changes during trial. (vii) Maximal time at one quadrant: percentage

of time spent in a single quadrant. (viii) Sum of relative angles: Posi-

tive and negative angles are marked from positive and negative

movements along X-axis, respectively. (ix) Cumulative angle along

Y-axis: Similar to angles along X-axis, relative angles along Y-axis

are calculated. (x) Platform crossings: number of crossings of the

platform region (probe test). K)Variance of distance from perimeter:

variance of Euclidean distances from the pool´s perimeter. (xi) Mean

velocity: ratio between total distance and total time spent. (xii)

Distance traveled: sum of Euclidean distance between each pair of

sequential locations. (xiii) Total coverage: ratio between area of

convex hull of all points and the area of the pool. (xiv) Local

densities: mean distance between all pairs (x,y coordinates) of loca-

tions in the trial. (xv) Variance of distance to platform: variance of

Euclidean distance from all positions to the platform. (xvi) Path effi-

ciency: ratio of the path length to the Euclidean distance between

starting and endpoints. Path length is sum of Euclidean distances

between all consecutive points in the trial. Based on all these

features, scatter plots were generated, and one of the following

search strategies was assigned to each trial of the training session.

Weighted cognitive score per day was calculated according to the

formula as follows.

n = total trial number per day; Sdfi = frequency of direct strategy in

ith trial; Sdc = given strategy score for direct search; 10; mc = total

number of mice; Sscfi = frequency of corrected strategy in ith trial;

Sscc = given strategy score for corrected search; 9.5; Slcfi =
frequency of short chaining strategy in ith trial; Slcc = given strategy

score for short chaining search; 9.

Collection of blood from mice and purification of total RNA from
blood and brain sub-regions

Blood was collected from retro-orbital sinus of all mice for first time

at 12 months of age before starting any behavioral experiment. Next

blood collections were done after 24 h of finishing probe tests at

13.5, 15, and 16.5 months. In summary, individual mouse was anes-

thetized with isoflurane (1.8%) for 2–3 min. Afterward, 150–200 µl
blood was collected from the orbital sinus of animals using a hepari-

nized glass microcapillary and stored in tubes provided in RNeasy

Protect Animal Blood System (Qiagen, Hilden, Germany). Each time

blood was collected from alternative eyes. The blood tubes were

allowed to stand at room temperature for 24 h and then stored at

−20°C. Purification of total RNA from blood was performed follow-

ing the manual of RNeasy Animal Blood Protect Kit (Qiagen, Hilden,

Germany). Briefly, blood tubes were centrifuged for 3 min at 5000xg

at room temperature. After removing the supernatant without

disturbing pellet, 1 ml of RNAse-free water was added. The solution

was vortexed and centrifuged in the same condition as mentioned

above. Supernatant was discarded, and 240 µl Buffer RSB was added

to pellets. After resuspending the pellet properly, appropriate

amount of buffer RBT and proteinase K was added and the solution

was incubated for 10 min at 55°C. Next, the solution was applied on

the membrane of the QIAshredder spin column and centrifuged for

3 min at the maximum speed. After centrifugation, 1.5 volume of

100% ethanol was added to the flow-through. Later, the solution

was applied into a 2 ml RNeasy MinElute Spin column and centri-

fuged for 1 min at 10,000× g. The membrane of spin column was

washed once with 350 µl of Buffer RWT, and DNase treatment was

performed for 15 min at room temperature. Next, 350 µl of buffer
RWT was added to the column followed by centrifugation for 15 s

at 10,000× g. Column was washed with 500 µl Buffer RPE (centrifu-

gation for 15 s, at 10,000× g, at room temperature). The final wash

was performed with freshly prepared 80% ethanol followed by

centrifugation for 2 min at 10,000× g. RNA was eluted with REB

buffer after a short centrifugation (10,000× g, 1 min). Extracted

RNA was incubated at 65°C for 5 min and immediately placed on

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mean cumulative strategy score ¼ 1

n
∗ ∑

n

i¼1

Sdfi∗Sdc
mc

þ Sscfi∗Sscc
mc

þ Slcfi∗Slcc
mc

� �s
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ice. Concentration of RNA was measured on NanoDrop, and isolated

RNA was stored at −80°C for future use. Tissue sections from mouse

ACC, dentate gyrus, CA1, and CA3 were homogenized in Tri reagent

(Tri Reagent, Sigma-Aldrich, Germany) followed by RNA extraction

according to manufacturer’s instruction of RNA clean and concen-

trator kit (Zymo Research).

Blood collection in humans

Blood was collected from the median cubital vein. Before collection,

the collection tubes were stored at 18–25°C. For the collection of

blood via PAXgene tubes, 2.7 ml of blood was filled into the tube

that was subsequently gently inverted 10 times. Tubes were stored

for 2 h at room temperature and then transferred to −20°C for 24–
72 h before being stored at −80°C until further processing. For the

isolation of PBMCs, blood was collected in CPT tubes that were

subsequently inverted eight times and then centrifuged for 30 min

(1,700× g) at room temperature. Using a pipette, the plasma was

removed (until 1cm above the white lymphocyte layer). The white

lymphocyte layer was then transferred into a 15-ml Falcon tube

using a pipette. Subsequently, the tube was filled with up to 15 ml

with PBS and gently inverted five times. The Falcon tube was centri-

fuged for 15 min (300× g, with brake) at room temperature, the

supernatant was discarded, and the pellet was resuspended in 15 ml

PBS. These steps were repeated in total 3 times. The cell pellet was

eventually resuspended in 2 ml of PBS and frozen in liquid nitrogen

before being stored at −80°C. For plasma samples, blood was

collected into EDTA-plasma tubes and centrifuged from 10 min

(2,000× g, without brake) at room temperature. The supernatant

was aliquoted into cryo-tubes into and stored within 30 min at

−80°C. Exosomes were isolated from plasma via a number of subse-

quent centrifugation steps at 4°C: 3,500× g for 10 min, two times

4,500× g for 10 min, 10,000× g for 30 min, and 100,000× g for

60 min. The 100,000× g pellet was washed once with phosphate-

buffered saline (PBS) at 100,000g for 60 min before resuspension in

PBS.

High-throughput Small RNA sequencing and bioinformatic
analysis

Next-generation sequencing of the RNA from collected blood

samples and brain regions from mouse were performed using

TruSeq® Small RNA kit according to manufacturer´s protocol (Illu-

mina, San Diego, CA, USA). For human samples, sequencing

libraries were prepared using NEBNext® small RNA library prepa-

ration kit according to manufacturer´s instruction. Briefly, 100 ng

RNA was used as starting material followed by adapter ligation

and primer hybridization. First strand of cDNA was generated

followed by PCR enrichment. Libraries were pooled, and PAGE

was run for size selection. For small RNAome, ~150 bp band was

cut and used for library quantification after purification. A final

library concentration of 2 nM was used for sequencing. Sequenc-

ing was performed using a 50-bp single read setup on the Illumina

HiSeq 2000 platform. Demultiplexing was done using Illumina

CASAVA 1.8. Sequencing adapters were removed using cutadapt-

1.8.1. Sequencing quality including total number of reads, percent-

age of GC content, sequence quality per base, N content per base,

sequence length distribution, duplication levels, overrepresented

sequences, and Kmer content was investigated using FastQC

v0.11.5 (http://www.bioinformatics.babraham. ac.uk/pro-

jects/fastqc/). For quantification of mature microRNAs, miRDeep2

was primarily used. Mouse (mm10) and human (hg38) genome

sequences were retrieved from UCSC (https://genome.ucsc.edu/)

Genome Browser, and corresponding genomic index files were

created using Bowtie-build tool (version 1.12) with default options.

Sequencing reads were mapped to the reference genome using

mapper.pl script with default settings in the miRDeep2 package.

An example is outlined below: mapper.pl config.txt -d -e -h -i -j -k

TGGAATTCTCGGGTGCCAAGG -l 18 -m -p genome_index_file -s

fasta_file -t mapped_coordinates.arf -v.

Reads less than 18 nucleotides were discarded, and miRDeep2

module with default options was used to identify known and novel

microRNAs in sequencing data. To quantify known microRNAs,

sequencing reads, the known mature microRNAs, and optionally its

star sequences for mouse were mapped against the known precursor

microRNAs for reference genome documented in miRBase (Release

21), allowing 0 mismatch. miRDeep2.pl function from miRDeep2

with default settings was used for this purpose. For example:

miRDeep2.pl fasta_file genome_index mapped_coordinates.arf

mature_mirna_same_species.fa mature_mirna_other_species.fa

precursor_mirna_same_species.fa -t species_name.

A read was assumed to represent a sequenced mature microRNA,

if it fell within the same position on the precursor as mature

microRNA, plus 2 nt upstream and 5 nt downstream. For the predic-

tion of novel microRNAs, mature microRNAs in Rattus norvegicus

(miRBase release 21) were provided as related species for mouse.

On the other hand, mature microRNAs in Gorilla gorilla, Pongo

pygmaeus, and Pan troglodytes (miRBase release 21) were provided

as related species for human. However, novel microRNAs are not

discussed in the current study. The expression counts for mature

microRNAs originating from multiple genomic locations were

summed up. A more detail of the miRDeep2 method is available at

https://www.mdc-berlin.de/content/mirdeep2-documentation. For

differential expression analysis, prior to differential expression anal-

ysis, microRNAs with low reads were filtered out for downstream

analysis. Unwanted variation factors were estimated based on reads

in replicate samples, and these variants were removed from

sequencing data using RUVs function of RUVSeq package. Differen-

tial expression analysis was performed using DESeq2 (Love et al,

2014). MicroRNAs having adjusted P-value < 0.05 were considered

as significantly deregulated.

Statistical framework for analyzing microRNA signature

Sequencing data were normalized for library size and log2 trans-

formed. A quality Z-score was calculated for each sample, and

samples with low quality (Z > 2.5 or Z <−2.5) were defined as

outlier and removed from further analysis. Surrogate variables were

determined by sva R-package. Unless otherwise stated, the effects of

surrogate variables and biological covariates (e.g., age, sex) were

normalized together using a linear regression model. These normal-

ized data were used for subsequent analysis. For the given set of

microRNAs, corresponding expression data were considered to

calculate an eigenvalue. Eigenvalue was calculated using svd func-

tion in R as previously described (Alter et al, 2000) and used for

comparative analysis. Samples with low-quality Z-score (Z > 2.5 or
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Z < −2.5) of eigenvalue were filtered out for downstream compara-

tive analysis between conditions. For statistical analysis, Wilcoxon

test (using wilcox.test in R or stat_compare_means in ggpubr pack-

age) was used. Boxplots were made using the ggboxplot function of

ggpubr package in R. A meta-analysis was performed to get insight

about the pooled effect and consistency of the findings across multi-

ple studies. For this purpose, Cohen´d effect size along with lower

and upper intervals was calculated using cohen.d() function in R.

The standard error and variance within study was calculated using

stdErr and var functions in R. A random effect model based meta-

analysis was performed across studies using metagen function of

meta package in R. Standardized mean difference (SMD) for the

pooled effects was estimated, and Sidik–Jonkman estimator has

been used to estimate the between-study variances. The observed P-

values from single studies were further adjusted across studies with

Benjamini–Hochberg (BH) method and using P.adjust function in R.

For randomization, a seed of 1,234 was used and meta-analyses of

1,000 combinations of three random microRNAs from a pool of 55

aging responsive microRNAs were performed. The observed P-value

of the pooled effect was adjusted with the multiple corrections (BH

method) considering the total number of random combinations

[e.g., P.adjust(P-value, n = 1,000, method = "BH")]. Randomized

combinations (1,000 times) of three microRNAs from human micro-

RNAome were also tested with the similar approach as described

above. For PsyCourse cohort, age effect was not regressed to assess

the effect of aging in microRNA expression. However, other techni-

cal and biological covariates were adjusted as described above. To

determine optimum number of clusters for k-means clustering in

MCI patients, elbow method was implemented. Dissimilarity matrix

based on Euclidean distance was constructed after scaling of

normalized data. Complete linkage of hierarchical clustering was

determined, and the dendrogram was cut by the optimum number

of clusters. Two R-packages cluster and factoextra were used for

these purposes.

Rank-rank hypergeometric overlap analysis

The significance overlap of expressed microRNAs between two

cohorts was calculated using the rank-rank hypergeometric test

(Plaisier et al, 2010). Briefly, microRNAs were ranked by expres-

sion, placing the most expressed microRNA at the top and the least

expressed at the bottom of the list. Number of overlapping

microRNAs between two cohorts was counted at every 10th combi-

nation, and Fisher’s exact test was used to calculate significance of

the overlap and later was corrected after multiple statistical

adjustments.

High-throughput mRNA sequencing and bioinformatic analysis

Library preparation for mRNA sequencing was performed accord-

ing to Illumina TruSeq and as previously described (Jain et al,

2019). RIN values of all samples were above 8. Briefly, libraries

were prepared from 500 ng of input RNA. The quality of RNA was

checked on Agilent 2100 Bioanalyzer (Agilent Technologies), and

prepared libraries were quantified using a Qubit 2.0 Fluorometer

(Life Technologies). Similar to small RNAome, a final library

concentration of 2 nM was used for 50 bp single-end sequencing

on Illumina HiSeq 2000 platform. For sequencing, samples from

different experimental groups were pooled to control for sequenc-

ing biases. Base calling and generation of fastq files were accom-

plished by bcl2fastq (v.2.18.0). Quality of the raw sequencing data

was checked using FASTQC (v0.11.5) (http://www.bioinformatics.

babraham.ac.uk/projects/fastqc/) and was above 30 for all

samples. Sequencing reads were mapped to corresponding refer-

ence transcriptomes (mm10 and hg38) using STAR aligner

(v2.5.2b). After mapping, raw count files were generated using

featureCounts of subread package (v1.5.1). Raw mapped read

counts for genes (≥ 5 in at least 50% of studied samples) were fil-

tered for downstream analysis. Differential expression analysis

was performed using DESeq2(Love et al, 2014). Genes having P-

value < 0.05 after multiple adjustments were considered as signifi-

cantly deregulated.

Weighted co-expression analysis

MicroRNAs that are highly correlated with composite cognitive

score in PsyCourse cohort were identified and summarized with a

modular eigengene profile using the weighted gene co-expression

network analysis (WGCNA) package (version 1.61) in R. Individu-

als used for this analysis were cognitively healthy and young in

age (25.95 � 5.1 years, mean � SD), and no further experimental

groups were defined. The number of males and females was not

matched (74 males and 58 females). Therefore, the normalized

counts were adjusted for sex effect and adjusted counts were log

(base 2) transformed. A downstream quality check step using a Z-

score calculated for each sample confirmed high quality of the

analyzed data. Next, the transformed data were used to calculate

pair-wise bi-weighted mid-correlations between microRNAs. Next,

a soft threshold power of 9 was chosen based on approximate

scale-free topology to highlight strong correlations (R2 = 0.90) and

used to calculate pair-wise topological overlap between micro-

RNAs in order to construct a signed microRNA network. Modules

of co-expressed microRNAs with a minimum module size of 20

were later identified using cutreeDynamic function with following

parameters: method = “hybrid”, deepSplit = 3, pamRespectsDen-

dro = T, pamStage = T. Stability of the detected modules, particu-

larly for blue and brown modules, was tested using different

module (5,10, 20) and deep split (0-4) sizes. Closely related

modules were merged using dissimilarity correlation threshold of

0.15. Different modules were summarized as network of modular

eigengenes, (MEs) which were then correlated with the composite

cognitive score calculated as mentioned above. The module

membership (MM) of microRNAs was defined as the correlation of

microRNA expression profile with MEs, and a correlation coeffi-

cient cutoff of 0.60 was set to select the module-specific micro-

RNAs. Pearson correlation of MEs and cognitive score was plotted

as heat map. To identify unbiased gene expression modules in

aging and APP/PS1-21 treated with inhibitor cocktail, similar co-

expression analyses were performed. As described above, a signed

similarity matrix was created using bi-weighted mid-correlations

for all pairs of genes. The signed adjacency matrix was set at

power 17 and 10, respectively, for aging and APP/PS1-21 data to

reduce the emphasis of weak correlations and to highlight the

strong correlations (R2 = 0.80). Modules were defined with mini-

mum module size 100 and deep split = 2, and modules with corre-

lation greater than 0.85 were merged together.
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MicroRNA feature selection

The feature selection analysis was based on a regression approach

given that the PCA-based cognitive score is a real value. A composite

score for representing cognitive ability was obtained by compressing

all the water maze features into a single quantity by means of project-

ing those features over their first principal component (i.e., PCA’s

first component). Given our interest on determining the best (sub)-set

of microRNAs that link to the aforementioned cognitive score, we

applied three different recursive feature elimination approaches that

were based on either the random forest (Breiman, 2001) or the

support vector machine(Cortes & Vapnik, 1995) regression algo-

rithms, RF and SVM in the subsequent. In all these approaches, the

cognitive score was used as outcome variable whereas the counts

from the 55 aging-related microRNAs were used as predictors. Two

independent RF regression models were trained, one using bootstrap-

ping and the other leave-one-out cross-validation as sampling proce-

dures. The Caret R-package was used to implement all the feature

selection algorithms. Caret’s RFE control function was applied with

the following parameters: RF-bootstrapping (functions = rfFuncs,

method = boot, number = 250, repeats = 1, P = 0.75); RF-leave-one-

out (functions = rfFuncs, method = LOOCV, number = 1, repeats =
1); SVM (number = 100) with an RBF kernel; and size parameter set

to c (2, 5, 10, 20). Software versions were v.3.3.1 and v.6.0.76 for R

and Caret, respectively.

Gene ontology and pathway analysis of microRNA target genes

Lists of predicted microRNA target genes were downloaded from

TargetScan (v 7.1). All experimentally validated microRNA target

genes in mouse were retrieved from miRTarBase (v 7.0) (http://

mirtarbase.mbc.nctu.edu.tw/). KEGG pathways were annotated

using the enrichKEGG function in clusterProfiler. P-value cutoff was

set at 0.05, and multiple adjustment method “BH’’ was chosen.

KEGG pathways for each module were merged using the merge_re-

sult function in clusterProfiler. Top 5 significant pathways from

each module were selected, and comparative analyses were

displayed using dotplot function in clusterProfiler. The dots in the

plot were colored by adjusted P-value.

Gene ontology analysis for biological processes was performed

using the enrichGO function of clusterProfiler package in R at

default setting. Unless otherwise stated, the redundant GO terms

were systematically reduced by grouping similar terms based on

their semantic similarity. To this end, a score of similarity matrix

between terms was calculated using calculateSimMatrix function in

the rrvgo package at default setting. A similarity threshold of 0.8

was used for grouping the terms based on similarity and was

applied using reduceSimMatrix function in the rrvgo package. The

grouped/cumulative P-value for the group term was calculated by

combining P-values of the member terms using Fisher’s method.

The cumulative P-value was further adjusted with Bonferroni

method, and grouped terms with adjusted P-value < 0.05 were

considered as significant.

Preparation of microRNA lipid nanoparticles

Lyophilized microRNA mimic or inhibitors were encapsulated into

lipid nanoparticles according to manufacturer´s protocol (Neuro9

siRNA Spark, Precision NanoSystems). Briefly, 5 nmol lyophilized

microRNA mimic or inhibitor was dissolved in nucleic acid storage

buffer to make final concentration of 1 mM. Required amount of

nucleic acids and formulation buffer 1 (FB1) [miRNA + FB1 mix]

was mixed to have the final concentration at 930 µg/ml. Spark

formulation buffer 2 (FB2), miRNA + FB1 mix, and lipid nanoparti-

cles were added to the cartridge, and mimics/inhibitors of miRNAs

were encapsulated into lipid nanoparticles using the NanoAssembler

Spark. List of microRNA mimic, inhibitors, and control oligonu-

cleotides used to package into lipid nanoparticles is summarized in

Dataset EV17.

Cellular models of human and mouse brains

Primary neuronal culture
E17 pregnant mouse of CD1 background (Janvier Labs, France) was

sacrificed by cervical dislocation. 8–14 embryos were decapitated to

dissect 16–28 hippocampi those were pooled in a 15-ml falcon tube

containing ice-cold PBS (Pan Biotech). Next, the tissue was dissoci-

ated in a solution of pre-warmed PBS plus 2.5% trypsin-EDTA

(Gibco, USA) followed by incubation at 37°C for 13 min. Trypsiniza-

tion was stopped by adding processing medium (Neurobasal®

Medium 1X (Gibco, USA) supplemented with 10% FBS and 1% P/S

and washed. Next, dissociated tissue was homogenized in process-

ing media and centrifuged at 300× g for 5 min and cell pellets were

resuspended in maintenance medium (Neurobasal Medium, 2%

B27, 1% P/S, 1% GlutaMAX). Cells were counted in a Neubauer

counting chamber and seeded at density of 130,000 cells/well in 24-

well plates that were previously coated with 0.05 mg/l poly-D-Lyine

(PDL, Sigma-Aldrich, Germany). The day of plating the cells was

considered as day 0 (DIV0), and one third of the media was changed

with new maintenance media in every 2–3 days. For RNA-seq

experiments, neurons were treated at DIV10, with either miRNA

mimic LNPs or the scrambled RNA LNPs at a dose of 0.01 µg/ml

and ApoE4 (1 µg/ml). After 48 h of incubation, neurons were

harvested in TRIzol for RNA isolation. RNA was prepared using

RNA clean and Concentrator kit (Zymogen) according to manufac-

turer’s instruction.

Immortalized microglial cells
Immortalized microglial (IMG) cells were purchased from Merck

(Cat. No. SCC134) and maintained in DMEM high glucose (Sigma)

supplemented with 10% fetal bovine serum (FBS) (Merck Milli-

pore), 1× L-Glutamine (Merck Millipore), and 100 U/ml penicillin–
streptomycin. Cells were seeded in a 24-well culture plate with

25,000 cells per well as seeding density. Culture plates were kept at

37°c with 5% CO2, 95% air in incubators. The medium was changed

the next day 1 h prior to transfection. For transfection in these dif-

ferentiating cells, ApoE4 (1 µg/ml) was added to the cells followed

by treatment with miR-146a-5p mimic nanoparticle mixture at a

dose of 0.05 µg/ml. Cells treated with equal amount of scrambled

RNA-nanoparticle mix were used as controls. The cells were

harvested after 48 h for RNA isolation. RNA was prepared as

described above.

Bioengineered neuronal organoids
Bioengineered neuronal organoids (BENOs) were generated from

induced pluripotent stem cell line named TC1133 (originally known
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asLiPSC-GR1.1) iPSC cell (Lonza, USA). Organoid generation and

maintenance steps were performed as previously described

(Zafeiriou et al, 2020). BENOs at day in vitro (DIV) 64 were used for

lipid nanoparticle-based transfection. BENO was treated with 3-miR

mimic LNP mix or negative control LNP at a dose of 0.03 µg/ml.

After 24 h of transfection, BENOs were harvested, snap-frozen at

liquid nitrogen, and later stored at −80°C until further use. RNA

was prepared as described above.

Cell type-specific expression analysis

Neuron-enriched primary neuronal culture was prepared as described

above except a different maintenance media supplemented with

Neurobasal plus, 2% B27 plus along with 1% penicillin–strepto-
mycin, and 1% GlutaMAX was used. Primary astrocytes from mouse

P1 pups were prepared following a previously described protocol

(https://www.jove.com/de/v/56092/culturing-vivo-like-murine-

astrocytes-using-fast-simple-inexpensive). Primary mouse microglia

cell cultures were prepared from P1 mouse pups as previously

described (https://bio-protocol.org/pdf/bio-protocol1989.pdf). In

summary, mixed glial cells were grown in DMEM (Thermo Fisher

Scientific) with 10% FBS, 20% L929 conditioned medium, and

100 U/ml penicillin–streptomycin (Thermo Fisher Scientific). Micro-

glia were collected through shaking after 10–12 days in vitro,

counted, and plated in DMEM supplemented with 10% FBS, 20%

L929 conditioned medium, and 100 U/ml penicillin–streptomycin.

Microglia were shaken off up to two times. Corresponding cell types

(e.g., neurons, astrocytes, microglia) were treated with TRIzol, and

RNA was prepared as described above for qPCR-based quantification

of miR-146a-5p, miR-148a-3p, and miR-181a-5p.

Hippocampal injections

Stereotaxic injections to hippocampal CA region were performed as

described previously with modifications (Zovoilis et al, 2011). In

summary, mice were anaesthetized and glass micropipette contain-

ing lipid nanoparticles was directly inserted into the dorsal

hippocampus using the following coordinates: 1.0 mm posterior to

the bregma; � 1.0 mm lateral and 1.5 mm ventral from midline.

MicroRNA mimics, control for mimic (dose: 0.1 µg/ml) and inhi-

bitor mix, and control for inhibitor (dose: 0.2 µg/ml) were injected

bilaterally (1 μl, at a rate of 0.3 μl/min per side).

STED and confocal imaging and data analysis

Neurons were treated with 3-miR mimic mix or the control LNPs

(0.03 µg/ml) at DIV7. At DIV10, neurons were fixed and quenched

with 4% PFA (Sigma-Aldrich, Germany) and 100mM NH4Cl (Merck,

Germany), respectively, at room temperature for 30 min each. Next,

cells were washed three times on a shaker using permeabilization

and blocking buffer (0.1% Triton-X [Merck, Germany] + 3% bovine

serum albumin (BSA) [AppliChem GmbH, Germany]). Primary anti-

body was then added, and cells were incubated for 1 h at room

temperature. Next, cells were washed and incubated with secondary

antibody for 1 h at room temperature. After washing with PBS,

coverslips were mounted on glass slides using mowiol (Merck,

Germany). Primary antibodies include the following: synaptophysin

1 (guinea pig, SySy) and PSD-95 (rabbit, Cell Signaling). As

secondary antibodies, Cy3 (donkey, anti- guinea pig, Jackson Imm.)

and Abberrior STAR 635p (goat, anti-rabbit) were used. Confocal and

STED images were acquired using a multicolor confocal STED micro-

scope (Abberior Instruments GmbH, Göttingen, Germany). Analysis

of colocalization of pre- and postsynaptic markers was performed

using Colocalization and SynQuant plug-ins in Fiji (v 2.0.0).

For dendrite staining, crystals of DIL (Thermo Fisher, Germany)

were used. Briefly, neuronal cells grown on coverslips were treated,

fixed, and quenched as described above. For disperse labeling of

dendrites, 2–3 crystals of DIL were added to the cells/well of a 24-well

plate and incubated on a shaker for 10 min. Cells were washed three

times with 1× PBS and subsequently incubated overnight at 4°C. Next
day, coverslips were washed and mounted using mowiol. STED images

were acquired using multicolor confocal STED microscope (Abberior

Instruments GmbH, Göttingen, Germany). Spine density and total

spine length were measured using in house scripts based in Fiji and R.

Multielectrode assay (MEA)

Mouse hippocampi were extracted, trypsinized, and homogenized

as described above. Cells were collected by centrifugation (300 × g

for 5 min at RT) and resuspended in NbActiv4 (BrainBits) culture

medium. Cells were counted, mixed with laminin (1 µg/ml, Merck),

and plated at density of 15,000 neurons/µl into Lumos lens lid 48-

well microelectode array plates (MEA) equipped with 16 electrodes/

well. These wells were previously coated with poly-D-lysine (PDL).

Day of seeding cells was considered as DIV0. One third of the media

was changed with new media every 2–3 days. At DIV7, cells were

treated with 3-microRNA mix or scrambled RNA lipid nanoparticles.

At DIV10, spontaneous neuronal activity was measured using the

Maestro Apex Platform (Axion Biosystems) for 24 h. Recording was

done in every 3 h for 10 min during this time.

Quantitative RT–PCR for microRNA and target genes

cDNAs for quantitative PCR from mRNA were prepared using Tran-

scriptor High Fidelity cDNA Synthesis Kit (Roche). SYBR green (Light-

Cycler® 480 SYBR Green I Master, Roche) was used for quantification,

and signals from genes were normalized to those from internal control

hypoxanthine phosphoribosyltransferase 1 (HPRT1) gene. Relative

gene expression was analyzed by 2−ddCt method (Livak et al, 2001).

List of primer sequences is summarized in Dataset EV17.

Luciferase assay

Cloned 30UTR sequence of LRRK2, SLC6A11, and CADM3 (mm10)

and scrambles UTR were purchased from GeneCopoeia. UTR was

cloned downstream to firefly luciferase of pEZX-MT06 Dual-

Luciferase miTarget™ vector. The pEZX-MT06-scrambled UTR or

pEZX-MT06-LRRK2, SLC6A11, and CADM3 30UTR construct and

miR-181a-5p, mir-148a-3p, and miR-146a-5p mimic or negative

control were co-transfected into HEK293-T cells cultured in 96-well

plates using EndoFectin™ Max Transfection Reagents (Gene

Copoeia) according to the manufacturer’s protocol. 48 hours after

transfection, Firefly and Renilla luciferase activities were measured

using a Luc-Pair™ Duo-Luciferase HS Assay Kit (for high sensitivity)

(GeneCopoeia). Ratio of luminescence from the Firefly luciferase to

the Renilla luciferase was calculated for each sample. The mean of
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luciferase activity of Firefly/Renilla was considered for the analysis.

The relative luciferase activity was calculated by internal normaliza-

tion for each sample. Relative luciferase activity was used to deter-

mine the micoRNA-UTR binding.

Published datasets used in this study

Genes linked to general cognition were retrieved from a recent

GWASA study (Davies & Harris, 2018). Cell type-specific expression

of microRNAs was downloaded from NCBI GEO and part of a previ-

ous study (Jovičić et al, 2013). Immune-related genes based on

eQTL data analysis were reported in the previous study(Gjoneska et

al, 2015). Raw data of Alzheimer´s model mice Ck-p25 for 2 and

6 weeks were retrieved from GSE65159 and analyzed. Transcrip-

tomic microarray data from human AD patients and controls were

available (GSE44770) and analyzed with GEO2R. Human AD

proteome data were downloaded from the previous study(Ping et al,

2018). Plasma qPCR array from MCI patients and healthy subjects

was available at GEO (GSE90828). Small RNAome data from CSF

samples from MCI patients and healthy subjects were retrieved from

the previous study (Jain et al, 2019) and analyzed in house. Small

RNAome data from 6-month-old FTLD (fronto-temporal dementia)

mouse models were retrieved from GSE89983. As outlined above in

some cases, we employed previously published data that were

generated on the basis of microarray studies to compare lists of dif-

ferentially expressed transcripts. All our experiments that address

differential gene or microRNA expression are based on RNA

sequencing which is not biased by probe design and has a wider

dynamic range when compared to microarray studies. Although a

significant overlap among differentially expressed transcripts

detected via a microarray and RNA-seq has been reported (Rao et al,

2019), care has to be taken when interpreting such data.

Data and code availability

Published datasets used in this study are from multiple sources as

described above. All high-throughput sequencing datasets generated

in this study from cell culture and mouse experiments are deposited

and available in NCBI GEO (Data accession: GSE153105, GSE153106,

GSE153107, GSE153109, GSE153110, GSE153111, GSE153112,

GSE153180). Due to data protection and privacy policy, we submitted

the human data generated in this study to the European Genome-

phenome Archive (Accession number EGAD00001008153), through

which researchers can apply for access of the raw data. All analyses

are performed using published packages as cited and are available

through Bioconductor or CRAN. Custom source code along with

processed data is available via the following link (https://github.

com/mdrezaulislam/paper_three_mir_signature).

Expanded View for this article is available online.
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The paper explained

Problem
The establishment of effective therapies for age-associated neurode-
generative diseases such as Alzheimer’s disease (AD) is still challenging
because pathology accumulates long before there are any clinical
signs of disease. Thus, patients are often only diagnosed at an already
advanced state of molecular pathology, when causative therapies fail.
Therefore, there is an urgent need for molecular biomarkers that are
(i) minimally invasive, (ii) can inform about individual disease risk,
and (iii) ideally indicate the presence of multiple pathologies. Such
biomarkers should eventually be applicable in the context of routine
screening approaches with the aim to detect individuals at risk for
developing AD that could then be subjected to further diagnostics via
more invasive and time-consuming examinations.

Results
We use a novel experimental approach combining the analysis of
young and healthy humans with already diagnosed patients as well
as animal and cellular disease models to eventually identify a 3-
microRNA signature that can inform about the risk of cognitive
decline when measured in blood. The 3-microRNA signature also
informs about relevant patho-mechanisms in the brain, and targeting
this signature via RNA therapeutics can ameliorate AD disease pheno-
types in animal models.

Impact
We suggest that the analysis of this microRNA signature could be
used as point-of-care screening approach to detect individuals at risk
for developing AD that can then undergo further diagnostics to allow
for early and effective intervention. In addition, our data highlight the
potential of stratified RNA therapies to treat Alzheimer’s disease.
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