The functional behavior of monocuspid and bicuspid patches made from glutaraldehyde-treated porcine aortic roots for experimental repair of a surgically created hypoplastic pulmonary root was investigated. The function of the bicuspid design is superior to that of the monocuspid design and permits the construction of a competent and stenosis-free valve mechanism.

Intraventricular repair for Taussig-Bing anomaly

Yasunaru Kawashima, MD, Hikaru Matsuda, MD (by invitation), Toshikatu Yagihara, MD (by invitation), Yasuhisa Shimazaki, MD (by invitation), Fumio Yamamoto, MD (by invitation), Kyoichi Nishigaki, MD (by invitation), Takuya Miura, MD (by invitation), and Hideki Uemura, MD (by invitation), Osaka, Japan

Ten patients with Taussig-Bing anomaly, mostly with a side-by-side relationship of the great arteries, underwent satisfactory intraventricular rerouting with no deaths and without late development of subaortic obstruction. This operation appears to be the method of choice for this subset of patients when care is paid to create an unobstructed left ventricular-aortic route during the operation.

Continued on page 6A
A computer simulation of the plasma leakage through a vascular prosthesis made of expanded polytetrafluoroethylene

Ryoko Tabata, MD, Takayuki Kobayashi, PhD, Atsumi Mori, MD, Shuichi Matsuno, MD, Shoji Watarida, MD, Masahiko Onoe, MD, Takaaki Sugita, MD, Shoichiro Shiraisi, MD, and Takehisa Nojima, MD, Shiga, Japan

Computer simulation disclosed that the plasma leakage through the wall of an ePTFE vascular prosthesis depends on inner pressure, surface tension, and a mean distance between PTFE fibers in the direction of the axial axis of the vascular prosthesis.

Surgery for Acquired Heart Disease

The effect of coronary reoperation on the survival of patients with stenoses in saphenous vein bypass grafts to coronary arteries

Bruce W. Lytle, MD, Floyd D. Loop, MD, Paul C. Taylor, MD (by invitation), Marlene Goormastic, MPH (by invitation), Robert W. Stewart, MD (by invitation), Roberto Novoa, MD (by invitation), Patrick McCarthy, MD (by invitation), and Delos M. Cosgrove, MD, Cleveland, Ohio. With the technical assistance of Maura J. Schnauffer

Patients with late stenoses (≥5 years after operation) in SV grafts to coronary arteries have better survival with early reoperation than with initial medical treatment.

The right gastroepiploic artery graft: Clinical and angiographic midterm results in 200 patients

Hisayoshi Suma, MD (by invitation), Yasuhiko Wanihuchi, MD (by invitation), Yasushi Terada, MD (by invitation), Sachio Fukuda, MD (by invitation), Tetsuro Takayama, MD (by invitation), and Shoichi Furuta, MD (by invitation), Tokyo, Japan

The GEA was used for CABG in 200 patients, with 6 early and 4 late deaths. Follow-up (6 to 70 months, mean 27 months) showed a GEA patency rate of 95% at both early (mean 2 months) and late (mean 2 years) angiography. Stress scintigraphy revealed satisfactory GEA function.

Continued on page 8A
Dr. E. Stanley Crawford died in Houston, Texas, on October 27, 1992. Dr. Charles Dubost, in attendance a few years ago at a surgical meeting in the United States, said that his real reason for coming to America was to pay his usual visit to "the greatest surgeon in your country." When pressed for his name, Dubost said, "Stanley Crawford."

Born in Evergreen, Alabama, on May 12, 1922, Stanley Crawford was a brilliant cardiovascular surgeon whose workload throughout his life was staggering, in spite of which his results were exemplary and set a standard for the rest of us to follow. While his early and richly rewarding writings stressed the drama of the domain in which he worked, in his later years his publications became precise and analytical. They too, in a different way, were richly rewarding to their readers. The perceptible transition was just one of the many remarkable and totally admirable characteristics of this lovable, gifted man. The readership of THE JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY surely joins the Editor in his loneliness for this productive, provocative, and genuinely unique and wonderful surgeon.
Hemostatic activation during cardiopulmonary bypass with different aprotinin dosages in pediatric patients having cardiac operations

The effect of high-dose aprotinin treatment on hemostatic activation during cardiopulmonary bypass in pediatric patients having cardiac operations was investigated. Sixty patients weighing less than 10 kg undergoing cardiac operations for different types of congenital heart diseases were studied: 20 patients were treated with aprotinin $2 \times 15,000$ KIU/kg, 20 patients with $2 \times 30,000$ KIU/kg, and 20 patients without aprotinin treatment served as the control group. Different split products of fibrinogen and/or fibrin and the fibrinolytic activity on fibrin plates were measured to assess fibrinolytic activation. F1/F2 prothrombin fragments, thrombin-antithrombin III–complex, and fibrin monomers were measured to estimate thrombin activation. There was a significant dose-dependent reduction in fibrin–fibrinogen split product formation during cardiopulmonary bypass: In the high-dose aprotinin group the concentration of the split products at the end of bypass was $1.5 \pm 0.6 \mu g/ml$, compared with $3.4 \pm 3.0 \mu g/ml$ in the low-dose aprotinin group and $6.7 \pm 3.5 \mu g/ml$ in the control group ($p < 0.05$). Fibrinolytic activation on fibrin plates was also significantly reduced by aprotinin. Fibrin monomer formation was significantly diminished at the end of cardiopulmonary bypass in the high-dose group: $9.2 \pm 5.2 \mu g/ml$ compared with $21.6 \pm 14 \mu g/ml$ in the control group ($p < 0.05$). Elastase in complex with α_1-protease inhibitor at the end of bypass was increased to the same amount in the three groups: $784 \pm 278 \mu g/mL$ (control group), $693 \pm 189 \mu g/mL$ (low-dose aprotinin), and $719 \pm 270 \mu g/mL$ (high dose aprotinin) (no significant difference). Blood loss 6 hours postoperatively was significantly ($p < 0.05$) less in the high-dose group ($99 \pm 32 \text{ ml/m}^2$) than in the control group ($164 \pm 87 \text{ ml/m}^2$; low-dose group: $160 \pm 106 \text{ ml/m}^2$). These observations suggest an attenuation of hemostatic activation during cardiopulmonary bypass with less plasmin formation and, because of inhibition of contact activation, less thrombin generation with aprotinin treatment. Thus the thrombotic-thrombolytic equilibrium is kept more balanced after cardiopulmonary bypass. High-dose aprotinin treatment is recommended for pediatric patients undergoing cardiac operations. (J THORAC CARDIOVASC SURG 1993;105:712-20)

W. Dietrich, MD,a H. Mössinger, MD,a M. Spannagl, MD,b M. Jochum, MD,c P. Wendt, MD,d A. Barankay, MD,a H. Meisner, MD,c and J. A. Richter, MD,a Munich, Germany

Several recent studies1-8 have demonstrated that the application of the protease inhibitor aprotinin during cardiac operations leads to a dramatic reduction of intraoperative and postoperative bleeding tendency. This reduc-

dDepartment of Experimental Surgery, Technical University, Munich, Germany.
bDepartment of Hematology, University Clinic, Munich, Germany.
cDepartment of Surgery, Division of Clinical Chemistry, University Clinic, Munich, Germany.

copyright © 1993 by Mosby-Year Book, Inc.
0022-5223/93 $1.00 + .10 12/1/41633
tion is caused by an attenuation of the hemostatic activation during cardiopulmonary bypass (CPB). Although it is generally accepted that impaired platelet function is the most important factor of postoperative bleeding\(^9\) and that platelet function is better preserved with aprotinin,\(^{10-12}\) the precise mechanism underlying the action of aprotinin is still being discussed: A direct platelet protective effect,\(^{12}\) inhibition of fibrinolysis,\(^{2,13}\) and inhibition of the contact phase of coagulation\(^4\) are considered to be the main mechanisms of aprotinin action. However, there is strong evidence supporting the hypothesis that the inhibition of kallikrein and the resulting attenuation of contact phase activation is one important aspect of aprotinin action.

All these studies have been performed on adults having cardiac operations. With respect to coagulation, there are important differences between adults and infants or neonates: The vitamin K-dependent coagulation factors (II, VII, IX, and X) are lower in newborns and attain adult levels between 2 and 12 months of age.\(^{14}\) The biologic activity of the contact factors (factor XI, factor XII, prekallikrein, high-molecular-weight kininogen) is depressed to variable degrees.\(^{15}\) These differences are more pronounced in immature infants or infants with cyanotic heart disease than in adults. Data were published about the effect of a lower dosage of aprotinin on blood loss in repair of congenital heart defects.\(^{16}\) However, no data are available in the literature so far concerning the impact of high-dose aprotinin on the coagulation system in infants and children.

The aim of the present study was to investigate the influence of different aprotinin dosages on the activation of hemostasis during CPB in pediatric patients having cardiac operations.

Methods

After institutional approval, 60 pediatric patients with a body weight less than 10 kg, undergoing cardiac operations for different congenital lesions, were enrolled in the protocol. Patients were excluded from the study if the expected duration of CPB exceeded 120 minutes. Patients were randomly assigned to one of three groups, each consisting of 20 patients. To twenty patients (group L, low-dose protocol) an aprotinin bolus of 15,000 kallikrein-inhibiting units per kilogram (KIU/kg) (Bayern AG, Leverkusen, Germany) was given after induction of anesthesia and an additional bolus of 15,000 KIU/kg was added to the pump prime of the heart-lung machine. In the high-dose aprotinin group (group H) 20 patients received an aprotinin bolus of 30,000 KIU/kg after induction of anesthesia and the same dose was given to the pump prime. The control group (group C) consisted of 20 patients without aprotinin treatment.

Anesthesia. Premedication consisted of morphine 0.2 mg/kg, flunitrazepam 0.04 mg/kg, and atropine 0.01 mg/kg given 1 hour before induction of anesthesia. For induction, halothane was applied via a face mask (0.5 to 1.0 vol %). Neuromuscular blockade was achieved and maintained with pancuronium (0.1 mg/kg). Fentanyl (10 to 20 μg/kg) and flunitrazepam (0.02 mg/kg) were given to deepen and maintain anesthesia. Patients' lungs were ventilated to mild hypocapnia with an air-oxygen mixture or 100% oxygen. After intubation an arterial catheter (radial artery) and a central venous line were inserted via the right internal jugular vein.

CPB. Mucosa heparin (375 U/kg, La Roche, Basle, Switzerland) was injected via the central venous catheter before aortic cannulation. The extracorporeal circuit consisted of a bubble oxygenator (High Flex D 700 S, Dideco, Mirandola, Italy), nonocclusive roller pumps, and polyvinyl tubing. Blood from the operating field was aspirated by the cardiotoxic suction and reinfused to the oxygenator via a 40 μ filter (Dideco D 742). The oxygenator was primed in all patients with 500 ml homologous blood and 100 to 300 ml of crystalloid solution. Heparin 3000 U was added to this homologous blood unit. Two different techniques were applied: (1) Patients operated on with the aid of hypothermia were cooled during bypass to a rectal temperature of 26° C. The blood flow was kept to 2.4 L/min/m\(^2\), being reduced under hypothermia to 1.2 L/min/m\(^2\). (2) For deep hypothermic circulatory arrest (DHCA), patients were cooled until the rectal temperature was 20° C. Then perfusion was stopped and the venous cannula was removed from the right atrium. After the surgical procedure, the venous can­nula was inserted again and the patients were rewarmed on CPB by means of the heat exchanger of the heart-lung machine and a warming blanket.

CPB was terminated in all patients when a rectal temperature of 32° C was attained. After completion of CPB, residual heparin was neutralized with protamine chloride in a ratio of 1.5 mg/125 U heparin (protamine; La Roche, Basle, Switzerland). One unit of fresh whole blood was available after CPB for all patients from which, depending on hemoglobin value and hemodynamics, different amounts were given. Mechanical ventilation was continued for at least 12 hours after the operation.

Blood samples. Blood samples were taken from the radial artery or, during CPB, from a port of the oxygenator at the following times: (1) after induction of anesthesia before aprotinin infusion, (2) 5 minutes after the onset of CPB, (3) 30 minutes after the onset of CPB or, in case of DHCA 15 minutes after the end of circulatory arrest, (4) at the end of CPB, and (5) at the end of the operation. After the first 5 ml of blood was discarded, blood was drawn into ethylenediaminetetraacetic acid tubes for assessment of hematocrit value, platelet count, and leukocyte count or into acid-citrate-dextrose (ACD) solution (4:1) for all other measurements. The ACD blood was centrifuged at 3000g for 10 minutes at room temperature and the plasma was separated from the cellular components. All plasma samples were frozen immediately at −40° C in aliquots and thawed only before testing.

Aprotinin plasma concentrations were quantified by means of a competitive enzyme-linked immunosorbent assay according to Müller-Esterl and associates.\(^{17}\) The split products of the cross-linked fibrin were measured by two independent immunoassays, based on monoclonal antibodies to D-dimers (Boehringer, Mannheim, Germany) and to fibrin (Organon Teknika, Heidelberg, Germany). The degradation products of fibrinogen, the total degradation products (Organon Teknika, Heidelberg, Germany), the complex of thrombin with antithrombin III (Behringwerke, Marburg, Germany), F1/F2 prothrombin
Table I. Demographic data on patients

<table>
<thead>
<tr>
<th>Group</th>
<th>Age (days)</th>
<th>Weight (gm)</th>
<th>Operation time (min)</th>
<th>CPB time (min)</th>
<th>CCHD (yes/no)</th>
<th>DHCA (yes/no)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>211 ± 189</td>
<td>5477 ± 1838</td>
<td>168 ± 57</td>
<td>84 ± 31</td>
<td>10/10</td>
<td>14/6</td>
</tr>
<tr>
<td>Low dose</td>
<td>263 ± 189</td>
<td>6178 ± 1934</td>
<td>200 ± 47</td>
<td>100 ± 27</td>
<td>9/11</td>
<td>13/7</td>
</tr>
<tr>
<td>High dose</td>
<td>349 ± 305</td>
<td>6313 ± 2479</td>
<td>187 ± 47</td>
<td>98 ± 40</td>
<td>6/14</td>
<td>10/10</td>
</tr>
</tbody>
</table>

CPB, Cardiopulmonary bypass; CCHD, cyanotic congenital heart disease; DHCA, deep hypothermic circulatory arrest.

Table II. Pre operative diagnoses

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>Low dose</th>
<th>High dose</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>VSD</td>
<td>6</td>
<td>1</td>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td>TGA*</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>CAVSD</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>11</td>
</tr>
<tr>
<td>PA</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>TOF</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>SV</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>TAPVR</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>TA</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>TAC</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>other</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>60</td>
</tr>
</tbody>
</table>

*Only atrial level repairs.

fragments (Behringwerke, Marburg, Germany), and elastase in complex with α_1-protease inhibitor (E. Merck, Darmstadt, Germany) were determined by sandwich enzyme-linked immunosorbent assays using polyclonal and monoclonal antibodies.

The concentration of fibrin monomers was measured by an immunoassay using monoclonal antibodies directed against the N-terminal α-chain of human fibrin (Boehringer, Mannheim, Germany).

Spontaneous fibrinolytic activation in the native samples and in their egubolin fraction was estimated by the use of plasminogen containing human fibrin plates. Any development of a lysis area, regardless of its size, was considered to be an indication of extrinsic plasminogen activator(s) in the sample. The activated clotting time was determined according to the instructions of the manufacturer (Hemochron 400, International Technidyne Corp., Edison, N.J.). For global coagulation tests, routinely applied clotting methods were used. Blood loss through the chest tubes was measured in the intensive care unit 6, 12, and 24 hours after the operation. Because body weight varied substantially among patients, the blood loss was expressed as a function of the body surface area in milliliters per square meter.

Data analysis. Two-way analysis of variance was used to analyze normal distributed data. Whenever appropriate, significant differences among the three groups were explored with the Newman-Keuls test. Parametric data were given as mean ± standard deviation. If Shapiro's test of normality revealed that data did not conform to a normal distribution, comparison among the three groups was done with the Kruskal-Wallis test.

The χ^2 test was used for categoric data. Stepwise multiple regression analysis was performed to assess the independent contributions of group allocation, cyanotic heart disease, or the application of DHCA to changes of hemostatic variables at the end of CPB. Linear regression analysis was applied to examine the relationship between the temperature 30 minutes after onset of CPB and the degree of fibrin formation and the concentration of the total degradation products. A p value less than 0.05 was considered statistically significant.

Results

All 60 patients admitted to the study were included to the subsequent analysis. Table I shows the demographic data for the three groups and Table II the pre operative diagnoses. No significant differences were found for any of the variables. The mean CPB times including circulatory arrest times were 84 ± 31 minutes (group C), 100 ± 27 minutes (group L), and 98 ± 40 minutes (group H), respectively. Fourteen (group C), 13 (group L), and 10 patients (group H) were operated on in DHCA. The circulatory arrest time was 34 ± 17 minutes in group C ($n = 14$) compared with 48 ± 17 minutes in group L ($n = 13$) and 55 ± 12 minutes in group H ($n = 10$) ($p < 0.05$, group C versus groups L and H). The mean CPB time, not including the arrest time for all infants with DHCA ($n = 37$), was 56 ± 25 minutes, whereas the CPB time was 81 ± 38 minutes in patients without DHCA ($n = 23$) ($p < 0.05$).

The highest aprotinin plasma concentrations were measured 30 minutes after the onset of CPB: 73 ± 30 KIU/ml in group L and 99 ± 25 KIU/ml in group H. At the end of CPB the concentrations were 63 ± 72 KIU/ml (group L) and 92 ± 20 KIU/ml (group H), respectively. Patients of group L received a total amount of 98,000 ± 42,000 KIU aprotinin, as compared with 180,000 ± 81,000 KIU in group H ($p < 0.05$).

The concentration of the F1/F2 prothrombin fragments and the thrombin–antithrombin III complex increased steadily during CPB. At the end of the operation the F1/F2 concentrations were 9.9 ± 4.9 ng/ml (group C), 11.2 ± 4.8 ng/ml (group L), and 6.3 ± 6.0 ng/ml (group H) ($p < 0.05$ versus groups C and L). In contrast, the thrombin–antithrombin III complex did not show significant differences. The course of the concentra-
The course of the concentration of fibrin-fibrinogen split products is given in Fig. 3. Aprotinin showed a dose-dependent effect on the development of split products. At the end of CPB the concentrations of fibrin-fibrinogen split products were 6.7 ± 3.5 µg/ml in group C, 3.4 ± 3.0 µg/ml in group L, and 1.5 ± 0.6 µg/ml in group H (p < 0.05). The course of the concentration of D-dimers was nearly identical (D-dimer concentrations at the end of CPB: 1.2 ± 0.8 µg/ml, group C; 0.9 ± 0.9 µg/ml, group L; and 0.5 ± 0.4 µg/ml, group H) (p < 0.05 versus group C). The fibrin split products paralleled the course of the D-dimers (Fig. 4). Thirty minutes after the onset of CPB, the fibrin plates showed positive results in 75% of patients in group C, in 65% in group L, and in 35% in group H (the lysis areas were 15.8 ± 20.1 mm², 8.7 ± 8.5 mm², and 1.7 ± 3.8 mm² in groups C, L, and H, respectively; p < 0.05). There were no differences in the results on the fibrin plates at the end of CPB or the end of the operation.

No significant correlation could be found between rectal temperatures measured 30 minutes after onset of CPB and the formation of fibrin or fibrin degradation products. However, there was a tendency in all three groups toward a higher degree of activation of coagulation and fibrinolysis with lower body temperatures. Multivariate analysis identified only the group allocation as being independently associated with a decreased clotting activation at the end of extracorporeal circulation. However, regardless of group allocation, all patients operated on in DHCA showed at the end of CPB increased concentrations of fibrin-fibrinogen split products (with DHCA, 4.6 ± 3.8 µg/ml; without, 2.7 ± 2.2 µg/ml; p = 0.05) and fibrin split products (with DHCA, 2.7 ± 2.9 µg/ml; without, 1.2 ± 1.4 µg/ml; p < 0.05) compared with patients without DHCA. On the other hand, there were no differences in regard to hemostatic activation between cyanotic and acyanotic patients.

A continuous increase of the concentration of the complex bound elastase over CPB time was noted. At the end of CPB these concentrations were 784 ± 278 ng/ml (group C), 693 ± 189 ng/ml (group L), and 719 ± 270 ng/ml (group H) (p < 0.05 vs Control).
Fig. 4. Concentrations of different split products of fibrinogen or fibrin at the end of CPB. D-dimers and split products of fibrin (FbDP) were measured by different immunoassays. Total degradation products (FSP) are the split products of fibrin and fibrinogen, whereas fibrinogen degradation products (FgDP) were determined by monoclonal antibodies against fibrinogen split products. There was a dose-dependent reduction of all split products at the end of CPB, indicating reduced fibrinolytic activity with aprotinin treatment.

ng/ml (group H) (p = NS*). The platelet count did not reveal significant differences among the three groups. From normal preoperative values the counts dropped to 121 ± 36 × 10⁹/L (group C), 93 ± 37 × 10⁹/L (group L), and 102 ± 44 × 10⁹/L (group H) at the end of the operation (p = NS). The preoperative hemoglobin concentration varied from 13.0 ± 2.3 gm/dl (group C) to 14.1 ± 3.4 gm/dl (group L) and 12.8 ± 2.1 gm/dl (group H) (p = NS). At the end of CPB hemoglobin values were 10.6 ± 1.4 gm/dl (group C), 10.9 ± 2.0 gm/dl (group L), and 10.9 ± 1.3 gm/dl (group H), respectively.

Blood losses 6 hours postoperatively were 164 ± 87 ml/m² (group C), 160 ± 106 ml/m² (group L), and 99 ± 32 ml/m² (group H) (p < 0.05, group H versus group C or L). However, there were no significant differences in 24-hour blood losses: 294 ± 148 ml/m² (group C), 278 ± 162 ml/m² (group L), and 199 ± 67 ml/m² (group H) (range, 78 to 603 ml/m², group C; 79 to 761 ml/m², group L; and 103 to 370 ml/m², group H). There were no differences in the required units of homologous blood among the groups. Two units of fresh whole blood were available for all patients. The oxygenator of the heart-lung machine was primed with the first unit, and different amounts from the second unit were given during and after the operation. In none of the patients was a third unit of bank blood necessary.

The activated clotting time was greater than 1000 seconds in all groups during CPB. None of the patients needed additional heparin to keep the activated clotting time above 400 seconds. After heparin reversal by protamine chloride, the activated clotting times were 139 ± 19 seconds (group C), 135 ± 23 seconds (group L), and 136 ± 23 seconds (group H) (p = NS). The times to control bleeding, that is, the intervals between end of CPB and thoracic closure, were between 60 ± 17 minutes (group H) and 63 ± 14 minutes (group C) (p = NS). No side effects attributable to aprotinin were observed. All patients survived the early postoperative period.

*NS = Not significant.
Discussion

This investigation corroborates the results of recent studies on the use of high-dose aprotinin in adults having cardiac operations. In the present study we found a dose-dependent attenuation of the deleterious effect of CPB on hemostatic activation, as well as a reduction of bleeding tendency, in our group of children undergoing cardiac operations with aprotinin compared with the control group without aprotinin treatment. Duration of operation and CPB, as well as preoperative hemoglobin concentration, were comparable among the groups, thus rendering negligible the influence of different surgical procedures on hemostatic alterations.

Several studies have shown that clotting activation and fibrinolysis takes place during CPB. This process starts with the activation of factor XII (Hageman factor) by the initial blood contact with the unphysiologic, non-endothelial surfaces of the circuit of the heart-lung machine. The contact activation with the conversion of prekallikrein to kallikrein launches the activation of the cascades systems of the body, including the intrinsic coagulation pathway, fibrinolysis, the classic complement pathway, and the kinin-kininogen system. Contact activation does not play a role in physiologic coagulation. The extracorporeal circuit, however, with its artificial surfaces, is a highly unphysiologic system. Therefore, under the condition of CPB contact activation contributes to the activation of hemostasis. Neutrophil activation takes place at the same time. Heparin treatment is supposed to inhibit only one component of this contact activation system, the formation of fibrin. Because thrombin already bound to fibrin is less inhibitable by heparin, fibrin formation and polymerization take place despite heparin treatment during CPB.

Platelets are activated either by contact with unphysiologic surfaces by generated thrombin or by plasmin, which are both powerful platelet stimulators. It is known that impaired platelet function is the main cause of bleeding after cardiac operations. Thus the link between hemostatic and platelet activation is as follows: Less plasmin and thrombin formation causes less platelet activation. This assumption is corroborated by the results of several studies demonstrating better preservation of platelet function in patients with high-dose aprotinin treatment.

Our study clearly proved a dose-dependent reduction in fibrinolytic activity with aprotinin: Patients in the high-dose group had the lowest concentrations of fibrin-fibrinogen split products, control patients the highest, and patients in the low-dose group had intermediate concentrations. The results of the fibrin plates also demonstrated less fibrinolytic activity. However, the given dosages of aprotinin were not able to suppress fibrinolytic activity on fibrin plates completely. Besides this antifibrinolytic effect, a less pronounced antithrombin effect was also evident: We found significantly less fibrin formation in the patient group with the highest aprotinin dosage, and the concentrations of the F1/F2 fragments were significantly lower at the end of the operation. However, the thrombin-antithrombin III–complex concentrations were not different among the three groups. With respect to plasma levels of complexed elastase, we did not see any differences in neutrophil activation, which indicates that clotting and fibrinolysis products play a minor role in neutrophil stimulation.

Several studies have shown the antifibrinolytic effect of aprotinin treatment during CPB. Aprotinin is supposed to manifest its antifibrinolytic properties in plasma concentrations of about 50 KIU/ml, whereas kallikrein inhibition is achieved only with higher concentrations. It seems to be of paramount importance that aprotinin not only acts as an antifibrinolytic agent but also inhibits thrombin generation, thus enhancing the anticoagulatory effect of heparin during CPB. This is the pivotal difference to therapy with solely antifibrinolytic agents.

The present data show some differences compared with results from adult patients treated with aprotinin. Recently, a reduction of the thrombin-antithrombin III–complex and fibrin formation in adult patients undergoing myocardial revascularization could be demonstrated. The difference in these findings may be based on the different aprotinin plasma concentrations: The peak concentration found in adult patients was around 300 KIU/ml, whereas in our study the peak aprotinin plasma concentration in the high-dose group was 99 ± 25 KIU/ml 30 minutes after the onset of CPB. According to the dosage introduced by Royston and Bidstrup and their associates, adult patients received 5 to 6 × 10^6 KIU aprotinin during a cardiac operation. This represents approximately 60,000 KIU/kg body weight. Thus we calculated the dosage in the high-dose group according to this regimen with 2 × 30,000 KIU/kg. However, the relation between circulating blood volume and the pump prime differs when these small patients are compared with adults. Therefore the diluting effect of the pump prime is more pronounced, resulting in lower plasma concentrations of aprotinin during CPB. Consequently, the priming volume of the heart-lung machine should be included in the calculation of the aprotinin dosage. One might anticipate even more pronounced effects on hemostasis at aprotinin doses closer to those achieved in adults.
Another difference between infants and adults was the prolonged activated clotting time in our pediatric patients. Because of the immature hemostatic system, the prothrombin time and the partial thromboplastin time in neonates and infants are prolonged. Furthermore, hepatic congestion with an impaired development of clotting factors and polycythemia with imbalance of cellular and plasmatic hemostatic components is common in congenital heart disease. However, a more simple explanation for this difference may be based on the fact that our patients received 3000 U of additional heparin per unit of homologous blood during CPB. Therefore these patients were heparinized more effectively, because the total dosage of heparin per kilogram was higher than in adult patients.

A secondary result of this study was that the temperature reduction did not result in reduced hemostatic activation. In contrast, patients operated on under DHCA showed a tendency toward higher activation of the hemostatic system. Thus hypothermia does not seem to protect from activation of the hemostatic system.

The 6-hour postoperative blood loss was significantly lower in the high-dose aprotinin group than in the control group. Because postoperative blood loss is not the main predictor of transfusion requirement in patients with congenital heart disease, the homologous blood requirement was not significantly different among the groups. Moreover, in our institution homologous blood is available only in units containing 450 to 500 ml blood. Regardless of their group allocation, all patients received different amounts from 2 units of homologous blood during the operation and in the early postoperative period and therefore came into contact with the blood of two blood donors. However, because patients with an expected bypass time longer than 2 hours were excluded from the study (e.g., anatomic repair of transposition of the great arteries), we presumably deal with a bias toward lower intraoperative and postoperative blood loss. This exclusion was done for ethical reasons, because we did not want to withhold aprotinin in these longer operations in which the blood-saving effect of this drug was clinically obvious before this study. In our experience, after introduction of routine aprotinin treatment, a dry operative field is the rule, whereas during the time without aprotinin, surgical hemostasis was often a long-lasting endeavor.

What are the true merits of aprotinin treatment? Clearly, for adult patients with cardiac disease to date, aprotinin reduces bleeding tendency caused by CPB and thereby reduces homologous blood requirement. This reduction in bleeding is the consequence of better preservation of the hemostatic system. The present study demonstrated a statistically significant reduction of bleeding tendency also for pediatric patients. However, in terms of transfusion requirements it was clinically insignificant. This might be due to patient selection (patients with expected long bypass times were excluded) or to the setup of the heart-lung machine used in our institution (routine administration of 1 unit of blood to the pump prime. On the other hand, this study showed a significant reduction of clotting and fibrinolytic activation. Because contact activation during CPB leads to stimulation of other cascade systems, the attenuation of hemostasis found in this study is a favorable effect of aprotinin treatment.

The positive effect of aprotinin could be superseded by possible side effects. As a foreign protein, aprotinin has antigenic properties resulting in antibody formation. Whether this formation might cause severe sequelae during reexposure to aprotinin, which has to be anticipated in operations for congenital heart disease, has not yet been settled. Further studies will be necessary to clarify this issue.

In summary, the present data suggest that high-dose aprotinin treatment attenuates hemostatic activation during CPB in pediatric patients. The maintenance of a hemostatic equilibrium postoperatively caused by diminished clotting and fibrinolytic activity is the main effect of aprotinin treatment. The higher dosage of 2 X 30,000 KIU/kg was more effective than the dosage of 2 X 15,000 KIU/kg. Comparing these results with data gained in adults, one might postulate that an even higher aprotinin dosage would be desirable. Although it was not possible to demonstrate an overall saving of homologous blood in these small patients, the reduction of hemostatic activation and bleeding tendency is valuable. Therefore we recommend the routine use of aprotinin in pediatric patients having cardiac operations.

REFERENCES
Author index

A

Abdelnoor M (see Øvrum et al). 1993;105:78-83

Acar C (see Allen et al). 1993;105:864-84

Acuff T (see Hazeldrig et al). 1993;105:389-93

Acba R (see Hardesty et al). 1993;105:660-6

Agnew R (see Brown et al). 1993;105:732-6

Akiba T, Neirotti R, Becker AE. Is there an anatomic basis for sub-valvular right ventricular outflow tract obstruction after an arterial switch repair for complete transposition? A morphometric study and review. 1993;105:142-6

Akins C. Discussion of Allen et al. 1993;105:864-84

Albain KS (see Ruch et al). 1993;105:97-106

Alladine MF (see Davies et al). 1993;105:979-87

Allen MS, Trastek VF, Deschamps C, Pairolero PC. Infrathoracic stomach: presentation and results of operation. 1993;105:253-9

Alhous U (see Inderbitzi et al). 1993;105:84-8

Altorki NK, Sunagawa M, Skinner DB. Thoracic esophageal diverticula: Why is operation necessary? 1993;105:260-4

Alvarez-Sala R (see Garcia-Talavera et al). 1993;105:767 (Letter)

Aly HM (see Abd-Elfattah et al). 1993;105:905-105

Amato JJ. Discussion of Bove et al. 1993;105:1057-66

——. Discussion of Laborde et al. 1993;105:278-80

Ám Holen E (see Øvrum et al). 1993;105:78-83

Amiral J (see Berruyer et al). 1993;105:892-7

Amodeo A (see Di Donato et al). 1993;105:398-405

Anderson RP. Discussion of Yokoyama et al. 1993;105:912-7

——. Guyton SW, Paul DL, Tidewll SW. Selection of patients for same-day coronary bypass operations. 1993;105:444-52

Angell WW. Discussion of Galloway et al. 1993;105:781-90

Antunes MJ. Transposition of the great arteries with posterior aorta. 1993;105:369 (Letter)

Aoki M (see Inui et al). 1993;105:474-9

Appleyard RF (see Byrne et al). 1993;105:689-93

Arciniegas E (see Hackbart et al). 1993;105:31-6

Armiger LC (see Kadoba et al). 1993;105:32-41

Ariswala S, Panday S. A variant course of posterior descending artery. 1993;105:952-3 (Letter)

Asai T (see Galloway et al). 1993;105:781-90

Asok H (see Ichinose et al). 1993;105:1041-6

Attar S. Discussion of Altorki et al. 1993;105:260-4

——. Discussion of Bisstrup et al. 1993;105:147-53

Auer JE (see Hazelrigg et al). 1993;105:389-93

Augustine J (see Caspi et al). 1993;105:59-67

——. ———, Caspi et al. 1993;105:525-31

Avkiran M (see Yamamoto and Avkiran). 1993;105:120-31

B

Backer CL (see Muster et al). 1993;105:112-9

Badier M (see Massard et al). 1993;105:9-14

Bailey LL. Discussion of Armitage et al. 1993;105:464-73

Bains MS (see Burt et al). 1993;105:89-96

Bakiroglu S (see Igci et al). 1993;105:1116-8 (Letter)

Baldwin JC (see Higgins et al). 1993;105:965-71

Ban T (see Oda et al.). 1993;105:68-77
Bankoff MS (see Daly et al.). 1993;105:904-11
Barankay A (see Dietrich et al.). 1993;105:712-20
Barnard PM (see Knoth-Craig et al.). 1993;105:394-7
Barner HB (see Fischer and Barner.). 1993;105:762-3 (Letter)
Barratt-Boyce B. Discussion of Clarke et al. 1993;105:934-42
Bartlett RH (see Pizlo et al.). 1993;105:823-32
Bastien O (see Berny et al.). 1993;105:892-7
Batisse A (see Laborde et al.). 1993;105:278-80
Baumann FG (see Gallowy et al.). 1993;105:781-90
Baylen BG (see Myler et al.). 1993;105:281-8
Beardmore H (see Matsuura et al.). 1993;105:45-51
 reperfusion after global ischemia. 1993;105:532-40
Berruyer et al.). 1993;105:892-7
Beyersdorf F (see Varnell et al.). 1993;105:951 (Letter)
 thrombin used with fibrin glue during cardiovascular operations: development of thrombin and factor V inhibitors. 1993;105:892-7
Beyersdorf F (see Allen et al.). 1993;105:864-84
Bidstrup BP. Discussion of Tobe et al. 1993;105:1007-14
 ——. Underwood SR, Sapsford RN, Streets EM. Effect of aprotinin (Trasylol) on aorta-coronary bypass graft patency. 1993;105:147-53
Bishop DA (see Clarke et al.). 1993;105:934-42
Björk S (see Gatzinsky et al.). 1993;105:553-5 (Letter)
 ——. (see Gatzinsky et al.). 1993;105:556-7 (Letter reply)
Blackstone EH (see Hanley et al.). 1993;105:406-27
Bloch G (see Menasché et al.). 1993;105:353-63
Boban M, Stowe DF, Kampine JP, Goldberg AH, Bosnjak ZJ. Effects of 2,3-butanedione monoxime in isolated hearts: protection during
 reperfusion after global ischemia. 1993;105:532-40
Bolam DL (see Leuschen et al.). 1993;105:885-91
 ——. Knothe C, Zickmann B, Wege N, Dapper F, Hempelmann G. Comparison of two aprotinin dosage regimens in pediatric patients
 having cardiac operations: influence on platelet function and blood loss. 1993;105:705-11
Bolling SP (see Ying et al.). 1993;105:541-9
Bolman RM III. Discussion of Armitage et al. 1993;105:337-46
Bollefs JCC (see Wiinaard et al.). 1993;105:183-4 (Letter)
Bor I (see Jaulit et al.). 1993;105:1106-13
Borst C (see Bakker et al.). 1993;105:327-36
Borst HG (see Asbert et al.). 1993;105:557-8 (Letter)
 ——. (see Inui et al.). 1993;105:474-9
Bosnjak ZJ (see Boban et al.). 1993;105:532-40
Bourel P (see Laborde et al.). 1993;105:278-80
Bove EL. Discussion of Myers et al. 1993;105:281-8
 ——. Lupinet joining PM, Priddinian AK, Beekman RH III, Callow LB, Snider AR, Rosenbal A. Results of a policy of primary repair of truncus
 arteriosus in the neonate. 1993;105:1057-66
Bozfakokoğlu Y (see Icli et al.). 1993;105:1116-8 (Letter)
Brezina A (see Caspi et al.). 1993;105:59-67
 ——. (see Caspi et al.). 1993;105:525-31
Browdie D, Todd D, Agnew R, Rosen W, Beardmore H. The use of "nonanatomic" pulmonary resection in infants with extensive con­
genital adenomatoïd malformation of the lung. 1993;105:732-6
Brown JW (see Hartman et al.). 1993;105:743-8
Brown R (see Adoume et al.). 1993;105:229-33
Bruniaux J (see Planché et al.). 1993;105:925-33
Buckberg GD (see Allen et al.). 1993;105:864-84
 ——. (see Mathies et al.). 1993;105:513-9
Burkart PT (see Scharfman et al.). 1993;105:763-6 (Letter)
Burt M, Karpeh M, Uko O, Bains MS, Martini N, McCormack PM, Ruch VV, Dinsberg RJ. Medical tumors of the chest wall: soli­
tary plasmacytoma and Ewing's sarcoma. 1993;105:89-96
Busset ME (see Leuschen et al.). 1993;105:885-91
Butler J, Pallier R, Rocker GM, Westaby S, Parker D, Shale DI. Effect of cardiopulmonary bypass on systemic release of neutrophil
 elastase and tumor necrosis factor. 1993;105:25-30
Byrne JR, Appleyard RF, Sun SC, Cooper GS, Sloane JA, Laurence RG, Cohn LH. Cardiac-derived thromboxane A2: An initiating
 mediator of reperfusion injury? 1993;105:689-93
C
Caballero P (see García-Talavera et al.). 1993;105:767 (Letter)
Cabrol C (see Jaulit et al.). 1993;105:1106-13
Cachera JP. Discussion of Lytle et al. 1993;105:605-14
Callow LB (see Bove et al.). 1993;105:1057-66
Camel JE (see Asimacopoulos et al.). 1993;105:764-5 (Letter)
Campanile F (see Scalia et al.). 1993;105:633-42
Campbell DN (see Clarke et al.). 1993;105:934-42
Canver CC. Isolated unilateral pulmonary artery agenesis. 1993;105:766-7 (Letter)
Capelli H (see Berni et al.). 1993;105:951 (Letter)
 ——. (see Cappelletti et al.). 1993;105:949-51 (Letter)
Carpentier A. Discussion of Castro et al. 1993;105:643-59
 ——. Discussion of Llaneras et al. 1993;105:439-43
Carrel T (see Pasic et al.). 1993;105:321-6
Carson S (see Yau et al.). 1993;105:833-44
Casarotto D (see Scalia et al.). 1993;105:633-42
 rine and Ca2+ concentrations on neonatal myocardial function after ischemia. 1993;105:59-67
 ——. Diaz RJ, Augustine J, Brezina A, Kolian A, Wilson GJ. The protective effect of magnesium on acute catechol­
 amine cardiotoxicity in the neonate. 1993;105:525-31
Castaneda AR. Discussion of Bove et al. 1993;105:1057-66
 (see Hanley et al.). 1993;105:1047-56
Castle LW (see McCarthy et al.). 1993;105:1077-87
Castro LJ, Moon MR, Rayhill SC, Nieczyporak MA, Inglés NB Jr, Daughters GT III, Derby GC, Miller DC. Annuloplasty with a flexible
 or rigid ring does not alter left ventricular systolic perfor­
 mance, energetics, or ventricular-arterial coupling in conscious, closed-chest dogs. 1993;105:643-59
Caus T (see Fradin et al.). 1993;105:364-5 (Letter)
—— (see Schuurman et al). 1993; 105:178-80 (Letter)
Wildevuur CRH (see Plötz et al). 1993; 105:823-32
Willett LD (see Leuschen et al). 1993; 105:885-91
Williams WG. Discussion of Bailey et al. 1993; 105:805-15
——. Discussion of Donato et al. 1993; 105:398-405
——. Discussion of Hanley et al. 1993; 105:406-27
—— (see Caspi et al). 1993; 105:525-31
Wolfe WG. Discussion of Galloway et al. 1993; 105:781-90
——, Vaughn AL, Seigler HF, Hathorn JW, Leopold KA, Duhaylongsod FG. Survival of patients with carcinoma of the esophagus treated with combined-modality therapy. 1993; 105: 749-56

Y
Yacoub M (see Sarnam and Yacoub). 1993; 105:435-8
Yagawa K (see Ichinose et al). 1993; 105:1041-6
Yagihara T (see Kawashima et al). 1993; 105:591-7
Yamamoto P (see Ichikawa and Yamamoto). 1993; 105:551-2 (Letter)
—— (see Kawashima et al). 1993; 105:591-7
Yamamoto H, Akiravan M. Left ventricular pressure overload during postnatal development: effects on coronary vasodilator reserve and tolerance to hypothermic global ischemia. 1993; 105:120-31
Yamane Y (see Noishiki et al). 1993; 105:796-804
Yang X (see Matsuura et al). 1993; 105:45-51
Yankah C. Discussion of Abd-Elfattah et al. 1993; 105:1095-105
Yano T (see Ichinose et al). 1993; 105:1041-6
Yokoyama T, Derrick MJ, Lee AW. Cardiac operation with associated pulmonary resection. 1993; 105:912-7
Young HH (see Matheis et al). 1993; 105:513-9
Yousem SA (see Armitage et al). 1993; 105:337-46

Z
Zach TL (see Leuschen et al). 1993; 105:885-91
Zales VR (see Muster et al). 1993; 105:112-9
Zaragoza AM (see Gates et al). 1993; 105:845-53
Zaroff JG (see Aronson et al). 1993; 105:214-21
Zattera G (see Rabajoli et al). 1993; 105:948-9 (Letter)
Zelano JA (see Ko et al). 1993; 105:1015-24
Ziemer G. Discussion of Bove et al. 1993; 105:1057-66
——. Discussion of Donato et al. 1993; 105:398-405
——. Discussion of Matheis et al. 1993; 105:513-9
Zoia E (see Corso et al). 1993; 105:369-71 (Letter)
Subject index*

A

Abscess

Actuarial analysis
Actuarial five-year survival estimates (Mengoli) (Letter); (Dartevelle and Macchiarini) (Reply). 1993;105:375-7

Adenocarcinoma

Adenomatoid malformation of lung, congenital; see Cystic adenomatoid malformation of lung, congenital

Adenosine
Should adenosine continue to be ignored as a cardioprotective agent in cardiac operations? (Galinanes et al). 1993;105:180-3 (Letter)

Adenosine deaminase
Inhibition of adenosine deaminase and nucleoside transport: utility in a model of homograft cardiac valve preimplantation processing (Abd-Elfattah et al). 1993;105:1095-105

Adjuvants, Immunologic
Successful restoration of cell-mediated immune response after cardiopulmonary bypass by immunomodulation (Markewitz et al). 1993;105:15-24

Administration, Inhalation

Adolescence

Adrenal cortex hormones

Airway resistance
Differential lung ventilation: applications beyond the operating room (Adounie et al). 1993;105:229-33

Allograft; see Transplantation, homologous

Alprostadil
Improved ultrastructural lung preservation with prostaglandin E1 as donor pretreatment in a primate model of heart-lung transplantation (Higgins et al). 1993;105:965-71

Prostaglandin E1 for patients who have both heart and lung failure after cardiomyot (Mayumi and Tokunaga). 1993;105:1120-1 (Letter)

Alveolar oxygen concentration; see Blood gas analysis

American Association for Thoracic Surgery
Editorial search. 1993;105:190

Graham Traveling Fellowship. 1993;105:572-3, 768, 954, 1123

Notice of annual meeting. 1993;105:189-90, 379, 576, 770, 956-7, 1125-6

Program for annual meeting. 1993;105:563-71

Robert E. Gross Research Fellowship. 1993;105:574-5, 769, 955, 1124

American Board of Thoracic Surgery
Notices of examination and recertification process. 1993;105:192, 381, 587, 772, 959, 1128

Amrinone
The effects of amrinone versus dobutamine on myocardial mechanics and energetics after hypothermic global ischemia (Ko et al). 1993;105:1015-24

Anastomosis, Surgical
Biventricular repair of hypoplastic right ventricle assisted by pulsatile bidirectional cavopulmonary anastomosis (Muster et al). 1993;105:112-9

Aneurysm

Aneurysm of the membranous ventricular septum in transposition of the great arteries (Cono et al). 1993;105:369-71 (Letter)

Aneurysm, dissecting
Surgical repair of type A aortic dissection by the circulatory arrest-graft inclusion technique in sixty-six patients (Galloway et al). 1993;105:781-90

Transesophageal echography as an emergency diagnostic tool for acute aortic dissection (De Smet et al). 1993;105:946-7 (Letter)

Aneurysm, infected
In situ repair of myotic aneurysm of the ascending aorta (Pasic et al). 1993;105:321-6

Angina pectoris
Selection of patients for same-day coronary bypass operations (Anderson et al). 1993;105:444-52
Angiography
 Dilating effects of isosorbide dinitrate on diameter of internal thoracic artery graft (Koike and Kimura). 1993;105:1121-2 (Letter)
 Mechanical durability of pulmonary allograft conduits at systemic pressure: angiographic and histologic study in lambs (Kadoba et al.). 1993;105:152-41
 The right gastroepiploic artery graft: clinical and angiographic midterm results in 200 patients (Suma et al.). 1993;105:615-23

Angioplasty
 Aortic aneurysm after subclavian arterial flap angioplasty for coarctation of the aorta (Berri et al.). 1993;105:951 (Letter)
 Angioplasty, transluminal, percutaneous coronary
 Superiority of controlled surgical reperfusion versus percutaneous transluminal coronary angioplasty in acute coronary occlusion (Allen et al.). 1993;105:864-84

Animal disease models; see Disease models, animal

Annuloplasty
 Annuloplasty with flexible or rigid ring does not alter left ventricular systolic performance, energetics, or ventricular-arterial coupling in conscious, closed-chest dogs (Castro et al.). 1993;105:643-59

Anoxemia
 Cardiopulmonary dysfunction produced by reoxygenation of immature hypoxic animals supported by cardiopulmonary bypass: prevention by intravenous metabolic pretreatment (Matheis et al.). 1993;105:513-9

Anoxia
 Effects of hypoxia on intracellular calcium and contractility (Uthaler et al.). 1993;105:1114-6 (Letter)

Antegrade cardioplegia; see Heart arrest, induced

Anticoagulants
 Clinical experience with the Omnicarbon prosthetic heart valve (Misawa et al.). 1993;105:168-72

Antithrombin III
 Plasma levels of endothelin-1 and thrombin-antithrombin III complex in patients undergoing open chest operations (Onizuka et al.). 1993;105:559-60 (Letter)

Aorta
 In situ repair of myocytic aneurysm of the ascending aorta (Pasic et al.). 1993;105:321-6
 Relative risk of aortic and femoral insertion of intraaortic balloon pump after coronary artery bypass grafting procedures (Pinkard et al.). 1993;105:721-8
 Surgical correction of a recurrent aneurysm of the ascending aorta simulating pulmonary stenosis (Rabajoli et al.). 1993;105:948-9 (Letter)
 Transposition of the great arteries with posterior aorta (Antunes). 1993;105:369 (Letter)

Aorta, abdominal
 Thoracic wall necrosis in a patient with internal mammary-coronary bypass after prosthetic replacement of the thoracoabdominal aorta (Aebert et al.). 1993;105:557-8 (Letter)

Aorta, thoracic
 Anatomic repair of transposition of great arteries with venous septal defect and aortic arch obstruction: one-stage versus two-stage procedure (Planche et al.). 1993;105:925-33
 The management of severe subaortic stenosis, venous septal defect, and aortic arch obstruction in the neonate (Bove et al.). 1993;105:289-96
 Tetralogy of Fallot with pulmonary atresia, coronary artery-pulmonary artery fistula, and origin of left pulmonary artery from descending aorta: total correction in infancy (Metras et al.). 1993;105:186-8 (Letter)

Aortic aneurysm
 Aortic aneurysm after subclavian arterial flap angioplasty for coarctation of the aorta (Berri et al.). 1993;105:951 (Letter)
 Surgical correction of a recurrent aneurysm of the ascending aorta simulating pulmonary stenosis (Rabajoli et al.). 1993;105:948-9 (Letter)
 Transesophageal echography as an emergency diagnostic tool for acute aortic dissection (De Smet et al.). 1993;105:946-7 (Letter)

Aortic arch; see Aorta, thoracic

Aortic coarctation
 Aortic aneurysm after subclavian arterial flap angioplasty for coarctation of the aorta (Berri et al.). 1993;105:951 (Letter)
 Patterns of ductal tissue in coarctation of the aorta in early infancy (van Son et al.). 1993;105:368-9 (Letter)

Aortic dissection; see Aneurysm, dissecting

Aortic valve
 Degeneration of aortic valve allografts in young recipients (Clarke et al.). 1993;105:934-42
 Effects of fixation back pressure and antimineralization treatment on the morphology of porcine aortic homograft valves (Plombeaum and Schoen). 1993;105:154-64
 Time course of dimension and function of the autologous pulmonary root in the aortic position (Sievers et al.). 1993;105:775-80

Aortic valve insufficiency
 Remodeling of the aortic valve anulus (Sarsam and Yacoub). 1993;105:435-8

Aortic valve stenosis
 Invited letter concerning: critical aortic stenosis (McKay) (Letter); (Freedom) (Reply). 1993;105:365-7
 The management of severe subaortic stenosis, ventricular septal defect, and aortic arch obstruction in the neonate (Bove et al.). 1993;105:289-96
 Results of surgical repair of congenital supravalvular aortic stenosis (Myers et al.). 1993;105:281-8

Aortocoronary bypass; see Coronary artery bypass

Aprotinin
 Comparison of two aprotinin dosage regimens in pediatric patients having cardiac operations: influence on platelet function and blood loss (Bolbt et al.). 1993;105:705-11
 Effect of aprotinin (Trasylol) on aorta-coronary bypass graft patency (Bidstrup et al.). 1993;105:147-53
 Hemostatic activation during cardiopulmonary bypass with different aprotinin dosages in pediatric patients having cardiac operations (Dietrich et al.). 1993;105:712-20
 Invited letter concerning: aprotinin use in pediatric cardiac operations (Dietrich and Mössinger) (Reply); (Boldt) (Reply). 1993;105:757-60

Arrhythmia
 Initial experience with the maze procedure for atrial fibrillation (McCarthy et al.). 1993;105:1077-87

Arterial occlusive diseases
 The management of severe subaortic stenosis, ventricular septal defect, and aortic arch obstruction in the neonate (Bove et al.). 1993;105:289-96

Arterial occlusive diseases
 The management of severe subaortic stenosis, ventricular septal defect, and aortic arch obstruction in the neonate (Bove et al.). 1993;105:289-96
 Recovery of postischemic contractile function is depressed by antegrade warm continuous blood cardioplegia (Misare et al.). 1993;105:37-44
Arterial switch operation; see Transposition of great vessels

Arteries
Clinical evaluation with exercise performance in twenty patients who underwent coronary artery bypass grafting with both the
gastroepiploic and internal thoracic arteries (Isomura et al). 1993;105:1088-94
The right gastroepiploic artery graft: clinical and angiographic
midterm results in 200 patients (Suma et al). 1993;105:615-23

Arterio-arterial fistula
Tetralogy of Fallot with pulmonary atresia, coronary artery–
 pulmona ry artery fistula, and origin of left pulmonary artery
from descending aorta: total correction in infancy (Metras

Ascending aorta; see Aorta

Atrial fibrillation
Initial experience with the maze procedure for atrial fibrillation
(McCarthy et al). 1993;105:1077-87

Atrialventricular discordance; see Heart defects, congenital

Autologous blood transfusion; see Blood transfusion, autologous

Baby; see Infant

Balloon dilatation
Long-term results of mitral commissurotomy (Scalia et al). 1993;
105:633-42

Barrett esophagus
Endoscopic surveillance of Barrett’s esophagus: Does it help?
(Streitz et al). 1993;105:383-8
Functional foregut abnormalities in Barrett’s esophagus (Stein et

Bicuspid patch; see Bioprosthesis

Biocompatible materials
Preliminary experimental results of a new resorbable biomaterial
as pericardial substitute (Fradin et al). 1993;105:364-5 (Letter)

Biological transport
Inhibition of adenosine deaminase and nucleoside transport in a
model of homograft cardiac valve preimplantation
processing (Abd-Effatthah et al). 1993;105:1095-105

Bioprostheses
Effects of fixation back pressure and antimineralization treatment
on the morphology of porcine aortic bioprosthetic valves
(Flomenbaum and Schoen). 1993;105:154-64
Prosthetic valve endocarditis: experience with porcine bioprostheses
(Seit et al). 1993;105:428-34
Superior function of a bicuspid over a monocuspid patch for recon­
struction of a hypoplastic pulmonary root in pigs (Sievers

Biopsy
The sensitivity of transbronchial biopsy for the diagnosis of acute
lung rejection (Tazelaar et al). 1993;105:674-8

Björk-Shiley valve; see Heart valve prosthesis

Bleeding; see Hemorrhage

Bleomycins
Comparison of insufflated tacle under thoracoscopic guidance with
standard tetracycline and bleomycin pleurdesis for control of
malignant pleural effusions (Hartman et al). 1993;105:743-8

Blood
The hemostatic effect of autologous platelet-rich plasma versus
autologous whole blood after cardiac operations: Is platelet
(Letter)

Blood activation; see Platelet activation

Blood cardioplegia; see Heart arrest, induced

Blood circulation
Bronchial circulation after experimental lung transplantation: the
effect of long-term administration of prednisolone (Inui et al).
1993;105:474-9
Time course of dimension and function of the autologous pulmonary
root in the aortic position (Sievers et al). 1993;105:775-80

Blood component transfusion
Infusion of autologous platelet rich plasma does not reduce blood
loss and product use after coronary artery bypass: a prospec­
tive, randomized, blinded study (Tobe et al). 1993;105:1007-14

Blood gas analysis
Changes in alveolar oxygen and carbon dioxide concentration and
oxygen consumption during lung preservation: the mainte­
nance of aerobic metabolism during lung preservation (Date

Blood loss; see Hemmorrhage

Blood platelets
The hemostatic effect of autologous platelet- rich plasma versus
autologous whole blood after cardiac operations: Is platelet
(Letter)

Infusion of autologous platelet rich plasma does not reduce blood
loss and product use after coronary artery bypass: a prospec­
tive, randomized, blinded study (Tobe et al). 1993;105:1007-14

Inhibition of platelet function by heparin: an etiologic factor in

Blood transfusion
Acute isovolemic hemodilution and blood transfusion: effects on
regional function and metabolism in myocardium with com­
promised coronary blood flow (Spahn et al). 1993;105:694-704

Blood transfusion, autologous
The hemostatic effect of autologous platelet-rich plasma versus
autologous whole blood after cardiac operations: Is platelet
(Letter)

Blood vessel prosthesis
Acceleration of neointima formation in vascular prostheses by
transplantation of autologous venous tissue fragments: appli­
cation to small-diameter grafts (Noishiki et al). 1993;105:
796-804

A computer simulation of the plasma leakage through a vascular
prosthesis made of expanded polytetrafluoroethylene (Tabata

Remodeling of the aortic valve anulus (Sarsam and Yacoub).
1993;105:435-8

Thoracic wall necrosis in a patient with internal mammary-coronary
artery reconstruction after coronary artery bypass grafting
(Aebert et al). 1993;105:1277-9

Very small-diameter polyurethane vascular prostheses with rapid
endothelialization for coronary artery bypass grafting (Okoshi

Blood vessels
Acceleration of neointima formation in vascular prostheses by
transplantation of autologous venous tissue fragments: appli­
cation to small-diameter grafts (Noishiki et al). 1993;105:
796-804

A computer simulation of the plasma leakage through a vascular
prosthesis made of expanded polytetrafluoroethylene (Tabata

Remodeling of the aortic valve anulus (Sarsam and Yacoub).
1993;105:435-8

Thoracic wall necrosis in a patient with internal mammary-coronary
artery reconstruction after coronary artery bypass grafting
(Aebert et al). 1993;105:1277-9

Very small-diameter polyurethane vascular prostheses with rapid
endothelialization for coronary artery bypass grafting (Okoshi

Cardiovascular Surgery

Volume 105, Number 6

The Journal of Thoracic and
Subject index

Blunt injury; see Wounds, nonpenetrating
Bone neoplasms
 Pleural effusion as the first manifestation of a malignant fibrous histiocytoma (García-Talavera et al). 1993;105:767 (Letter)
 Solitary bone plasmacytoma of rib presenting as a superior sulcus tumor (Rocco et al). 1993;105:944-5 (Letter)
Bovine thrombin; see Thrombin
Brachiocephalic trunk
Braunwald, Nina S.
Bronchial arteries
 Management and prognosis of massive hemoptysis: recent experience with 120 patients (Knot-Craig et al). 1993;105:394-7
Bronchial circulation; see Blood circulation
Bronchogenic carcinoma; see Carcinoma, bronchogenic
Butanedione monoxime
 Effects of 2,3-butanedione monoxime in isolated hearts: protection during reperfusion after global ischemia (Boban et al). 1993;105:532-40
Calcification
 Effects of fixation back pressure and antimineralization treatment on the morphology of porcine aortic bioprosthetic valves (Flomenbaum and Schoen). 1993;105:154-64
Calcium
 Effect of calcium and preischemic hypothermia on recovery of myocardial function after cardioplegic ischemia in neonatal lambs (Aoki et al). 1993;105:207-13
 Effects of high plasma epinephrine and Ca²⁺ concentrations on neonatal myocardial function after ischemia (Caspi et al). 1993;105:557-69
 Effects of hypoxia on intracellular calcium and contractility (Uthaler et al). 1993;105:1114-6 (Letter)
 Improved recovery of heart transplants with a specific kit of preservation solutions (Menachis et al). 1993;105:353-63
 Normocalcemic blood or crystalloid cardioplegia provides better neonatal myocardial protection than does low-calcium cardioplegia (Pearl et al). 1993;105:201-6
Carbon dioxide
 Particle-induced coronary vasoconstriction: the need for in-line filtration of cardioplegic solutions (Palanzo and O’Neill) (Letter); (Rosenfeldt and Munsch) (Reply). 1993;105:1118-9
 Proton gradient during cardiac arrest: oxygenation of St. Thomas’ Hospital cardioplegic solution and carbon dioxide level (Ichikawa and Yamamoto) (Letter); (von Oppell) (Reply). 1993;105:551-3
Carbon dioxide concentration; see Blood gas analysis
Carcinoma
 Esophagectomy with or without thoracotomy: is there any difference? (Tilanus et al). 1993;105:898-903
 Survival of patients with carcinoma of the esophagus treated with combined-modality therapy (Wolle et al). 1993;105:749-56
Carcinoma, bronchogenic
 Cardiac operation with associated pulmonary resection (Yokoyama et al). 1993;105:912-7
Carcinoma, non-small cell lung
 Anterior transcervical-thoracic approach for radical resection of lung tumors invading the thoracic inlet (Dartevelle et al). 1993;105:1025-34
 Surgical resection of stage IIIA and stage IIIB non-small-cell lung cancer after concurrent induction chemoradiotherapy: a Southwest Oncology Group trial (Rusch et al). 1993;105:97-106
Cardiac anomalies, congenital; see Heart defects, congenital
Cardiac arrest; see Heart arrest, induced
Cardiac-derived thromboxane A2; see Thromboxane A2
Cardiac pacing, artificial
 Clinical significance of epicardial pacing wire cultures (Hastings and Robicsek). 1993;105:165-7
 Experience with an implantable tiered therapy device incorporating antitachycardia pacing and cardioverter/defibrillator therapy (Mitchell et al). 1993;105:453-63
Cardiac stenosis
 The reoxygenation phenomenon (Como and Samaja) (Letter); (Martin and Short) (Reply). 1993;105:373-4
Cardiac transplantation; see Heart transplantation
Cardioplegic; see Heart arrest, induced
Cardioplegic solutions
 A clinical trial of University of Wisconsin solution for pulmonary preservation (Hardesty et al). 1993;105:660-6
 Cold agglutinins and warm heart surgery (Gokhale et al). 1993;105:557 (Letter)
 Impaired endothelium-dependent coronary microvascular relaxation after cold potassium cardioplegia and reperfusion (Sellke et al). 1993;105:52-8
 Normocalcemic blood or crystalloid cardioplegia provides better neonatal myocardial protection than does low-calcium cardioplegia (Pearl et al). 1993;105:201-6
 The optimal glucose concentration for intermittent cardioplegia in isolated rat heart when added to St. Thomas’ Hospital cardioplegic solution (Owen et al). 1993;105:995-1006
 Particle-induced coronary vasoconstriction: the need for in-line filtration of cardioplegic solutions (Palanzo and O’Neill) (Letter); (Rosenfeldt and Munsch) (Reply). 1993;105:1118-9
 Proton gradient during cardiac arrest: oxygenation of St. Thomas’ Hospital cardioplegic solution and carbon dioxide level (Ichikawa and Yamamoto) (Letter); (von Oppell) (Reply). 1993;105:551-3
 Retrograde versus antegrade delivery of cardioplegic solution in myocardial revascularization: a clinical trial in patients with three- vessel coronary artery disease who underwent myocardial revascularization with extensive use of the internal mammary artery (Noyez et al). 1993;105:854-63
 Ventricular function after normothermic versus hypothermic cardioplegia (Yau et al). 1993;105:833-44
Cardiopulmonary bypass
Blood activation during neonatal extracorporeal life support (Plötz et al). 1993;105:823-32
Cardiopulmonary dysfunction produced by reoxygenation of immature hypoxicemic animals supported by cardiopulmonary bypass: prevention by intravenous metabolic pretreatment (Matheis et al). 1993;105:513-9
Exclusion of the placenta during fetal cardiac bypass augments systemic flow and provides important information about the mechanism of placental injury (Fenton et al). 1993;105:502-12
Hemostatic activation during cardiopulmonary bypass with different aprotinin dosages in pediatric patients having cardiac operations (Dietrich et al). 1993;105:712-20
Inhibition of platelet function by heparin: an etiologic factor in postbypass hemorrhage (John et al). 1993;105:816-22
Interleukin-8 release and neutrophil degranulation after pediatric cardiopulmonary bypass (Finn et al). 1993;105:234-41
Successful restoration of cell-mediated immune response after cardiopulmonary bypass by immunomodulation (Markowitz et al). 1993;105:15-24
Time-course of free radical activity during coronary artery operations with cardiopulmonary bypass (Davies et al). 1993;105:979-87
Warm versus cold blood cardioplegia—Is there a difference? (Matsura et al). 1993;105:45-51
Cardiomyopathy; see Heart surgery
Cardioversion; see Electric countershock
Catecholamines
Effects of high plasma epinephrine and Ca2+ concentrations on neonatal myocardial function after ischemia (Caspi et al). 1993;105:59-67
The protective effect of magnesium on acute catecholamine cardiotoxicity in the neonate (Caspi et al). 1993;105:525-31
Cavopulmonary anastomosis; see Anastomosis, surgical
Cell-mediated immune response; see Immunity, cellular
Cells, immunology
Cytomununologic monitoring for rejection and infection after lung transplantation (Schuurman et al). 1993;105:178-80 (Letter)
Chemotherapy; see Drug therapy
Chest; see Thorax
Chest wall neoplasms; see Thoracic neoplasms
Child
Comparison of two aprotinin dosage regimens in pediatric patients having cardiac operations: influence on platelet function and blood loss (Boldt et al). 1993;105:705-11
Degeneration of aortic valve allografts in young recipients (Clarke et al). 1993;105:934-42
Hemostatic activation during cardiopulmonary bypass with different aprotinin dosages in pediatric patients having cardiac operations (Dietrich et al). 1993;105:712-20
Interleukin-8 release and neutrophil degranulation after pediatric cardiopulmonary bypass (Finn et al). 1993;105:234-41
Intraventricular repair for Taussig-Bing anomaly (Kawashima et al). 1993;105:591-7
Invited letter concerning: aprotinin use in pediatric cardiac operations (Edmunds) (Letter); (Dietrich and Mössinger) (Reply); (Boldt) (Reply). 1993;105:757-60
Chordae tendineae
Left ventricular function in experimental mitral regurgitation with intact chordae tendineae (Hennein et al). 1993;105:624-32
Christmas disease
Treatment of a patient with factor IX deficiency (hemophilia B) with coronary bypass surgery (Scharfman et al). 1993;105:765-6 (Letter)
Cisplatin
Coarctation of aorta; see Aortic coarctation
Cold agglutinins; see Agglutination
Cold blood cardioplegia; see Heart arrest, induced
Combined modality therapy
Survival of patients with carcinoma of the esophagus treated with combined-modality therapy (Wolf et al). 1993;105:749-56
Commissurotomy
Completion pneumonectomy; see Pneumonectomy
Computed tomography; see Tomography, x-ray computed
Computer simulation
A computer simulation of the plasma leakage through a vascular prosthesis made of expanded polytetrafluoroethylene (Tabata et al). 1993;105:598-604
Congenital adenomatoid malformation of lung; see Cystic adenomatoid malformation of lung, congenital
Congenital heart defects; see Heart defects, congenital
Contractile function, postischemic; see Myocardial contraction
Coronary angiography
A variant course of posterior descending artery (Arniwala and Panday). 1993;105:952-3 (Letter)
Coronary artery bypass
Clinical evaluation with exercise performance in twenty patients who underwent coronary artery bypass grafting with both the gastroepiploic and internal thoracic arteries (Isomura et al). 1993;105:1088-94
Dilating effects of isosorbide dinitrate on diameter of internal thoracic artery graft (Koike and Kimura). 1993;105:1121-2 (Letter)
Effect of aprotinin (Trasylol) on aorta-coronary bypass graft patency (Bidstrup et al). 1993;105:147-53
The effect of coronary reoperation on the survival of patients with stenoses in saphenous vein bypass grafts to coronary arteries (Lyle et al). 1993;105:605-14
Infusion of autologous platelet rich plasma does not reduce blood loss and product use after coronary artery bypass: a prospective, randomized, blinded study (Tobe et al). 1993;105:1007-14
Coronary artery bypass—cont’d

- Relative risk of aortic and femoral insertion of intraaortic balloon pump after coronary artery bypass grafting procedures (Pinkard et al.). 1993;105:721-8
- The right gastroepiploic artery graft: clinical and angiographic midterm results in 200 patients (Suma et al.). 1993;105:615-23
- Selection of patients for same-day coronary bypass operations (Anderson et al.). 1993;105:444-52
- Thoracic wall necrosis in a patient with internal mammary–coronary bypass after prosthetic replacement of the thoracoabdominal aorta (Aebert et al.). 1993;105:557-8 (Letter)
- Time-course of free radical activity during coronary artery operations with cardiopulmonary bypass (Davies et al.). 1993;105:979-87
- Tranexamic acid (Cyklokapron) is not necessary to reduce blood loss after coronary artery bypass operations (Övrum et al.). 1993;105:78-83
- Treatment of a patient with factor IX deficiency (hemophilia B) with coronary bypass surgery (Scharman et al.). 1993;105:765-6 (Letter)
- Ventricular function after normothermic versus hypothermic cardioplegia (Yau et al.). 1993;105:833-44
- Very small–diameter polyethylene vascular prostheses with rapid endothelialization for coronary artery bypass grafting (Okoshi et al.). 1993;105:791-5

Coronary artery–pulmonary artery fistula; see Arterio-arterial fistula

Coronary circulation

- Acute isovolemic hemodilution and blood transfusion: effects on regional function and metabolism in myocardium with compromised coronary blood flow (Spahn et al.). 1993;105:694-704

Coronary disease

- Retrograde versus antegrade delivery of cardioplegic solution in myocardial revascularization: a clinical trial in patients with three-vessel coronary artery disease who underwent myocardial revascularization with extensive use of the internal mammary artery (Noyez et al.). 1993;105:854-63
- Superiority of controlled surgical reperfusion versus percutaneous transluminal coronary angioplasty in acute coronary occlusion (Allen et al.). 1993;105:864-84

Coronary reoperation; see Reoperation

Coronary reperfusion; see Myocardial reperfusion

Coronary vasoconstriction; see Vasoconstriction

Coronary vessel anomalies

Coronary vessels

- Impaired endothelium-dependent coronary microvascular relaxation after cold potassium cardioplegia and reperfusion (Sellke et al.). 1993;105:52-8

Corrections

Correspondence

Corticosteroids; see Adrenal cortex hormones

Costs and cost analysis

- An economic analysis of heart-lung transplantation: costs, insurance coverage, and reimbursement (Evans et al.). 1993;105:972-8

Crawford, E. Stanley

Cryopreservation

- Degeneration of aortic valve allografts in young recipients (Clarke et al.). 1993;105:934-42

Cryosurgery

- Extensive cryoablation of the left ventricular posterior papillary muscle and subjacent ventricular wall: impact on mitral valve function and hemodynamics (Bakker et al.). 1993;105:327-36

Crystalloid cardioplegia; see Heart arrest, induced

Culture

- Clinical significance of epicardial pacing wire cultures (Hastings and Robicsek). 1993;105:165-7

Cyklokapron; see Tranexamic acid

Cystic adenomatoid malformation of lung, congenital

- The use of "nonanatomic" pulmonary resection in infants with extensive congenital adenomatoid malformation of the lung (Browdie et al.). 1993;105:732-6

Cysts

CytolImmunology; see Cells, immunology

D

Death rate; see Mortality

Defibrillation, electric; see Electric countershock

Deglutition disorders

- Dysphagia lusoria (fgci et al.). 1993;105:1116-8 (Letter)

Descending aorta; see Aorta, thoracic

Dextran

- Evaluation of lung metabolism during successful twenty-four-hour canine lung preservation (Date et al.). 1993;105:480-91

Differential lung ventilation; see Respiration, artificial

Digestive system abnormalities

- Functional foregut abnormalities in Barrett’s esophagus (Stein et al.). 1993;105:107-11

Disease models, animal

- Improved ultrastructural lung preservation with prostaglandin E1 as donor pretreatment in a primate model of heart-lung transplantation (Higgins et al.). 1993;105:965-71

Pathogenesis of ischemic mitral insufficiency (Llaneras et al.). 1993;105:439-43

Dobutamine

- The effects of amrinone versus dobutamine on myocardial mechanics and energetics after hypothermic global ischemia (Ko et al.). 1993;105:1015-24

Donor heart preservation; see Organ preservation

Donor size matching; see Organ weight

Dose-response relationship, drug

- Comparison of two aprotinin dosage regimens in pediatric patients having cardiac operations: influence on platelet function and blood loss (Boldt et al.). 1993;105:705-11

Hemostatic activation during cardiopulmonary bypass with different aprotonin dosages in pediatric patients having cardiac operations (Dietrich et al.). 1993;105:712-20

Double lung transplantation; see Lung transplantation

Double outlet right ventricle

- Intraventricular repair for Taussig-Bing anomaly (Kawashima et al.). 1993;105:591-7
Drug evaluation
Should adenosine continue to be ignored as a cardioprotective agent in cardiac operations? (Galilanes et al). 1993;105:180-3 (Letter)

Drug therapy
Surgical resection of stage IIIA and stage IIIB non-small-cell lung cancer after concurrent induction chemoradiotherapy: a Southwest Oncology Group trial (Rusch et al). 1993;105:97-106

Ductus arteriosus
Patterns of ductal tissue in coarctation of the aorta in early infancy (van Son et al). 1993;105:368-9 (Letter)

Ductus arteriosus, patent

Dysphagia lusoria; see Deglutition disorders

Dysplasia

Echocardiography

Transosophageal echography as an emergency diagnostic tool for acute aortic dissection (De Smet et al). 1993;105:946-7 (Letter)

Economic analysis; see Costs and cost analysis

Editorial search
Editorial search. 1993;105:190

Elastase; see Pancreatopeptidase

Electric countershock
Experience with an implantable tiered therapy device incorporating antiarrhythmia pacing and cardioverter/defibrillator therapy (Mitchell et al). 1993;105:453-63

Endocarditis

Endoscopy

Endothelin
Plasma levels of endothelin-1 and thrombin-antithrombin III complex in patients undergoing open chest operations (Onizuka et al). 1993;105:559-60 (Letter)

Endothelium, vascular

Endothelium-derived relaxing factor
Impaired endothelium-dependent coronary microvascular relaxation after cold potassium cardioplegia and reperfusion (Sellke et al). 1993;105:52-8

Epinephrine
Effects of high plasma epinephrine and Ca²⁺ concentrations on neonatal myocardial function after ischemia (Caspi et al). 1993;105:59-67

Equipment and supplies

Experience with an implantable tiered therapy device incorporating antiarrhythmia pacing and cardioverter/defibrillator therapy (Mitchell et al). 1993;105:453-63

A long-term ventricular assist system (Pierce et al). 1993;105:520-4

Esophageal achalasia, surgery
Invited letter concerning: technique for prevention of gastroesophageal reflux after transhiatal Heller’s operation (Ellis) (Letter); (Gatzinsky et al) (Reply). 1993;105:555-7

Technique for prevention of gastroesophageal reflux after transhiatal Heller’s operation (Gatzinsky et al). 1993;105:553-5 (Letter)

Esophageal diverticulum

Esophageal motility disorders

Esophageal neoplasms
Esophagectomy with or without thoracotomy: Is there any difference? (Tilanus et al). 1993;105:898-903

Survival of patients with carcinoma of the esophagus treated with combined-modality therapy (Wolfe et al). 1993;105:749-56

Transhiatal esophagectomy for benign and malignant disease (Orringer et al). 1993;105:265-77

Esophagectomy
Esophagectomy with or without thoracotomy: Is there any difference? (Tilanus et al). 1993;105:898-903

Lengths of different routes for esophageal replacement in a white population (Rakic and Djuranovic). 1993;105:1122 (Letter)

Transhiatal esophagectomy for benign and malignant disease (Orringer et al). 1993;105:265-77

Esophagus
Dysphagia lusoria (Igci et al). 1993;105:1116-8 (Letter)

Survival of patients with carcinoma of the esophagus treated with combined-modality therapy (Wolfe et al). 1993;105:749-56

Ewing’s sarcoma; see Sarcoma, Ewing’s

Exercise test
Clinical evaluation with exercise performance in twenty patients who underwent coronary artery bypass grafting with both the gastroepiploic and internal thoracic arteries (Isomura et al). 1993;105:1088-94

Expectations
Fulfilling expectations (Fosburg). 1993;105:194-200 (Pres. address)

Experimental model; see Models, theoretical

Extracorporeal circulation
Blood activation during neonatal extracorporeal life support (Plötz et al). 1993;105:823-32

Extracorporeal membrane oxygenation
Plasma fentanyl levels in infants undergoing extracorporeal membrane oxygenation (Leuschen et al). 1993;105:885-91

The reoxygenation phenomenon (Como and Samaja) (Letter); (Gatzinsky et al) (Reply). 1993;105:373-4

F

Factor V
Immunization by bovine thrombin used with fibrin glue during cardiovascular operations: development of thrombin and factor V inhibitors (Bennet al). 1993;105:892-7

Redo cardiac surgery: late bleeding complications from topical thrombin-induced factor V deficiency (Cmolik et al). 1993;105:222-8
Factor IX deficiency; see Christmas disease
False-negative reactions
Femoral artery
Fentanyl
 Plasma fentanyl levels in infants undergoing extracorporeal membrane oxygenation (Leuschen et al). 1993;105:885-91
Fetus
 Exclusion of the placenta during fetal cardiac bypass augments systemic flow and provides important information about the mechanism of placental injury (Fenton et al). 1993;105:502-12
Fibrillation, ventricular; see Ventricular fibrillation
Fibrin tissue adhesive
 Immunization by bovine thrombin used with fibrin glue during cardiovascular operations: development of thrombin and factor Y inhibitors (Bemreyer et al). 1993;105:892-7
Fibroectins
Fibrous histiocytoma; see Histiocytoma
Filtration
 Particle-induced coronary vasoconstriction: the need for in-line filtration of cardioplegic solutions (Palanzo and O'Neill) (Letter); (Rosenfeldt and Munsch) (Reply). 1993;105:1118-9
Fistula, coronary artery-pulmonary artery; see Arterio-arterial fistula
FK-506
 Prolonged lung allotransplant survival with a short course of FK 506 (Hirai et al). 1993;105:1-8
Flavones
 Flavone improves functional recovery after ischemia in isolated reperfused rabbit hearts (Ning et al). 1993;105:541-9
Fluorescence endoscopy; see Endoscopy
Fontan operation
 Invited letter concerning: the importance of pulsatile flow when systemic venous return is connected directly to the pulmonary arteries (Jonas) (Letter); (Muster and Mavroudis) (Reply). 1993;105:173-6
 Staged Fontan operation for complex cardiac anomalies with subaortic obstruction (Di Donato et al). 1993;105:398-405
 Successful thrombectomy for complex cardiac anomalies: Staged Fontan operation: report of two cases and review of the literature (Hedrick et al). 1993;105:297-301
Foregut abnormalities; see Digestive system abnormalities
Free radicals
 Time-course of free radical activity during coronary artery operations with cardiopulmonary bypass (Davies et al). 1993;105:979-87
G
Gastroepiploic artery; see Arteries
Gastroesophageal reflux
 Invited letter concerning: technique for prevention of gastroesophageal reflux after transthoracic Heller's operation (Ellis) (Letter); (Gatzinsky et al) (Reply). 1993;105:555-7
Global ischemia; see Ischemia
Glucose
 The optimal glucose concentration for intermittent cardioplegia in isolated rat heart when added to St. Thomas' Hospital cardioplegic solution (Owen et al). 1993;105:995-1006
Graft rejection
 Cytoimmunologic monitoring for rejection and infection after lung transplantation (Schunk et al). 1993;105:178-80 (Letter)
 Invited letter concerning: transplantation tolerance and transplantation (George) (Letter); (Wijngaard et al) (Reply). 1993;105:184-5
Graft survival
 Degeneration of aortic valve allografts in young recipients (Clarke et al). 1993;105:934-42
 Effect of aprotinin (Trasylol) on aorta-coronary bypass graft patency (Bidstrup et al). 1993;105:147-53
 Mechanical durability of pulmonary allograft conduits at systemic pressure: angiographic and histologic study in lambs (Kadoba et al). 1993;105:132-41
 Prolonged lung allotransplant survival with a short course of FK 506 (Hirai et al). 1993;105:1-8
 Surgical repair of type A aortic dissection by the circulatory arrest–graft inclusion technique in sixty-six patients (Galloway et al). 1993;105:781-90
Graham Traveling Fellowship
 Graham Traveling Fellowship. 1993;105:572-3, 768, 954, 1123
H
Heart arrest, induced
 Effect of calcium and preischemic hypothermia on recovery of myocardial function after cardioplegic ischemia in neonatal lambs (Aoki et al). 1993;105:207-13
 Impaired endothelium-dependent coronary microvascular relaxation after cold potassium cardioplegia and reperfusion (Sellke et al). 1993;105:52-8
 Normocalcemic blood or crystalloid cardioplegia provides better neonatal myocardial protection than does low-calcium cardioplegia (Pearl et al). 1993;105:201-6
 The optimal glucose concentration for intermittent cardioplegia in isolated rat heart when added to St. Thomas' Hospital cardioplegic solution (Owen et al). 1993;105:995-1006
 Proton gradient during cardiac arrest: oxygenation of St. Thomas' Hospital cardioplegic solution and carbon dioxide level (Ichikawa and Yamamoto) (Letter); (von Oppell) (Reply). 1993;105:551-3
 Recovery of postischemic contractile function is depressed by antegrade warm continuous blood cardioplegia (Musa et al). 1993;105:37-44
 Retrograde versus antegrade delivery of cardioplegic solution in myocardial revascularization: a clinical trial in patients with three-vessel coronary artery disease who underwent myocardial revascularization with extensive use of the internal mammary artery (Noyez et al). 1993;105:854-63
Heart arrest, induced—cont’d
Surgical repair of type A aortic dissection by the circulatory arrest–graft inclusion technique in sixty-six patients (Gal­loway et al). 1993;105:781-90
Ventricular function after normothermic versus hypothermic card­iopedia (Yau et al). 1993;105:833-44
Warm versus cold cardiopedia—Is there a difference? (Matsuura et al). 1993;105:45-51
Heart-assist devices
Experience with an implantable tiered therapy device incorporat­ing anti­tachycardia pacing and cardioverter/defibrillator ther­apy (Mitchell et al). 1993;105:453-63
A long-term ventricular assist system (Pierce et al). 1993;105:520-4
Heart contractility; see Myocardial contraction
Heart defects, congenital
Anatomic correction of atrioventricular discordance (Yamagishi et al). 1993;105:1067-76
Anatomic repair of transposition of great arteries with ventricular septal defect and aortic arch obstruction: one-stage versus two­stage procedure (Planche et al). 1993;105:925-33
Biventricular repair of hypoplastic right ventricle assisted by pul­satile bidirectional cavopulmonary anastomosis (Muster et al). 1993;105:112-9
Bless the babies: one hundred fifteen late survivors of heart trans­plantation during the first year of life (Bailey et al). 1993;105:805-15
A computer simulation of the plasma leakage through a vascular prosthesis made of expanded polytetrafluoroethylene (Tabata et al). 1993;105:598-604
Exclusion of the placenta during fetal cardiac bypass augments systemic flow and provides important information about the mechanism of placental injury (Fenton et al). 1993;105:502-12
Interleukin-8 release and neutrophil degranulation after pediatric cardiopulmonary bypass (Finn et al). 1993;105:234-41
Intraventricular repair for Taussig-Bing anomaly (Kawashima et al). 1993;105:591-7
Isolated unilateral pulmonary artery agenesis (Canver). 1993;105:766-7 (Letter)
The management of severe subaortic stenosis, ventricular septal defect, and aortic arch obstruction in the neonate (Bove et al). 1993;105:289-96
Outcomes in neonatal pulmonary atresia with intact ventricular septum: a multiinstitutional study (Hanley et al). 1993;105:406-27
Repair of truncus arteriosus in the neonate (Hanley et al). 1993;105:1047-56
Results of a policy of primary repair of truncus arteriosus in the ne­onate (Bove et al). 1993;105:1057-66
Results of surgical repair of congenital supravalvular aortic steno­sis (Myers et al). 1993;105:281-8
Staged Fontan operation for complex cardiac anomalies with sub­aortic obstruction (Di Donato et al). 1993;105:398-405
Successful thrombectomy for thrombosis of the right side of the heart after the Fontan operation: report of two cases and review of the literature (Hedrick et al). 1993;105:297-301
Superior function of a bicuspid over a monocuspid patch for recon­struction of a hypoplastic pulmonary root in pigs (Sievers et al). 1993;105:580-90

Heart failure, congestive
Prostaglandin E1 for patients who have both heart and lung failure after cardiomyotomy (Mayumi and Tokunaga). 1993;105:1120-1 (Letter)

Heart-lung transplantation
A clinical trial of University of Wisconsin solution for pulmonary preservation (Har dese et al). 1993;105:660-6
Improved ultrastructural lung preservation with prostaglandin E1 as donor pretreatment in a primate model of heart-lung trans­plantation (Higgins et al). 1993;105:965-71
Heart preservation; see Organ preservation
Heart septal defects, ventricular
Anatomic repair of transposition of great arteries with ventricular septal defect and aortic arch obstruction: one-stage versus two-stage procedure (Planche et al). 1993;105:925-33
The management of severe subaortic stenosis, ventricular septal defect, and aortic arch obstruction in the neonate (Bove et al). 1993;105:289-96

Heart surgery
Prostaglandin E1 for patients who have both heart and lung failure after cardiomyotomy (Mayumi and Tokunaga). 1993;105:1120-1 (Letter)

Heart transplantation
Bless the babies: one hundred fifteen late survivors of heart trans­plantation during the first year of life (Bailey et al). 1993;105:805-15
Improved recovery of heart transplants with a specific kit of pres­ervation solutions (Menasché et al). 1993;105:335-63
Invited letter concerning: transplantation tolerance and transplanta­tion (George) (Letter); (Wijngaard et al) (Reply). 1993;105:184-5

Heart valve, transplantation
Inhibition of adenosine deaminase and nucleoside transport: utility in a model of homograft cardiac valve preimplantation pro­cessing (Abd-Elfattah et al). 1993;105:1095-105

Heart valve prosthesis
Clinical experience with the Omnicarbon prosthetic heart valve (Misawa et al). 1993;105:168-72
Effects of fixation back pressure and antimineralization treatment on the morphology of porcine aortic bioprosthetic valves (Plombebaum and Schoen). 1993;105:154-64
Late results of valve replacement with the Björk-Shiley valve (1973 to 1982) (Orszulak et al). 1993;105:302-12
Heart ventricle

Extensive cryoablation of the left ventricular posterior papillary muscle and subjacent ventricular wall: impact on mitral valve function and hemodynamics (Bakker et al). 1993;105:327-36

Is there an anatomic basis for subvalvular right ventricular outflow tract obstruction after an arterial switch repair for complete transposition? A morphometric study and review (Akiba et al). 1993;105:142-6

Staged Fontan operation for complex cardiac anomalies with subaortic obstruction (Di Donato et al). 1993;105:398-405

Heart ventricle, right

Intraventricular repair for Taussig-Bing anomaly (Kawashima et al). 1993;105:591-7

Heller's operation; see Esophageal achalasia, surgery

Hemodilution

see

Hemorrhage

Hemoptysis

Hemophilia B; see Christmas disease

Hemoptysis

Management and prognosis of massive hemoptysis: recent experience with 120 patients (Knott-Craig et al). 1993;105:394-7

Hemorrhage

Comparison of two aprotinin dosage regimens in pediatric patients having cardiac operations: influence on platelet function and blood loss (Boldt et al). 1993;105:705-11

Effect of aprotinin (Trasyrol) on aorta-coronary bypass graft patency (Bisstrup et al). 1993;105:147-53

Infusion of autologous platelet rich plasma does not reduce blood loss and product use after coronary artery bypass: a prospective, randomized, blinded study (Toke et al). 1993;105:1007-14

Inhibition of platelet function by heparin: an etiologic factor in postbypass hemorrhage (John et al). 1993;105:816-22

Redo cardiac surgery: late bleeding complications from topical thrombin-induced factor V deficiency (Cmolik et al). 1993;105:222-8

Tranexamic acid (Cyclokapron) is not necessary to reduce blood loss after coronary artery bypass operations (Ovrum et al). 1993;105:78-83

Hemostatics

Hemostatic activation during cardiopulmonary bypass with different aprotinin dosages in pediatric patients having cardiac operations (Dietrich et al). 1993;105:712-20

Heparin

Inhibition of platelet function by heparin: an etiologic factor in postbypass hemorrhage (John et al). 1993;105:816-22

Hernia

Hernia, hiatal

Transhiatal esophagectomy for benign and malignant disease (Orringer et al). 1993;105:265-77

Histiocytoma

Pleural effusion as the first manifestation of a malignant fibrous histiocytoma (García-Talavera et al). 1993;105:767 (Letter)

Histology

Mechanical durability of pulmonary allograft conduits at systemic pressure: angiographic and histologic study in lambs (Radoba et al). 1993;105:132-41

Homograft cardiac valve; see Heart valve, transplantation

Hypertension, pulmonary

Hypertrophy

Staged Fontan operation for complex cardiac anomalies with subaortic obstruction (Di Donato et al). 1993;105:398-405

Hypoplastic pulmonary root; see Pulmonary artery

Hypoplastic right ventricle; see Heart defects, congenital

Hypothermia, induced

Cold agglutinins and warm heart surgery (Gokhale et al). 1993;105:557 (Letter)

Determinants of myocardial oxygen consumption in fibrillating dog hearts: comparison between normothermia and hypothermia (Yaku et al). 1993;105:679-88

Effect of calcium and preischemic hypothermia on recovery of myocardial function after cardioplegic ischemia in neonatal lambs (Aoki et al). 1993;105:207-13

Left ventricular pressure overload during postnatal development: effects on coronary vasodilator reserve and tolerance to hypothermic global ischemia (Yamamoto and Avikiran). 1993;105:120-31

Hypothermic cardioplegia; see Heart arrest, induced

Hypothermic global ischemia; see Ischemia

Hypotonic solutions

Hypoxemia; see Anoxemia

Hypoxia; see Anoxia

Imaging fluorescence endoscopy; see Endoscopy

Immunology, cellular

Successful restoration of cell-mediated immune response after cardiopulmonary bypass by immunomodulation (Markewitz et al). 1993;105:15-24

Immunization

Immunization by bovine thrombin used with fibrin glue during cardiovascular operations: development of thrombin and factor V inhibitors (Berruyer et al). 1993;105:892-7

Immunomodulation; see Adjuvants, immunologic

Immunosuppression

Invited letter concerning: transplantation tolerance and transplantation (George) (Letter); (Wijngaard et al) (Reply). 1993;105:184-5

Successful restoration of cell-mediated immune response after cardiopulmonary bypass by immunomodulation (Markewitz et al). 1993;105:15-24

Implantable tiered therapy device; see Heart assist devices

In memoriam

Infant
Bless the babies: one hundred fifteen late survivors of heart transplantation during the first year of life (Bailey et al). 1993;105:805-15

Intraventricular repair for Taussig-Bing anomaly (Kawashima et al). 1993;105:591-7

Invited letter concerning: aprotinin use in pediatric cardiac operations (Edmunds) (Letter); (Dietrich and Mösinger) (Reply); (Boldt) (Reply). 1993;105:757-60

Lung volumes, mechanics, and perfusion after pulmonary resection in infancy (Werner et al). 1993;105:737-42

Patterns of ductal tissue in coarctation of the aorta in early infancy (van Son et al). 1993;105:368-9 (Letter)

Plasma fentanyl levels in infants undergoing extracorporeal membrane oxygenation (Leuschen et al). 1993;105:885-91

The reoxygenation phenomenon (Como and Samaja) (Letter); (Martin and Short) (Reply). 1993;105:373-4

The use of "nonanatomic" pulmonary resection in infants with extensive congenital adenomatoid malformation of the lung (Browdie et al). 1993;105:732-6

Infant, newborn
Blood activation during neonatal extracorporeal life support (Plötz et al). 1993;105:823-32

Effect of calcium and preischemic hypothermia on recovery of myocardial function after cardioplegic ischemia in neonatal lambs (Aoki et al). 1993;105:207-13

Effects of high plasma epinephrine and Ca²⁺ concentrations on neonatal myocardial function after ischemia (Caspi et al). 1993;105:59-67

Invited letter concerning: critical aortic stenosis (McKay) (Letter); (Freedom) (Reply). 1993;105:365-7

Left ventricular pressure overload during postnatal development: effects on coronary vasodilator reserve and tolerance to hypothermic global ischemia (Yamamoto and Avkiran). 1993;105:120-31

The management of severe subaortic stenosis, ventricular septal defect, and aortic arch obstruction in the neonate (Bove et al). 1993;105:289-96

Nomocalemic blood or crystalloid cardioplegia provides better neonatal myocardial protection than does low-calcium cardioplegia (Pearl et al). 1993;105:201-6

Outcomes in neonatal pulmonary atresia with intact ventricular septum: a multiinstitutional study (Hanley et al). 1993;105:406-27

The protective effect of magnesium on acute catecholamine cardiotoxicity in the neonate (Caspi et al). 1993;105:525-31

Repair of truncus arteriosus in the neonate (Hanley et al). 1993;105:1047-56

Results of a policy of primary repair of truncus arteriosus in the neonate (Bove et al). 1993;105:1057-66

Infection
Cytotoxic immunologic monitoring for rejection and infection after lung transplantation (Schuurman et al). 1993;105:178-80 (Letter)

In situ repair of myotic aneurysm of the ascending aorta (Pasic et al). 1993;105:321-6

Infusion of autologous platelets; see Blood component transfusion

Inhalation administration; see Inhalation

Innominate artery; see Blood, component transfusion

Insurance, health, reimbursement

Interleukin-8
Interleukin-8 release and neutrophil degranulation after pediatric cardiopulmonary bypass (Finn et al). 1993;105:234-41

Intraaortic balloon pumping

Intracardiac solutions; see Cardioplegic solutions

Intraoperative care

Intraoperative complications
Cardiopulmonary dysfunction produced by reoxygenation of immature hypoxic animals supported by cardiopulmonary bypass: prevention by intravenous metabolic pretreatment (Matthies et al). 1993;105:513-9

Intrathoracic meningioma; see Meningioma

Intrathoracic stomach; see Stomach diseases

Ischemia
Effect of calcium and preischemic hypothermia on recovery of myocardial function after cardioplegic ischemia in neonatal lambs (Aoki et al). 1993;105:207-13

Effects of 2,3-butanedione monoxime in isolated hearts: protection during reperfusion after global ischemia (Boban et al). 1993;105:532-40

The effects of amrinone versus dobutamine on myocardial mechanics and energetics after hypothermic global ischemia (Ko et al). 1993;105:1015-24

Effects of high plasma epinephrine and Ca²⁺ concentrations on neonatal myocardial function after ischemia (Caspi et al). 1993;105:59-67

Pilavone improves functional recovery after ischemia in isolated reperfused rabbit hearts (Ning et al). 1993;105:541-9

Left ventricular pressure overload during postnatal development: effects on coronary vasodilator reserve and tolerance to hypothermic global ischemia (Yamamoto and Avkiran). 1993;105:120-31

Recovery of postischemic contractile function is depressed by antitgrade warm continuous blood cardioplegia (Misare et al). 1993;105:37-44

Warm versus cold blood cardioplegia—Is there a difference? (Matsuura et al). 1993;105:45-51

Isosorbide dinitrate
Dilating effects of isosorbide dinitrate on diameter of internal thoracic artery graft (Koike and Kimura). 1993;105:1121-2 (Letter)

Isovolemic hemodilution; see Hemodilution

L

Left ventricle; see Heart ventricle

Left ventricular function; see Ventricular function, left

Leiomyosarcoma
Leiomyosarcoma of the lung (Conte and Leitner). 1993;105:1119-20 (Letter)
Letters

Lobectomy of lung; see Lung, surgery

Low-calcium cardioplegia; see Heart arrest, induced

Lung, metabolism
Changes in alveolar oxygen and carbon dioxide concentration and oxygen consumption during lung preservation: the maintenance of aerobic metabolism during lung preservation (Date et al.). 1993;105:492-501
Evaluation of lung metabolism during successful twenty-four-hour canine lung preservation (Date et al.). 1993;105:480-91

Lung, physiology
Physiologic evaluation of pulmonary function in the candidate for lung resection (Miller). 1993;105:347-52

Lung, surgery
Anatomic lobectomy of the lung by means of thoracoscopy: an experimental study (Kohno et al.). 1993;105:729-31
Cardiac operation with associated pulmonary resection (Yokoyama et al.). 1993;105:912-7
Lung volumes, mechanics, and perfusion after pulmonary resection in infancy (Werner et al.). 1993;105:737-42
The use of "nonanatomic" pulmonary resection in infants with extensive congenital adenomatoid malformation of the lung (Browdie et al.). 1993;105:732-6

Lung diseases
Differential lung ventilation: applications beyond the operating room (Adoumie et al.). 1993;105:229-33
Indications, risks, and results of completion pneumonectomy (Grégoire et al.). 1993;105:918-24
Management and prognosis of massive hemoptysis: recent experience with 120 patients (Knott-Craig et al.). 1993;105:394-7
Outcomes in neonatal pulmonary atresia with intact ventricular septum: a multinstitutional study (Hanley et al.). 1993;105:406-27

Lung failure; see Respiratory distress syndrome

Lung neoplasms
Anterior transcervical-thoracic approach for radical resection of lung tumors invading the thoracic inlet (Darteleve et al.). 1993;105:1025-34
Cardiac operation with associated pulmonary resection (Yokoyama et al.). 1993;105:912-7
Detection of dysplasia and carcinoma in situ with a lung imaging fluorescence endoscope device (Lam et al.). 1993;105:1035-40
Hypotonic cisplatin treatment for carcinomatous pleuritis found at thoracotomy in patients with lung cancer: in vitro experiments and preliminary clinical results (Ichinose et al.). 1993;105:1041-6
Leiomyosarcoma of the lung (Conte and Leitner). 1993;105:1119-20 (Letter)
N2 lung cancer: outcome in patients with false-negative computed tomographic scans of the chest (Daly et al.). 1993;105:904-11
Surgical resection of stage IIIA and stage IIIB non-small-cell lung cancer after concurrent induction chemoradiotherapy: a Southwest Oncology Group trial (Rusch et al.). 1993;105:97-106

Lung preservation; see Organ preservation

Lung transplantation
Changes in alveolar oxygen and carbon dioxide concentration and oxygen consumption during lung preservation: the maintenance of aerobic metabolism during lung preservation (Date et al.). 1993;105:492-501
A clinical trial of University of Wisconsin solution for pulmonary preservation (Hardesty et al.). 1993;105:660-6
Cytoimmunologic monitoring for rejection and infection after lung transplantation (Schauman et al.). 1993;105:178-80 (Letter)
Evaluation of lung metabolism during successful twenty-four-hour canine lung preservation (Date et al.). 1993;105:480-91
Lung size matching for double lung transplantation based on the submammary thoracic perimeter: accuracy and functional results (Massard et al.). 1993;105:9-14
Prolonged lung allograft survival with a short course of FK 506 (Hirai et al.). 1993;105:1-8
The sensitivity of transbronchial biopsy for the diagnosis of acute lung rejection (Tazelaar et al.). 1993;105:674-8

Lung ventilation; see Respiration, artificial

Lung volume measurements
Lung volumes, mechanics, and perfusion after pulmonary resection in infancy (Werner et al.). 1993;105:737-42

M

Malignant pleural effusion; see Pleural effusion

Mammary arteries
Retrograde versus antegrade delivery of cardiologic solution in myocardial revascularization: a clinical trial in patients with three-veesor coronary artery disease who underwent myocardial revascularization with extensive use of the internal mammary artery (Noyez et al.). 1993;105:854-63
A simple and versatile silla sternal retractor for internal mammary artery harvesting (de Andrade Vicente). 1993;105:560-1 (Letter)
Thoracic wall necrosis in a patient with internal mammary-coronary bypass after prosthetic replacement of the thoracoabdominal aorta (Aebert et al.). 1993;105:557-8 (Letter)

Massive hemoptysis; see Hemoptysis

Maze procedure; see Surgery, methods

Mechanical ventilation; see Respiration, artificial

Mediastinum
Aneuysm of saphenous vein graft used for aorta-coronary bypass, resembling an anterior mediastinal mass (Robicsek et al.). 1993;105:949-51 (Letter)
Meningocele

Mesothelioma
Mesothelioma: an incurable, nonsurgically treatable disease (Lewis) (Letter); (Rusch) (Reply). 1993;105:943-4

Microvasculature; see Blood vessels

Mitral valve
Extensive cryoablation of the left ventricular posterior papillary muscle and subjacent ventricular wall: impact on mitral valve function and hemodynamics (Bakker et al.). 1993;105:327-36

Mitral valve insufficiency
Annuloplasty with flexible or rigid ring does not alter left ventricular systolic performance, energetics, or ventricular-arterial coupling in conscious, closed-chest dogs (Castro et al.). 1993;105:643-59
Left ventricular function in experimental mitral regurgitation with intact chordae tendineae (Hennein et al.). 1993;105:624-59
Pathogenesis of ischemic mitral insufficiency (Llaneras et al.). 1993;105:439-43

Mitral valve stenosis
Long-term results of mitral commissurotomy (Scalia et al.). 1993;105:633-42
Models, theoretical
Anatomic lobectomy of the lung by means of thoracoscopy: an experimental study (Kohno et al.). 1993;105:729-31
Left ventricular function in experimental mitral regurgitation with intact chordae tendineae (Hennein et al.). 1993;105:624-32
Monocuspid patch; see Bioprosthesis
Mortality
Clinical experience with the Omnicarbon prosthetic heart valve (Misawa et al.). 1993;105:168-72
Muscles
Skeletal muscle-powered ventricle: effects of size and configuration on ventricular function (Oda et al.). 1993;105:68-77
Myocardial infarction
Pathogenesis of ischemic mitral insufficiency (Llaneras et al.). 1993;105:439-43
Myocardial ischemia
Redistribution of myocardial calcium during ischemia: relationship to onset of contracture (Jimenez et al.). 1993;105:988-94
Myocardial reperfusion
Effects of hypoxia on intracellular calcium and contractility (Urbhaler et al.). 1993;105:1114-6 (Letter)
Recuperation of postischemic contractile function is depressed by antegrade warm continuous blood cardioplegia (Misare et al.). 1993;105:37-40
Redistribution of myocardial calcium during ischemia: relationship to onset of contracture (Jimenez et al.). 1993;105:988-94
Myocardial revascularization
Retrograde versus antegrade delivery of cardioplegic solution in myocardial revascularization: a clinical trial in patients with three-vessel coronary artery disease who underwent myocardial revascularization with extensive use of the internal mammary artery (Noyez et al.). 1993;105:854-63
Myocardium
Normocalcemic blood or crystallloid cardioplegia provides better neonatal myocardial protection than does low-calcium cardioplegia (Pearl et al.). 1993;105:201-6
Myocardium, drug effects
The effects of amrinone versus dobutamine on myocardial mechanics and energetics after hypothermic global ischemia (Ko et al.). 1993;105:1015-24
Myocardium, injuries
The reoxygenation phenomenon (Corno and Samaja) (Letter); (Martin and Short) (Reply). 1993;105:373-4
Myocardium, metabolism
Acute isovolemic hemodilution and blood transfusion: effects on regional function and metabolism in myocardium with compromised coronary blood flow (Spahn et al.). 1993;105:694-704
Determinants of myocardial oxygen consumption in fibrillating dog hearts: comparison between normothermia and hypothermia (Yaku et al.). 1993;105:679-88
Myocardium, physiology
Effect of calcium and preischemic hypothermia on recovery of myocardial function after cardioplegic ischemia in neonatal lambs (Aoki et al.). 1993;105:207-13
Effects of high plasma epinephrine and Ca2+ concentrations on neonatal myocardial function after ischemia (Caspi et al.). 1993;105:59-67
Myocardium, ultrastructure
N
Necrosis
Thoracic wall necrosis in a patient with internal mammary-coronary bypass after prosthetic replacement of the thoracoabdominal aorta (Aeberl et al.). 1993;105:557-8 (Letter)
Neointima; see Blood vessels
Neonate; see Infant, newborn
Neoplasms
Medical tumors of the chest wall: solitary plasmacytoma and Ewing’s sarcoma (Burt et al.). 1993;105:89-96
Solitary bone plasmacytoma of rib presenting as a superior sulcus tumor (Rocco et al.). 1993;105:944-5 (Letter)
Neurofibromatosis I
Neutrophils
Effect of cardiopulmonary bypass on systemic release of neutrophil elastase and tumor necrosis factor (Butler et al.). 1993;105:25-30
Interleukin-8 release and neutrophil degranulation after pediatric cardiopulmonary bypass (Finn et al.). 1993;105:234-41
Newborn; see Infant, newborn
Nitrile oxide
Intraoperative use of inhaled low-dose nitric oxide (Miller et al.). 1993;105:550-1 (Letter)
Selective pulmonary vasodilatation with inhaled nitric oxide (Tönz et al.). 1993;105:760-2 (Letter)
Obituaries
O
Obituaries
Omentum
An evaluation of the role of omentopexy and of early perioperative corticosteroid administration in clinical lung transplantation (Miller and DeHoyos). 1993;105:247-52
Omnicarbon prosthetic valve; see Heart valve prosthesis

Organ preservation
Changes in alveolar oxygen and carbon dioxide concentration and oxygen consumption during lung preservation: the maintenance of aerobic metabolism during lung preservation (Date et al). 1993;105:492-501
A clinical trial of University of Wisconsin solution for pulmonary preservation (Hardesty et al). 1993;105:660-6
Evaluation of lung metabolism during successful twenty-four-hour canine lung preservation (Date et al). 1993;105:480-91
Improved recovery of heart transplants with a specific kit of preservation solutions (Menasche et al). 1993;105:353-63
Improved ultrastructural lung preservation with prostaglandin E1 as donor pretreatment in a primate model of heart-lung transplantation (Higgins et al). 1993;105:965-71

Organ weight
Lung size matching for double lung transplantation based on the submammary thoracic perimeter: accuracy and functional results (Massard et al). 1993;105:9-14

Oxygen
Cardiopulmonary dysfunction produced by reoxygenation of immature hypoxemic animals supported by cardiopulmonary bypass: prevention by intravenous metabolic pretreatment (Matheis et al). 1993;105:513-9
Proton gradient during cardiac arrest: oxygenation of St. Thomas' Hospital cardioplegic solution and carbon dioxide level (Ichikawa and Yamamoto) (Letter); (von Oppell) (Reply). 1993;105:551-3

Oxygen consumption
Changes in alveolar oxygen and carbon dioxide concentration and oxygen consumption during lung preservation: the maintenance of aerobic metabolism during lung preservation (Date et al). 1993;105:492-501
Determinants of myocardial oxygen consumption in fibrillating dog hearts: comparison between normothermia and hypothermia (Yaku et al). 1993;105:679-88

Plasma
A computer simulation of the plasma leakage through a vascular prosthesis made of expanded polytetrafluoroethylene (Tabata et al). 1993;105:598-604
Effects of high plasma epinephrine and Ca$^{2+}$ concentrations on neonatal myocardial function after ischemia (Caspì et al). 1993;105:59-67
Infusion of autologous platelet rich plasma does not reduce blood loss and product use after coronary artery bypass: a prospective, randomized, blinded study (Tobe et al). 1993;105:1007-14
Plasma levels in infants undergoing extracorporeal membrane oxygenation (Leuschèn et al). 1993;105:885-91
Plasma levels of endothelin-1 and thrombin-antithrombin III complex in patients undergoing open chest operations (Onizuka et al). 1993;105:559-60 (Letter)

Plasmacytoma
Medical tumors of the chest wall: solitary plasmacytoma and Ewing's sarcoma (Burt et al). 1993;105:89-96
Solitary bone plasmacytoma of rib presenting as a superior sulcus tumor (Rocco et al). 1993;105:944-5 (Letter)

Platelet activation
Blood activation during neonatal extracorporeal life support (Plötz et al). 1993;105:823-32

Platelet function tests
Comparison of two aprotinin dosage regimens in pediatric patients having cardiac operations: influence on platelet function and blood loss (Boldt et al). 1993;105:705-11

Platelets; see Blood platelets

Plena

Pleural effusion
Comparison of insufflated talc under thoracoscopic guidance with standard tetracycline and bleomycin pleurodesis for control of malignant pleural effusions (Hartman et al). 1993;105:743-8
Pleural effusion as the first manifestation of a malignant fibrous histiocytoma (Garcia-Talavera et al). 1993;105:767 (Letter)

Pleurisy
Hypotonic cisplatin treatment for carcinomatous pleuritis found at thoracotomy in patients with lung cancer: in vivo experiments and preliminary clinical results (Ichino et al). 1993;105:1041-6

Pneumectomy
Indications, risks, and results of completion pneumonectomy (Grégoire et al). 1993;105:918-24
Mesothelioma: an incurable, nonsurgically treatable disease (Lewis) (Letter); (Rusch) (Reply). 1993;105:943-4
Physiologic evaluation of pulmonary function in the candidate for lung resection (Miller). 1993;105:347-52

Pneumothorax
Thoracoscopic stapled resection for spontaneous pneumothorax (Hazelrig et al). 1993;105:389-93
Polytetrafluoroethylene
A computer simulation of the plasma leakage through a vascular prosthesis made of expanded polytetrafluoroethylene (Tabata et al). 1993;105:598-604

Polyurethanes

Porcine bioprosthesis; see Bioprosthesis

Posterior aorta; see Aorta

Postnatal development; see Infant, newborn

Postoperative complications
Invited letter concerning: technique for prevention of gastroesophageal reflux after transthoracic Heller’s operation (Ellis) (Letter); (Gatzinsky et al) (Reply). 1993;105:555-7

Postoperative period
Selection of patients for same-day coronary bypass operations (Andersen et al). 1993;105:444-52

Postoperative wound infection; see Surgical wound infection

Potassium
Impaired endothelium-dependent coronary microvascular relaxation after cold potassium cardioplegia and reperfusion (Sellke et al). 1993;105:52-8

Prednisolone

Preoperative care
Cardiopulmonary dysfunction produced by reoxygenation of immature hypoxic animals supported by cardiopulmonary bypass: prevention by intravenous metabolic pretreatment (Matheis et al). 1993;105:513-9

Preservation solutions; see Organ preservation

Presidential address
Fulfilling expectations (Fosburg). 1993;105:194-200

Primate model; see Disease models, animal

Prostaglandin E1; see Alprostadil

Prosthesis failure
Effects of fixation back pressure and antimineralization treatment on the morphology of porcine aortic bioprosthetic valves (Flomenbaum and Schoen). 1993;105:154-64
Late results of valve replacement with the Björk-Shiley valve (1973 to 1982) (Orszulak et al). 1993;105:302-12

Prosthesis-related infections
Prosthetic valve endocarditis: experience with porcine bioprostheses (Selt et al). 1993;105:428-34

Protons
Proton gradient during cardiac arrest: oxygenation of St. Thomas’ Hospital cardiopulmonary solution and carbon dioxide level (Ichikawa and Yamamoto) (Letter); (von Oppell) (Reply). 1993;105:551-3

Pulmonary artery
Invited letter concerning: the importance of pulsatile flow when systemic venous return is connected directly to the pulmonary arteries (Jonas) (Letter); (Muster and Mavroudis) (Reply). 1993;105:173-6
Isolated unilateral pulmonary artery agenesis (Canver). 1993;105:766-7 (Letter)

Mechanical durability of pulmonary allograft conduits at systemic pressure: angiographic and histologic study in lambs (Kadoba et al). 1993;105:132-41
Superior function of a bicuspid over a monocuspid patch for reconstruction of a hypoplastic pulmonary root in pigs (Sievers et al). 1993;105:580-90
Tetralogy of Fallot with pulmonary atresia, coronary artery–pulmonary artery fistula, and origin of left pulmonary artery from descending aorta: total correction in infancy (Metras et al). 1993;105:186-8 (Letter)

Pulmonary atresia; see Lung diseases

Pulmonary function tests; see Respiratory function tests

Pulmonary hypertension; see Hypertension, pulmonary

Pulmonary preservation; see Organ preservation

Pulmonary resection; see Lung, surgery

Pulmonary root
Time course of dimension and function of the autologous pulmonary root in the aortic position (Sievers et al). 1993;105:775-80

Pulmonary valve stenosis
Surgical correction of a recurrent aneurysm of the ascending aorta simulating pulmonary stenosis (Rabajioli et al). 1993;105:948-9 (Letter)

Pulmonary veins

Pulsatile flow
Invited letter concerning: the importance of pulsatile flow when systemic venous return is connected directly to the pulmonary arteries (Jonas) (Letter); (Muster and Mavroudis) (Reply). 1993;105:173-6

Quality improvement
Fulfilling expectations (Fosburg). 1993;105:194-200 (Pres. address)

Radiotherapy
Surgical resection of stage IIIA and stage IIIB non-small-cell lung cancer after concurrent induction chemoradiotherapy: a Southwest Oncology Group trial (Rusch et al). 1993;105:97-106

Regional blood flow
Exclusion of the placenta during fetal cardiac bypass augments systemic flow and provides important information about the mechanism of placental injury (Fenton et al). 1993;105:502-12

Reimbursement; see Insurance, health, reimbursement

Relative risk; see Risk factors

Reoperation
The effect of coronary reoperation on the survival of patients with stenoses in saphenous vein bypass grafts to coronary arteries (Lytle et al). 1993;105:605-14
Indications, risks, and results of completion pneumonectomy (Grégoire et al). 1993;105:918-24
Redo cardiac surgery: late bleeding complications from topical thrombin-induced factor V deficiency (Cmolik et al). 1993;105:222-8

Reoxygenation; see Extracorporeal membrane oxygenation; Oxygen

Reperfused hearts; see Myocardial reperfusion

Reperfusion injury
Cardiac-derived thromboxane A2: An initiating mediator of reperfusion injury? (Byrne et al). 1993;105:689-93

Respiration, artificial
Differential lung ventilation: applications beyond the operating room (Adoumie et al). 1993;105:229-33
Subject index

Respiratory distress syndrome
Prostaglandin E1 for patients who have both heart and lung failure after cardiomyotomy (Mayumi and Tokunaga). 1993;105:1120-1 (Letter)

Respiratory function tests
Physiologic evaluation of pulmonary function in the candidate for lung resection (Miller). 1993;105:347-52

Retrograde cardioplegia; see Heart arrest, Induced

Revascularization; see Blood vessels

Ribs
Solitary bone plasmacytoma of rib presenting as a superior sulcus tumor (Rocco et al). 1993;105:944-5 (Letter)

Right ventricular function; see Ventricular function, right

Ring abscess; see Abscess

Risk factors
Indications, risks, and results of completion pneumonectomy (Grégoire et al). 1993;105:918-24

St. Thomas Hospital cardioplegic solution; see Cardioplegic solutions

Same-day surgery
Selection of patients for same-day coronary bypass operations (Anderson et al). 1993;105:444-52

Saphenous vein
The effect of coronary reoperation on the survival of patients with stenoses in saphenous vein bypass grafts to coronary arteries (Lytle et al). 1993;105:605-14

Sarcoma, Ewing's
Medical tumors of the chest wall: solitary plasmacytoma and Ewing's sarcoma (Burt et al). 1993;105:89-96

Size matching; see Organ weight

Skeletal muscles; see Muscles

Sling sternal retractor; see Surgical equipment

Sound spectral analysis; see Spectrum analysis

Southwest Oncology Group
Surgical resection of stage IIIA and stage IIIB non-small-cell lung cancer after concurrent induction chemoradiotherapy: a Southwest Oncology Group trial (Rusch et al). 1993;105:97-106

Spectrum analysis

Staplers; see Surgical staplers

Statement of appreciation
Statement of appreciation. 1993;105:193

Stomach diseases

Stroke volume

Subaortic stenosis; see Aortic valve stenosis

Subclavian artery
Aortic aneurysm after subclavian arterial flap angioplasty for coarctation of the aorta (Berri et al). 1993;105:951 (Letter)
Dysphagia lusoria (Igci et al). 1993;105:1116-8 (Letter)

Submammary thoracic perimeter; see Perimetry

Subvalvular right ventricular outflow tract obstruction; see Ventricular outflow tract obstruction

Sulcus tumors; see Neoplasms

Superior vena cava; see Vena cava, superior

Supravalvular aortic stenosis; see Aortic valve stenosis

Surgery, methods
Initial experience with the maze procedure for atrial fibrillation (McCarthy et al). 1993;105:1077-87

Surgical equipment
Anatomic lobectomy of the lung by means of thoracoscopy: an experimental study (Kohno et al). 1993;105:729-31
A simple and versatile sling sternal retractor for internal mammary artery harvesting (Villela de Andrade Vicente). 1993;105:560-1 (Letter)

Surgical flaps
Aortic aneurysm after subclavian arterial flap angioplasty for coarctation of the aorta (Berri et al). 1993;105:951 (Letter)

Surgical staplers
Thoracoscopic staped resection for spontaneous pneumothorax (Hazeldigg et al). 1993;105:389-93

Surgical wound infection
Clinical significance of epicardial pacing wire cultures (Hastings and Robicsek). 1993;105:165-7

Survival
Actuarial five-year survival estimates (Mengoli) (Letter); (Dartevelle and Macchiari) (Reply). 1993;105:375-7
The effect of coronary reoperation on the survival of patients with stenoses in saphenous vein bypass grafts to coronary arteries (Lytle et al). 1993;105:605-14
Late results of valve replacement with the Björk-Shiley valve (1973 to 1982) (Orszulak et al). 1993;105:302-12
Repair of truncus arteriosus in the neonate (Hanley et al). 1993;105:1047-56
Results of a policy of primary repair of truncus arteriosus in the neonate (Bove et al). 1993;105:1057-66
Survival of patients with carcinoma of the esophagus treated with combined-modality therapy (Wolfe et al). 1993;105:749-56

Survival rate
Bless the babies: one hundred fifteen late survivors of heart transplantation during the first year of life (Bailey et al). 1993;105:805-15
Clinical experience with the Omnicarbon prosthetic heart valve (Misawa et al). 1993;105:168-72

Systemic flow; see Regional blood flow

Systole
Skeletal muscle-powered ventricle: effects of size and configuration on ventricular function (Oda et al). 1993;105:68-77

Tachycardia
Experience with an implantable tiered therapy device incorporating antitachycardia pacing and cardioverter/defibrillator therapy (Mitchell et al). 1993;105:453-63
Extensive cryoablation of the left ventricular posterior papillary muscle and subjacent ventricular wall: impact on mitral valve function and hemodynamics (Bakker et al). 1993;105:327-36
Talc

Comparison of insufflated talc under thoracoscopic guidance with standard tetracycline and bleomycin pleurdesis for control of malignant pleural effusions (Hartman et al). 1993;105:743-8

Taussig-Bing anomaly

Intraventricular repair for Taussig-Bing anomaly (Kawashima et al). 1993;105:591-7

Tetracycline

Comparison of insufflated talc under thoracoscopic guidance with standard tetracycline and bleomycin pleurdesis for control of malignant pleural effusions (Hartman et al). 1993;105:743-8

Tetralogy of Fallot

Thoracic esophageal diverticulum; Esophageal diverticulum

Thoracic diseases

Thoracic perimeter, submammary; see Thoracic wall necrosis

Thoracoscopy

Transhiatal esophagectomy for benign and malignant disease

Dilating effects of isosorbide dinitrate on diameter of internal thoracic artery graft (Koike and Kimura). 1993;105:1121-2 (Letter)

Thoracic arteries

Clinical evaluation with exercise performance in twenty patients who underwent coronary artery bypass grafting with both the gastroepiploic and internal thoracic arteries (Isumura et al). 1993;105:1088-94

Dilating effects of isosorbide dinitrate on diameter of internal thoracic artery graft (Koike and Kimura). 1993;105:1121-2 (Letter)

Thoracic diseases

Transhiatal esophagectomy for benign and malignant disease (Orringer et al). 1993;105:265-77

Thoracic esophageal diverticulum; see Esophageal diverticulum

Thoracic neoplasms

Medical tumors of the chest wall: solitary plasmacytoma and Ewing’s sarcoma (Burt et al). 1993;105:89-96

Thoracic perimeter, submammary; see Perimetry

Thoracic wall necrosis; see Necrosis

Thoracoabdominal aorta; see Aorta, abdominal; Aorta, thoracic

Thoracoscopy

Comparison of insufflated talc under thoracoscopic guidance with standard tetracycline and bleomycin pleurdesis for control of malignant pleural effusions (Hartman et al). 1993;105:743-8

Thoracoscopic stapled resection for spontaneous pneumothorax (Hazelrigg et al). 1993;105:389-93

Thoracotomy

Esophagectomy with or without thoracotomy: Is there any difference? (Tilanus et al). 1993;105:898-903

Thoracoscopic stapled resection for spontaneous pneumothorax (Hazelrigg et al). 1993;105:389-93

Thorax

Anterior transcervical-thoracic approach for radical resection of lung tumors invading the thoracic inlet (Dartevelle et al). 1993;105:1025-34

Thrombectomy; see Thrombosis

Thrombin

Immunization by bovine thrombin used with fibrin glue during cardiovascular operations: development of thrombin and factor V inhibitors (Berruyer et al). 1993;105:892-7

Plasma levels of endothelin-1 and thrombin-antithrombin III complex in patients undergoing open chest operations (Onizuka et al). 1993;105:559-60 (Letter)

Redo cardiac surgery: late bleeding complications from topical thrombin-induced factor V deficiency (Cmolik et al). 1993;105:222-8

Thrombosis

Successful thrombectomy for thrombosis of the right side of the heart after the Fontan operation: report of two cases and review of the literature (Hedrick et al). 1993;105:297-301

Thromboxane A2

Cardiac-derived thromboxane A2: An initiating mediator of reperfusion injury? (Byrne et al). 1993;105:689-93

Thyroid gland

Thyroid hormones

Thyrotracheal transplant; see Trachea, transplantation

Tissue donors

Improved ultrastructural lung preservation with prostaglandin E1 as donor pretreatment in a primate model of heart-lung transplantation (Higgins et al). 1993;105:965-71

Lung size matching for double lung transplantation based on the submammary thoracic perimeter: accuracy and functional results (Massard et al). 1993;105:9-14

Tissue transplantation

Acceleration of neointima formation in vascular prostheses by transplantation of autologous venous tissue fragments: application to small-diameter grafts (Noishiki et al). 1993;105:796-804

Tomography, x-ray computed

Trachea, transplantation

Tranexamic acid

Tranexamic acid (Cyclokapron) is not necessary to reduce blood loss after coronary artery bypass operations (Øvrum et al.). 1993;105:78-83

Transbronchial biopsy; see Biopsy

Transcervical approach; see Thorax

Transesophageal echocardiography; see Echocardiography

Transhiatal esophagectomy; see Esophagectomy

Transplantation, autologous

Acceleration of neointima formation in vascular prostheses by transplantation of autologous venous tissue fragments: application to small-diameter grafts (Noishiki et al). 1993;105:796-804

Time course of dimension and function of the autologous pulmonary root in the aortic position (Sieves et al). 1993;105:775-80
Transplantation, homologous
Degeneration of aortic valve allografts in young recipients (Clarke et al). 1993;105:934-42
Mechanical durability of pulmonary allograft conduits at systemic pressure: angiographic and histologic study in lambs (Kadoba et al). 1993;105:132-41
Prolonged lung allograft survival with a short course of FK 506 (Hirai et al). 1993;105:1-8

Transplantation Immunology
Invited letter concerning: transplantation tolerance and transplantation (George) (Letter); (Wijngaard et al) (Reply). 1993;105:184-5

Transport, biological; see Biological transport

Transposition of great vessels
Anatomic repair of transposition of great arteries with ventricular septal defect and aortic arch obstruction: one-stage versus two-stage procedure (Planche et al). 1993;105:925-33
Aneurysm of the membranous ventricular septum in transposition of the great arteries (Corno et al). 1993;105:369-71 (Letter)
Is there an anatomic basis for subvalvular right ventricular outflow tract obstruction after an arterial switch repair for complete transposition? A morphometric study and review (Akiba et al). 1993;105:142-6
Transposition of the great arteries with posterior aorta (Antunes). 1993;105:369 (Letter)

Transluminal Heller's operation; see Esophageal achalasia, surgery

Trasylol; see Aprotinin

Truncus arteriosus
Repair of truncus arteriosus in the neonate (Hanley et al). 1993;105:1047-56
Results of a policy of primary repair of truncus arteriosus in the neonate (Bove et al). 1993;105:1057-66

Tuberculosis, pulmonary
Management and prognosis of massive hemoptysis: recent experience with 120 patients (Knott-Craig et al). 1993;105:394-7

Tumor necrosis factor

Tumors; see Neoplasms

Type A aortic dissection; see Aneurysm, dissecting

U

University of Wisconsin solution; see Cardioplegic solutions

V

Vascular pericardial flap; see Surgical flaps

Vascular prosthesis; see Blood vessel prosthesis

Vasoconstriction
Particle-induced coronary vasoconstriction: the need for in-line filtration of cardioplegic solutions (Palanzo and O’Neill) (Letter); (Rosenfeldt and Munsch) (Reply). 1993;105:1118-9

Vasodilation
Left ventricular pressure overload during postnatal development: effects on coronary vasodilator reserve and tolerance to hypothermic global ischemia (Yamamoto and Avkiran). 1993;105:120-31

Vasodilator agents
Should adenosine continue to be ignored as a cardioprotective agent in cardiac operations? (Galilhanes et al). 1993;105:180-3 (Letter)

Vena cava, superior
Actuarial five-year survival estimates (Mengoli) (Letter); (Dartevelle and Macchiarini) (Reply). 1993;105:375-7

Ventricular, mechanical; see Respiration, artificial

Ventricricle; see Heart ventricle

Ventricular assist system; see Heart-assist devices

Ventricular fibrillation
Determinants of myocardial oxygen consumption in fibrillating dog hearts: comparison between normothermia and hypothermia (Yaku et al). 1993;105:679-88

Ventricular function
Ventricular function after normothermic versus hypothermic cardioplegia (Yau et al). 1993;105:833-44

Ventricular function, left
Acute isovolemic hemodilution and blood transfusion: effects on regional function and metabolism in myocardium with compromised coronary blood flow (Spahn et al). 1993;105:694-704
Annuloplasty with flexible or rigid ring does not alter left ventricular systolic performance, energetics, or ventricular–arterial coupling in conscious, closed-chest dogs (Castro et al). 1993;105:643-59
Cardiac-derived thromboxane A2: An initiating mediator of reperfusion injury? (Byrne et al). 1993;105:689-93
Left ventricular function in experimental mitral regurgitation with intact chordae tendineae (Hennein et al). 1993;105:624-32
Left ventricular pressure overload during postnatal development: effects on coronary vasodilator reserve and tolerance to hypothermic global ischemia (Yamamoto and Avkiran). 1993;105:120-31
The protective effect of magnesium on acute catecholamine cardiotoxicity in the neonate (Caspi et al). 1993;105:525-31

Ventricular function, right
Anatomic correction of atrioventricular discordance (Yamagishi et al). 1993;105:1067-76
Biventricular repair of hypoplastic right ventricle assisted by pulsatile bidirectional cavopulmonary anastomosis (Muster et al). 1993;105:112-9

Ventricular outflow tract obstruction
Is there an anatomic basis for subvalvular right ventricular outflow tract obstruction after an arterial switch repair for complete transposition? A morphometric study and review (Akiba et al). 1993;105:112-9

Ventricular septal defects; see Heart septal defects, ventricular
Ventricular septum; see Heart septum

Video-assisted thoracoscopy; see Thoracoscopy

W

Warm blood cardioplegia; see Heart arrest, induced

Western Thoracic Surgical Association
Annual meeting notes. 1993;105:382
Notice of annual meeting. 1993;105:191-2, 380-1, 577-8, 771-2, 958-9, 1127-8
Program for annual meeting. 1993;105:960-4

Wounds