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Enhanced Release of Elastase Is Not 
Concomitant With Increased Secretion 
of Granulocyte-Activating Cytokines 
in Whole Blood From Patients With Sepsis 
Wolfgang Erie!, MD; Doreid Jarrar; Mananne Jochum, PhD; Volker Thiele; John Kenney, ΜΑ; 
Eugen Faist, MD; Friedrich-Wilhelm Schildberg, MD 

B a c k g r o u n d : The proteolytic enzyme elastase released 
by granulocytes (polymorphonuclear leukocytes [PMN]) 
in high concentrations during sepsis causes degradation 
of essential plasma proteins, endothelial damage, and tis­
sue edema. This may result in organ dysfunction and or­
gan failure during sepsis, since increased elastase plasma 
levels correlate with the mortality rate of patients with sep­
sis. In vitro studies demonstrated a regulatory role of in­
flammatory cytokines (tumor necrosis factor-α [TNF-a], 
interleukin l ß [IL-lß], IL-8]) upregulating protease re­
lease by PMN. In this light, the interactions between cy­
tokine release by macrophages and altered elastase secre­
tion during sepsis remain to be determined. 

M e t h o d s : An ex vivo model consisting of lipopolysac-
charide stimulation of human whole blood as a relevant 
physiological milieu was used. Heparinized blood was ob­
tained from 20 patients with sepsis syndrome (APACHE 
I I [Acute Physiology and Chronic Health Evaluation II] 
score 28.5±1.2 points [mean±SD]) on days 0 through 
3,5,7, and 10 after sepsis diagnosis and from 20 control 
patients without infection. Blood was incubated with l i -

popolysaccharide (1 mg/L) for 8 hours. Plasma levels of 
elastase, TNF-α, IL- lß , and IL-8 were determined using 
enzyme-linked immunosorbent assay or bioassay (TN Ρ­
α) , respectively. 

Resu l t s : Elastase plasma levels in whole blood from pa­
tients with sepsis were increased up to 188% (P<.01) 
above normal, while the release of TNF-a (—87%), IL- lß 
( -91%), and IL-8 (-51%) was markedly (P<.01) de­
creased compared with control patients. Neutralization 
of TNF-α or IL- lß did not attenuate the increased re­
lease of elastase. 

Conc lus ions : These data indicate an increased release 
of elastase by PMN despite a reduced secretion of PMN-
activating cytokines. Although priming effects of TNF-a, 
IL- lß , and IL-8 on protease secretion in vivo cannot be 
excluded completely, other mediators or mechanisms may 
be involved in the upregulation of detrimental protease 
release during sepsis. 

(Arch Surg. 1994;129:90-98) 

From the Department of 
Surgery, University Hospital 
Grosshadern, 
Ludwig-Maximilians-University, 
Munich, Germany (Messrs 
Jarrar and Thiele, and 
Drs Faist and Schildberg); the 
Department of Clinical 
Biochemistry, Department of 
Surgery, Munich City 
(Dr Jochum); and the Institute 
of Biological Sciences, Syntex 
Research, Palo Alto, Calif 
(Mr Kenney). Dr Ertel is now 
with the Klinik für 
Unfallchirurgie, Departement 
Chirurgie, Universitaetsspital 
Zuerich (Switzerland). 

I NFLAMMATORY CYTOKINES S u c h 

as tumor necrosis f ac to r -α 
(TNF-α) , interleukin l ß ( IL-
l ß ) , and IL-8 have been impli­
cated as principal mediators in 

endotoxin shock.1"5 Moreover, these in­
flammatory cytokines form a l ink be­
tween monocytes (MO)/macrophages 
and polymorphonuclear leukocytes 
(PMN). Previous studies6"9 revealed a 
trigger function of TNF-α, IL - lß , and 
IL-8 for activation of PMN. Tumor ne­
crosis factor-α increased PMN adher­
ence to endothelial cells, phagocytosis, 
respiratory burst activity, and degranu-
lation in isolated PMN cultures. 1 0 1 1 Tu­
mor necrosis factor-α and IL- lß were 
also found to induce and increase the 

expression of adhesion receptors on the 
membrane of endothelial cells and inte-
grins on PMN that are reciprocally in­
volved in intracellular adhesion.12"14 In­
terleukin 8 induces the full pattern of 
responses observed in chemotactically 
stimulated PMN with activation of the 
motile apparatus and directional migra­
t ion, expression of surface adhesion 
molecules, release of stored enzymes, 
and p roduc t ion of reactive oxygen 

See Patients, Materials, and 
Methods on next page 
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PATIENTS, MATERIALS, 
AND METHODS 

PATIENT SELECTION 

Patients eligible for this study were those with sepsis 
syndrome or septic shock defined by the following crite­
ria.31 Sepsis syndrome was characterized by fever or hy­
pothermia (temperature >38.3°C or <35.6°C), tachy­
cardia (>90 beats per minute in the absence of 
ß-blockade), tachypnea (respiratory rate >20 breaths 
per minute or the requirement of mechanical ventila­
tion), and altered organ perfusion resulting in mental 
disorientation, oliguria, or elevated lactate levels. Septic 
shock was defined by clinical diagnosis of sepsis syn­
drome plus hypotension (eg, systolic blood pressure 
<90 mm Hg) or the requirement of vasopressor drugs to 
maintain blood pressure. 

Twenty patients who fulfilled these criteria were en­
rolled in this study (Table I ) . The study was carried 
out in accord with the Ethical Committee of the Ludwig-
Maximilians-University, Munich, Germany. On the day 
of enrollment, the mean APACHE II (Acute Physiology 
and Chronic Health Evaluation II) score was 28.5±1.5 
points. The infection sites included pneumonia (n=8), 
peritonitis (n=7), pleura empyema (n=2), and catheter 
sepsis (n=l). Bacteremia was documented in three pa­
tients (15%), while endotoxemia was found in eight pa­
tients (40%). Nine (45%) of the 20 patients with sepsis 
died in the first 28 days after diagnosis of sepsis because 
of multiple organ failure (MOF). Control patients 
(n=20) who were admitted to our hospital for hernia re­
pair or cholecystectomy were comparable to the patients 
with sepsis with regard to age and sex. 

COLLECTION OF BLOOD 

Blood from patients with sepsis was collected on the day of 
enrollment (DO) and on days 1 through 3,5,7, and 10 there­
after. Blood from control patients was obtained once be­
fore operation to exclude any influence of stress, anesthe­
sia, and surgical trauma. 

Blood was drawn into heparinized syringes (20 U of 
heparin sodium per milliliter; heparin was tested for en­
dotoxin: <5 pg of endotoxin per milliliter of heparin), im­
mediately placed on ice, and then transferred into sterile 
10-mL polypropylene tubes (Falcon, Becton Dickinson, Lin­
coln Park, NJ). For each blood sample, total and differen­
tial white blood cell counts were obtained (Coulter Counter, 
Coulter Corp, Hialeah, Fla). The numbers of MO and PMN 
per milliliter of blood were calculated for each blood sample 
from the total and differential leukocyte count. 

An aliquot of 5 mL of blood was removed and 
rapidly processed as described below to serve as 
the 0-hour time point. The remainder of each blood 
sample was adjusted to 1 mg/L of lipopolysaccharide 
(LPS) (Escherichia coli 055:B5; Difco Labs Inc, 

Detroit, Mich) which resulted in a maximum stimula­
tion of MO to secret inflammatory cytokines (W.E., un­
published observations, 1992). The blood-containing 
tubes were placed on a rotator in a 5% carbon dioxide 
atmosphere at 37°C. Control blood samples without LPS 
were handled similarly. At 1, 2, 4, 8, and 24 hours of 
culture, 5 mL of blood was removed and processed as 
follows: each aliquot was centrifuged over Ficoll-
Hypaque density gradient (density= 1.077; Seromed, Ber­
lin, Germany) at 680g for 20 minutes, and the plasma 
was removed and stored immediately at — 70°C until as­
sayed. The viability of peripheral blood mononuclear 
cells was evaluated throughout the time course using 
trypan blue exclusion and was not found to change sig­
nificantly over the 24-hour incubation period. 

In addition, a monoclonal antibody against human 
TNF-α (Centocor, Malvern, Pa) or a monoclonal antibody 
against human IL-lß (Genzyme, Boston, Mass) was added 
to whole blood prior to LPS challenge to neutralize bio­
logically active TNF-α and IL-lß, respectively. A 1/50 di­
lution of the anti-TNF-α antibody was capable to neutral­
ize 750 U/mL of TNF-α, while a 1/40 dilution of the anti-
IL-lß antibody completely blocked 50 ng/mL of IL-lß. 

ELASTASE AND CYTOKINE ASSAYS 

Because most released PMN elastase in plasma can be 
detected only in complex with a^proteinase inhibitor 
(Ε-αιΡΙ), quantitative estimation of plasma levels of the 
E-aiPI complex was carried out with a highly sensitive 
two-site enzyme-linked immunosorbent assay (ELISA) 
(Merck, Darmstadt, Germany).3233 Plasma TNF-α levels 
were measured as previously described34 using the 
WEHI 164 subclone 13 cell line. The detection limit of 
the assay was 0.1 U/mL of recombinant TNF-α. Biologi­
cal activity of TNF in plasma samples could be com­
pletely abolished by the addition of a rabbit monoclonal 
anti-human-TNF-α antibody (Genzyme) indicating the 
specificity of the WEHI 164 cytotoxicity assay. Levels of 
IL-lß in plasma were measured using ELISA as previ­
ously described.35 To remove putative factors (IL-1 in­
hibitory factors36) present in plasma that interfere with 
IL-lß measurements, a chloroform extraction was per­
formed.37 Interleukin 8 plasma levels were determined 
using a commercially available ELISA kit (Amersham, 
Braunschweig, Germany) according to the 
manufacterer's guidelines. The sensitivities of the IL-lß 
and the IL-8 ELISA were 15 pg/mL and 5 pg/mL, respec­
tively. The results of the cytokine and elastase assays 
were normalized to represent 1X10 6 MO or 1X10 6 

PMN. 

STATISTICS 

Results are presented as mean±SEM. Data were analyzed 
by unpaired Wilcoxon Rank Sum Test with Bonferroni cor­
rection for multiple comparisons. Differences were con­
sidered significant at P<.05. 
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Table 1. Clinical Data From 20 Patients With Sepsis Syndrome or Septic Shock 

Patient No./ 
Age, y Infection 

Isolated 
Bacteria* Bacteremia Endotoxemia 

APACHE II 
Scoref Outcome* 

1/65 Catheter sepsis Gram- No No 29 R 
2/51 Origin unknown Legionella No Yes 36 R 
3/56 Pleura empyema Gram- No No 25 D (day 70) 
4/63 Origin unknown None No No 40 D (day 8) 
5/53 Peritonitis Gram- Yes No 31 R 
6/62 Pneumonia Gram+ No No 23 D (day 20) 
7/61 Peritonitis Gram- No Yes 20 R 
8/64 Pneumonia Gram- No Yes 32 D (day 17) 
9/71 Peritonitis Gram- No Yes 42 D (day 18) 

10/33 Peritonitis Gram- No Yes 26 R 
11/58 Pleura empyema Gram- No No 28 D (day 28) 
12/80 Peritonitis Gram± No No 23 D (day 3) 
13/69 Pneumonia Gram+ Yes No 27 D (day 10) 
14/60 Pneumonia Gram- No No 22 D (day 18) 
15/86 Peritonitis Gram- No No 38 R 

{ 1.6/56 Pneumonia Gram+ No No 20 R 
17/76 Pneumonia Gram- No Yes 29 D (day 68) 
18/62 Peritonitis Gran^ Yes Yes 29 D (day 1) 
19/72 Pneumonia Gram± No Yes 27 D (day 34) 
20/41 Pneumonia . Candida No No 22 R 

* Minus sign indicates negative; plus sign, positive; and plus-minus sign, positive and negative. 
tAPACHE II indicates Acute Physiology and Chronic Health Evaluation II. 
tR indicates recovery; D, death (day after sepsis diagnosis). 

metabolites.6 The activation of PMN by TNF-α, IL- lß , 
and IL-8 may lead to adherence of PMN to endothelial 
cells with induction of vessel wall injury due to the re­
lease of tox ic oxygen species and lysosomal 
proteinases.15"17 

N E U T R O P H I L E L A S T A S E , a powerful neu­
tral serine proteinase released from the 
azurophil granules, is thought to play 
a central role in PMN-mediated endo­
thelial i n j u r y . 1 5 1 6 ' 1 8 1 9 Elastase cannot 

only degrade almost all components of the intracellular 
matrix, but it can also cleave a variety of key plasma pro­
teins (eg, immunoglobulins, complement proteins, and 
clotting factors) and even attack intact cells of the host, 
thus leading to tissue damage.20"24 Elevated plasma lev­
els of elastase have been described in patients with sep­
sis and correlated with morbidity and mortality of these 
patients.25"30 

Although in vitro studies suggest an upregulation and 
activation of PMN by TNF-α, IL-lß, and IL-8, the inter­
actions between altered release of these cytokines and el­
evated elastase secretion by PMN during sepsis remain to 
be determined. Therefore, it was the objective of this study 
to investigate whether PMN activation determined by the 
release of elastase is dependent on increased synthesis and 

secretion of inflammatory cytokines in whole blood from 
patients with sepsis. 

RESULTS 

BASELINE VALUES 

For baseline values, total amounts of elastase, TNF-α, IL-
1 β, and IL-8 detected at time point 0 hour in whole blood 
were normalized according to 1X10 6 PMN or 1Χ10 6 MO. 
The Ε-αχΡΙ levels were significantly (P< .05) increased in 
the group with sepsis (33.1 ±5 .1 ng/mL) by 130% above 
normal values (14.4± 2.1 ng/mL). In contrast, TNF-α (<4 
U/mL) and IL-lß (<250pg/mL) were found only in mini­
mal levels in some plasma samples from patients with sep­
sis, while neither TNF-α nor IL-lß could be detected in 
plasma from control patients. Interleukin 8 was detect­
able in plasma levels at 0 hour in both groups with increased 
(P< .01) IL-8 levels in the group with sepsis (366 ± 45 pg/ 
mL) compared with the control group (144± 17 pg/mL). 

KINETICS OF ELASTASE AND CYTOKINE 
RELEASE IN WHOLE BLOOD 

Kinetic studies were performed over a 24-hour incuba­
tion period in the presence or absence of 1 mg/L of LPS. 
The spontaneous release of Ε-αχΡΙ in whole blood from 

ARCH SURG/VOL 129, JAN 1994 
92 



Figure 1. Kinetics of elastase release (ng/mL per 1x1Ό6 

polymorphonuclear leukocytes) into whole blood from patients with sepsis 
(open circles) (n=12) and control patients (closed circles) (n=12). Whole 
blood was incubated for the indicated intervals in the presence of 
lipopolysaccharide (1 mg/L). Elastase plasma levels were determined with 
enzyme-linked immunosorbent assay as outlined in "Patients, Materials, 
and Methods" section. Values are mean±SEM; two asterisks indicate 
?<.01 sepsis vs control. 

patients with sepsis was significantly elevated at all ex­
amined time points with peak levels at 24 hours of cul­
ture (data not shown). Stimulation of whole blood with 
LPS resulted in a marked (P<.01) rise of E-ajPl plasma 
concentrations in the group with sepsis with peak levels 
at 24 hours of culture (1019 ±236 ng/mL) in compari­
son to the control group (224±27 ng/mL) ( F igure 1 ) . 

A spontaneous release of TNF-α or IL-1 β was not ob­
served in the two groups, while spontaneous secretion of 
IL-8 was significantly elevated in the control group com­
pared with the group with sepsis (data not shown). At 2, 
4,8, and 24 hours after exposure to LPS, the release of TNF-a 
in whole blood from patients with sepsis was significantly 
decreased compared with the control group ( F igure 2 , 
top). In addition, secretion of IL-1 β in LPS-s timulated whole 
blood from patients with sepsis was markedly (P< .01) de­
pressed at 4,8, and 24 hours of culture compared with con­
trols (Figure 2, center). The LPS-induced release of IL-8 
into whole blood from patients with sepsis was decreased 
(P<.01) at 4,8, and 24 hours of culture in comparison to 
the control group (Figure 2, bottom). 

RELEASE OF ELASTASE AND CYTOKINES 
IN WHOLE BLOOD ON 

CONSECUTIVE DAYS AFTER SEPSIS 

Alterations of elastase and cytokine release in whole blood 
obtained from patients with sepsis were studied over a pe­
riod of 10 consecutive days after study enrollment and com­
pared with control patients. The plasma concentrations 
of E-aj PI, TNF-a, IL-1 β, and IL-8 were assessed at the 8-hour 
time point after stimulation of whole blood with LPS. The 
Ε-α ι PI concentrations in whole blood from patients with 
sepsis were significantly elevated (P<.05) on DO and on 

Figure 2. Kinetics of tumor necrosis factor-α (TNF-α) (U/mL per 1x 106 

monocytes) (top), interleukin 1ß (IL-1ß) (ng/mL per 1x106 monocytes) 
(center), and interleukin 8 (IL-8) (ng/mL per 1x 106 monocytes) (bottom) 
release into whole blood from patients with sepsis (open circles) (n=12) 
and control patients (closed circles) (n=12). Whole blood was incubated 
for the indicated intervals in the presence of lipopolysaccharide (1 mg/L). 
Cytokine plasma levels were determined as outlined in "Patients, Materials, 
and Methods" section. Values are mean±SEM; one asterisk indicates 
P<.05; two asterisks, ?<.01 sepsis vs control. 

days 0 through 3 after diagnosis of sepsis when compared 
with the control group ( F igure 3 ) . The Ε - α ^ Ι concen­
trations in the group with sepsis were similar to those of 
the control group on days 5,7, and 10 (Figure 3). 

The release of TNF-α and IL-lß in whole blood from 
patients with sepsis after exposure to LPS was markedly 
(P< .01) reduced on all days after diagnosis of sepsis com­
pared with the control group ( F igure 4 , top and cen­
ter). The LPS-induced release of IL-8 into whole blood 
from patients with sepsis was significantly reduced on 
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Figure 3. Release ofelastase (ng/mL per 1x106 polymorphonuclear 
leukocytes) into whole blood obtained from patients with sepsis (shaded 
bars) (n=20) on day of sepsis diagnosis and days 1 through 3, 5, 7, and 
10 thereafter in comparison with control patients (solid bar) (n=20). Whole 
blood was stimulated with lipopolysaccharide (1 mg/L) for 8 hours. 
Elastase plasma levels were determined with enzyme-linked 
immunosorbent assay as outlined in "Patients, Materials, and Methods" 
section. Values are mean±SEM; one asterisk indicates P<.05; two 
asterisks, P<.01 sepsis vs control. 

DO, day 1, and day 2, while similar amounts of 1L-8 were 
found on days 3,5,7, and 10 after diagnosis of sepsis in 
comparison to the control group (Figure 4, bottom). 

EFFECT OF ANTI-TNF-α AND ANTI-IL- lß 
ANTIBODIES ON ELASTASE RELEASE 

The release ofelastase into whole blood after exposure to 
LPS for 8 hours was examined in the presence of anti-TNF-a 
and anti-IL-1 β antibodies (Table 2 ) . Both antibodies were 
effective to neutralize TNF-α or IL-lß activity in whole 
blood as assessed by bioassay and ELISA. Examination of 
Ε-ο^ΡΙ concentrations in whole blood revealed that nei­
ther the anti-TNF-α nor the anti-IL-1 β antibody reduced 
the release of elastase in the two groups (Table 2). 

C O M M E N T 

In this study, we demonstrate an enhanced release of PMN 
elastase into human whole blood from patients with sep­
sis in comparison to control patients without infection. 
In contrast, the secretion of PMN-activating cytokines 
(TNF-α, IL-lß, IL-8) in human whole blood from pa­
tients with sepsis after stimulation with LPS was de­
creased compared with the control group. 

Multiple organ failure represents the major cause of 
death during and after sepsis and septic shock.38 Besides 
a significant correlation between increased serum levels 
of the inflammatory cytokines TNF-α, IL-lß, and IL-6 
and mortality of patients with sepsis,39,40 the excessive 
release of proteolytic enzymes correlated with the inci­
dence of adult respiratory distress syndrome and MOF 
following trauma, shock, and sepsis.2941"45 This may be 
due to the fact that proteolytic enzymes such as elastase 

Figure 4. Release of tumor necrosis factor-α (TNF-α) (U/mL per 1x 106 

monocytes) (top), interleukin 1ß (IL-1ß) (ng/mL per 1x 106 monocytes) 
(center), and interleukin 8 (IL-8) (ng/mL per 1x 106 monocytes) (bottom) 
into whole blood obtained from patients with sepsis (shaded bars) (n=20) 
on day of sepsis diagnosis and days 1 through 3, 5, 7, and 10 thereafter 
in comparison with control patients (solid bars) (n=20). Whole blood was 
stimulated with lipopolysaccharide (1 mg/L) for 8 hours. Cytokine plasma 
levels were determined as outlined in "Patients, Materials, and Methods" 
section. Values are mean±SEM; one asterisk indicates P<.05; two 
asterisks, ?<.01 sepsis vs control. 

contribute to progressive tissue destruction because of 
their proteolytic activity on essential structural pro­
teins, thus leading to organ dysfunction and failure. 2 3 In 
addition, the enhanced release of lysosomal proteinases 
by PMN resulted in a significant consumption and deg­
radation of extracellular substances in inflammatory dis­
eases.46 

Although previous studies revealed a correlation be­
tween the severity of sepsis and the incidence of MOF on 
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Table 2. Effect of Monoclonal Anti-TNF-α and AntML-1ß Antibodies on Release of Elastase (ng/mL per 1x10s PMN) Into Human 
Whole Blood From Patients With Sepsis (n=2) and Control Patients (n=2) After Exposure to LPS (1 mg/L) for 8 Hours* 

Stimulus No Stimulus +LPS No Stimulus +LPS No Stimulus ': ^ * L P S * V . 
Antibody - +Anti-TNF +Anti-TNF *AntHL-1 •AntfrlLH 
Experiment 1 iiiilPlfii. 

Control 19 127 38 108 75 
Sepsis 30 261 , 61 266 303 5 5 4 ^ > 

Experiment 2 
Control 13 137 26 98 68 / \ 
Sepsis 54 309 61 . 325 246 

* TNF-a indicates tumor necrosis factor-α; IL-1ß, interleukin 1ß; PMN, polymorphonuclear leukocytes; and LPS, lipopolysaccharide. 

one hand and the degree of elevated elastase plasma lev­
els on the other hand, the interactions between PMN-
activating cytokines such as TNF-α, IL-1 β, or IL-8 and the 
enhanced release of elastase by PMN remained to be de­
termined. Whole blood was used instead of purified cell 
cultures to eliminate confounding factors such as unspe-
cific macrophage activation with increased messenger RNA 
expression, protein synthesis, and release of cytokines by 
isolation procedures.4 7 , 4 8 Moreover, human whole blood 
stimulated with LPS represents an ex vivo model of sep­
sis to study cytokine interactions.49 Although this experi­
mental design cannot represent the immunologic processes 
in the whole Individuum, it imitates the immunologic net­
work in a localized area of inflammation. The cellular in­
teractions as well as the influence of complement factors, 
mediators, or inhibitory peptides are preserved. 

The results from this study reveal a significant increase 
of elastase in whole blood obtained from patients with sep­
sis in comparison with the control group in the presence 
or absence of LPS. The increased release of elastase by PMN 
in whole blood was observed early after diagnosis of sep­
sis with a decreasing tendency on days 5,7, and 10. These 
data agree with results obtained from previous experimen­
tal 5 0 and clinical 2 7 ' 2 9- 3 0 studies. Moreover, in kinetic stud­
ies, elastase release into whole blood was observed to con­
tinuously increase over the 24-hour time course. It could 
be argued that the increasing release of elastase up to 24 
hours may be due to cell death in whole blood. This could 
be excluded by the fact that viability of leukocytes was iden­
tical inboth groups at all time points studied. Furthermore, 
subpopulations of leukocytes were similar at different time 
points of incubation using the direct immunofluorescence 
technique. Because the absolute numbers of neutrophils 
were significantly higher in patients with sepsis, elastase 
plasma levels were normalized to represent 1X10 6 PMN 
in both groups. 

Although data from previous clinical investigations41"45 

and from this study demonstrate an excessive release of 
elastase into plasma, the regulation of PMN degranulation 
and enhanced release of proteolytic enzymes by PMN dur­
ing sepsis is unclear. Because inflammatory cytokines have 
been found to activate PMN, 6" 1 6 it could be hypothesized 

that these cytokines may also be involved in the increased 
release of proteolytic enzymes by PMN during sepsis, in­
asmuch elevated serum levels of the PMN-activating cyto­
kines TNF-α, IL-lß, and IL-8 were described after injec­
tion of endotoxin or Ε coli in experimental and clinical 
models.1"4 However, in contrast to the marked increase of 
released elastase observed in human whole blood from pa­
tients with sepsis, the release of the PMN-activating cyto­
kines TNF-α and IL-1 β was significantly depressed during 
the entire observation period. These data are in line with 
previous results by McCall et al 5 1 who demonstrated a re­
duced synthesis of IL-lß by PMN obtained from patients 
with sepsis. 

Although depression of IL-8 release into whole blood 
from patients with sepsis after exposure to LPS for 8 hours 
was observed only until day 3, it can be assumed that IL-8 
release in the group with sepsis may also be suppressed be­
tween day 3 and day 10, since peak levels of IL-8 occurred 
at 24 hours of culture. Moreover, while in the absence of 
LPS spontaneous release of elastase in whole blood from 
patients with sepsis was markedly elevated compared with 
control patients, only trace amounts of IL-lß and biologi­
cally active TNF-α were detected. These data lead us to con­
clude that TNF-α, IL-lß, and IL-8 may not be involved in 
the enhanced release of elastase by PMN. These conclusions 
are supported by control studies using neutralizing anti­
bodies against biologically active TNF-α or IL-1 β. In these 
experiments, neutralization of TNF-α or IL-1 β did not in­
hibit spontaneous or LPS-induced elastase release into whole 
blood indicating the involvement of mechanisms other than 
PMN activation by TNF-α or IL-1 β. These suggestions agree 
with results by Moore and collegues52 who demonstrated 
an activation of PMN by endotoxin independent of TNF-a. 
The addition of theanti-IL-1 β antibody even enhanced E-aiPl 
concentrations in whole blood, which may be due to un-
specific activation of PMN by IL-1 ß/anti-IL-1 β complexes. 
Although additional studies using an anti-IL-8 antibody have 
to be carried out to investigate the precise role of IL-8 in 
PMN degradationinvivo, previous studies by Pvedl and col­
legues50 comparing the kinetics of IL-8 and elastase plasma 
levels in a primate bacteremia model further support our 
results. The authors showed in their model that elastase 
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plasma levels already reached a plateau at 1 hour after in­
jection of live Ε coli, while IL-8 was not detectable in the 
plasma at this time point. Although all these studies can­
not completely rule out the possibility of priming effects of 
inflammatory cytokines on elastase release in vivo, it seems 
to be unlikely that the inflammatory cytokines TNF-α, IL-
1 β, and IL-8 predominantly contribute to the dramatic in­
crease ofelastase release into whole blood from patients with 
sepsis. 

Neutrophil elastase causes endothelial injury, destruc­
tion of circulating proteins, and tissue damage leading to 
organ dysfunction and MOF. Elevated plasma levels of elastase 
have been found in patients with sepsis and septic shock. 
The activation and degranulation of PMN correlated with 
the severity and the outcome of sepsis. Using LPS-stimulated 
whole blood as an ex vivo model of sepsis, the results of this 
study reveal an excessive release ofelastase into whole blood 
from patients with sepsis compared with control patients 
without infection. However, the release of PMN-activating 
cytokines in whole blood from patients with sepsis was dra­
matically reduced and neutralization of TNF-α or IL-1 β with 
monoclonal antibodies did not attenuate elastase release. 
Although activation of monocytes/macrophages/PMN with 
an excessive synthesis and secretion of inflammatory cy­
tokines may be inhibited by autoprotective mechanisms in­
ducing endotoxin tolerance,51 the increased release ofelastase 
seems to be uncontrolled during persisting sepsis. These 
data imply that the inflammatory cytokines TNF-α, IL-1 β, 
and IL-8 may not be responsible for PMN activation and 
degranulation observed in patients with sepsis. Thus, al­
ternative pathways other than stimulation of PMN by these 
inflammatory cytokines may be involved in PMN activa­
tion. Moreover, therapy with neutralizing monoclonal an­
tibodies directed against inflammatory cytokines or block­
ade of cytokine receptors may not attenuate PMN degranu­
lation and excessive release of proteases in patients with sepsis. 
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