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The diagnosis of pulmonary tuberculosis (TB) in children remains a significant challenge

due to its paucibacillary nature, non-specificity of symptoms and suboptimal sensitivity

of available diagnostic methods. In young children particularly, it is difficult to obtain

high-quality sputum specimens for testing, with this group the least likely to be

diagnosed, while most at risk of severe disease. The World Health Organization (WHO)

has prioritized research into rapid biomarker-based tests for TB using easily obtainable

non-sputum samples, such as saliva. However, the role of biomarkers in saliva for

diagnosing TB in children has not been fully explored. In this mini-review, we discuss

the value of saliva as a diagnostic specimen in children given its ready availability and

non-invasive nature of collection, and review the literature on the use of host-based

biomarkers in saliva for diagnosing active pulmonary TB in adults and children. Based

on available data from adult studies, we highlight that combinations of cytokines and

other proteins show promise in reaching WHO-endorsed target product profiles for

new TB triage tests. Given the lack of pediatric research on host biomarkers in saliva

and the differing immune response to TB infection between children and adults, we

recommend that pediatric studies are now performed to discover and validate salivary

host biosignatures for diagnosing pulmonary TB in children. Future directions for pediatric

saliva studies are discussed, with suggestions for technologies that can be applied for

salivary biomarker discovery and point-of-care test development.
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INTRODUCTION: THE CHALLENGES OF PEDIATRIC TB
DIAGNOSIS

In 2019, there were 192,000 deaths in children due to tuberculosis (TB), although most experts
agree this figure is underestimated (1). Over 90% of child TB deaths occurred in those not
receiving treatment, predominantly due to difficulties in diagnosis (2). The majority of missed
TB cases occurs in children under five, the group with the highest risk of severe disease (3).
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Diagnosis of pulmonary TB in children is challenging due to
its paucibacillary nature, non-specific symptoms, and limitations
of the available diagnostic tests (4–6). Sputum microscopy
is positive in <15% of children with probable TB and
culture has a long turn-around time (7). Molecular DNA-
based methods such as GeneXpert R© are faster but require
a stable electricity supply, limiting useability in low resource
settings (8). Moreover, these tests require high-quality respiratory
samples, which is problematic in young children who cannot
expectorate sputum on demand, necessitating collection of
gastric aspirates, nasopharyngeal aspirates, or induced sputum
(9). These procedures are invasive and require trained staff
(10), potentially missing children not presenting to secondary
healthcare. In the absence of microbiological confirmation,
diagnostic scoring systems based on clinical and radiological
information are often used with variability in performance (7),
and the risk of misdiagnosis (11).

The development of non-sputum-based point-of-care (POC)
tests on easily obtainable samples like blood, urine, stool, and
saliva has been prioritized by the World Health Organization
(WHO) (12). These diagnostic approaches ideally should be
feasible in primary care settings with the purpose of starting
therapy during the same clinical encounter (13). Specific target
product profiles (TPP) relating to the performance of new tests in
children have been outlined by theWHO, withminimal targets of
66% sensitivity and 98% specificity for a diagnostic test and 90%
sensitivity and 70% specificity for a triage test (12).

Diagnostic tests based on biomarkers have gained attention
due to their potential for translation into non-sputum POC
technologies (14). Biomarkers are characteristics that objectively
indicate a normal biological or pathogenic process (15).
Biomarker tests can be host-based, measuring the immune
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response following infection (16), or pathogen-based, identifying
components of Mycobacterium tuberculosis (Mtb) (17). They
may be able to identify culture-negative TB in early stages
(18), which could help target the high number of children with
microbiologically unconfirmed TB.

The role of saliva as a diagnostic specimen for pulmonary
TB in children has not been fully explored. Detection of
pathogen DNA using GeneXpert MTB/RIF in saliva from adults
demonstrated low sensitivity (39%) compared to sputum (19),
and sensitivity in children is likely to be lower due to the
paucibacillary nature of pediatric disease. Moreover, the fact
that TB disease in young children is often more severe and
more frequently disseminated than in adults (20) conceivably
makes children more suited to host-based diagnostics. This
review therefore focuses on host-based salivary biomarkers. We
outline the evidence on host biomarkers in saliva for diagnosing
active pulmonary TB in relation to the WHO-endorsed TPP.
We demonstrate the research gaps in children and based on
available data from adult studies, discuss the potential for
salivary biomarkers for children with recommendations for
future pediatric studies.

SALIVA AS A DIAGNOSTIC SPECIMEN IN
CHILDREN

Saliva contains various components enabling its potential as
a sample for diagnosing infectious diseases (21). For example,
detection of specific IgM in saliva has been used to confirm
infection with measles, mumps and rubella (22). Congenital
cytomegalovirus infection in neonates can be diagnosed through
detection of viral DNA in saliva (21), and there has been interest
in diagnosing SARS-CoV-2 infection in children using saliva
instead of nasopharyngeal swabs (23). There is also a growing
body of pediatric research demonstrating the clinical utility
of salivary biomarkers for predicting metabolic syndrome (24)
and diagnosing and monitoring chronic conditions like chronic
kidney disease (25, 26) and hypertension (27). Whilst salivary
assay development for adult conditions has increased, diagnostics
specifically for pediatrics remain comparatively limited (21).

Saliva offers specific advantages compared to other sample
types. It can be collected non-invasively and painlessly which
is attractive for children and allows for repeated sampling (28).
Importantly for TB, collection does not require highly skilled
personnel, enabling useability in primary healthcare settings (29).
As a mucosal and airway associated specimen, saliva may be
better for studying host biomarkers in pulmonary TB compared
to blood (30). Subbian et al. found that gene expression signatures
in lung biopsies from TB patients only partly corresponded
to those identified in their blood (31), suggesting that the
lung-specific host response is not fully captured in blood-
based biomarkers (32). With the first pathogen-host contact in
pulmonary TB occurring in the oral and nasal passages, saliva
may more accurately represent the immune response in the
respiratory system (33).

Various collection systems are available for children. Whole
saliva collected through passive drool into a collection tube

Frontiers in Pediatrics | www.frontiersin.org 2 October 2021 | Volume 9 | Article 756043

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles


Khambati et al. Saliva Biomarkers for TB Diagnosis

is recognized as the optimal method (34). This avoids the
potential issue of absorbent material interfering with analytes
or the volume of saliva collected (35). It also may allow for
a more consistent sample by avoiding saliva collection from
specific salivary glands (36). However, this technique is only
possible for older children who can cooperate (37). For infants
and young children, absorbent oral swabs or eye spears which
have a cellulose sponge on a shaft that can be inserted into the
mouth, are feasible and safe (38, 39). Saliva is extracted from the
absorbent device through centrifugation or compression (34).

EVIDENCE FOR SALIVA BIOMARKERS IN
PULMONARY TB DIAGNOSIS

Materials and Methods
We conducted a search to identify studies which reported
the diagnostic performance of salivary host-based biomarkers
for active pulmonary TB. PubMed and Web of Science
databases were searched for diagnostic studies published up
to 8th August 2021 using the search text words: “saliva”
and “(tuberculos∗ OR TB OR Mtb)” and associated medical
subject headings: “saliva,” “mycobacterium tuberculosis,” and
“tuberculosis.” Animal studies were excluded. We did not
specifically include “children” as a search term in line with the
Cochrane Handbook for Systematic Reviews of Diagnostic Test
Accuracy (40) to maximize sensitivity of the search. We found
nine studies on host salivary diagnostic biomarkers, published
between 1973 and 2021. Since only one study involved children
(41), we also reviewed the evidence from eight adult studies (30,
42–48). Supplementary Figure 1 outlines the search procedure
and Supplementary Table 1 summarizes the included studies.

TB-Specific Antibodies in Saliva
A study in the USA in 1973 evaluated levels of hemagglutinating
IgA to tuberculoprotein and tuberculopolysaccharide in saliva
(47). Salivary antibodies were detected in only one of 20 TB
cases, and also in one of 20 COPD patients, indicating very poor
sensitivity and specificity. Later studies found more promising
results. Araujo et al. evaluated secretory IgA in saliva against the
38 kDa antigen of Mtb in Venezuelan children using ELISA (41).
Based on 34 children with TB and 46 healthy controls, sensitivity
was only 36%, but specificity was 91%. Raras et al. also evaluated
secretory IgA levels, although they measured antibodies against
a recombinant semi-purified 38 kDa antigen in saliva from
30TB adult cases and 30 healthy controls in Indonesia using
dot blot (42). In contrast to Araujo et al., sensitivity was higher
at 80%, but specificity was lower at 37% (42). Differences in
population, geography and type of antibody assay may account
for some of the variation between the two studies. The reference
standard also differed: while Raras et al. defined a positive
TB case based on sputum smear positivity (i.e., high bacillary
burden) (42), Araujo et al. relied on clinical, radiological or
microbiological information with only 3 of 34 positive cases
confirmed bacteriologically (41).

Anti-38 kDa antibodies in blood generally offer good
specificity but their low sensitivity has limited their potential as
serological tests in diagnosing TB (49). Measurement in saliva

does not appear to perform any better. In both studies of anti-38
kDa antibodies in saliva, diagnostic performance fell considerably
short of TPP criteria. Moreover, both studies used a case control
design instead of including a spectrum of patients in whom the
test would be applied in clinical settings. This approach can
overestimate diagnostic performance (50). In summary, despite
their potential for translation into simple assays (16), the data on
TB-specific antibodies in saliva as stand-alone tests for diagnostic
purposes have not been encouraging to date.

Cytokines and Other Inflammatory
Proteins as Biomarkers
Five studies measured salivary levels of selected cytokines,
growth factors, enzymes and acute phase proteins in adults with
confirmed TB or symptoms of TB using Luminex multiplex
assays (30, 43–46). Of the 54 biomarkers analyzed in more than
one study, eight showed statistically significant differences (p <

0.05) between TB patients and negative controls, albeit only one
study reported correction for multiple comparisons (46). These
eight biomarkers included alpha 2 macroglobulin (A2M), serum
amyloid P (SAP), interferon gamma-induced protein (IP-10),
vascular endothelial growth factor (VEGF), interleukin 6 (IL-
6), monocyte chemoattractant protein-1 (MCP-1), fraktaline, and
c-reactive protein (CRP). Sensitivities and specificities of these
individual biomarkers ranged between 36 and 83% and between
52 and 96%, respectively (Table 1). Crucially, six biomarkers
showed opposing trends between studies. For example, IP-10 was
higher in TB patients in one study (46) whereas it was higher in
healthy controls in another (45). Only salivary CRP and fraktaline
showed a similar pattern across studies and were raised in TB
cases in more than one study. No individual biomarkers met TPP
criteria for a diagnostic or triage test.

Compared to individual biomarkers, combinations of markers
in biosignatures showed more potential. Table 2 summarizes
the best performing biosignatures from each study. The most
promising biosignatures originated from a prospective cohort
study in South Africa with a low risk of bias by Jacobs and
colleagues (44). They recruited 51 adults based on symptoms of
pulmonary TB and compared biomarker levels between those
with culture positive TB and with other respiratory diseases in a
blindedmanner. An eight-marker biosignature involving salivary
granzyme A, growth differentiation factor 15 (GDF-15), serum
amyloid A (SAA), epithelial-neutrophil activating peptide 78
(ENA-78), IL-12(p40), IL-13, IL-21, and plasminogen activator
inhibitor-1 (PAI-1) had a sensitivity of 93% and specificity of
100% (40). This biosignature met TPP for both a triage and
diagnostic test. Another eight-marker biosignature involving
extracellularmatrix protein 1 (ECM1), myoglobulin, hemofiltrate
CC chemokine 1 (HCC1), tissue plasminogen activator (TPA),
ENA-78, IL-12 (p40), IL-13, and IL-21 had a sensitivity of
100% and a specificity of 95%, reaching TPP for a triage
test (44). Both these biosignatures were defined in adults who
were HIV negative. The optimal biosignature evaluated in
both HIV positive and negative individuals, included IL-1β,
IL-23, ECM-1, HCC1, and fibrinogen, and had a sensitivity
of 89% and specificity of 90% (44). Biosignatures from the
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TABLE 1 | Summary of individual biomarkers analyzed in more than one study using Luminex bead-based multiplex assays.

First author of study (sample size)

Phalane (43) (38) Jacobs (44) (51) Jacobs (45) (104) Namuganga (30) (78) Estevez (46) (70)

A2M Sensitivity 50%

Specificity 88%

Sensitivity 75%

Specificity 71%

Haptoglobin Sensitivity 88%

Specificity 81%

CRP Sensitivity 46%

Specificity 93%

Sensitivity 75%

Specificity 85%

SAP Sensitivity 83%

Specificity 52%

Sensitivity 72%

Specificity 72%

PCT

Ferritin

TPA

Fibrinogen Sensitivity 63%

Specificity 75%

SAA

sFas

Granzyme A

sFasl

sCD137

BCA-1

IFN-y

IFN-A2 Sensitivity 71%

Specificity 66%

IP-10 Sensitivity 72%

Specificity 53%

Sensitivity 81%

Specificity 64%

MIP-1A Sensitivity 96%

Specificity 43%

MIP-1B Sensitivity 46%

Specificity 93%

TNF-A

TNF-B

VEGF Sensitivity 63%

Specificity 74%

Sensitivity 75%

Specificity 67%

sCD40L

MMP-2

MMP-9

IL-1A Sensitivity 81%

Specificity 65%

IL-1B Sensitivity 39%

Specificity 97%

IL-2

IL-4

IL-5 Sensitivity 27%

Specificity 96%

IL-6 Sensitivity 64%

Specificity 81%

Sensitivity 63%

Specificity 71%

Sensitivity 65%

Specificity 72%

IL-7

IL-8 Sensitivity 53%

Specificity 78%

IL-9 Sensitivity 27%

Specificity 96%

IL-10

IL-12(p-70)

(Continued)
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TABLE 1 | Continued

First author of study (sample size)

Phalane (43) (38) Jacobs (44) (51) Jacobs (45) (104) Namuganga (30) (78) Estevez (46) (70)

IL-12(p-40)

IL-13

IL-15

IL-16 Sensitivity 50%

Specificity 85%

IL-17A Sensitivity 72%

Specificity 67%

IL-17F

IL-21

IL-22

IL-23 Sensitivity 61%

Specificity 85%

IL-33

Fraktaline Sensitivity 36%

Specificity 96%

Sensitivity 79%

Specificity 81%

GM-GSF

EGF

MCP-1 Sensitivity 53%

Specificity 67%

Sensitivity 60%

Specificity 82%

TGF-A Sensitivity 57%

Specificity 94%

GCSF

GRO Sensitivity 71%

Specificity 79%

MDC

Biomarker not analyzed in study.
No significant difference in biomarker between TB cases and negative controls or biomarker not detected/barely detected in saliva.
Levels of biomarker significantly higher in TB cases compared to negative controls.
Levels of biomarker significantly lower in TB cases compared to negative controls.

Biomarkers with statistically significant differences (p < 0.05) in concentration between TB cases and negative populations are shaded in blue and yellow and presented with their
corresponding diagnostic accuracy estimates.

other Luminex studies performed less well, but were overall
closer in approaching the WHO-endorsed TPP than individual
biomarkers (Table 2).

There was little overlap in the optimal biosignatures identified
across the Luminex studies. Only tumor necrosis factor α

(TNF-α), CRP, fibrinogen, and VEGF appeared in the optimal
biosignatures from more than one study. There are various
possible explanations for this heterogeneity. All studies except
one (46) reported cross validation methods to reduce overfitting
of the data in their models. However, they did not validate
results in an independent cohort to demonstrate generalizability.
The diagnostic thresholds to define sensitivity and specificity
for each biomarker and the statistical methods to determine
these thresholds also varied amongst the studies. In terms of
population, studies recruited from different geographic regions.
Host genetics, microbiome, and coinfections may therefore
vary, also attributing to heterogeneity in host response (32).
Many of the promising biomarkers were acute phase reactants
which could be affected by infections other than TB and
otherwise altered immune states (43). Apart from HIV status,
no study included information on other diseases that could

have influenced biomarker levels. Lastly, two studies included
healthy individuals as their negative controls (43, 46). This could
overestimate diagnostic performance compared to those using
clinically relevant negative populations (30, 44, 45).

Shotgun Proteomics
In a discovery study, Mutavhatsindi et al. performed label-
free liquid chromatography with tandem mass spectrometry on
saliva from 22 adults with symptoms of TB (48). Following
correction for multiple testing, they identified 26 differentially
expressed proteins between adults with culture-positive TB and
those with other respiratory diseases. Five proteins diagnosed
TB with an area under the ROC curve above 0.8 (macrophage-
capping protein, plasminogen, profilin-1, f-actin-capping protein
subunit beta, and alpha-1-antichymotrysin). Most of these 26
proteins have not previously been investigated in this context,
however, many are involved in inflammation, activation of
the immune system and enzyme regulation (48). Similarly to
the Luminex studies described above, TPP criteria were only
achieved when markers were used in combination. After leave-
one out cross validation, a five protein biosignature diagnosed
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TABLE 2 | Optimal biosignatures in relation to WHO-endorsed target product profiles for triage tests (90% sensitivity and 70% specificity) and diagnostic tests (66%

sensitivity and 98% specificity).

References Assay Optimal biosignature (no. of

biomarkers included)

AUC (95% CI) Sensitivity %

(95% CI)

Specificity %

(95% CI)

Meets

minimal TPP

for triage

tests

Meets

minimal TPP

for

diagnostic

tests

Phalane et al. (43) Luminex IL-5, IL-6, IL-15, TNF-α, and CRP

(5)

NR 82 (NR) 81 (NR) No No

Jacobs et al. (44) Luminex IL-1β, IL-23, ECM-1, HCC1, and

fibrinogen (5)

0.88

(0.77–0.99)

89 (77–100) 90 (60–97) No No

Granzyme A, GDF-15, SAA,

IL-21, ENA-78, IL-12(p40), IL-13,

and PAI-1 (8)

0.99

(0.98–1.0)

93 (77–100) 100 (75–100) Yes Yes

ECM1, myoglobulin, HCC1,

IL-21, ENA-78, TPA, IL-12 (p40),

and IL-13 (8)

NR 100 (83–100) 95 (68–100) Yes No

Jacobs et al. (45) Luminex CRP, ferritin, SAP, MCP-1, A2M,

fibrinogen, and TPA (7)

NR 78 (60–90) 83 (72–91) No No

Namuganga et al.

(30)

Luminex G-CSF, TNF-α, and VEGF (3) NR 42 (NR) 75 (NR) No No

Estevez et al. (46) Luminex Fractalkine, IP-10, IL-1α, and

VEGF (4)

0.88 (NR) 74 (NR) 91 (NR) No No

Mutavhatsindi et al.

(48)

LC–MS/MS AACT, NAD(P)H-hydrate

epimerase, PSMB6, IGKV1-33,

and neuroserpin (5)

1.0 (1.0–1.0) 100 (76–100) 91 (59–100) Yes No

Flavin reductase, myosin- 9,

neuroserpin, and protein

S100-A11 (4)

NR 91 (NR) 91 (NR) Yes No

Diagnostic accuracies were investigated by receiver operator characteristics curve analysis with models using logistic regression or general discriminant analysis to identify the optimal
combination of markers for active TB diagnosis.
AUC, area under the curve; CI, confidence intervals; LC-MS/MS, liquid chromatography with tandem mass spectrometry; NR, not recorded; TPP, Target Product Profiles;
TB, Tuberculosis.

TB with a sensitivity of 100% and specificity of 90.9% and a four
protein biosignature showed a sensitivity and specificity of 90.9%
(Table 2). Whilst validation in larger studies is necessary, these
results further demonstrate the potential of multiple salivary
proteins as diagnostic biomarkers.

DISCUSSION: POTENTIAL IN CHILDREN
AND FUTURE DIRECTIONS

We reviewed the current evidence on salivary host-based
biomarkers for diagnosing pulmonary TB. Based on adult
studies, combinations of cytokines and other proteins appear
more promising than single proteins or antibodies. Despite
the heterogeneity, many of these proteins are involved in the
inflammatory response and may be elevated in diseases other
than TB (51), therefore, specificity may be an issue in saliva host-
based tests. This is important in children in whom respiratory
infections are common. Saliva host diagnostics therefore
primarily have potential as triage tests, distinguishing between
those unlikely to have TB and those requiring confirmatory
testing. Triage tests have a lower specificity requirement (>70%
minimally) compared to diagnostic tests (98%) (12), but they
need a high sensitivity and negative predictive value given the

high fatality rate in young children. Ahmad and colleagues found
that addition of serum antibodies against the TB antigen Ag85B
to a four-cytokine blood-based triage test increased sensitivity
from 80 to 86% and specificity from 65 to 69% (52). Although
this fell just short of TPP criteria, it illustrates a useful strategy
for enhancing diagnostic performance by expansion of protein-
based tests with another diagnostic assay.

With the exception of one study on immunoglobulins in
children, all studies on salivary biomarkers were conducted in
adults. Despite the lack of pediatric research, salivary proteins
in children are worth exploring. Host cytokine biosignatures
in blood have showed promise in reaching TPP for triage
tests in both adults (53) and children (54), although the blood
cytokine expression profile differed between the two populations.
Disappointing salivary cytokine biomarkers from adult studies
do not necessary preclude value for children. Given the complex
differences in the TB immune response between children and
adults (32, 55), candidate salivary biomarkers for diagnostic
assays may vary. Therefore, early phase pediatric studies
should first be targeted to identify biosignatures which can
identify symptomatic children with microbiologically confirmed
TB (56).

Various technologies exist for biomarker discovery in saliva.
High-throughput multiplex assays with bead-based (Luminex)
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or planar (Mesoscale) technology can measure multiple proteins
simultaneously, with minimal sample requirements compared to
traditional methods like ELISA (57). However, such platforms
rely on targeted antibody capture-based strategies and issues
relating to antibody specificity and cross-reactivity can limit
the number of multiplexable targets (58). Shotgun proteomics,
although more expensive and resource-intensive, may be a more
comprehensive and unbiased method to biomarker discovery
(48). A proteomics approach also has potential to discover novel
proteins within extracellular vesicles, such as exosomes, which
are found in saliva and have shown promise as non-invasive
diagnostic markers for other pulmonary diseases (59, 60).

Subsequently, biosignatures identified from discovery studies
should be independently validated in well-characterized cohorts
where the test is clinically indicated (51). These cohorts should
include children with the full spectrum of suspected TB and
with other respiratory diseases presenting similarly to TB (56).
Further validation in multiple populations under real-life field
conditions will further assess robustness and accuracy and inform
selection of biomarkers for potential implementation into POC
tests (61). Conducting studies in diverse geographical locations
will also help capture how genetic heterogeneity and location-
specific exposure to microorganisms impact upon host responses
to TB (32).

Measurement of several biomarkers using multiplex
immunoassays or shotgun proteomics is not feasible at lower
levels of care. However, recent developments have highlighted the
possibility of translating validated biosignatures into affordable
POC technology. Application of a lateral flow assay detecting
two blood chemokines was feasible in a multi-center study in
Africa, without requiring a cold chain for storage or distribution
(62). Three- and six-biomarker POC tests using fingerstick
blood are currently being validated as triage tests at multiple
African sites (63). Whilst the viscosity of saliva and potentially
low concentration of analytes present specific challenges for
saliva-based POC platforms, electrochemical immunosensors
have been suggested as possible solutions (64). Such biosensors
contain an electrochemical transducer and have been used
successfully to detect cytokines in saliva at low detection limits
(65). Unique advantages, including high sensitivity, low cost,
simple operation, rapid response and functionality in turbid
media (64, 66) mark them as potential tools for future saliva POC
diagnostic devices.

Future pediatric studies should prioritize recruitment of those
under five (67). Given that pediatric TB is heterogeneous,
approval of diagnostics for children under five should ideally be
based on data specifically from this age group. Collecting clinical
information on comorbidities, particularly HIV, malnutrition
and respiratory coinfections, would help appreciate how disease
phenotype can influence the host response. Unlike in adults,
sputum-based reference tests are often not appropriate in
young children. Microbiological reference standards based
on combinations of alternative samples such as gastric or
nasopharyngeal aspirates are therefore recommended (68). To
ensure comparability of results across studies, classification of

children should conform to the National Institutes of Health
consensus definitions for childhood pulmonary tuberculosis (i.e.,
confirmed, unconfirmed, and unlikely TB) (69). Finally, the
significant upfront investment in setting up clinical pediatric
cohorts has led to recommendations to establish pediatric
specimen biorepositories (67). As improved diagnostics become
available, storage of saliva may allow future biomarker testing
from cohorts with different geographical locations, age groups,
and comorbidities.

CONCLUSION

Saliva could be a valuable specimen for testing host biomarkers
to diagnose pulmonary TB in children, however very little
research in this population exists. Discovery studies in adults
show that host salivary proteins, when used in combination as
biosignatures, demonstrate considerable promise as triage tests.
Given the differing TB immune response in children, studies
in pediatric populations are now needed. The ready availability
of saliva and non-invasive nature of collection is appealing for
children, particularly those under five. Late inclusion of children
into clinical studies of new technologies is a major barrier
to progress in childhood TB (3). The COVID-19 pandemic
is expected to have worsened TB control, with 6.3 additional
million cases estimated to occur between 2020 and 2025, and
children are especially vulnerable (1). Novel and optimized
diagnostics in children are nowmore than ever urgently required.
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