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ABSTRACT 

 

Objective: To test the hypothesis that multi-shell diffusion models improve the characterization 

of microstructural alterations in cerebral small vessel disease (SVD), we assessed associations 

with processing speed performance, longitudinal change and reproducibility of diffusion metrics. 

 

Methods: We included 50 sporadic and 59 genetically defined SVD patients (CADASIL) with 

cognitive testing and standardized 3T MRI, including multi-shell diffusion imaging. We applied 

the simple diffusion tensor imaging (DTI) model and two advanced models: diffusion kurtosis 

imaging (DKI) and neurite orientation dispersion and density imaging (NODDI). Linear 

regression and multivariable random forest regression (including conventional SVD markers) 

were used to determine associations between diffusion metrics and processing speed 

performance. The detection of short-term disease progression was assessed by linear mixed 

models in 49 sporadic SVD patients with longitudinal high-frequency imaging (in total 459 

MRIs). Inter-site reproducibility was determined in 10 CADASIL patients scanned back-to-back 

on two different 3T MRI scanners. 

 

Results: Metrics from DKI showed the strongest associations with processing speed performance 

(R2 up to 21%) and the largest added benefit on top of conventional SVD imaging markers in 

sporadic SVD and CADASIL patients with lower SVD burden. Several metrics from DTI and 

DKI performed similarly in detecting disease progression. Reproducibility was excellent 

(intraclass correlation coefficient > 0.93) for DTI and DKI metrics. NODDI metrics were less 

reproducible. 
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Conclusion: Multi-shell diffusion imaging and DKI improve the detection and characterization 

of cognitively relevant microstructural white matter alterations in SVD. Excellent reproducibility 

of diffusion metrics endorses their use as SVD markers in research and clinical care. Our publicly 

available inter-site dataset facilitates future studies. 

 

Classification of Evidence: This study provides Class I evidence that in patients with SVD, 

diffusion MRI metrics are associated with processing speed performance. 
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INTRODUCTION 

 

Cerebral small vessel disease (SVD) is the most important vascular contributor to cognitive 

decline and dementia.1 There is a great need for accessible, clinically relevant and reproducible 

biomarkers of the disease.2 MRI is the method of choice for diagnosis and monitoring disease 

progression.3 While MRI findings also include visible tissue lesions – such as white matter 

hyperintensities (WMH), lacunes, microbleeds and brain atrophy – recent work converges on the 

high potential of diffusion imaging metrics as markers for SVD.4-7 Diffusion metrics typically 

outperform conventional SVD imaging markers in explaining clinical deficits and in detecting 

disease progression, while also enabling a high grade of automation.4  

 

Diffusion tensor imaging (DTI) is a well-established technique to quantify microstructural white 

matter alterations. However, the tensor model oversimplifies diffusion processes and more 

advanced models were introduced to better take into account the complexity of white matter.8,9 

While these new methods may be more suited to characterize microstructural tissue alterations in 

SVD, they require more elaborate MRI acquisition in form of multi-shell diffusion imaging (i.e. 

using more than one diffusion weighting). The added benefit of multi-shell diffusion imaging and 

advanced diffusion modelling in SVD is so far largely unexplored. In addition, little is known 

about the inter-site reproducibility of diffusion metrics in SVD patients, which is considered a 

roadblock for application in multicenter studies and clinical routine.  

 

The aim of this study was to evaluate two advanced multi-shell diffusion models, diffusion 

kurtosis imaging (DKI) and neurite orientation dispersion and density imaging (NODDI), in 

comparison with DTI. We combined a sporadic SVD sample and a genetically defined sample 
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(Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy, 

CADASIL) for independent validation. In terms of biological validity, we hypothesized that 

advanced diffusion metrics are more strongly associated with processing speed deficits, the main 

and often only cognitive deficit in SVD, and improve the monitoring of disease progression. To 

address instrumental validity, we determined inter-site reproducibility of diffusion metrics.  
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METHODS 

 

Study participants  

For the analysis of sporadic SVD patients (cross-sectional and longitudinal), we used data from 

the RUN DMC – InTENse study (Radboud University Nijmegen Diffusion tensor and Magnetic 

resonance imaging Cohort – Investigating The origin and EvolutioN of cerebral small vessel 

disease). Details of the study protocol have been published.10,11 In short, this study included 54 

patients from the previous RUN DMC study with a high likelihood of progression of SVD while 

excluding individuals with other stroke etiologies. All 54 patients were invited to baseline MRI 

assessment and in total 9 monthly follow-up MRI scans. For the cross-sectional analysis we used 

data from the baseline visit. Two patients had to be excluded due to highly enlarged ventricles 

resulting in substantial CSF contamination in the white matter skeleton, and two patients because 

of confounding of neuropsychological tests (e.g. through the presence of an arm paresis), which 

resulted in a final sample of 50 sporadic SVD patients. Data from all MRI sessions (baseline and 

up to 9 follow-ups) were used for the longitudinal analysis. A few visits had to be excluded from 

the longitudinal analysis due to insufficient data quality (n = 3). 5 out of the 54 patients were 

excluded from the longitudinal analysis due to a low number of follow-up visits (≤ 2). The final 

sample for the longitudinal analysis included 49 patients with a median of 9 (range 4 -10) MRIs 

per patient (in total 459 MRI scans).  

CADASIL patients for the cross-sectional validation analysis were recruited through the ongoing 

VASCAMY study (Vascular and Amyloid Predictors of Neurodegeneration and Cognitive 

Decline in Nondemented Subjects) in Munich.4,12 The CADASIL diagnosis was confirmed by 

either molecular genetic testing (cysteine-altering NOTCH3 mutation) or by skin biopsy 

(presence of granular osmiophilic material). 3 patients had to be excluded due to insufficient MRI 
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quality. The final validation sample comprised 59 CADASIL patients. For the inter-site 

reproducibility study, 10 CADASIL patients underwent MRIs on two different 3T MRI scanners 

within 24 hours. 

 

Standard Protocol Approvals, Registrations, and Patient Consents 

Study protocols were approved by the local ethics committee of the respective institution. Written 

informed consent was obtained from all patients. 

 

Cognitive and clinical characterization 

Across both samples, neuropsychological and clinical assessment was performed following 

identical protocols. For cognitive characterization, we a priori focused on processing speed as the 

core deficit in SVD, which frequently occurs isolated, i.e. without impairment in other cognitive 

domains.12-14 To reduce the number of statistical tests, we pre-specified to analyze only 

processing speed, assessed by the time to complete Trail Making Test matrix A and B. We 

calculated an established compound score by averaging age- and education-corrected z-scores for 

matrix A and B.12 The z-score transformation was based on healthy subjects from the literature.15 

In addition, patients were characterized with regard to vascular risk factors (arterial hypertension, 

hypercholesterolemia, diabetes, smoking status), activities of daily living (Barthel Index), focal 

neurological symptoms (National Institutes of Health Stroke Scale), and disability (modified 

Rankin scale). The latter two scales were available for CADASIL patients only.  
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MRI acquisition and conventional SVD imaging markers 

MRI scans were performed on 3 Tesla scanners (sporadic SVD: Magnetom Prisma with 32-

channel head coil; CADASIL: Magnetom Skyra with 64-channel head/neck coil; Siemens 

Healthineers, Erlangen, Germany). Protocols in both studies included a 3D T1, 3D fluid-

attenuated inversion recovery (3D-FLAIR), 3D gradient echo (T2*-weighted), and multi-band 

echo planar imaging multi-shell diffusion-weighted imaging (MS-DWI) sequences (sporadic 

SVD / CADASIL: repetition time 3220 / 3800 ms, echo time 74 / 105 ms, diffusion-encoding 

directions 30 (b = 1000 s/mm2) and 60 (b = 3000 / 2000 s/mm2, 10 b = 0 images, multi-band 

factor 3). One b = 0 image with inverted phase-encoding direction was acquired for correction of 

susceptibility-induced distortions during processing. A complete description of all sequence 

parameters is available from Zenodo (Table e-1): https://doi.org/10.5281/zenodo.3908176. 

For the inter-site reproducibility analysis, 10 CADASIL patients were scanned on two different 

3T scanners (Siemens Magnetom Skyra and Siemens Magnetom Prisma, both with 64-channel 

head/neck coil) using a diffusion imaging protocol harmonized in terms of resolution, b-values 

and diffusion-encoding directions. Differences in the gradient system resulted in longer repetition 

and echo times on the Skyra system. While the two scanners were both in Munich, they were 

located in separate buildings and operated independently, which is why we consider this an inter-

site study.  

Conventional SVD imaging markers (WMH volume, lacune volume, microbleed count, brain 

volume) were quantified according to consensus criteria.3 All volumes were normalized to 

intracranial volume. Details on the calculation of conventional SVD imaging markers have been 

described previously.4,11 
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Diffusion MRI preprocessing 

Preprocessing steps included visual quality control, denoising, Gibbs artefact removal, and 

correction for susceptibility-induced distortions, eddy current-induced distortions, as well as head 

motion. This was done using tools from MRtrix3 (http://www.mrtrix.org/, dwidenoise, 

mrdegibbs)16 and the Functional Magnetic Resonance Imaging of the Brain (FMRIB) Software 

Library (FSL; version 5.0.10, topup, eddy).17  

 

Diffusion models and metrics 

We included 12 diffusion metrics from the following diffusion models: diffusion tensor imaging 

(DTI), diffusion kurtosis imaging (DKI) and neurite orientation dispersion and density imaging 

(NODDI). DTI metrics were calculated using ‘dtifit’ in FSL (using only b = 0 and b = 1000 

s/mm2 images),17 DKI metrics using the Diffusional Kurtosis Estimator 

(http://www.nitrc.org/projects/dke)18 and NODDI metrics using the NODDI Matlab toolbox 

(http://www.nitrc.org/projects/noddi_toolbox).9 For DTI, we calculated fractional anisotropy, 

mean diffusivity, axial diffusivity and radial diffusivity. For DKI, we calculated kurtosis 

fractional anisotropy, mean kurtosis, axial kurtosis and radial kurtosis. For NODDI, we 

calculated neurite density index, orientation dispersion index, extracellular volume fraction and 

cerebrospinal fluid volume fraction, which are the most commonly used NODDI metrics. The 

modeled diffusion properties or microstructural tissue features presumably represented by these 

different metrics are listed in Table 1.  

Diffusion metrics were analyzed within major white matter tracts. For this purpose, we applied 

the tract-based spatial statistics pipeline in FSL17 to skeletonize the diffusion data. Registrations 

to standard space and projections onto the white matter skeleton were estimated from fractional 

anisotropy images and then applied to all other diffusion metrics. We used a custom mask to 
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exclude all areas typically susceptible to cerebrospinal fluid partial volume effects, a critical step 

when analyzing patient samples with brain atrophy.4 To obtain global diffusion metrics, we 

averaged the values of the diffusion metrics across the entire skeleton. For regional associations, 

we performed voxel-wise analyses (see below). 

 

Statistical analysis 

Statistical analyses were performed using R (version 3.2.4).19 Comparisons of sample 

characteristics between sporadic SVD and CADASIL patients were performed with t-tests or 

non-parametric Wilcoxon rank sum tests for numeric variables and Fisher exact test for 

categorical variables.  

Since SVD burden was much higher in CADASIL patients and to facilitate a comparison to 

sporadic SVD patients, we pre-defined a sensitivity analysis in a subgroup of CADASIL patients 

with lower SVD burden, i.e., CADASIL patients with WMH volume below the third quartile 

(WMH volume <Q3, n = 44).  

Three analyses were conducted to assess how well the metrics from the different diffusion 

models explain cognition in sporadic SVD and CADASIL patients.  

First, we determined for each diffusion metric the association with the age- and education-

corrected processing speed compound score using linear regression analysis. For this purpose, the 

processing speed compound scores were power-transformed in both samples using the Yeo-

Johnson transformation20 to approximate normal distribution. 

Second, we assessed the added benefit of each diffusion metric for predicting processing speed 

on top of conventional SVD imaging markers, i.e. WMH volume, lacune volume, microbleeds, 

and brain volume. Given the presence of intercorrelations between all imaging markers we 

deployed random forest regression, which offers increased robustness against multicollinearity 
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when using conditional inference trees (R package 'party').21 We constructed one random forest 

regression model with conventional SVD imaging markers only, and 12 more models including 

in addition each diffusion metric. Prediction accuracy was calculated for each random forest 

regression model as the root-mean-square error (RMSE) between observed and predicted values 

using leave-one-out cross-validation. The added benefit of each diffusion metric for prediction of 

processing speed was quantified by the difference in RMSEs between models with and without 

diffusion metric. We repeated random forest regression 100 times to determine the point estimate 

and a 95% confidence interval for the RMSE. 

Third, we looked into regional associations between diffusion metrics and processing speed using 

voxel-wise regression analyses in sporadic SVD. Since SVD is a pathology affecting the entire 

white matter, including normal-appearing white matter, and processing speed is regarded as a 

global network function, we considered a higher number of significant voxels as favorable. We 

used permutation test theory with a standard general linear model as implemented in ‘randomise’ 

(FSL), with 5000 permutations and threshold-free cluster enhancement with p < 0.01, corrected 

for multiple comparisons.  

To assess the potential added value of combining diffusion metrics, we performed a principal 

component analysis using the R function ‘prcomp’ (‘stats’ package) without specifying the 

maximal rank. The first two principal components were included in an additional linear 

regression and random forest regression analysis as described above.  

To assess the ability of diffusion metrics to capture disease progression over time in sporadic 

SVD, we estimated linear mixed models, one for each diffusion metric. A model for WMH 

volumes was added for comparison. We assumed a continuous progression of SVD over the 10 

months studies, which can be captured by a linear mixed model. Time of MRI visits (relative to 

baseline visit) was modeled as fixed effect, including a random intercept and slope for each 
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subject. The fixed effect corresponds to the mean change in the diffusion metric over time, while 

accounting for patient-specific variability. Marginal R2 represents the variance explained by the 

fixed effect. Before estimation of linear mixed models, diffusion metrics and WMH volumes 

were normalized individually for each subject to the baseline score and then centered and scaled 

(by subtracting the mean and dividing through the standard deviation). This resulted in 

standardized fixed effects expressed as change in standard deviations per time unit (i.e. week). 

The following R packages were used for estimation of linear mixed models: 'lme4' (version 1.1-

21)22, 'lmerTest' (version 3.1.0)23, 'boot' (version 1.3-22)24, ‘MuMIn’ (version 1.43.6)25. 

To determine the reproducibility of diffusion metrics across MRI scanners we calculated 

intraclass correlation coefficients with the R package 'psych' (1.8.12)26 and applied the one-way 

ANOVA model, i.e. intraclass correlation coefficient (1,1).27  

 

Data availability 

Anonymized data will be made available upon request to the corresponding author. 
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RESULTS 

 

Sample characteristics are presented in Table 2. Compared with sporadic SVD patients, 

CADASIL patients were younger, had higher SVD burden and more severe processing speed 

impairment. 

 

Associations of global diffusion alterations with processing speed 

We first assessed associations between global diffusion metrics and processing speed, the main 

cognitive deficit in SVD (Figure 1). In sporadic SVD, we found the strongest associations for 

DKI metrics (mean kurtosis and axial kurtosis, both R2 = 18%), which explained more variance 

than the best performing DTI metric (axial diffusivity, R2 = 12%). NODDI metrics also showed 

strong associations with processing speed (extracellular volume fraction, R2 = 18%). Validation 

analysis in the CADASIL sample showed in general higher explained variances, but effect sizes 

for most metrics were similar (R2 ranging from 23% to 28%). In the pre-specified sensitivity 

analysis of CADASIL patients with lower SVD burden (WMH volume <Q3), the strongest 

association with processing speed was found for radial kurtosis (R2 = 20%). Similar to the 

sporadic SVD sample, DKI metrics explained more variance (R2 = 21-27%) than the best 

performing DTI metric (fractional anisotropy, R2 = 14%). Of note, orientation dispersion index 

from the NODDI model was the only diffusion metric not showing a significant association with 

processing speed in all samples. 

Next, we compared the added benefit of diffusion metrics on top of conventional SVD markers 

(WMH volume, lacune volume, microbleeds, brain volume) for predicting processing speed 

performance. In sporadic SVD patients, most metrics (except for fractional anisotropy, 

orientation dispersion index and cerebrospinal fluid volume faction) showed an added benefit 
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(Figure 1B). The strongest increase in prediction accuracy was found for radial kurtosis (three 

times higher than the best performing DTI metric axial diffusivity). A different pattern was found 

for CADASIL patients. Here, all DTI metrics performed better than metrics from advanced 

diffusion models, with the strongest increase in prediction accuracy for fractional anisotropy. In 

CADASIL patients with lower SVD burden (WMH volume <Q3), extracellular volume fraction 

as well as radial and mean kurtosis were the only diffusion metrics with a significant increase in 

accuracy on top of conventional SVD markers. In this subgroup, there was no added benefit of 

DTI metrics. 

 

Combining multiple diffusion metrics using principal component analysis 

To test if a combination of diffusion MRI metrics provides additional value in explaining 

processing speed performance, we first entered all diffusion metrics into a principal component 

analysis. The first two principal components explained 91% of the variance in sporadic SVD 

patients, 92% in CADASIL patients and 90% in the CADASIL patients with lower SVD burden 

(WMH volume <Q3). In linear regression, these two components together performed similar in 

explaining processing speed (sporadic SVD: R2 = 19%, CADASIL: R2 = 31%, CADASIL 

patients with lower SVD burden: R2 = 17%; Figure 1A) compared with the better performing 

individual metrics. In random forest regression, the components showed an added benefit in 

sporadic SVD and CADASIL patients (Figure 1B), but this benefit was not higher than that of 

the best-performing individual diffusion metric. There was no added benefit in CADASIL 

patients with lower SVD burden. 
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Associations of regional diffusion alterations with processing speed 

We next compared diffusion metrics regarding voxel-wise associations with processing speed. 

Metrics from both advanced multi-shell diffusion models showed a very high sensitivity to detect 

voxel-wise associations with processing speed, with up to 59% of white matter tract voxels being 

significant. The number of significant voxels was substantially lower (up to 16%) for DTI metrics 

(Figure 2, Table 3). 

 

Longitudinal changes of diffusion metrics in serial imaging during 10 months 

We evaluated the ability of diffusion metrics to track short-term changes in tissue microstructure 

using the high-frequency, serial MRI data in sporadic SVD patients. Example time-courses for 

WMH volumes and one metric from each diffusion model are depicted in Figure 3A. Linear 

mixed models revealed a significant change over time (fixed effect) for most metrics, including 

the conventional SVD imaging marker WMH volume (Figure 3B). Metrics from DTI and DKI 

performed best as indicated by largest fixed effects and marginal R2. The performance of DTI 

and DKI metrics as judged by effect sizes was overall very similar. NODDI metrics showed 

relatively low performance, even lower than that of the conventional SVD imaging marker WMH 

volume. 

 

Inter-site reproducibility 

To address reproducibility of diffusion metrics, 10 CADASIL patients participated in an inter-site 

study using two 3T MRI scanners. These patients were overall comparable in terms of 

demographics, clinical scores and SVD burden on MRI to the other CADASIL groups (Table 2). 

Diffusion metrics from DTI and DKI showed excellent inter-site reproducibility with intraclass 

correlation coefficients above 0.99 for DTI metrics and above 0.93 for DKI metrics (Table 4). 
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Reproducibility of NODDI was overall good for most metrics, but substantially lower in 

comparison with the other models (intraclass correlation coefficients ranging from 0.26 to 0.94). 

Scatter plots for NODDI metrics suggest a systematic shift of values between the two MRI sites 

(Figure 3C). 
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DISCUSSION 

 

We evaluated multi-shell diffusion imaging and advanced diffusion modelling for the 

characterization of microstructural tissue alterations in SVD. Our main findings are that (1) 

advanced metrics from DKI and NODDI showed the strongest associations with cognitive 

deficits in two independent samples; (2) DTI and DKI metrics performed best in detecting short-

term disease progression; (3) reproducibility was excellent for DTI and DKI metrics, but not for 

metrics from the NODDI model. These findings encourage the use of multi-shell diffusion 

imaging, and in particular DKI, to characterize SVD-related white matter damage in multi-center 

studies and clinical care. 

 

Metrics from DKI and NODDI performed best in assessing associations between white matter 

alterations and cognitive deficits, both in the global and the regional (voxel-wise) analysis. They 

also showed the greatest benefit on top of conventional SVD imaging markers. Interestingly, a 

combination of diffusion metrics using principal component analysis did not perform better than 

individual metrics. Radial and mean kurtosis as well as the extracellular volume fraction had the 

highest added benefit in sporadic SVD patients. Importantly, this finding was independently 

validated in genetically-defined SVD patients, but only in the pre-specified subgroup of 44 

patients with lower SVD burden (WMH volume <Q3). We can thus conclude that multi-shell 

imaging and advanced diffusion modelling are best suited to characterize early stages of SVD. In 

early stages tissue alterations can be subtle, especially outside of visible lesions. While it is 

already established that DTI metrics are altered in the so-called normal-appearing white matter, 

our results suggest that the advanced models DKI and NODDI are even more suited to 

characterize these subtle alterations. Current concepts of SVD acknowledge the need for 
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intervention in early stage patients and advanced diffusion models offer a sensitive tool to 

characterize these patients. 

 

Others already reported a benefit of advanced models in other conditions, e.g. in assessing 

gliomas using DKI28 or describing microstructural changes in ischemic stroke using NODDI.29 

DKI metrics have also been shown to better capture gray matter abnormalities and associations 

with clinical deficits in patients with multiple sclerosis.30 Studies in SVD are sparse. One study 

reported an association between mean kurtosis in the cortex and WMH volume, but kurtosis of 

the white matter was not assessed.31 Another group found decreased kurtosis in the white matter 

of the frontal and parietal lobes in patients with severe leukoaraiosis.32 However, associations 

with cognitive performance or longitudinal change were not investigated. 

 

An explanation for the improved performance of the advanced diffusion models DKI and NODDI 

in assessing brain structure-function relationships might be found in the limitations of the DTI 

model. The simple tensor model describes diffusion of water molecules using a Gaussian 

distribution. Due to the complex organization of brain microstructure, the assumption of a 

Gaussian distribution is typically violated. The DKI model specifically takes this into account by 

assessing kurtosis, i.e. the deviation from a Gaussian normal distribution. Thus, DKI 

characterizes tissue complexity, with lower complexity being reflected in lower kurtosis. 

Interestingly, the DKI model did not perform better than the DTI model in the entire CADASIL 

sample, which includes patients with very high lesion load. This might indicate that tissue 

complexity in late disease stages is already reduced to such an extent that modelling Gaussian 

distribution via DTI is sufficient for quantification.  
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Apart from serving as markers, diffusion metrics can also provide insights into the underpinnings 

of tissue alterations. DTI and DKI are sensitive to microstructural alterations, but lack specificity. 

NODDI aims to directly model microstructural features such as neurite density and neurite 

orientation dispersion using a multi-compartment model. Interestingly, neurite orientation 

dispersion, which can reflect demyelination,33 did not show associations with cognitive deficits or 

change over time. Among NODDI metrics, we found the best results for the extracellular volume 

fraction. This is in line with our previous work using a bi-tensor model, in which we showed that 

diffusion alterations in SVD are driven by an increase of extracellular free water.34 

 

The advanced diffusion models come at a relevant cost. The need to acquire multi-shell diffusion 

data, measuring at multiple and higher diffusion weightings, results in prolonged acquisition 

times and higher requirements in terms of scanner hardware. The combination of 3T MRI and 

multi-band imaging, which acquires multiple slices simultaneously 

(https://www.cmrr.umn.edu/multiband/), overcomes this limitation.35 Our two-shell acquisition 

schemes using a multi-band factor of 3 resulted in a scanning time between 7 and 8 minutes for 

the diffusion sequence, a duration well-suited for clinical routine. Especially the NODDI model 

might benefit from an even more sophisticated acquisition with more diffusion weightings and 

directions, but this would in our view have prolonged the scanning time to an extent that would 

no longer be feasible for clinical routine examinations. 

 

Despite the benefit of advanced diffusion models over DTI in explaining cognitive deficits, we 

did not see an advantage in tracking of short-term progression in sporadic SVD patients. Radial 

kurtosis was the only metric from the advanced models that performed as well as tensor metrics 

in assessing change over time. All other advanced metrics performed worse than DTI and within 
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the range or even worse than longitudinal WMH measurements. The longitudinal analysis on the 

high-frequency serial imaging data with its up to 10 monthly measurements can be regarded as an 

extended scan-rescan study. More stable metrics with less variability from visit to visit allow to 

better detect change over time. Our data suggests that the advanced models, and especially the 

NODDI model, result in higher variability. The inter-site study in CADASIL patients, where 

NODDI metrics showed lower reproducibility than other metrics, points in a similar direction. 

Overall, one might speculate that the advanced models with their complex algorithms are less 

robust than the simple DTI model, thus impeding on longitudinal measurements and 

comparability between sites. 

 

Reproducibility of MRI markers is crucial for multi-center studies and clinical routine, where 

many different scanners are deployed. Still, inter-site reproducibility studies are rarely conducted, 

especially in specific patient populations. Both scan-rescan repeatability and inter-site 

reproducibility of DTI metrics has been shown to be excellent in healthy subjects.36 To our 

knowledge, reproducibility of DTI in SVD was so far only assessed in one of our previous 

studies,4 however that study was performed across different field strengths. In that previous 

setting, histogram analysis of mean diffusivity values using PSMD (peak width of skeletonized 

mean diffusivity) substantially improved reproducibility. Since reproducibility was already 

excellent for DTI measures in the current study using two scanners with identical field strength 

and a harmonized acquisition protocol, we did not apply the histogram analysis approach. 

Fewer reproducibility studies are available for DKI and NODDI. One scan-rescan study 

investigated kurtosis measures in traumatic brain injury and reported better repeatability than DTI 

measures.37 NODDI metrics were shown to be repeatable in a scan-rescan study with healthy 

volunteers.38 With a large SVD lesion burden, our CADASIL inter-site sample was markedly 
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different from previously studied healthy control samples. In the CADASIL sample, 

reproducibility for NODDI metrics was substantially lower compared to other metrics. These 

findings illustrate the need to assess reproducibility in the targeted patient population, not only in 

healthy volunteers. To fill this void and to facilitate future analyses, we made our inter-site 

dataset publicly available for download (http://intersite.isd-muc.de). 

 

Our study has some potential limitations. We analyzed the diffusion metrics only in relation to 

processing speed as determined by the Trail Making Test, but no other neuropsychological 

domain. Since processing speed is the earliest, most pronounced, and often the only cognitive 

deficit in SVD patients, we decided a priori to focus on processing speed in order to limit the 

number of statistical tests. Minor differences in scanner types and consequently sequence 

parameters between the sporadic SVD and CADASIL sample might also be regarded as a 

limitation, in particular the different repetition and echo times in the inter-site study. However, as 

illustrated in our inter-site analysis, the reproducibility of most diffusion metrics across scanners 

was excellent. CADASIL is caused by NOTCH3 mutations and has a distinct molecular 

pathophysiology, which is different from sporadic SVD. Still, the clinical presentation, including 

symptoms, cognitive profile and imaging findings, is remarkably similar, thus validating 

CADASIL as a model disease for pure SVD.13,39,40 

Strengths of the study include the use of two independent and complementary SVD samples to 

assess the relationship between diffusion metrics and processing speed. While data from sporadic 

SVD patients increases the generalizability of our findings, the younger sample of genetically 

defined SVD enabled us to study SVD without confounding factors associated with aging. 

Moreover, we employed random forest regression to account for multicollinearity and linear 
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mixed models to account for patient-specific variability. Another unique strength is the inter-site 

dataset, which we made publicly available.  
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TABLES 

Table 1: Diffusion models and metrics 

Model Metric Modelled diffusion property/ Microstructural tissue feature 

DTI FA Fractional anisotropy Directionality of water diffusion 

 MD Mean diffusivity Extent of water diffusion 

 AD Axial diffusivity Extent of water diffusion along the main direction of water diffusion 

 RD Radial diffusivity Extent of water diffusion perpendicular to the main direction 

DKI KFA Kurtosis fractional 
anisotropy Directionality of kurtosis (i.e. non-Gaussian water diffusion) 

 MK Mean kurtosis Extent of kurtosis  

 AK Axial kurtosis Extent of kurtosis parallel to main direction of diffusion  

 RK Radial kurtosis Extent of kurtosis perpendicular to main direction of diffusion 

NODDI NDI Neurite density index Intracellular water content (fraction), modelled as sticks 

 ODI Orientation 
dispersion index Angular variation of neurite orientation 

 fECV Extracellular volume 
fraction Extracellular water content (fraction), modelled as anisotropic tensor 

 fCSF CSF volume fraction CSF content (fraction), modelled as isotropic tensor  

Abbreviations: CSF = cerebrospinal fluid; DKI = diffusion kurtosis imaging; DTI = diffusion tensor imaging;  
NODDI = neurite orientation dispersion and density imaging. 



 

Table 2: Sample characteristics 

 Sporadic SVD 
(RUN DMC –

InTENse) 

CADASIL 
(all) 

(VASCAMY) 

CADASIL  
(WMHV <Q3) 
(VASCAMY) 

CADASIL 
(inter-site) p* 

n 50 59 44 10  

Demographic characteristics      

Age [years], median (IQR) 68.2 (7.4) 57 (13.5) 54.5 (15.0) 55.5 (13.3) <0.0001 

Female, n (%) 18 (36.0) 39 (66.1) 30 (68.2) 5 (50.0) 0.002 

Vascular risk factors, n (%)      

Hypertension 41 (82.0) 18 (30.5) 15 (34.1) 3 (30.0) <0.0001 

Hypercholesterolemia 25 (50.0) 31 (52.5) 22 (50.0) 5 (50.0) 0.849 

Diabetes 5 (10.0) 1 (1.7) 1 (2.3) 0 (0) 0.092 

Current or past smoking 37 (74.0) 35 (59.3) 25 (56.8) 3 (30.0) 0.155 

Clinical scores, median (IQR)      

Processing speed z-score -0.15 (1.06) -0.51 (1.44) -0.45 (1.06) -0.13 (0.90) 0.029 

Barthel scale score 100 (5) 100 (0) 100 (0) 100 (0) 0.134 

NIHSS score - 0 (0) 0 (0) 0 (0) - 

mRS score - 0 (1) 0 (0.25) 0 (1) - 

Conventional SVD markers, median (IQR)     

WMHVa [%] 0.35 (0.57) 5.34 (4.45) 4.06 (3.75) 7.67 (2.62) <0.0001 

Lacune count 0 (0) 3 (4.5) 2 (4) 3 (7.75) <0.0001 

Lacune volumea [10-4] 0 (0) 1.25 (3.84) 0.88 (3.74) 0.99 (2.20) <0.0001 

Microbleed count 0 (1) 3 (6.5) 2 (7.3) 0.5 (1.75) <0.0001 

Brain volumea [%] 78.1 (5.34) 75.6 (6.67) 75.5 (5.31) 75.7 (7.03) 0.015 

Abbreviations: IQR = interquartile range; mRS = modified Rankin Scale; NIHSS = National Institutes of Health 
Stroke Scale; WMHV = white matter hyperintensity volume 

* Sporadic SVD sample (n=50) vs. CADASIL (all) sample (n=59) 
a Normalized to the intracranial volume 



 

Table 3: Voxel-wise regressions with processing speed 

 
  

 DTI DKI NODDI 

 FA MD AD RD KFA MK AK RK NDI ODI fECV fCSF 

n 0 511 13862 0 0 44290 10611 1501 42799 2671 50574 0 

% 0 0 16 0 0 51 12 2 50 3 59 0 

n = number of significant voxels (within the white matter skeleton) 
% = percentage of significant voxels in relation to all voxels of the white matter skeleton 
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Table 4: Inter-site reproducibility 

 

  

 DTI DKI NODDI 

 FA MD AD RD KFA MK AK RK NDI ODI fECV fCSF 

IC
C 0.995 0.993 0.992 0.993 0.975 0.985 0.931 0.993 0.942 0.255 0.792 0.808 

Abbreviations: ICC = intraclass correlation coefficient. 
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FIGURE LEGENDS 

 

Figure 1: Associations between global diffusion metrics and processing speed. Analyses were 

performed in a sporadic SVD sample, a CADASIL sample and a pre-specified subgroup of 

CADASIL patients with lower SVD burden (white matter hyperintensity volumes below the third 

quantile; <Q3). (A) Linear regressions between each diffusion metric and processing speed. 

Color depicts explained variance (R2), circle size depicts p-value. The direction of the association 

is indicated by plus (positive association) and minus (negative) signs. (B) Multivariable random 

forest regression exploring the added benefit of each diffusion metric on top of conventional 

SVD markers. Plots indicate point estimate and 95% confidence interval for the change in model 

accuracy as assessed by the RMSE decrease. 

Abbreviations: AD = axial diffusivity; AK = axial kurtosis; DKI = diffusion kurtosis imaging; 

DTI = diffusion tensor imaging; FA = fractional anisotropy; fCSF = cerebrospinal fluid volume 

fraction; fECV= extracellular volume fraction; KFA= kurtosis fractional anisotropy; MD = mean 

diffusivity; MK = mean kurtosis; NDI = neurite density index; NODDI = neurite orientation 

dispersion and density imaging; ODI = orientation dispersion index; PCs = principal components; 

RD = radial diffusivity; RK = radial kurtosis; RMSE = root mean squared error. 

 

Figure 2: Associations between regional diffusion metrics and processing speed. For each 

diffusion model, the metric with the highest number of significant voxels (Table 3) is depicted. 

Compared with mean diffusivity (MD), mean kurtosis (MK) and extracellular volume fraction 

(fECV) result in more than twice as many significant voxels (red, after correction for multiple 

comparisons). L = left. 

 



37 

Figure 3: Disease progression and inter-site reproducibility analysis. (A) Single subject data 

of sporadic SVD patients plotted against time. WMH volume and one diffusion metric from each 

model are shown as examples. For better appreciation of single subject time-courses, five 

subjects are highlighted by black lines. Red lines show the fixed effect of time calculated by 

linear mixed models. (B) Results from linear mixed models: Standardized fixed effects (change 

in SD per week ± bootstrapped 95% confidence interval) and marginal R2 (variance explained by 

time). *p < 0.05, **p < e-07, ***p < e-09 (C) Scatter plots illustrating inter-site reproducibility in 

CADASIL patients. In case of perfect agreement between the two MRI scanners, the linear fit 

(solid line) would match the dashed diagonal. ICC = intraclass correlation coefficient. 

  



38 

Figure 1 
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Figure 2 

 

 

 

 

 

 

 

 

 

 

 

 

  



40 

Figure 3 

 

 

 

 

 

 

 

 



Table e-1: MRI acquisition parameters 

Sequence Feature Sporadic SVD CADASIL 

 Scanner Magnetom Prisma Magnetom Skyra Magnetom Prisma 

 Coil channels 32 (head) 64 (head-neck) 64 (head-neck) 

3D-T1 Type MP2RAGE MPRAGE - 

 TR [ms] 5500 2500 - 

 TE [ms] 3.84 4.37 - 

 TI [ms] 700/2500a 1100 - 

 Flip angle [˚] 7/4a 7 - 

 Voxel size [mm] 0.85 isotropic 1 isotropic - 

3D-FLAIR TR [ms] 5000 5000 - 

 TE [ms] 394 398 - 

 TI [ms] 1800 1800 - 

 Voxel size [mm] 0.85 isotropic 1 isotropic - 

3D-GRE TR [ms] 35 35 - 

 TE [ms] 29.5 29.5 - 

 Flip angle [˚] 15 15 - 

 Voxel size [mm] 0.8 x 0.8 x 2 0.9 x 0.9 x 2 - 

MS-DWI TR [ms] 3220 3800 3200 

 TE [ms] 74 104.8 74 

 Flip angle [˚] 90 90 90 

 In-plane resolution [mm] 1.7 x 1.7 2 x 2 2 x 2 

 Slice thickness [mm] 1.7 2 2 

 Base resolution (matrix) 130 120 120 

 Number of slices 87 75 75 

 b-values [s/mm2] 1000/3000 1000/2000 1000/2000 

 Directions (per b-value) 30/60 30/60 30/60 

 b=0 [images] 10 10 10 

 Receiver bandwidth [Hz/px] 1924 1894 1954 

 Parallel imaging 
acceleration factor 2 2 2 

 multi-band acceleration 
factor 3 3 3 

a Double inversion 

Abbreviations: CADASIL = Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and 
Leukoencephalopathy; FLAIR = fluid-attenuated inversion recovery; GRE = gradient echo;  
MP(2)RAGE = magnetization prepared (2) rapid acquisition gradient echo(es); MS-DWI = multi shell diffusion-
weighted imaging; SVD = small vessel disease; TE = echo time; TI = inversion time; TR = repetition time. 
  



Table e-2: Diffusion models and metrics 

Model Metric Modelled diffusion property/ Microstructural tissue feature 
    
DTI FA Fractional anisotropy Directionality of water diffusion 

 MD Mean diffusivity Extent of water diffusion 

 AD Axial diffusivity Extent of water diffusion along the main direction of water diffusion 

 RD Radial diffusivity Extent of water diffusion perpendicular to the main direction 

DKI KFA Kurtosis fractional 
anisotropy 

Directionality of kurtosis (i.e. non-Gaussian water diffusion) 

 MK Mean kurtosis Extent of kurtosis  

 AK Axial kurtosis Extent of kurtosis parallel to main direction of diffusion  

 RK Radial kurtosis Extent of kurtosis perpendicular to main direction of diffusion 

NODDI NDI Neurite density index Intracellular water content (fraction), modelled as sticks 
 

 ODI Orientation dispersion 
index 

Angular variation of neurite orientation 

 fECV Extracellular volume 
fraction 

Extracellular water content (fraction), modelled as anisotropic tensor 

 fCSF CSF volume fraction CSF content (fraction), modelled as isotropic tensor  

Abbreviations: CSF = cerebrospinal fluid; DKI = diffusion kurtosis imaging; DTI = diffusion tensor imaging;  
NODDI = neurite orientation dispersion and density imaging. 
 
  



Table e-3: Tract-based spatial statistics 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 DTI DKI NODDI 
 FA MD AD RD KFA MK AK RK NDI ODI fECV fCSF 

n 0 22016 16643 16969 0 59068 39832 48524 53760 0 55530 0 

% 0 26 19 20 0 69 46 57 63 0 65 0 

n = number of significant voxels (within the white matter skeleton) 
% = percentage of significant voxels in relation to all voxels of the white matter skeleton 



 
Table e-4: Inter-site reproducibility 

 
 

 DTI DKI NODDI 
 FA MD AD RD KFA MK AK RK NDI ODI fECV fCSF 

ICC 0.995 0.993 0.992 0.993 0.975 0.985 0.931 0.993 0.942 0.255 0.792 0.808 

Abbreviations: ICC = intraclass correlation coefficient. 
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