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The Relationship Between Risk Attitudes and Heuristics

in Search Tasks: A Laboratory Experiment

1 Introduction

Behavior in search situations receives much attention in various fields of economics, such

as labor economics and marketing science.1 But behavior in search tasks is interesting

not only for the analysis of many substantive issues, it has also proven a useful object of

behavioral research in psychology and economics. Search tasks are attractive for experi-

mental studies because of their (superficially) simple structure that masks an underlying

optimization problem that is quite complicated and in most cases cannot be solved in

a human’s mind but requires numerical methods and a computer. Conceptually, search

tasks are representative of many situations in which one has to decide between committing

resources to an attractive proposition or deferring the decision in the hope of receiving a

better deal.

Price search situations and variations thereof – such as the well-known secretary problem,

in which the decision whether to stop or to continue depends only on the relative ranks of

the presented alternatives (e.g., Rapoport and Tversky, 1970; Seale and Rapoport, 1997)

– have been investigated theoretically and empirically by numerous authors, e.g., Stigler

(1961), Braunstein and Schotter (1982), Hey (1981, 1982, 1987), Kogut (1990), Harrison

and Morgan (1990), Schotter and Braunstein (1981), Sonnemans (1998, 2000), and Houser

and Winter (2004). Since individual price search behavior is difficult to examine in the

field, research on price search is generally based on experimental studies. The existing

experimental evidence suggests that people are very heterogeneous in their search behavior

and that relatively simple heuristics describe observed behavior better than the optimal

stopping rule. It has been found, though, that subjects’ search behavior is nearly optimal

in the sense that their actual earnings are close to the earnings they would have realized

had they followed an optimal strategy. This observation, however, does not indicate that

their stopping rule is necessarily close to the optimal rule – it could also be that the payoff

1 See Eckstein and van den Berg (2007) and Zwick et al. (2003) for reviews of the literature in these

fields.



to search tasks is not very sensitive to deviations from the optimal stopping strategy (see

Harrison and Morgan, 1990; Seale and Rapoport, 1997, 2000). Overall, while people seem

to behave as predicted by theory when parameters of the search environment change (e.g.,

Schotter and Braunstein, 1981), experimental findings in various search contexts suggest

that individuals tend to search too little relative to the optimal strategy (Hey, 1987; Cox

and Oaxaca, 1989; Houser and Winter, 2004; Seale and Rapoport, 2000; Sonnemans,

1998). Cox and Oaxaca suggest that this might be traced back to risk-averse behavior of

the individuals (Cox and Oaxaca, 1989). Using an electronic information board method,

Sonnemans (1998) finds that differences in learning behavior of the subjects might also

be responsible for the observation of early stopping.

The existing experimental literature on search behavior is based on the assumption of risk

neutrality. Under risk neutrality, optimal stopping rules can be derived, and experimental

studies typically find that most subjects do not use such rules but rather follow some

heuristic. These heuristics are often sophisticated in the sense that they allow subjects to

get quite close to the payoffs they would have obtained using optimal rules. However, once

one allows for heterogeneity with respect to the individual risk attitudes, the situation

is more complicated: Decision rules that have been treated as heuristics in the literature

could, in fact, be optimal conditional on the individual risk attitude. Consequently,

search behavior that cannot be explained by the optimal stopping rule derived under risk

neutrality could be generated by two entirely different classes of decision rules: (i) rules

that are optimal conditional on the individual utility function or (ii) heuristics that derive,

say, from satisficing or other cognitive processes. Distinguishing these two possibilities

requires an independent measure of risk attitudes.

The contribution of our paper to the search literature is, therefore, to study the relation

between properties of subjects’ preferences (specifically, measures of risk attitude) and

decision rules used in search tasks. We do this by presenting subjects not only with a

search task that follows the standard in the literature, but also with a lottery task that

serves to elicit subjects’ individual utility functions. In addition, we use a questionnaire to

obtain a psychometric measure of risk attitudes as an independent individual-level source

of information on risk behavior.
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In section 2, we present the design of our experiment. Section 3 describes our procedures

to draw inferences on subjects’ search behavior and risk attitudes. In section 4, we link

these elements and discuss the results of our experiment. Section 5 concludes.

2 Design and Administration of the Experiment

Our experiment consists of three parts (A, B, and C) that were presented to the subjects

in fixed order. Part A of the experiment serves to elicit features of subjects’ preferences,

namely, the shape of their utility functions in the gain and loss domains. Part B consists

of a series of repeated price search tasks that is used to identify subjects’ search heuristics.

Part C is a survey instrument developed in the psychology literature to generate a measure

of subjects’ risk behavior. We describe these three parts in turn.

2.1 Parts A: Preferences

Part A builds on a method recently proposed by Abdellaoui (2000). A series of lottery

tasks serve to elicit subjects’ utility and probability weighting functions in a parameter-

free way. In part A, we elicit each subject’s utility function on the gain and loss domain,

using a series of 64 lottery choice questions in total. Four of the lottery questions appear

twice during the lottery elicitation process. This gives us the possibility to investigate

whether subjects behave consistently during the utility elicitation questions, or whether

preference reversals have occurred.2

The experiment used in Part A for the elicitation of subjects’ utility function is based

on the construction of “standard sequences of outcomes”, i. e., monetary outcomes that

are equally spaced in terms of utility. In our design, we use a 5-step bisection procedure

to determine an outcome x1 that makes the subject indifferent between two lotteries

A = (x0, p; R, 1 − p) and B = (x1, p; r, 1 − p); where p is set to 2/3 and we have 0 ≤ r <

2 In our experiment, we also elicited each subject’s probability weighting functions for gains and losses

through a series of 72 lottery choice questions. Since subjects’ probability weighting functions are not

of interest in this study, we do not discuss results from these additional lottery tasks. The results from

our probability weighting function elicitation are comparable to the results reported by Abdellaoui

(2000); in particular, our estimates of the shape of the probability weighting function are similar to

those obtained by Abdellaoui. The results of the probability weighting function elicitation part of the

experiment can be obtained from the authors upon request.
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R < x0 < x1. The parameters r, R, and x0 are held fixed during the whole experiment.

The first 5 presented lottery-pairs let us determine the desired x1 that makes the subject

indifferent between the lotteries A and B, see the Appendix for an example of the sequence

of lotteries. The next step of this procedure is to present another 5 pairs of lotteries in

order to determine a value x2 that makes the subject indifferent between the lotteries

(x1, p; R, 1 − p) and (x2, p; r, 1 − p). This procedure continues until we have determined

an x6. In our experiment, we set (in the gain domain) R to e100, r to e0, and x0 to

e200. In the loss domain, we use the negative of these values.

Now, assume that preferences can be represented by cumulative prospect theory (CPT).3

Let u(·) denote the utility function on the gain or the loss domain and let w(·) denote the

probability weighting function for the respective domain. Then indifference between two

lotteries implies pairs of equations of the following type:

w(p)u(xi) + (1 − w(p))u(R) = w(p)u(xi+1) + (1 − w(p))u(r) (1)

w(p)u(xi+1) + (1 − w(p))u(R) = w(p)u(xi+2) + (1 − w(p))u(r) (2)

From these two equations follows:

u(xi+1) − u(xi) = u(xi+2) − u(xi+1) (3)

That is, in terms of utility, the trade-off of xi for xi+1 is equivalent to the trade-off of xi+1

for xi+2. This method yields a standard sequence of outcomes, {x0, x1, ..., x6}, which is

– by construction – increasing for gains and decreasing for losses.4 Note that the range

of monetary outcomes in the elicitation procedure is specific for each subject, since it

depends on individual decisions.

2.2 Part B: Search Behavior

In part B of the experiment, subjects perform a sequence of search tasks. Each subject’s

goal is to purchase an object which they value at e500. This article is sold at infinitely

3 The elicited utility function on gains is, indeed, a von-Neumann-Morgenstern utility function. Equation

(3) holds also under Expected Utility Theory, as can be found by substituting p for w(p) in equations

(1) and (2).

4 A standard sequence {x0, x1, ..., xn} requires the construction of n such indifferences (xi, p; R, 1 − p)

and (xi+1, p; r, 1 − p).
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many locations, and visiting a new location costs e1. At each location, a price is ran-

domly drawn from a known distribution. On the instruction sheet, subjects are informed

graphically and verbally that the price at each location is drawn independently from a

truncated normal distribution with a mean of e500, a standard deviation of e10, and

truncation at e460 and e540. The distribution is discretized such that only integer prices

are realized.

After each new price draw (that is, at each location they visit), subjects are allowed to

recall previously rejected price offers. That is, after each price draw, subjects can stop

and choose any price (location) encountered so far, or they can continue their search at

the incremental cost of another euro. The outcome of each search task is calculated as

the evaluation of the object (e500) minus the price at the chosen location minus the

accumulated search cost.

Note that we allow for recall in order to be closer to situations such as price-search in

the internet: Indeed, in real-world situations, individuals can often perform their search

and compare offers as long as they want; at a certain moment, they decide to stop their

search and choose one of the offers that they have come across during their search.

Conceptually, the search problem presented in Sonnemans (1998, 2000) and Schunk (2006)

is similar to our search task: The number of searches is unlimited, recall is accepted, the

costs of one search action is constant and the price at each location is drawn independently

from a distribution that is known to the searcher. In contrast to our setup, however, the

price offers are drawn from a discrete uniform distribution in Sonnemans’ experiments on

search. In Hey (1982), the subjects also face an identical situation; however they do not

know that the distribution of prices is normal (without truncation).

To ensure that subjects were experienced with the task and comfortable with the computer

interface, and to minimize the impact of learning, subjects were allowed to perform an

unlimited number of practice search tasks before performing a sequence of 10 or 11 tasks

that determined their payoff for part B of the experiment.5 Finally, after the experiment

was completed, one of these rounds was selected randomly to determine the part B pay-off.

5 35 subjects played ten search rounds, and the second half, another 33 subjects, played 11 payment-

relevant search rounds.
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2.3 Part C: Risk Attitudes

The experiment ends with a short computerized questionnaire (part C). This survey in-

strument for assessing risk-taking was developed by Weber et al. (2002). Subjects rate

their behavior with respect to 4 risky activities in the behavioral risk domain of gambling.

Specifically, subjects report how likely it is that they engage in a certain gambling-related

activity on a five-point rating scale ranging from 1 (“Extremely likely”) to 5 (“Extremely

unlikely”)6.

Risk attitude is generally considered to be domain-specific in recent psychological litera-

ture (e. g., Bromiley and Curley, 1992). Based on our questions, we have a psychometric

measure for individual risk attitude in the gambling domain. In our subsequent analy-

sis, we correlate these measures with measures of risk attitudes obtained using the lottery

tasks of part A and with behavior in the search tasks observed in part B of the experiment.

2.4 Administration

The study was conducted in the fall of 2003 in the experimental laboratory of Sonder-

forschungsbereich 504, a research center at the University of Mannheim. In four sessions,

a total of 68 subjects participated in the main study.7 These subjects were recruited from

the general student population. All experiments were run entirely on computers using

software written by the authors.

All payments were made after subjects had completed all parts of the experiment. For

each subject, the outcome of one of the 10 or 11 payment-relevant search tasks in part B

was selected randomly, and added to or subtracted from a flat e8 show-up fee, depending

on whether it was a gain or a loss. Subjects were told that their total payoff was truncated

at e0.8 That is subjects would not suffer a loss from the experiment, they would at least

6 Based on subjects’ ratings in the risk domains (i) financial, (ii) recreational, (iii) social, (iv)

health/safety, and (v) ethical., Weber et al. (2002) construct domain-specific scales of subjects’ risk

attitudes and evaluate the construct validity and the consistency of these scales using standard ap-

proaches. However, for our purpose, only the domain of gambling risk is of interest.

7 A separate group of 5 subjects participated in a pilot study which allowed for fine-tuning of the

parameters of the lottery and search tasks, the adjustment of the software, and optimization of the

experimental protocol.

8 The lowest payoff that was paid in all sessions was e4, so no subject was forgiven any losses.
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earn e0 from the experiment. Finally, one of the (on average) 17 subjects participating

in each experimental session was randomly selected to play for a real monetary pay-off

based on his or her choices made in one of the lottery tasks in parts A of the experiment;

answers were collected as binary choices between two prospects, i.e. only the preferred

lottery was played for real pay-off. Since the outcomes of the lotteries were up to e6000,

we informed the subjects that the randomly selected person played for only 1% of the

positive outcomes (i. e., the gains) presented in the lotteries.

3 Inference on Search Heuristics and Risk Attitudes

In this section, we discuss how we use the data from our experiment to draw inferences on

subjects’ preferences (the shape of their utility functions, as revealed in the lottery tasks)

and behavior (the heuristics they use in solving the search task). The last subsection

briefly explains how the psychometric measures of subjects’ risk attitudes are obtained.

3.1 Estimation of the Shape of the Utility Function

As mentioned in section 2.1, the lottery tasks presented in part A of our experiment are

based on those developed by Abdellaoui (2000). He uses his experimental data to estimate

utility functions in the gain and loss domain as well as the corresponding probability

weighting functions nonparametrically. For the purpose of our study, we need to order

subjects according to their risk attitudes. We therefore use a parametric approach and

specify the subjects’ risk attitude based on the functional specification of a utility function

with constant absolute risk aversion form (CARA). We estimate the utility function in

the gain and loss domains separately using nonlinear least squares and the data from part

A of the experiment.

We should point out that the procedure we use to elicit the shape of the utility function

(Part A) operates on a monetary range of gains and losses that is different from the range

considered in the search experiments (Part B). We made this decision on purpose, and

we digress here for a brief discussion of the rationale for this decision. As pointed out by

Wakker and Deneffe (1996), the curvature of the utility function is more pronounced if a
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sufficiently wide interval of outcomes is investigated. Accordingly, our adaptive method

elicits individuals’ utility functions for monetary outcomes in a wide interval (the size of

which depends on the subjects decisions, see Abdellaoui (2000)) below e-200 or above

e200, respectively. In the search game, where actual payments were made, we had to

reduce the outcome scale between e-40 and e40 because of budget limitations. It may well

be the case that individual risk attitudes are different for high and low monetary outcomes.

However, all we need for our empirical analysis is that the rank order of individuals by

the measures of risk attitudes is preserved between the high-outcome range for which it

is elicited and the low-outcome range that is relevant for the analysis of behavior in the

search game.9 This is, in our view, a reasonable assumption and, in fact, a corollary of

using a CARA-utility specification. Furthermore, using data from high and low outcome

risk elicitation tasks by Holt and Laury (2002), this assumption can be investigated. The

results are supportive, and are presented in section 5 of this paper.

Based on, e. g., Currim and Sarin (1989) and Pennings and Smidts (2000), we assume the

following exponential specification for our CARA-utility function on gains10:

u(x) =
1 − e−γ(x−xG

min)

1 − e−γ(xG
max−xG

min)
(5)

Here, xG
max is the largest elicited value of x in the gain domain (in absolute values), i. e., x6;

xG
min is the smallest elicited x-value on the gain domain, i. e., x0. For obtaining the utility

function in the loss domain, we replace xG
max and xG

min by xL
max and xL

min, respectively, we

use the absolute value of the denominator and the numerator and we take the negative

of the right-hand side. For γ = 0 the function is defined to be linear, i. e., the subject is

risk-neutral.

In our specification, the coefficients are estimated separately for gains and losses (γ and

δ, respectively). These coefficients characterize each subject’s risk attitude in the sense

9 Accordingly, our empirical analysis will only be based on rank correlations, that is “comparative risk

aversion”.

10 Note that another normalized version of the CARA-utility has the following form:

u(x) =
1 − e

−γ
x−x

G

min

xG
max−xG

min

γ
(4)

Fitting this function yields a significantly higher mean relative standard error of the coefficient estimate

and a significantly lower coefficient of determination than fitting the functional form in equation (5).

The substantive conclusions of our analysis remain unchanged when we use the form (4).
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of an Arrow-Pratt-measure (Pratt, 1964) of risk attitude, that is −u′′(x)/u′(x) = γ for

gains and −u′′(x)/u′(x) = δ for losses. If γ < 0, the subject has a convex utility function

and is risk-seeking on gains, if γ > 0, the subject is risk-averse, her utility function on

gains is concave.

Furthermore, we calculate an individual-specific index for loss aversion from our data. Be-

cause subjects generally evaluate their choice options relative to salient reference points,

Tversky and Kahneman propose that individuals process losses differently than gains

(Tversky and Kahneman, 1992). That is, loss aversion can be considered a psychological

factor, capturing the trade-off between gain- and loss-utility units. Generically, loss aver-

sion is defined by u(x) − u(y) ≤ u(−y) − u(−x) for all x > y ≥ 0 (Schmidt and Traub,

2002).

Based on work by Benartzi and Thaler (1995), Koebberling and Wakker (2005) propose

an index of loss aversion that is – in contrast to other indices discussed in the literature

– invariant to changes in the scale of the utility function, u(·), and it is invariant to scale

transformations of the outcomes. This index is given by

λ =
u′↑(0)

u′↓(0)
. (6)

Based on Koebberling and Wakker (2005) and our utility elicitation procedure, the index

of loss aversion has the following form for γ 6= 0 and δ 6= 0:

λ =

δ·(e−δ·(|xL−xL
min

|))

1−e
−δ·(|xL

max−xL
min

|)

γ·e
−γ(xG−xG

min
)

1−e
−γ·(xG

max−xG
min

)

(7)

For γ = 0, we have u′↓(0) = 1
xG

max−xG
min

, for δ = 0, we have u′↑(0) = 1
|xL

max−xL
min|

entering

expression (7) in the denominator and numerator, respectively.

Note that our estimate of individual loss aversion is based on the assumption that the

estimated form of the CARA-utility function of the individual is characteristic for her

utility function over the whole domain, and identically scaled both on gains and on losses11.

11 Our estimates of loss aversion are based on the assumption that the combination of our utility elicita-

tion method and Koebberling and Wakker’s (2005) index for loss aversion yields a reasonable overall

estimate of comparative individual loss aversion. Our findings on psychometric risk attitudes, reported

later, support this claim. We acknowledge, however, that methods for the elicitation of an index of

loss aversion that based on mixed lotteries (e. g., Schmidt and Traub, 2002), though also suffering from

considerable uncertainty, could also be used in the context of a search experiment; Schunk (2006) uses
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3.2 Classification of Decision Rules Used in the Search Task

The next step of our analysis is to determine, for each subject, the decision rule he or

she uses in the search task. We specify a fixed set of candidate decision rules, comprised

of the optimal decision rule and several simple heuristics that have been used in the ear-

lier literature (e. g., Hey, 1982; Moon and Martin, 1990; Houser and Winter, 2004) to

describe search behavior. For each subject and each candidate decision rule, we com-

pute the number of stopping decisions that are correctly predicted. We assign to the

subject the decision rule that generates the largest fraction of correct predictions, i. e.,

that fits observed behavior best. We start this subjection with the derivation of decision

rules both under risk neutrality and without restrictions on individual risk attitude. The

derivations are based on the assumption of a classical von-Neumann-Morgenstern utility

function which is only defined on monetary gains since our experimental design implies

that searchers cannot suffer a loss from the experiment. For the derivation of the decision

rules, we consider two cases: In the first case, the cost of each completed search step are

treated as sunk cost; in the second case, we derive the finite horizon optimal stopping rule

assuming that subjects do not treat past search cost as sunk costs. Finally, we discuss

the set of alternative heuristics, and describe our classification procedure more formally.

Stopping Rules in Search Tasks under Risk Neutrality

Assume that the searcher observes sequentially any number of realizations of a random

variable X which has the distribution function F (·). In our case, F (·) is a discrete trun-

cated normal distribution with mean e500 and standard deviation e10, the truncation

is at e460 and e540. Let the cost of searching a new location be c. Assume that at

some stage in the search process, the minimal value that the searcher has observed so

far is m, and the searcher wonders whether to continue searching or whether to stop the

search. Basic search theory assumes that individuals treat the cost of each search step,

mixed lotteries in an experimental study on search behavior that uses a different design to elicit indi-

vidual preferences. We suggest that further experimental studies investigate the relationship between

loss aversion indices derived from mixed lotteries (e. g., Schmidt and Traub, 2002) and indices derived

from outward methods and pure lotteries, such as the method applied in the present paper.
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once completed, as sunk costs (Lippman and McCall, 1976; Kogut, 1990) and compare

the payoff of one additional search step with the payoff from stopping.12

Then, subjects solve the problem based on a one-step forward-induction strategy and the

expected gain from searching once more before stopping in a search task such as ours,

G(m), is generally given by:13

G(m) = − [1 − F (m)]m
︸ ︷︷ ︸

N

−

∫ m

460

xdF (x)

︸ ︷︷ ︸
L

−c + m. (8)

The term
⊗

accounts for the case where a value larger than m is found with probability

(1 − F (m)). In this case, m remains the minimum price. The term
⊕

stands for the

case where we find a lower value than m and calculates the expected value in this case.

After some manipulation, we obtain the following condition for the parameter values of

our search task,

G(460) = −c < 0. (9)

That is, it does not make sense to continue searching if one draws the minimal value of

e460. In our specification, the highest price that can be drawn is e540. In this case,

the expected gain from searching at least one more time is always positive (since payoffs

cannot become negative), so

G(540) > 0. (10)

From these properties of G(·), it follows that there exists a unique value at which G(·) = 0.

We denote this value by m∗ and solve equation (8) for m∗. Straightforward manipulation

shows that the solution to this problem is identical to solving the following problem for

m:

π(500−m + 8) = (1−F (m))π(500−m− c + 8) +

∫ m

460

π(500− x− c + 8)dF (x)(11)

12 Kogut’s (1990) findings show that a certain proportion of subjects does not treat sunk costs as sunk.

13 Note that the one-step forward induction strategy is identical with the optimal solution of the infinite

horizon problem if the searcher is risk-neutral.
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Here, π(·) is the payoff-function from the search game and the show-up fee of e8 is

included in this equation, since subjects’ payoff from the search game is directly linked to

the show-up fee. π(·) has the following form:

π(x) = max{0, x} (12)

In equation (11), the left-hand side of the equation is the payoff from stopping and the

right-hand side denotes the payoff from continuing search. We find that the optimal

strategy is to keep searching until a value of X less than, or equal to, the optimal value

m∗ has been observed. In our problem, we find that m∗ = 490. That is, we have the

following optimal decision rule for a risk-neutral searcher: Stop searching as soon as a

price less than or equal to e490 is found.

Now, consider that subjects do not treat search costs as sunk costs. That is, for their

decision whether to stop or to continue the search, they consider the total benefits and

costs of search; the agent stops searching only if the stopping value is higher than the

continuation value. In this case, subjects would not search for more than 48 steps since

after 48 search steps the continuation value from the experiment would definitely be zero.

It follows that the problem is treated as a finite horizon problem that is solved backwards.

Define St = {t, m} as the agents’ state vector after making t search steps.

After the agent has stopped searching, she will buy the item and receive a total payoff of:

Π(St) = max{0, 500 − m − t · c + 8}. (13)

Now, the agent stops searching only if the continuation value of search is lower than the

stopping value. The recursive formulation of the decision problem is therefore:

Jt(St) = max{Π(St), E[Jt+1(St+1)|St]}. (14)

E(·) represents the mathematical expectations operator, and the expectation is taken with

respect to the distribution of St+1|St. Again, this problem has, at every t, the reservation

price property. The reservation price begins at 490, then starts decaying slowly, reaches

483 in the 24th round and then decays at a rate of about one per round from that point

forward.
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Stopping Rules in Search Tasks Without Restrictions on Risk Attitudes

The derivations above are based on the assumption of a risk-neutral searcher. Sonnemans

(1998), for example, refers to a model of the form (8) as an optimal stopping rule. Houser

and Winter (2004) refer to a model of the form (14) as an optimal stopping rule. Note,

however, that it is individually rational to use the risk-neutral optimal stopping rule only

for risk-neutral subjects. Put differently, observing a subject that does not follow the

optimal stopping rule derived under risk neutrality does not necessarily imply that his or

her search is not rational.

As a more general case, we therefore consider a searcher with an arbitrary, monotone

utility function u(·). If the searcher ignores sunk cost and takes her decisions based on a

one-step forward-looking strategy, the equation that determines her reservation price m∗

has the following form, which is an immediate extension of equation (11)14:

u(500−m + 8) = (1−F (m))u(500−m− c + 8) +

∫ m

460

u(500− x− c + 8)dF (x)(15)

Equation (15) can be solved numerically for the reservation price m∗(η), given a specific

price distribution, search costs, and a utility function on gains that is characterized entirely

by a parameter η. The problem has the constant reservation price property, which is

reported as a search heuristic that is consistent with the behavior of a reasonable number

of subjects in other studies (e. g., Hey, 1987). Figure 1 shows the constant reservation

price as a function of the risk-parameter γ in the exponential utility function (5). Note

that the reservation price m∗(η) is invariant to changes of scale of the utility function.

Henceforth, we will refer to rules of this type as forward optimal rules, keeping in mind

that this rule is only optimal conditional on the individual utility function and on the

assumption of a one-step forward strategy that ignores sunk costs.

Analogous to our derivation of the optimal search rule in the risk-neutral case, we now

consider the case in which subjects do not treat search costs as sunk costs. Again, we

14 Note that this equation does not characterize the optimal solution to the search problem. It gives,

however, the optimal strategy for a searcher with arbitrary risk-attitude who ignores sunk costs and

who uses a one-step forward induction strategy.
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have a finite-horizon problem that is solved using backward induction. After the agent

has stopped searching, she will buy the item and receive a total payoff of:

Πu(St) = max{0, u(500 − m − t · c + 8)}. (16)

The agent stops searching only if the utility of continuing the search is lower than the

utility from stopping. The recursive formulation of the decision problem is:

Ju
t = max{Πu(St), E[Ju

t+1(St+1)|St]}. (17)

Again, this problem has, at every t, the reservation price property. The monotonically

falling reservation price for all arbitrary values of γ implies that the agent should not

exercise recall. Figure 2 plots the path of reservation prices, calculated by solving the

dynamic discrete choice problem implied by equation (17) for various risk attitudes γ of

the individual. Henceforth, we will refer to rules of this type as backward optimal rules,

which are optimal conditional on the individual utility function. From our theoretical

deliberations so far we can conclude that – regardless of what type of optimal rule subjects

use, forward or backward optimal rules – risk averse subjects should stop their search

earlier, i. e., they have higher reservation prices on average, and risk-seeking subjects

should stop their search later, that is they use lower reservation prices.

Alternative Search Rules

As has been pointed out in the search literature before, and as should have become

clear in the previous sections, computation of the optimal search rule (either under risk

neutrality or without restrictions on the risk attitude) is a demanding task, and it is

unlikely that subjects can perform this task during a search experiment (or in real-life

search situations, for that matter). Most papers in search literature therefore argue that

subjects use heuristics rather than the optimal stopping rule, and there is some evidence

that certain heuristics get subjects close to the pay-offs they could have obtained using

the optimal rule.

We now specify our set of candidate search rules that are used in this paper to characterize

behavior in experimental search tasks. In addition to the search rules that have been

derived in the section above, we specify a set of heuristics that have been used in the
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search literature to characterize behavior in experimental search tasks. These heuristics

are based on experimental work by Hey (1982) and Moon and Martin (1990).

The first class of these decision rules comprises several “sophisticated” heuristics. These

heuristics share the constant reservation price property. Each rule says that the subject

uses an arbitrary, but constant reservation value r ∈ {480, .., 500}. Subjects behaving

according to this heuristic search until a price quote lower than or equal to the reservation

price is found. We refer to this constant reservation type of heuristic as type 1 heuristics.

Note that this heuristic is identical to the forward optimal search rule, see above. Based

on this rule, we attribute to every individual the constant reservation price value that

explains most of her observed search decisions.15

The second class of decision rules that we consider are based on the finite horizon search

model, i. e., the backward optimal search rules, as specified above. According to these

search rules, subjects use a reservation price that is a function of the search step t and of

the individual risk attitude γ that characterizes the utility function for which the search

rule has been derived. Here, we consider that γ ∈ {−1.0,−0.95,−0.9, ..., +0.95, +1.0}.

We refer to this class of decision rules as type 2 rules. Based on this rule, we attribute

to every individual a value γsearch
i , the risk-attitude coefficient that explains best the

observed search behavior.

A third class of heuristics is also based on reservation prices that vary over the search

time. Subjects using one of these heuristics stop searching as soon as their payment

exceeds a certain individual threshold (or satisfaction-) level t ∈ {1, .., 20}. Given our

parametrization of the problem, this results in a reservation price that linearly falls over

time. For obvious reasons, this heuristic is sometimes called the “satisficer heuristic” and

we refer to it as type 3 heuristics .

As type 4 heuristics , we consider the so-called “bounce rules”, suggested by Moon and

Martin (1990) based on earlier work by Hey (1982). Subjects following the “one-bounce

rule” (heuristic 4a) have at least 2 searches and they stop if a price quote is received larger

15 As is clear from the solution to equation (15), each constant reservation price used in the price search

problem is consistent with a certain (interval of) value(s) of the individual utility risk coefficient γ in

the gain domain. Instead of attributing a constant reservation price to the people, we could as well

attribute the value of γ that corresponds to this constant reservation price.
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than the previous quote. The “modified one-bounce rule” (heuristic 4b) is similar to the

one-bounce rule, but an agent following this rule stops only if a price quote is received

larger than the previous quote less the search cost.

Finally we consider rules that are based on winning streaks (type 5 heuristics). Subjects

who follow this type of heuristics stop searching if they receive two (heuristic 5a) or

three (heuristic 5b) consecutive price draws that are below some fixed threshold level p ∈

{485, .., 500}. That subjects might use these streak-based rules in search situations can be

motivated by results from psychological research on behavior in uncertain environments,

see Rabin (2002).

We should note that the type 4 and 5 heuristics have also been used to describe behavior in

search environments in which the distribution of prices is not known. In our environment,

where subjects know the expected value and variance of the price distribution, using these

rules makes less sense. A priori , we would therefore not expect that these heuristics are

used frequently by our subjects.

Table 1 presents a summary of the 116 candidate decision rules (optimal stopping rule

and heuristics) that we specify for the subsequent analysis.

Classification Procedure

Our approach to drawing inferences about search behavior is to determine, for each sub-

ject, the proportion of choices consistent with each decision rule and then to maximize

this proportion over the set of all candidate decision rules. We assume that each subject

follows exactly one of the decision rules in our universe of candidate rules and that he or

she uses the same heuristic in each of the 10 or 11 pay-off tasks. This latter assumption

seems reasonable in view of the fact that all subjects are experienced when they begin

the pay-off tasks.

Formally, our classification procedure can be described as follows.16 Each heuristic ci ∈ C,

where C is the set of all search rules described above, is a unique map from subject i’s

information set Sit to her continuation decision dit ∈ {0, 1} : dci

it (Sit) → {0, 1}. Now, let

16 Houser and Winter (2004) implement a similar classification procedure in a completely specified

maximum-likelihood framework.
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d∗
it denote the observed decision of subject i in period t. Then, we can define the indicator

function:

Xci

it (Sit) = 1(d∗
it = dci

it (Sit)) (18)

Let Ti be the number of decisions that we observe for subject i. We attribute to each

subject the heuristic that maximizes the likelihood of being used by that subject:

ĉi = arg max
ci∈C

Ti∑

t=1

Xci

it (Sit) (19)

As we have motivated by reference to the existing literature, all relevant search heuristics

should be included in our universe of 116 candidate decision rules. Based on our classi-

fication procedure, we attribute a decision rule to each subject, i. e., we can classify the

subjects by the decision rules that they use. We can then investigate for each subgroup

and for the whole sample the relationship between the observed search behavior and the

risk preferences of the individuals.

3.3 Psychometric Measures

The questionnaire was constructed so that respondents evaluate their likelihood of en-

gaging in an activity of the gambling-domain on a five-point rating scale ranging from 1

(“Extremely likely”) to 5 (“Extremely unlikely”). For each subject, we calculate a mea-

sure of risk attitude as the arithmetic mean score of the response to the four questions.

4 Results

This section starts with self-contained descriptions of both the results of the utility func-

tion elicitation (Part A) and the classification of the search behavior (Part B). We continue

with a comparative analysis of our results on preferences and behavior (also including the

psychometric measure of risk attitude).
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In our experiment, 68 subjects participated in total. Of these 68 subjects, we delete four

subjects from the sample.17 These 4 subjects apparently did not take the utility elicitation

part of the experiment seriously.

The 64 subjects that we keep in the sample show a preference reversal rate of 21.9% on

gains and 23.4% on losses in the utility function elicitation part of the experiment.18

4.1 Part A: Preferences

In Table 2, we report the standard errors of the nonlinear least squares estimates for the

risk coefficients γ and δ. Furthermore, we report the sum of the squared residuals (SSR)

and the coefficient of determination R2. We see that the standard errors are reasonably

low and that the coefficients of determination are close to 1 for our nonlinear regressions.

The estimation results suggest that the risk coefficients are reliable measures that allow

for a rank-ordering of individuals according to their risk-attitude. Our results support

the hypothesis of diminishing sensitivity for gains and losses if we consider the whole

sample. Similar to Abdellaoui (2000), who uses a different measure for the classification

of subjects’ risk attitudes, we see a preponderance of risk-averse subjects in the gain

domain, and a preponderance of risk-seeking subjects in the loss domain. Overall, our

results on individual preferences are consistent with the predictions of prospect theory

(Tversky and Kahneman, 1992) and subsequent experimental work based on prospect

theory.

17 Two of these subjects are outliers in terms of the time needed for the completion of the lottery

questions: They needed less than 60 seconds for either the 32 lottery questions on gains or the 32

questions on losses – considerably less than the other participants in the experiment who needed at

least 1 minute 41 seconds. The two other subjects are outliers in terms of the standard error of the

coefficient estimates of the utility function: Their standard errors of the coefficient estimate is more

than one standard deviation larger than the standard errors of coefficient estimates for all the other

subjects, i.e. preference parameters are measured imprecisely. Additionally, these two subjects are the

only ones in the sample that revealed preference reversals on all four consistency check questions (see

the section 2.1).

18 The reversal rate is a measure for how consistent subjects behave in a certain utility elicitation mech-

anism. Our reversal rate is somewhat higher than the rate in Abdellaoui (2000), who finds an error

rate of 17.9% on gains and of 13.7% on losses. Abdellaoui’s overall error rate, including the probability

weighting function elicitation part of the experiment, is 19%. However, our reversal rate is lower than

that of Camerer (1989), who reports that 26.5% of the subjects reversed preferences.
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4.2 Part B: Search Behavior

A natural starting point for the investigation of search behavior is to assume that all

subjects use a heuristic of the constant reservation price type, i. e., a type 1 heuristic.

The reservation value that has been attributed to each subject can be considered a proxy

for whether subjects tend to be early stoppers or late stoppers: The higher the attributed

reservation price, the earlier subjects stop.

Figure 3 shows the distribution of reservation prices in the sample of 64 subjects, obtained

under the assumption that each subject follows a constant reservation price decision rule.

We find that 55% of the subjects are classified as “early stoppers”, i. e., their attributed

reservation price is higher than the risk-neutral optimal reservation price of e490. 3% use

the risk-neutral optimal reservation value and 42% are “late stoppers” with a reservation

price lower than e490. Furthermore, note that if subjects use the risk-neutral optimal

reservation stopping rule with a reservation price of e490, they should stop, on average,

after having seen 5.85 prices. We find that the mean number of observed price draws per

round is 5.07. The preponderance of early stoppers relative to the risk neutral constant

reservation price stopping rule confirms results from earlier experimental studies of search

behavior (Hey, 1987; Cox and Oaxaca, 1989; Sonnemans, 1998).

Next, we classify subjects according to the decision rule they use in the search tasks (see

Table 3). Figure 4 shows the number of subjects for whom a certain heuristic is a “best”

heuristic (numbers in parentheses indicate the fraction of correctly explained choices for

the particular subjects). We find that for the 13% of the subjects, a constant reservation

price heuristic explains behavior better than all other heuristics, for 3% a type 2 rule (the

optimal finite horizon rule) is better than all others, and for 16% a satisficer rule (type

3) explains more observations than all other rules. For 84% of all subjects one of the

conditionally optimal rules (type 1 or type 2) is a best decision rule, for 63% we find that

they use one of the optimal rules (type 1 or type 2) and do not use the satisficer-heuristic

(type 3); in contrast, 37% of the subjects can be termed satisficers – this result is similar

to Sonnemans (1998), who finds that about one third of the subjects’ behavior is most
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consistent with a satisficer rule. However, for 47% of the subjects, we cannot distinguish

between the use of a forward or a backward optimal search rule (type 1 or type 2).19

Compared to these figures, it may be somewhat astonishing that the bounce-rules (the

type 4 heuristics) and the streak-heuristics (type 5 heuristics) perform rather poorly: In

total, only 35.9% of the observed decisions are consistent with the one-bounce rule, 33.6%

are consistent with the modified one-bounce rule; 38.5% of the decisions are consistent

with a type 5a heuristic, and 39.4% with a type 5b heuristic. However, Hey (1982), who

has proposed the one-bounce rules following individual tape recordings of the subjects,

finds equally low levels of consistency in a search environment where the price distribution

was unknown.

In summary, heuristics of type 1, type 2, and type 3 do reasonably well in describing

observed behavior. However, for a certain proportion of the subjects, our data do not

discriminate between the usage of type 1 or type 2 or type 3 decision rules.20 As a result

of these findings, we classify the 64 subjects into 4 categories, labelled C1, C2, C3, and

C4, respectively:

C1 All subjects whose observed behavior is explained best by a type 1 heuristic (49

subjects).

C2 All subjects whose observed behavior is explained best by a type 2 heuristic (45

subjects).

C3 All subjects whose observed behavior is explained best by a type 3 heuristic (24

subjects).

19 Both, forward and backward optimal rules, have very similar reservation price paths that only differ

after a considerable number of search steps, see Figures 1 and 2. Therefore, the reported weak dis-

crimination between both types of rules does not come unexpectedly. Changes in the experimental

design will not improve the discrimination between these two types of rules: (i) A decrease in the

standard deviation of the price distribution decreases the number of search steps in which forward and

backward rules are identical (for identical parameter γ). However, a decrease in the price distribution

also leads to fewer search steps per individual (Hey, 1987), which then complicates discrimination. (ii)

An increase in the search costs per step decreases the number of search steps in which forward and

backward rules are identical (for identical parameter γ). However, an increase in the search costs also

leads to fewer search steps per individual (Hey, 1987), which, again, complicates discrimination.

20 Technically, the likelihood function is rather flat, although the different decision rules are asymptoti-

cally identified; see the discussion in Houser and Winter (2004).
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C4 Subjects whose observed behavior is explained best by a type 1 or a type 2 heuristic,

but not by a type 3 heuristic (40 subjects).

4.3 The Relationship Between Preference Parameters, Search Behavior, and

Risk Attitudes

The first question we investigate is whether there is a relationship between the observed

search behavior and the elicited individual preferences (i. e., the coefficient of risk atti-

tude). From the theoretical considerations above, the hypothesis follows that (at least)

for those subjects that are classified as users of one of the conditionally optimal search

rules (type 1 or type 2 rules), there exists an association between their risk attitude ob-

served in the utility function elicitation part of the experiment and their behavior in the

search experiment. We also extend this type of analysis to the whole sample. That is, we

implicitly assume that all subjects behave according to just one search rule, either a type

1, a type 2 or a type 3 rule. We should find for all subjects in the sample that risk averse

subjects generally use a higher reservation price or have a higher value of γsearch; subjects

classified as risk seeking should be attributed a lower reservation price or a lower value of

γsearch.

Since the assumption of a normal distribution of the observed individual parameters γ, δ

and λ across subjects is clearly rejected, we base part of our analysis on Spearman rank

correlation coefficients. The significance of the Spearman correlations is tested using the

null hypothesis that the two variables under question are independent.

We focus on the key parameters that characterize individual search behavior, the at-

tributed constant reservation price level (RP), the average number of search steps per

search round (AS) and the search coefficient γsearch. According to the basic search model

(15), we hypothesize that – at least for subgroup C1 – γ is positively correlated with RP

and negatively correlated with AS. We further hypothesize that at least for subgroup C2,

γ is positively correlated with γsearch and negatively correlated with AS. Furthermore,

due to being derived from the same underlying utility functional, the attributed con-

stant reservation price (RP) and the attributed γsearch are strongly positively correlated

(Spearman-ρ: 0.946, p-value: 0.00); we should therefore expect the hypothesized correla-
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tions also for the subgroup C4. Table 3 reports the corresponding Spearman correlation

coefficients for all subgroups C1 through C4 and the whole sample.

Our data do not reject the hypothesis of independence between γ and the search param-

eters RP, AS, and γsearch for all subgroups and the whole sample. The finding from our

correlation analysis in Table 3 is that the utility function based measures for risk attitude

on gains and losses, do not exhibit any significant relationship with individual behavior

in search problems. This holds true regardless of whether we impose the usage of one

specific type of search rule (e. g., the one-step forward-optimal search rule) to all subjects,

or whether we attribute to each subject the type of rule that describes best her behavior

and then, consequently, only consider the respective subgroups of the sample. To fur-

ther investigate this point, we classify the subjects according to their risk attitude γ as

measured in the utility function elicitation part. t-tests under the assumption of different

variances show that our hypothesis motivated above – that risk averse (γ > 0) subjects

generally use higher reservation price levels (RP) than risk-seeking (γ < 0) subjects –

cannot be confirmed: The null hypothesis of equal mean reservation price levels is clearly

not rejected across all subgroups considered. Even stronger: The mean reservation price

of risk seeking subjects is higher than the mean reservation price of risk-averse subjects

across all subgroups and the whole sample.

We now consider the correlation between the psychometric measure for risk attitude in

the gambling domain and search behavior. There is some evidence that people who dislike

taking risks in the gambling domain tend to search less: For C2-subjects, we have a

Spearman-ρ of 0.26 (p-value 0.087) and for C4-subjects a Spearman-ρ of 0.29 (p-value

of 0.07) for the correlation between the measure for risk on gambling and the average

number of search steps per round (AS).21

With respect to the relationship between the utility function based risk measures and the

psychometric risk measures , we find that apart from the subgroup C4, the loss aversion

parameter does correlate at least marginally with the psychometric measure for risk on

gambling. If we consider the complete sample, we find a Spearman ρ of -0.32 and a p-

21 The corresponding Spearman-ρ and p-values for the C1- and C3-group and for the whole sample are

0.14 (0.337), 0.06 (0.76) and 0.16 (0.21).
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value of 0.009 for the correlation between the loss aversion parameter and the psychometric

measure for risk on gambling.22

In summary, our data do not confirm our hypotheses on the relationship between utility

function based measures for risk aversion and search behavior. However, in Table 3 we

do find significant relationships between the attributed constant reservation price level

(RP) and the loss aversion index λ derived from the utility function, as well as between

the average number of search steps (AS) and the loss aversion index. These correlations

are significant or at least marginally significant across all subgroups considered. For the

whole sample, we find significant correlations between the loss aversion index and both,

RP and AS. Across all subgroups, subjects with a higher degree of loss aversion tend

to have a higher attributed reservation price and stop their search earlier. Additionally,

subjects’ reported attitude towards risky gambles is related to their loss aversion and to

the average number of search steps that they perform: People who avoid gambles tend to

have a higher degree of loss aversion and they tend to stop their search earlier.

5 Discussion and Conclusions

This study combines elements from different literatures in experimental and behavioral

economics – a lottery-based experiment designed to elicit subjects’ individual utility func-

tions (in particular, to estimate an index of risk attitude) and a search experiment designed

to reveal subjects’ decision rules in a search task. These experiments are augmented with a

psychometric survey instrument that generates domain-specific measures of risk attitudes.

We should first point out that the results of each of these components are broadly in line

with earlier results in the literature. In particular, the data from our search experiment

confirm that subjects tend to search less often than predicted by the optimal decision rule

derived under the assumption of risk neutrality. Also, relatively simple heuristics, such

as the constant reservation price heuristic and the satisficer heuristic, describe observed

search behavior very well.

22 The corresponding Spearman-ρ and p-values for the subgroups C1, C2, C3, and C4 are -0.31 (0.032),

-0.37 (0.01), -0.38 (0.068), and -0.23 (0.153), respectively.
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The key question raised in this paper is whether the decision rules we observe in our data

correspond to optimal behavior of risk-averse subjects (even though they are not optimal

in the standard search model under risk neutrality). We therefore relax the assumption

of risk neutrality made in the standard search models. We allow for departures from risk

neutrality and develop optimal decision rules for such preferences. These decision rules

(type 1 and type 2 rules) classify the observed behavior of the largest part of our sample.

However, even the specifications of the generalized search models with risk aversion do not

seem to be able to describe search behavior observed in our experiment fully. Our analysis

rejects the hypothesized relationship between the individual preference parameter γ (the

measure for risk aversion) and various parameters that characterize the observed search

behavior over various subgroups under consideration.

This result may be disappointing. Since the search problem formally corresponds to a

generalized lottery task, and since both the lottery-based utility elicitation tasks and

the search tasks were performed in one experimental session, we should expect some

correlation between the parameters of the lottery-based utility function elicitation task

and characteristics of behavior in the search task at the subject level. However, while the

individual risk parameter γ does not correlate with individual search parameters, we find

that the loss aversion parameter λ does correlate with observed search behavior across

all subgroups considered. This latter parameter accounts for the fact that individuals

process losses differently than gains, and is related to the influential work on individual

preferences by Kahneman and Tversky that led to the development of prospect theory.

Conceptually, our results support other studies (e. g., Camerer, 2005; Kahneman et al.,

1991; Rabin and Thaler, 2001) that have suggested that loss aversion might be a major

factor in observed attitudes towards risk, at least for modest scales.

We conclude this section with a discussion of some restrictions of our experimental design

and of our analysis. First, a drawback of the procedure we used to elicit the shape of the

utility function is that it operates on a monetary range of gains and losses that is higher

than the range considered in the search experiment. While this separation is helpful

for experimental design and parameter identification purposes, it may be the case that

individual risk attitudes are different for high and low monetary outcomes. To allow for
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this possibility, we analyzed our data under the weak assumption that the rank order

of individuals by the relevant measure of risk attitude is preserved between the high-

outcome range for which it is elicited and the low-outcome range that is relevant for the

analysis of behavior in the search game.23 A less restrictive, but also much more costly,

experimental design would implement both the utility function elicitation procedure and

the search game on the same high payment scale, or on the same low payment scale. The

latter has been implemented in Schunk (2006), using a different utility function elicitation

procedure. The findings support all conclusions drawn in this paper.

Second, the classification method used to assign decision rules to subjects may seem

rather heuristic. For instance, depending on the set of candidate decision rules, this

procedure may result in over-fitting. In our data, over-fitting is not an issue – we end up

assigning subjects only to three classes of decision rules, and the variation within these

classes (i. e., the constant reservation price assigned to each subject) is akin to estimating

other preference parameters from experimental data. A final open issue of our analysis

of search behavior is the role of errors in decision-making – in general, allowing for errors

would tend to reduce the heterogeneity in preference parameters and decision rules. Using

more sophisticated statistical methods for the classification of decision rules that allow

for errors, as in Houser and Winter (2004) and Houser et al. (2004), is difficult given

the nature of objective functions in search tasks and unlikely to produce substantively

different results (Houser and Winter, 2004).

In summary, this study was motivated by the desire to understand search behavior and

its relation to individual preferences, in particular risk attitudes. We have been able

23 In order to investigate the appropriateness if using rank correlations, we conducted a secondary analy-

sis of the data presented by Holt and Laury (2002). In their experimental study, Holt and Laury elicit

three measures of risk aversion for each subject: two measures in a low-payoff condition as well as one

measure in a high-payoff condition. The latter involves payoffs that are either 20, 50, or 90 times the

amount of the low payoff condition. They also used both real and hypothetical payoffs.

When we re-analyze the data on those 187 subjects that were in a real payoff treatment (i.e. subjects

that earned real money for lottery participation) we find a Spearman correlation coefficient of 0.49

(p < 0.0000) between the first low-payoff risk attitude measure and the high-payoff risk attitude mea-

sure. For the second low-payoff risk attitude measure and the high-payoff risk attitude, the Spearman

correlation coefficient is 0.61 (p < 0.0000). Identical significance levels are found if we use only those

subjects that were in a hypothetical treatment. We conclude that individual measures of risk attitudes

elicited in low and high payoff situations exhibit a (stable) rank correlation. Further details of our

re-analysis of the Holt and Laury (2002) data are available on request.
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to replicate results from various previous studies on individual preferences and search

behavior. Our main methodological contribution is to combine experiments on preferences

and search so that correlations at the subject level could be analyzed. We find that there

is considerable difference in the strategies that subjects use to solve the search task. These

differences, however, do not seem to be systematically related to individuals’ risk attitude

elicited in lottery experiments. In contrast, we do find a relationship between the degree

of loss aversion revealed in the lottery tasks and search behavior. In addition, our results

suggest that a psychometric measure of their attitude towards risky gambles is also related

to observed behavior in the experimental search task.

According to Kahneman’s and Tversky’s prospect theory, the finding of a correlation

between individual loss aversion and search behavior suggests that reference point effects

play a role when solving the search tasks; subjects apparently do not solve the search

task only on the gain domain, as suggested by classical search theory. Schunk (2006)

constructs and experimentally tests a descriptive model of search behavior that accounts

for the observed reference points effects in search behavior and finds results that are in

line with the findings in this paper. Overall, this model provides a better empirical fit

than the standard model derived under risk neutrality or the extensions considered in the

present paper. Testing such models experimentally as well as combining psychometric and

decision-theoretic instruments for predicting behavior in sequential gambles should be the

focus of future research on search behavior in particular and dynamic choice behavior in

general. Furthermore, our findings are of interest for work in applied search theory, e.g.

consumer and labor search: Here, results on individual search behavior and preferences

might be helpful as a guide to econometric specifications that allow for heterogeneity, for

example with respect to individual search duration.
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FIGURES AND TABLES 

 

 

FIGURE 1 

Optimal constant reservation price level depending on the individual risk coefficient γ 
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FIGURE 2 

Optimal reservation price path depending on individual risk coefficient γ 
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FIGURE 3 

Distribution of the constant reservation prices observed in the experiment. 
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TABLE 1 

Decision rules for the search problem 

 

 

Number Description Parameter Values 

1 Constant reservation price heuristic 

Stop searching as soon as a price below x € is 

found. 

 

x e {480,…, 500} 

2 Finite horizon optimal search 

Stop searching in search step t as soon as a price 

below the reservation price xt,γ €, as specified by 

the finite horizon search model, is found. 

 

γ e {-1.0, -0.95,…, 

+0.95, +1.0} 

3 Satisficer heuristic 

Stop searching as soon as the payoff from stopping 

exceeds a certain threshold level of x € 

 

x e {1,…, 20} 

4a One-bounce rule 

Have at least 2 searches and stop if a price quote is 

received larger than the previous quote. 

 

 

4b Modified one-bounce rule 

Have at least 2 searches and stop if a price quote is 

received larger than the previous quote less the 

search cost. 

 

 

5a Streak-based rule 

Stop searching as soon as 2 consecutive price draws 

that are below some fixed threshold level x € are 

received. 

 

x e {485,…, 500} 

5b Streak-based rule 

Stop searching as soon as 3 consecutive price draws 

that are below some fixed threshold level x € are 

received. 

 

x e {485,…, 500} 

 

 

 

 

 

 



TABLE 2 

Utility function estimation results and risk classification of the individuals. 

 

 

Gains (γ) Losses (δ)

Median estimate 2.003E-04 2.045E-04

Mean R² 0.9949 0.9948

Risk averse 

subjects
63% 23%

Risk neutral 

subjects
15% 18%

Risk seeking 

subjects
22% 59%
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Average Number of Searches
Spearman - ρ p-value Spearman - ρ p-value Spearman - ρ p-value

γ (Risk on Gains) -0.03 0.82 0.02 0.90 -0.05 0.72

δ (Risk on Losses) -0.03 0.83 0.14 0.34 -0.06 0.66

λ   (Loss aversion) 0.23 0.12 -0.25 0.08 0.21 0.15

γ (Risk on Gains) 0.02 0.90 0.00 0.99 0.06 0.72

δ (Risk on Losses) -0.03 0.87 0.11 0.48 -0.02 0.89

λ   (Loss aversion) 0.26 0.08 -0.30 0.04 0.21 0.16

γ (Risk on Gains) -0.19 0.39 0.34 0.10 -0.12 0.59

δ (Risk on Losses) -0.25 0.24 0.46 0.02 -0.17 0.43

λ    (Loss aversion) 0.35 0.09 -0.31 0.14 0.29 0.17

γ (Risk on Gains) 0.03 0.86 -0.18 0.26 0.05 0.76

δ (Risk on Losses) 0.05 0.77 -0.13 0.43 0.03 0.84

λ    (Loss aversion) 0.22 0.16 -0.33 0.04 0.14 0.39

γ (Risk on Gains) -0.07 0.56 0.09 0.47 -0.03 0.79

δ (Risk on Losses) -0.05 0.71 0.14 0.27 -0.44 0.73

λ    (Loss aversion) 0.28 0.02 -0.32 0.01 0.21 0.10

C3 (24)

C4 (54)

All (64)

Preference 

ParametersGroup (N)

C1 (49)

C2 (45)

Constant Reservation Price Search coefficient γsearch

 



TABLE A1 

Assessing x1 through bisection. An example of the Abdellaoui (2000) procedure. 

 

 

Question Alternatives Outcomes (€) Choice

number x1 e

1 A = (200, 2/3; 100, 1/3) [200, 1200] A

B = (700, 2/3; 0, 1/3)

2 A = (200, 2/3; 100, 1/3) [700, 1200] B

B = (950, 2/3; 0, 1/3)

3 A = (200, 2/3; 100, 1/3) [700, 950] A

B = (820, 2/3; 0, 1/3)

4 A = (200, 2/3; 100, 1/3) [820, 950] A

B = (880, 2/3; 0, 1/3)

5 A = (200, 2/3; 100, 1/3) [880, 950] B

B = (910, 2/3; 0, 1/3)

6

End [880, 910]

x1 = € 200, p = 2/3, r = 0, R = € 100  


