
AutoML for Multi-Label Classification:
Overview and Empirical Evaluation

Marcel Wever , Alexander Tornede , Felix Mohr , and Eyke H€ullermeier , Senior Member, IEEE

Abstract—Automated machine learning (AutoML) supports the algorithmic construction and data-specific customization of machine

learning pipelines, including the selection, combination, and parametrization of machine learning algorithms as main constituents.

Generally speaking, AutoML approaches comprise two major components: a search space model and an optimizer for traversing the

space. Recent approaches have shown impressive results in the realm of supervised learning, most notably (single-label) classification

(SLC). Moreover, first attempts at extending these approaches towards multi-label classification (MLC) have been made. While the

space of candidate pipelines is already huge in SLC, the complexity of the search space is raised to an even higher power in MLC.

One may wonder, therefore, whether and to what extent optimizers established for SLC can scale to this increased complexity, and how

they compare to each other. This paper makes the following contributions: First, we survey existing approaches to AutoML for MLC.

Second, we augment these approaches with optimizers not previously tried for MLC. Third, we propose a benchmarking framework that

supports a fair and systematic comparison. Fourth, we conduct an extensive experimental study, evaluating the methods on a suite of

MLC problems. We find a grammar-based best-first search to compare favorably to other optimizers.

Index Terms—Automated machine learning, multi-label classification, hierarchical planning, Bayesian optimization

Ç

1 INTRODUCTION

AUTOMATED machine learning (AutoML) is commonly
understood as the task of automating the process of engi-

neering a “machine learning pipeline” specifically tailored to
a problem at hand, that is, to a dataset on which a (predictive)
model ought to be induced. This includes the selection, combi-
nation, and parameterization of machine learning (ML) algo-
rithms as basic constituents of the pipeline, which is the main
output produced by an AutoML tool, and which can then be
used to train a concretemodel on the dataset. Thus, compared
to “basic”ML algorithms such as neural networks or support-
vector machines, which solve a learning problem, an AutoML
tool can be seen as solving a “learning to learn” problem.
For the standard problem classes of single-label (binary or
multi-class) classification (SLC) and regression, several such
tools have been proposed in the last couple of years, and their
performance has been demonstrated quite impressively in
several experimental studies.

For various reasons, however, the empirical comparison of
AutoML tools is a difficult endeavor and prone to incorrect
interpretations. In particular, since an AutoML tool is a com-
plex system consisting of several components, most impor-
tantly a search space model and an optimization method for
traversing this space, one typically faces a credit assignment

problem: If a tool performs well, and perhaps even better
than others, what component is actually responsible for the
improvement? For example, different tools (e.g., [1] and [2])
are typically using different search spaces, i.e., the space of
ML pipelines they consider is not the same. While optimizing
the search space, in general, is indeed a reasonable approach
to improve the performance of an AutoML tool, it impedes
the interpretation of evaluation results when a new approach
to tackle the search task is proposed simultaneously. In such
cases, it is often unclear where the improved performance
comes from, the modification of the search space or the newly
proposed search algorithm.

Going beyond standard (single-target) prediction prob-
lems, first attempts at extending AutoML toward multi-tar-
get problems [3] have been made in the last couple of years,
most notably for the popular problem of multi-label classifi-
cation (MLC) [4], [5], [6], [7], [8]. While the space of candi-
date pipelines is already huge in SLC, the complexity of the
search space is raised to an even higher power in the case of
MLC. This is mainly caused by more complex learning algo-
rithms employed for the problem of MLC, which often per-
form as meta-algorithms on top of multiple existing SLC
learning algorithms (e.g., one per label). An example of a
potential structure of a multi-label classifier is depicted
in Fig. 1. In fact, as we detail in Section 4, the MLC search
space subsumes the SLC search space (several times).
Furthermore, the evaluation of solution candidates takes
significantly longer for MLC than for SLC algorithms due to
their increase in structural complexity.

In light of this, one may wonder whether existing
optimization methods for searching candidate pipelines,
which have mainly been developed for SLC, are able to
scale to the increased complexity of MLC search spaces,
and how they compare with each other. Addressing
this question in a systematic way, this paper makes the
following contributions:

� Marcel Wever, Alexander Tornede and Eyke H€ullermeier are with the
Heinz Nixdorf Institute, Department of Computer Science, Paderborn
University, 33098 Paderborn, Germany.
E-mail: {marcel.wever, alexander.tornede, eyke}@upb.de.

� Felix Mohr is with the Universidad de La Sabana, Ch�ıa, Cundinamarca
250007, Colombia. E-mail: felix.mohr@unisabana.edu.co.

Manuscript received 20 Apr. 2020; revised 20 Nov. 2020; accepted 31 Dec.
2020. Date of publication 13 Jan. 2021; date of current version 4 Aug. 2021.
(Corresponding author: Marcel Wever.)
Recommended for acceptance by H. J. Escalante, J. Vanschoren, W.-W. Tu, Y.
Yu, S. Escalera, N. Pillay, R. Qu, N. Houlsby, and T. Zhang.
Digital Object Identifier no. 10.1109/TPAMI.2021.3051276

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 43, NO. 9, SEPTEMBER 2021 3037

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-9782-6818
https://orcid.org/0000-0001-9782-6818
https://orcid.org/0000-0001-9782-6818
https://orcid.org/0000-0001-9782-6818
https://orcid.org/0000-0001-9782-6818
https://orcid.org/0000-0002-2415-2186
https://orcid.org/0000-0002-2415-2186
https://orcid.org/0000-0002-2415-2186
https://orcid.org/0000-0002-2415-2186
https://orcid.org/0000-0002-2415-2186
https://orcid.org/0000-0002-9293-2424
https://orcid.org/0000-0002-9293-2424
https://orcid.org/0000-0002-9293-2424
https://orcid.org/0000-0002-9293-2424
https://orcid.org/0000-0002-9293-2424
https://orcid.org/0000-0002-9944-4108
https://orcid.org/0000-0002-9944-4108
https://orcid.org/0000-0002-9944-4108
https://orcid.org/0000-0002-9944-4108
https://orcid.org/0000-0002-9944-4108
mailto:marcel.wever@upb.de
mailto:alexander.tornede@upb.de
mailto:eyke@upb.de
mailto:felix.mohr@unisabana.edu.co

� First, we survey the state of the art, compare differ-
ent approaches on a methodological level with
respect to their applicability to the MLC problem,
and give an overview of existing approaches to
AutoML for MLC, which are mainly characterized
by the specification of the search space (Section 4).

� Second, we further augment these approaches by
optimization methods that have not been tried for
MLC so far, including Bayesian optimization, bandit
algorithms, and hybrids thereof (see Section 5).

� Third, we propose a benchmarking framework that
allows for a fair and systematic comparison (Section 6).
Our framework ensures that all optimization methods
adhere to the same runtime constraints, operate on
equivalent search space models, and share the evalua-
tion routine for solution candidates.

� Fourth, leveraging this framework, we conduct an
extensive experimental study, in which we evaluate
the methods on a suite of MLC problems (Section 7).
In our experiments , we observe that all methods are
visibly struggling with the tremendous size of the
search space. However, a grammar-based best first
search approach is found to perform best for the con-
sidered MLC search space, clearly outperforming the
other optimizers.

Prior to elaborating on the main contributions of the paper
as outlined above, we give a short introduction to AutoML
(Section 2) andmulti-label classification (Section 3).

2 AUTOMATED MACHINE LEARNING

Despite the short history of automated machine learning, a
diverse array ofmethods has beenproposed to tackle the prob-
lem of so-called combined algorithm selection and hyper-
parameter optimization (CASH), which was first stated in [9]
and can formally be described as follows.

Let A :¼ fAð1Þ; Að2Þ; . . . ; AðnÞg denote a set of algorithms
and Lð1Þ;Lð2Þ; . . . ;LðnÞ the corresponding hyper-parameter
spaces. Furthermore, let training (validation) and test data
from a dataset space D be given by Dtrain ¼ ðXtrain;
YtrainÞ 2 D andDtest ¼ ðXtest; YtestÞ 2 D, as well as a target
loss L to be minimized. The objective is now to find an algo-
rithm A�

�� together with a suitable hyper-parameter configu-
ration that generalizeswell beyond the training data

A�
�� 2 argmin

AðiÞ2A;�2LðiÞ
E LðYtest; AðjÞ

� ðXtestÞÞ
h i

:

In practice, however, the test loss is not accessible and thus
approximated via the expected validation loss. To this end,
the set of training data is again split into training dataD0

train
used for training and validation data Dval ¼ ðXval; YvalÞ for
validating the solution candidates’ performance

A�
�� 2 argmin

AðiÞ2A;�2LðiÞ
E LðYval; AðjÞ

� ðXvalÞÞ
h i

:

The obtained estimate is then used for guiding the search
for the best solution in the CASH problem.

Initial approaches reduced the CASH problem to a hyper-
parameter optimization (HPO) problem by interpreting the
choice of an algorithm as yet another hyper-parameter — a
binary variable set to 1 if the respective algorithm is included
in the pipeline — and concatenating those with the hyper-
parameters of the respective algorithms to a single hyper-
parameter vector. On the one side, such a reduction makes
the original problem amenable to well-established tools for
HPO such as SMAC [10] based on Bayesian optimization,
Hyperband [11] based on a multi-armed bandit algorithm,
or a combination of the two called BOHB [12]. In fact, by
reducing AutoML to HPO and applyingHPO tools, a variety
of AutoML approaches have been proposed, including
Auto-WEKA [9], auto-sklearn [1], hyperopt-sklearn [13], and
Auto-Band [14].

On the other side, a reduction to HPO comes with the
potential disadvantage of losing structural information due to
“flattening” the search space. The structure of this space is
naturally hierarchical, with a tree-like structure over the
hyper-parameters. When using a flat, purely vectorial repre-
sentation, parameter dependencies have to be captured in the
form of additional constraints. For example, certain hyper-
parameter configurations of a specific model might simply
not be valid. Moreover, only those hyper-parameters belong-
ing to selected algorithms are actually relevant or active, while
all the others are irrelevant — information that is very impor-
tant but not immediately accessible for the learner.

As an alternative to constraint-based vectorial represen-
tations, another branch of AutoML tools models the search
space in a way that the hierarchical structure is maintained.
Usually, these approaches rely on modeling solutions via a
grammar that is used to derive valid candidates. This model
can then be used for deriving (valid) individuals in (evolu-
tionary) genetic programming [2], [15], [16]. Alternatively,
such a grammar can also be used as a basis for deriving a
search graph amenable to heuristic search algorithms, for
example, a best-first search as in ML-Plan [17], [18] or a
Monte Carlo Tree Search (MCTS) [19], [20].

Fig. 1. Hierarchical representation of a multi-label classifier’s structure
being recursively configured with base learners and finally a kernel for the
support vector machine (SMO, short for Sequential Minimal Optimization).

3038 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 43, NO. 9, SEPTEMBER 2021

Apart from the aforementioned tools, many other inter-
esting techniques have emerged in the recent years, such as
neural architecture search in general [21], tools with an
emphasis on stacking [22], [23], leveraging reinforcement
learning [24], or exploiting the potential of a random search
for parallelization [25].

However, due to the rapid development, it is difficult to
track the overall progress and understand the strengths and
weaknesses of different optimizers and complete AutoML
tools. In particular, newly proposed tools are often evaluated
on different datasets and compared to a more or less ran-
domly chosen subset of existing tools as baselines. Thismakes
a global perception of the different AutoML tools and their
performances very difficult. As another threat to comparabil-
ity in empirical studies, new AutoML approaches are pro-
posed as a combination of several components: optimization
method, search space, and evaluation procedures (including
timeouts, splitting for training, validation, and test data, per-
formance measures) for assessing solution candidates. Due to
this, performance gains or differences cannot be attributed to
one particular change. Although there have been first steps in
this direction [26], [27], an isolated large-scale comparison of
the basic optimization strategies operating on an equivalent
search space of a reasonable size is still an open issue. This is
especially true for the problem domain ofMLC.

3 MULTI-LABEL CLASSIFICATION

Multi-label classification is a special type of multi-target
prediction [3], where all the targets are binary variables
encoding the “relevance” or the “irrelevance” of a specific
aspect (identified by a label) for a data object (an instance).
The main task in MLC is to learn a set-valued function that
maps instances to subsets of (presumably) relevant class
labels. As such, MLC can be seen as a generalization of stan-
dard multi-class classification, where an instance is assigned
to exactly one class. As an example, consider the problem of
image tagging: An image could be tagged with class labels
Sun and Beach and Sea and Yacht at the same time. For a
more comprehensive overview of multi-label classification,
we refer to the survey articles [28] and [29].

3.1 Problem Setting

To formalize the MLC problem, let X denote an instance
space and L ¼ fl1; . . . ; lmg a finite set of m class labels. An
instance xx 2 X is (non-deterministically) associated with a
subset of class labels L � L. The subset L is often called the
set of relevant labels. It is convenient to identify a set of rele-
vant labels L with a binary vector yy ¼ ðy1; . . . ; ymÞ, where
yi ¼ 1 if li 2 L and yi ¼ 0 otherwise. The set of all possible
label combinations is denoted by Y ¼ f0; 1gm.

Formally, a multi-label classifier hh is a mapping hh :
X�!Y. For a given instance xx 2 X as an input, it outputs a
prediction in the form of a vector

hhðxxÞ ¼ �
h1ðxxÞ; h2ðxxÞ; . . . ; hmðxxÞ

�
:

The task of inducing a multi-label classifier from data can be
stated as follows: Given a finite set of observations

Dtrain :¼ ðXtrain; YtrainÞ ¼
�ðxxi; yyiÞ

�N

i¼1
� XN � Y N;

as training data, the goal is to learn a classifier hh : X�!Y
that generalizes well beyond these observations in the sense
of minimizing the risk with respect to a specific loss
function.

3.2 Loss Functions

A wide spectrum of loss functions has been proposed for
multi-label classification, many of which are generalizations
or adaptations of losses known for single-label classification.
Generally speaking, these loss functions can be divided into
threemain categories: instance-wise, label-wise, and consider-
ing the label matrix as a whole (flattened to a single vector),
which is also known as micro averaging. While instance-wise
loss functions first compute a loss for every single test instance
and then aggregate (average) over instances, label-wise loss
functions compute a (binary classification) loss for each label
and then aggregate the respective values across the labels. To
be more specific, let Dtest :¼ ðXtest; YtestÞ � XS � YS be a

test set of size S and H ¼ ðhhðxx1Þ; . . . ; hhðxxSÞÞ � YS . Then, a

loss function is a mapping L : YS � YS�!½0; 1�. In the follow-
ing, we give three different ways of generalizing the F-mea-
sure to multi-label classification as instance-wise, macro
averaging, and micro averaging loss functions that are com-
monly used in the literature.

Since the number of relevant labels is normally rather
small (i.e., the label matrix is very sparse), the F-measure
(which is actually not a loss function but a measure of accu-
racy, and thus to be maximized) has been adapted to the
MLC setting in various ways. One possibility is to compute
the F-measure for the predicted label vector of each instance
in the test set first, and then aggregate across the instances;
this is the instance-wise F-measure

FIðYtest; HÞ :¼ 1

S

XS
i¼1

2
Pm

j¼1 yi;jhjðxxiÞPm
j¼1ðyi;j þ hjðxxiÞÞ : (1)

Analogously, it can be defined in a label-wise manner

FLðYtest; HÞ :¼ 1

m

Xm
j¼1

2
PS

i¼1 yi;jhjðxxiÞPS
i¼1ðyi;j þ hjðxxiÞÞ

: (2)

Finally, in a third variant, the F-measure can also be applied
by so-called micro-averaging

FmðYtest; HÞ :¼ 1

m 	 S
2
Pm

j¼1

PS
i¼1 yi;jhjðxxiÞPm

j¼1

PS
i¼1ðyi;j þ hjðxxiÞÞ

: (3)

Since the F-measure is the harmonic mean of precision and
recall, good performance requires both a high true positive
rate and a high true negative rate. In contrast to other com-
monly used MLC loss functions, such as the Hamming loss,
the F-measure thereby addresses the problem of class imbal-
ance and avoids an overly strong tendency toward negative
predictions: too many negative predictions will yield a high
precision but a low recall, and hence an overall low value
for the F-measure. Nevertheless, depending on the variant
used, the F-measure accounts for mistakes in the predictions
in different ways, so that classifiers might be more appropri-
ate for one and less for another version.

WEVER ETAL.: AUTOML FOR MULTI-LABEL CLASSIFICATION: OVERVIEW AND EMPIRICAL EVALUATION 3039

4 THE MULTI-LABEL SEARCH SPACE

Taking standard (aka single-label) classification algorithms
as a point of departure, multi-label classifiers have been
developed in mainly two different ways: Either the multi-
label problem is transformed into one or more single-label
problems to which an existing algorithm can be applied, or
an existing learning algorithm is adapted to the problem of
MLC [30]. The latter essentially comes down to extending
the algorithm so as to provide support for multiple labels in
the algorithm structure. A simple example is the extension
of decision tree learning from standard classification to
multi-label classification [31].

4.1 Configuration of Multi-Label Classifiers

On one hand, the configuration of adapted learners such as
neural networks with multiple output units, i.e., one per
label, multi-target trees, or k-nearest neighbour learners
works as in previous approaches and does not impose a
particular challenge due to the multi-label classification set-
ting. On the other hand, transformation techniques usually
reduce the original MLC problem to a set of binary or multi-
class classification problems, which can then be dealt with
by known methods such as random forest, SVMs, logistic
regression, etc. For example, binary relevance learning (BR)
transforms it into a set of binary classification problems
[32], one per label. These binary problems consist of predict-
ing the relevance of the corresponding label independently
of all other labels. While BR may look like a straightforward
and efficient solution to the MLC problem, it is often criti-
cized for ignoring interactions and statistical dependencies
between class labels. Indeed, the idea of leveraging such
dependencies to improve predictive performance is the
main motivation of many multi-label learning algorithms.
As an illustration, consider again the example, where the
class label Yacht might be positively correlated with the
class label Sea: If the former is positive, i.e., a yacht is on an
image, then the latter is likely to be positive, too. Thus,
while the predictions (0,0), (0,1), and (1,1) appear
completely plausible, a multi-label classifier should be more
reluctant to predict (1,0). As an example of a slightly more
sophisticated (though still simple) transformation tech-
nique, let us mention classifier chains [33]. As suggested by
the name, the classifier chain (CC) method trains predictive
models in a sequential manner, sorting the labels along a
chain. The basic idea is to condition the prediction of a label
yi, not only on the instance information xx, but also on the
labels preceding yi in the chain, which is specified by a per-
mutation s of f1; . . . ;mg. Thus, starting with a model ŷsð1Þ ¼
h1ðxxÞ, CC trains a second model ŷsð2Þ ¼ h2ðxx; ysð1ÞÞ, a third
model ŷsð3Þ ¼ h3ðxx; ysð1Þ; ysð2ÞÞ, and so forth.

In the above example, for instance, CC may first predict
the presence of Yacht based on properties of the image,
and then additionally condition the prediction for Sea on
the (predicted) presence or absence of a yacht on the image.
In this way, label dependence could in principle be cap-
tured, at least to some extent. Yet, as a theoretical problem
of CC, note that the label information used as additional fea-
tures by the classifiers is only available for training but not
at prediction time: Since the true label information ysð1Þ can-
not be used as an additional input, h2 will actually deliver a

prediction ŷsð2Þ ¼ h2ðxx; ŷsð1ÞÞ, replacing ysð1Þ by the estimate
ŷsð1Þ coming from h1. Likewise, h3 will predict ŷsð3Þ ¼
h3ðxx; ŷsð1Þ; ŷsð2ÞÞ, etc. This creates a kind of attribute noise
and possibly causes a problem error propagation along the
chain [34].

Generally speaking, problem transformation methods
can be seen as meta-learning methods, which need to be
instantiated with a base learner, for example, a binary classi-
fier in BR or CC. As already pointed out earlier, the struc-
ture of an MLC algorithm can thus become quite complex
(cf. Fig. 1), requiring the user or ML engineer to make many
decisions, e.g., choose up to 6 out of more than 70 algo-
rithms, and configure up to 25 hyper-parameters simulta-
neously. Furthermore, empirical studies suggest that for
optimizing the generalization performance of transforma-
tion methods, the choice of the base learner is indeed crucial
[35], [36].

In addition to the selection and configuration of base
learners, one may of course also think of parameterizing the
meta-learner itself, thereby increasing the number of hyper-
parameters even further. A simple example is the permuta-
tion s in classifier chains, which is known to have a practical
impact on performance [37].

Moreover, instead of choosing a single base learner to be
used for each label, an individual base learner could be
selected and tuned for each label separately. As shown in
[36] for the case of BR, a label-wise configuration of that
kind may indeed prove beneficial. Obviously, however, this
will further increase the complexity of the configuration
space by several orders of magnitude. Therefore, we stick to
the simpler task of recursively selecting the base learners
and tuning their hyper-parameters.

4.2 Search Space Description

The search space for multi-label classification considered here
is shown in Fig. 2, comprising 5 different types of algorithms:
meta and base algorithms for multi-label classification, meta
and base algorithms for single-label classification, as well as
kernels to be plugged into an SVM classifier (in the figure rep-
resented by the sequential minimal optimization algorithm;
SMO).More precisely, the following algorithms are contained
in the search space:

MEKA Meta MBR, SubsetMapper (SM), RandomSubspa-
ceML (RSS), MLCBMaD (MLCBMD), BaggingML (BML),
BaggingMLdup (BMLdup), EnsembleML (EML), EM, CM

MEKA Base BR, BRq, CC, CCq, BCC, PCC, MCC, PMCC,
CT, CDN, CDT, FW, RT, LC, PS, PSt, RAkEL, RAkELd,
BPNN, HASEL, MajorityLabelset (MLS), DBPNN

WEKA Meta AdaBoostM1 (ABM1), Vote (V), Stacking (S),
LWL, RandomSubSpace (RSS), Bagging (B), RandomCommit-
tee (RC), AttributeSelectedClassifier (ASC), AdditiveRegres-
sion (AR), ClassificationViaRegression (CVR), LogitBoost
(LB),MultiClassClassifier (MCC)

WEKA Base J48, M5P, M5Rules (M5R), VotedPerceptron
(VP), SimpleLinearRegression (SLR), SimpleLogistic (SL),
NaiveBayesMultinomial (NBM), LMT, DecisionStump (DS),
RandomForest (RF), RandomTree (RT), DecisionTable (DT),
JRip (JR), OneR (OR), PART, ZeroR (ZR), IBk, KStar (KS),
MultilayerPerceptron (MP), SMO, Logistic (L), NaiveBayes
(NB), BayesNet (BN), REPTree (REPT)

3040 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 43, NO. 9, SEPTEMBER 2021

Kernel NormalizedPolyKernel (NPK), PolyKernel (PK),
RBFKernel (RBFK), Puk

From left to right, the algorithms typically require the con-
figuration of a base algorithm, which can either be of the same
type or the next type in the previously enumerated list.Within
the figure, this requirement is indicated by an arc pointing
either to a specific algorithm or a box containing several algo-
rithms. The latter is a shortcut for drawing an arc from the
respective algorithm to every algorithm contained in the box.
Algorithms exposing hyper-parameters that need to be opti-
mized are indicated by a purple diamond.

Fig. 2 provides a compact overview of the entire search
space,1 such that the extension for AutoML from single-
label to multi-label classification appears to only double the

complexity, as only twice the number of algorithms is avail-
able. However, the real complexity lies in the need to config-
ure base learners recursively, i.e., base learners of one
method may require a base learner in turn to be configured.
Therefore, the short cut arcs pointing from an algorithm to a
box abstract most of the complexity.

A comparison of various statistics regarding the search
spaces for single-label respectively multi-label classification
is given in Fig. 3. While the number of algorithms (compo-
nents) as well as the number of hyper-parameters defined
in the search space increase only slightly, the size of the
entire search space blows up from 177 unparameterized
solution candidates to more than 55,000. However, not only
the large number of distinct algorithm choices exacerbates
the AutoML tasks, but also the maximum number of param-
eters a single solution candidate may expose. In the extreme
case, a single solution candidate may expose up to 25
hyper-parameters, as compared to 14 in the case of single-

Fig. 2. Overview of the search space showing classification algorithms from MEKA for multi-label and WEKA for single-label classification. An arc
pointing to a box frame means an arc to every classifier contained in this frame. Purple diamonds indicate whether the respective classifier exposes
hyper-parameters to be tuned.

Fig. 3. Comparison of statistics regarding characteristics of the multi-label classification search space and the subsumed search space for single-
label classification. Note that the there is a substantial increase in the number of unparameterized solution candidates, i.e., the number of distinct
classifier configurations ignoring hyper-parameter configuration. Moreover, the maximum number of hyper-parameters that are optimized simulta-
neously for a single configuration is almost double the amount.

1. A more detailed description including the hyper-parameters can
be found in the GitHub repository: https://github.com/mwever/
tpami-automlc

WEVER ETAL.: AUTOML FOR MULTI-LABEL CLASSIFICATION: OVERVIEW AND EMPIRICAL EVALUATION 3041

https://github.com/mwever/tpami-automlc
https://github.com/mwever/tpami-automlc

label classification, but also the average number of hyper-
parameters increases from 5.89 to 10.13.

In conclusion, compared to single-label classification, the
multi-label classification search space itself contains consid-
erably more solution candidates. Furthermore, due to more
hyper-parameters that need to be optimized for a single can-
didate, the hyper-parameter optimization of the latter can
be much more complex as well.

5 OPTIMIZATION METHODS

The literature on AutoML for standard classification and
regression is rich of techniques that have been proposed for
searching the huge space of solution candidates. However, for
multi-label classification, only a few of these approaches have
been considered so far. These include genetic algorithms [4],
grammar-based genetic programming [5], hierarchical task net-
work planning [6], [7], and a classifier specific approach based
on neural architecture search [8]. Here, we focus on methods
for classical AutoML dealing with the problem of combined
algorithm selection and hyper-parameter optimization.

In the following, after a formal definition of the AutoML
problem, we briefly outline various optimization approaches
from the two branches of hyper-parameter optimization and
grammar-based search. Moreover, we elaborate on how these
methods can be applied to automating multi-label classifica-
tion and whether this has already been done in the literature.
For a more in-depth summary of the respective approaches,
we refer the interested reader to survey papers on standard
AutoML [38], [39], [40], [41]. In Fig. 4, an overview of the here
considered optimization methods is given. Furthermore, we
discuss to what extent these methods have already been con-
sidered in AutoML for single-label resp. multi-label classifica-
tion. An overview of their use regarding standard AutoML
andAutoML formulti-label classification is given in Table 1.

5.1 Reduction to Hyper-Parameter Optimization

A prominent way of tackling the AutoML problem is to
reduce it to the problem of instance-specific hyper-parame-
ter optimization. Here, one is given a hyper-parameter
space L defined over multiple hyper-parameters, a dataset
space D and a quality measure u : L� D�!R, stating how
well a certain hyper-parameter configuration performs on a
certain dataset. For a given dataset D 2 D the goal is to find
the best hyper-parameter configuration ��

D 2 L defined as

��
D ¼ argmax

�2L
uð�;DÞ: (4)

In the context of AutoML, the quality measure u is usually a
scoring or loss function such as the F-measure or the Ham-
ming loss.

The reduction from the AutoML problem to hyper-
parameter optimization is done by encoding the choice of
each algorithm and its components via a categorical
parameter for each choice. Each of these categorical param-
eters can take as many different values as there are choices
for the respective algorithm or component. Hence, the
result of the reduction is a single hyper-parameter vector
consisting of these categorical hyper-parameters and the
original hyper-parameters of each possible algorithm and
component. Furthermore, many tools request a set of con-
straints, defining which hyper-parameters are connected to
which algorithms and components. Thus, it becomes possi-
ble to leverage this information, e.g., by decomposing the
vector into trees where only relevant hyper-parameters are
considered.

5.1.1 Bayesian Optimization

Bayesian Optimization (BO) [52] is one of the most prominent
techniques in the area of hyper-parameter optimization and
the basis for the first approaches to AutoML [1], [9], [43]. On
an abstract level, BO is an alternating process of building/
updating a surrogate model bu inferred from observations of
the (costly) measure u and leveraging the information con-
tained in bu through a so-called acquisition function to choose
the next candidate to be evaluated w.r.t u. This is repeated
until a stopping criterion is met, e.g., wall-clock time or evalu-
ations of u.

For AutoML tasks, typically Tree Parzen Estimators [53]
or Random Forests [54] are employed as surrogate model.
Although Gaussian Processes also represent a very natural
choice for the surrogate model, they do not scale well with
the high dimensional search space of the AutoML problem.
In any case, the right choice depends on specifics of the opti-
mization task, e.g., the structure and topology of the search
space or the noisiness of u.

The surrogate model û is used in combination with an
acquisition function to decide which hyper-parameter config-
uration to evaluate next with u. For the sake of efficiency, this
choice should reveal as much useful information about the
search space as possible. Generally speaking, acquisition func-
tions are a means to trade off exploration and exploitation so
as to guide the search to promising candidates. To this end,
not only the expected values (according to the surrogate
model bu) but also the uncertainty about these values are taken
into account. While there are various functions of this kind,
including entropy search [55], knowledge gradient [56], and

Fig. 4. Ontology showing the considered optimization techniques pro-
posed for automating machine learning.

TABLE 1
Overview of Optimization Techniques Considered in This Paper
for Automating Multi-Label Classification and an Overview of

Whether and Where These Techniques Have Been Employed for
Automating Single-Label Respectively Multi-Label Classification

Method AutoML SLC AutoMLMLC

Bayesian Optimization [42] @[1], [9], [13], [43] •

Hyperband [44] @[14], [45] •

Bayesian Optimization and
Hyperband [12]

@[46] •

Genetic Algorithms [47] • @[4]
Genetic Programming [48] @[2], [15] @[5]
HTN Planning [49] @[17], [18], [50], [51] @[6], [7]

3042 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 43, NO. 9, SEPTEMBER 2021

expected improvement (EI) [57], [58], we focus on the latter,
since it ismainly used in the field ofAutoML.

The basic idea of EI is to sample the candidate that opti-
mizes the improvement with respect to the best solution
found so far. Formally, EI can be described with respect to a
hyper-parameter configuration �D and the best hyper-param-
eter configuration ��

D found so far as

EIð�DÞ ¼ E maxðuð��
D;DÞ � uð�D;DÞ; 0Þ� �

: (5)

Note that taking the expected value is required because
uð�D;DÞ is a random variable with unknown outcome at the
time of the computation of EIð�DÞ. Using this definition,
the EI acquisition function chooses the configuration that
maximizes EI.

BO has been employed as an optimization technique in
several AutoML tools [1], [9], [13], [43] for tackling standard
classification and regression tasks. However, to the best of our
knowledge, it has not been used for tackling the AutoMLC
problembefore.

5.1.2 Hyperband

Another family of methods to tackle hyper-parameter opti-
mization is based on formalizing the problem as a multi-
armed bandit (MAB) problem, which is a sequential sto-
chastic decision-making problem. The MAB agent (decision
maker) selects one option at a time from a set of alternatives,
also called “arms”, and observes a numerical (and typically
noisy) reward signal providing information on the quality of
that option. The goal of the agent is to optimize an evalua-
tion criterion such as the cumulative regret, i.e., the expected
difference between the sum of rewards that could have
been obtained by playing the best arm (defined as the one
with the highest rewards on average) in each round and the
sum of the rewards obtained while being challenged by the
exploration-exploitation dilemma.

Hyper-parameter optimization can be cast as a MAB prob-
lem by considering each possible hyper-parameter configura-
tion (or machine learning pipeline in the case of AutoML) as
an arm. The rewards obtained when pulling an arm corre-
spond to the evaluation of the corresponding configurations
for a given budget, such as time, which is adapted over the
course of the algorithm.

A classical naı̈ve approach to finding a good arm (config-
uration) in such a setting is to allocate a total budget B
equally to all K arms, i.e., pull each arm with a budget of
bB=Kc. While simple, this approach spends large amounts of
the budget on non-optimal arms.

Successive halving [44], [59] mitigates this flaw by dividing
the time steps into N brackets, allocating the budget equally
across the brackets andhalving the number of arms to be pulled
at the end of each bracket. Based on the rewards obtained, the
best half of the arms are kept and promoted towards the next
bracket resulting in a single final armafter dlog 2ðKÞe � 1 brack-
ets. The success of this strategy in selecting the truly best arm
heavily relies on the assumption that discarding arms based on
low-budget evaluations does indeed correctly discard the bad
configurations, but not those thatmay only show their potential
when being evaluated on larger budgets. A visual comparison
of the two approaches withK ¼ 4 arms andN ¼ 3 brackets in
the case of SH is presented in Fig. 5.

In the context of hyper-parameter optimization, the budg-
eted resource can vary, but common choices are the number
of iterations for evaluating the configuration [44], the compu-
tation time for evaluating the configuration, the size of the
subsampled dataset or the subsampled feature set on which
the configuration is evaluated [11]. Here, we make use of the
number of folds of a Monte Carlo cross-validation (MCCV) as
budgeted resource, i.e., we present evaluation results based
on one or more iterations to the optimization approach to
allow for lowfidelity optimization.

However, the set of hyper-parameter configurations, and
hence the number of arms in the associated MAB, is typi-
cally extremely large or even infinite. The authors of [44]
solve this problem by sampling a predefined number of
configurations before SH is invoked, presenting thus only a
finite set of arms to the algorithm while still covering the
underlying space sufficiently well.

As shown in [11], the size of the set of configurationsK pre-
sented to SH greatly influences the choice of the final arm. This
is because picking too few configurations might lead to miss-
ing good ones but also offers the selected configurations more
budget, whereas too many configurations may contain good
ones but lead to less budget, which in turnmight lead towrong
rejections (exploration-exploitation dilemma). Hyperband is a
heuristic for choosing initial set sizes and repeatedly applying
SH to finally return the best solution found in this process.

More precisely, Hyperband iteratively calls SHwith differ-
ent numbers of hyper-parameter configurations K and
assigns a minimum budget to each of these configurations
before any of them is discarded. The adaptation ofK is based
on amaximumbudget to be allocated to a single configuration
and the proportion of configurations to be discarded in each
bracket of SH. Doing so, Hyperband gradually moves from
exploration to exploitation by decreasing the amount of initial
configurations while receiving a single final solution with
each call of SH. Finally, the best configuration found during
this process is returned.

Hyperband has been applied to AutoML for classifica-
tion in [14]. Yet, to the best of our knowledge, it has not

Fig. 5. Comparison of the classical approach (top) and successive halv-
ing (SH) (bottom) to identify the best performing configuration out of 4
candidates. Numbers within colored rectangles indicate the rank of a
configuration. Within each bracket, the current set of configurations is
evaluated on a portion of the totally assignable budget and after each
bracket the worse half drops out. After bracket 2, SH already identified
the winner configuration (red). The right column summarizes the total
budget spent per configuration.

WEVER ETAL.: AUTOML FOR MULTI-LABEL CLASSIFICATION: OVERVIEW AND EMPIRICAL EVALUATION 3043

been used to tackle the AutoMLC problem so far, which will
be done in this work for the first time.

5.1.3 Bayesian Optimization and Hyperband (BOHB)

An obvious weakness of Hyperband is its random sampling of
configurations at the beginning of each iteration, which is
addressed by an approach combining the idea of Hyperband
with Bayesian Optimization, called BOHB [12]. More specifi-
cally, it replaces the randomsamplingprocedure ofHyperband
by BO-based sampling. TPE models are constructed for differ-
ent budgets B based on observed configuration performances.
In each iteration, the majority of configurations are iteratively
sampled using these models, while the remaining configura-
tions are sampled at random for reasons of convergence. As
one is eventually interested in the performance of a configura-
tion evaluated on themaximum budget, BOHB always queries
themodel associatedwith the largest budget available.

BOHB can be instantiated to solve AutoML problems in
the same way as SMAC and Hyperband, namely by reduc-
ing the AutoML problem to a problem of hyper-parameter
optimization. Once again, to the best of our knowledge, this
work is the first one to apply BOHB for tackling the
AutoMLC problem, although it has been used in the context
of AutoML for classification before [46].

5.1.4 Genetic Algorithms

Genetic algorithms (GAs) are quite popular and frequently
used as a tool for black-box optimization. The basic idea is
to maintain a population of candidate solutions and to
refine these candidates iteratively by applying randomized
operators (e.g., mutation and cross-over inspired by biologi-
cal evolution) with the aim of maximizing a given fitness
function. Each of the candidate solutions is encoded by a
fixed-size binary or real-valued vector of so-called genes,
also referred to as a genetic representation.

Applying genetic algorithms to the problem of AutoML
thus requires a proper genetic representation, which can be
obtained by encoding every hyper-parameter by a single
gene (using integers for categorical or integer hyper-param-
eters, and reals for any other numeric hyper-parameters).
However, such an encoding is difficult to handle for stan-
dard GAs, because most of the genes are “inactive” in the
sense of not belonging to the currently selected algorithm
(s). This also hinders the exchange of parts of the current
solution. Alternatively, messy GAs can be used but the
mutual exchange of individuals remains difficult [60]. These
issues may explain why standard GAs have not been con-
sidered very much in the AutoML literature.

To the best of our knowledge, only a simple GA calledGA-
Auto-MLC has been used for the problem of automating
multi-label classification [4]. However, only a very small selec-
tion of algorithms has been considered in this work, which is
mostly due to the chosen genetic representation. To compress
the genetic representation, the genes for hyper-parameters
were shared among different algorithms. More specifically,
the number of genes for hyper-parameterswas chosen accord-
ing to the method exposing the highest number of hyper-
parameters. The values encoded in the genes are then inter-
preted with respect to the selected method and the remaining
information is ignored.

Later on, a detailed ablation study [5] revealed that a
grammar-based genetic programming approach can outper-
form such a simple genetic algorithm for the same search
space. These findings can be attributed to the more suitable
genetic representation. Furthermore, the genetic program-
ming approach is even more flexible and allows for a larger
portfolio of algorithms. Because of these results, we exclude
GA-Auto-MLC from our study.

5.2 Grammar-Based Search

Grammar-based search approaches have emerged as another
line of research for designing AutoML tools (cf. [2], [5], [16],
[17]). In contrast to reduction techniques representing the
optimization space by a (flat) vector of hyper-parameters com-
binedwith additional conditions, grammar-based formalisms
allow for modeling the hierarchical structure of machine
learning pipelines and classifiers more naturally. This hierar-
chical structure is particularly prominent in the case of multi-
label classifiers, which usually employ single-label classifiers
as a base learner. Yet, it is also inherent to single-label classi-
fiers, as shown by examples like a bagged ensemble of sup-
port vector machines, which in turn require a kernel function
to be specified. In the following, we describe two representa-
tives of grammar-based approaches, first an evolutionary
approach for evolving tree-shaped structures called gram-
mar-based genetic programming (Section 5.2.1), and then a
technique from the field of AI planning dubbed hierarchical
task network (HTN) planning (Section 5.2.2).

5.2.1 Grammar-Based Genetic Programming

Just like genetic algorithms, grammar-based genetic pro-
gramming (GGP) algorithms belong to the family of evolu-
tionary algorithms. Yet, in contrast to standard GAs, GGPs
make use of a grammar to describe the correct syntax of
individuals. This syntax is used to generate an initial popu-
lation of valid individuals, and also provided to genetic
operators that are specifically crafted for GGP. Another dif-
ference to standard GAs is the genetic representation.
Instead of representing individuals in terms of fixed-length
vectors of genes, they are described in the form of trees
describing derivations of the grammar, which makes the
entire approach more flexible with respect to more complex
structures and larger portfolios of algorithms. Furthermore,
the size of such a tree does not necessarily need to be fixed
or upper bounded. For a more comprehensive description
of grammar-based genetic programming, we refer the inter-
ested reader to [48].

Due to their appealing properties, GGPs have been used to
tackle the AutoML problem in various ways [2], [15], [16]. All
these approaches have in common that the search space is
described by a context-free grammar, structuring the space in
a hierarchical way and having algorithm names and hyper-
parameter values as terminals. Prominent examples of apply-
ing GGP to AutoML for single-label classification or regres-
sion are TPOT [2], RECIPE [16], andGAMA [15].

Even more interestingly, GGP provides the basis of
an AutoML tool for multi-label classification called
Auto-MEKAGGP [5]. However, from amethodological point
of view, nothing has been implemented in Auto-MEKAGGP
that could be considered as specific for MLC, except for the

3044 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 43, NO. 9, SEPTEMBER 2021

evaluation of multi-label classifiers. In particular, the search
space is described in the sameway (extended by descriptions
formulti-label classifiers) as before.

5.2.2 HTN Planning and Best-First Search

The basic idea of Hierarchical Task Network planning [49], a
technique from the field of automated planning, is to hierar-
chically structure the space of possible solutions based on a
logic language and specific operators. To this end, HTN plan-
ning describes the search space in terms of complex tasks,
primitive tasks, and methods that specify how complex tasks
are refined again into complex tasks or primitive tasks. While
primitive tasks are considered atomic and usually represent
something that can be “executed”, complex tasks can be
viewed as a composition of simpler tasks and thus need to be
decomposed recursively. Intuitively, HTN planning mimics,
e.g., the way a machine learning expert approaches a multi-
label classification task, decomposing it into smaller and sim-
pler tasks such as selecting classifiers, base learners, and even-
tually tuning the hyper-parameters [61]. A “ground” solution,
also referred to as a plan, is obtained once all complex tasks
are fully refined and only primitive tasks are left.

The idea is similar to derivations in context-free gram-
mars, where complex tasks are non-terminal symbols and
primitive tasks are terminals. In contrast to context-free
grammars, primitive tasks do not only work in a generative
manner, but can also modify a (logical) state, a concept fea-
tured in HTN.

HTN problems are typically solved by a reduction to a
graph search problem that can be approached with stan-
dard algorithms, e.g., depth-first search. A typical transla-
tion of the HTN problem into a graph is to select the first
complex task of a list and to define one successor for each
applicable method that can be used to refine the task; this is
called forward-decomposition [49]. As a consequence, the
shape of the resulting search graph is a tree. While leaf
nodes of the tree represent plans, an inner node represents a
prefix of a plan. Hence, the root node is an empty plan.

HTN planning has been instantiated for automating data
mining and machine learning by mapping primitive tasks
to algorithm choices and the configuration of hyper-param-
eter values and building an abstract structure over these
choices by means of complex tasks [17], [62]. The graph in
Fig. 6 sketches an excerpt from such a search graph for the
automated multi-label classification problem. In [17], a best-
first search is applied to the resulting search graph. As a
heuristic, the proposed best-first search assigns scores to
inner nodes by randomly drawing several path completions
to leaf nodes in order to obtain fully-specified pipelines that
can be evaluated as usual, e.g., applying cross-validation.
The score of the inner node is determined by the best com-
pletion to bound the true optimum that can be found in the
respective sub-tree (assuming the objective function to be
minimized). By configuring the number of random comple-
tions drawn for assessing the quality of an inner node in
terms of an approximate score, we can trade-off the degree
of exploitation and the degree of exploration of the search.

In analogy to AutoML for single-label classification, we
can instantiate HTN planning combined with a best-first
search for the MLC setting. Extending the search space,

tuning the search and the evaluation strategy to the specifics
of the MLC search space, extensions of [17] have been pro-
posed in [6], [7].

6 AUTOMLC BENCHMARK

In empirical AutoML studies, multiple components are
often changed at a time without carrying out ablation stud-
ies. For example, different optimizers with different search
spaces are compared, sometimes even with different candi-
date evaluation methods. One quite frequent example is to
propose a new optimization technique together with a dif-
ferent search space, while not changing the search space for
the baseline methods considered for comparison. In such
cases, the results of the studies are difficult to interpret.
Regardless of whether the newly proposed method is supe-
rior, competitive, or inferior to the baselines, it is not clear
whether this finding should be attributed to the change of
the search space or the optimization method.

The general issue has already been acknowledged in the
literature [26], where AutoML tools are evaluated within
consistent hardware and timeout environments as well as
optimized for the same target loss function. However, the
compared AutoML methods are considered a black box and
the design of the search space is considered a part thereof.
As a consequence, the latter differs from approach to
approach. Therefore, it is unknown whether performance
differences between AutoML methods can be attributed the
optimization techniques or to the search space definition.

Fig. 6. Sketch of a search tree induced via HTN planning for automated
multi-label classification. Primitive tasks are additionally distinguished by
color according to their role within a multi-label classifier. Note that the
indicated refinements are of exemplary character. Further options as
well as sub-trees are only hinted at.

WEVER ETAL.: AUTOML FOR MULTI-LABEL CLASSIFICATION: OVERVIEW AND EMPIRICAL EVALUATION 3045

Note that the definition of the latter has a huge impact on
the problem complexity. Even small changes may simplify
the problem a lot or, on the contrary, make it much harder.
Extending the search space by a single ensembling algo-
rithm, comprising an arbitrary list of base learners, may
increase the size of the search space from finite to infinite.
Likewise, removing a single algorithm from the search
space can lead to a significant simplification of the optimiza-
tion task, but of course, also imply that the best algorithm
for a particular task is no longer available. The question of
which optimizer may perform best in which setting is thus
still an open question.

In [39], the authors attempt to answer the question con-
sidering different optimizers for the same search space and
even the same internal evaluation procedure. However, the
approach taken in [39] is limited in several regards:

� It is restricted to optimizers available in Python,
whereas the benchmark proposed here features
cross-platform capabilities.

� The search space only considers a flat set of algo-
rithms to be chosen, i.e., the optimizers are allowed
to choose out of 13 different classifiers and activate
hyper-parameters to be optimized according to this
choice. Although there is a notion of parameters
being configured in a hierarchical way in the case of
SVMs, the search space definition has no concept for
refining base learners, e.g., of ensembles.

� Furthermore, the runtime of the optimizers is indi-
rectly limited via the number of evaluations, which in
turn is bounded by a maximum of 10 minutes per
evaluation. However, the limitation on the number of
evaluations unnecessarily penalizes optimization strat-
egies that prefer to extensively examine candidates
with a very short runtime.While the number of evalua-
tions is a proper means to ensure comparability in the
realm of black-box function optimization, the solution
candidates in AutoML are occasionally too diverse. In
our experimental evaluation, we provide empirical

evidence for the high variance of the evaluation times
for different solution candidates.

Generally speaking, a common benchmark is desirable
since AutoML studies are expensive in terms of time and
computational resources. With each newly proposedmethod,
the corresponding studies repeatedly execute multiple other
methods and baselines. This is necessary, first because experi-
mental setups, i.e., time constraints, assigned hardware
resources, target functions, and datasets, are altered, and sec-
ond, there is no common benchmark ensuring compatibility
of experimental results. Moreover, common benchmarks are
useful to streamline research, ensuring comparability of the
evaluations of newmethods to already existing ones and ide-
ally enforce separation of concerns.

As the line of research onAutoML formulti-label classifica-
tion is still in its infancy, we propose a unified framework for
benchmarking methods and extensions for AutoML in the
problem domain of MLC to ensure comparability across dif-
ferent optimizers (across different platforms) and to avoid
unnecessary re-evaluations of already published methods in
the future. Moreover, it forms a basis for future research on
both refining theMLC search space and refining optimization
techniques to cope with the more complex search space. An
overview of the framework is sketched in Fig. 7. The key fea-
tures of the framework are shared run constraints, a model-
to-model transformation for search space descriptions, and a
shared (cross-platform) performance evaluation procedure.

The framework is organized into two parts. First, the
benchmarking setup (blue part of the figure) contains the tech-
nical specifications, i.e., the global run constraints, search
space description, and the performance estimation procedure.
Second, the interface of the optimizer (green part of the
figure), which is responsible for translating the setup informa-
tion into a format manageable by the specific optimizer and
providing a stub that can be called to query the performance
estimation procedure.

As an aside, except for its concrete instantiation, nothing of
the framework is task-specific (regardingmulti-label classifica-
tion). Therefore, the benchmark framework could in principle

Fig. 7. Architecture of the benchmark for comparing different optimizers for the same run constraints, search space, and evaluation procedure. Blue
parts are commonly used for all approaches, while green parts are specific to the respective optimizer, marshaling the description of candidate solu-
tions for both the search space description and the description of candidates to be evaluated.

3046 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 43, NO. 9, SEPTEMBER 2021

be used to achieve comparability of different optimization
techniques for any other AutoML task, too. For example, the
benchmark could be used to investigate the capabilities of dif-
ferent optimizers to search for standard classification machine
learning pipelines including (multiple) pre-processing algo-
rithms. However, as we focus on automated machine learning
for multi-label classification here, this kind of investigation is
out of the scope of this paper and left for futurework.

6.1 Benchmarking Setup

The benchmarking setup encapsulates all the parameters rele-
vant to an AutoML benchmark, except for the optimizer that
is used to explore the space of potential solution candidates.
More precisely, the benchmarking setup defines the entire
experimental setup, including constraints on the run defining
the degree of parallelization and the timeouts. The framework
allows for defining timeouts for both the entire AutoML pro-
cess and the evaluation of a single candidate independently.

The core part of the benchmarking setup is the search
space description, which specifies all potential solutions
that may be tested by the algorithms. Our benchmarking
environment comes with its own (JSON-based) language to
describe a search space, which is easy to read and edit, and
which allows for modeling search spaces maintaining hier-
archical structures. In this model, every algorithm is seen as
a software component with provided and required interfaces.
The interfaces are just names and have no functional specifi-
cation. For example, a binary relevance learner provides an
interface MultiLabelClassifier and requires an inter-
face BaseLearner, which in turn can be provided, for
example, by an SVM. For every component, one can define
a set of parameters with their domains and dependencies
among them, e.g., “if value of x ¼ 3, then the domain of pos-
sible values for y becomes [0,1]”.

To make this search space description understandable to
the different optimizers, a search space converter must be
written for every optimizer to be considered in the bench-
mark. Clearly, every optimization tool accepts some form of
search space description, but the concrete formats strongly
vary among the different optimizers. For this paper, we
implemented such converters for the considered optimizers
to configure correct inputs for these optimizers.

Second, the run constraints comprise timeouts and compu-
tational resources. More precisely, one defines the overall
timeout for the search process, the timeout for single evalua-
tions, and constraints on memory and CPU usage. Needless
to say, the concrete choice of timeouts can bemore or less ben-
eficial for an optimizer. However, since the same constraints
apply to all optimizers, this impact should not be too large.

The third and last part of the benchmarking setup concerns
the evaluation procedure, and thereby also the performance
measure,which serves as the target loss to be optimized. Shar-
ing this part of the benchmarking setup across the different
optimizers ensures that there is no advantage in terms of eval-
uation speed, which might distort the overall performance.
Usually, to ensure this kind of fairness, the number of allowed
evaluations is limited. Our approach guarantees the same
degree of fairness also for anytime settings.

In addition to ensuring fairness and comparability, an
advantage of decoupling the benchmarking setup from the
optimizer is to developmeta-learning approaches independent

of a concrete optimizer. For example, a surrogate for assessing
the performance of a solution candidate can be used by substi-
tuting the evaluation procedure. In this way, the surrogate can
be tested in combination with any optimizer implemented
within the framework. Furthermore, the framework allows for
task-specific adaptations of the search space, e.g., by anticipat-
ing which algorithms will likely be too time-consuming for a
chosen evaluation timeout and excluding these algorithms
right from the start. Only the reduced search space is then pro-
vided to the optimizer.

6.2 Optimizer Interface

The optimizer interface is responsible for connecting an opti-
mizer to the rest of the benchmarking framework.More specifi-
cally, this mainly concerns setting the hyper-parameters of the
optimizer and converting the search space description from the
framework’s format into the specific format of the optimizer.

In addition to the optimizer itself, the optimizer interface
contains an evaluation stub bridging between the optimizer
and the evaluation procedure that is part of the benchmark-
ing setup. The evaluation stub takes evaluation requests
from the optimizer and forwards them to the evaluation
procedure. If the evaluation of the respective solution candi-
date is successful, the evaluation stub will feed the result
value back to the optimizer. Of course, the optimizer and
the evaluation stub are agnostic about the loss function
used to calculate the return value. However, in the case of
an unsuccessful evaluation, the evaluation procedure gives
feedback regarding the cause and differentiates between
crashed evaluations and those with a timeout.

The third component of the optimizer interface is a map-
ping from the framework’s search space description format
into the specific format of the optimizer. By automatically
generating search space descriptions, only the model-to-
model transformation needs to be correct, which simplifies
maintenance and allows for considering different search
spaces in a consistent way across multiple optimizers.

7 EXPERIMENTAL EVALUATION

The experimental evaluation analyzes the performance of
the optimization strategies for AutoML introduced above
in the problem domain of multi-label classification. We inves-
tigate the scalability of the optimizers alone concerning the
increased search space complexity, resulting from the deeper
hierarchical structures of multi-label classifiers and the more
costly candidate evaluations. To this end, we apply the bench-
marking framework as proposed in Section 6, making sure
that all optimizers are operating on the same search space and
adhere to the same constraints in terms of hardware resources
and timeouts.

7.1 Experimental Setup

In our experimental evaluation, we carry out all experiments
in the proposed benchmarking framework considering the
following optimizationmethods:

� Bayesian optimization (SMAC)
� Bandit optimization (Hyperband; HB)
� Bayesian Optimization & Hyperband (BOHB)
� Grammar-based genetic programming (GGP)

WEVER ETAL.: AUTOML FOR MULTI-LABEL CLASSIFICATION: OVERVIEW AND EMPIRICAL EVALUATION 3047

� HTN planning and best-first search (HTN-BF)
Additionally, as a primitive baseline, we run a random

search that samples algorithm selections uniformly at random
(including recursive dependencies on other algorithms) and
subsequently chooses the hyper-parameters of the selected
algorithms uniformly at random from the respective hyper-
parameter domains.

All the runs were executed on nodes equippedwith 8 CPU
cores (Intel Xeon E5-2670) and 32 GB ofmainmemorywith an
overall timeout of 24h and a timeout for evaluating a single
classifier of 30 minutes. For the performance estimation of a
solution candidate, we used 5 randomly generated train/vali-
dation splits with 70 percent training and 30 percent valida-
tion data of the “training” data provided for the AutoML run.
Moreover, we used three different performance measures as
target function: instance-wise F-measure (FI), label-wise F-
measure (FL) andmicro-averaged F-measure (Fm).

The best-first search was configured with the default con-
figuration proposed in [17], i.e., it samples 3 random path
completions for assessing the quality of a node, resulting in
a relatively greedy search behavior. As for SMAC, we used
its parallelized version, but otherwise the default parame-
terization. Furthermore, we allowed for multi-fidelity opti-
mization by letting Hyperband and BOHB choose how
many train and validation splits are used for estimating the
performance of a solution candidate. To this end, they were
configured to choose budgets b ranging from 1 to 5,000 (to
also allow for enough exploration as the budget limits also
determine how many candidates are explored), which was
translated to db=1000e train and validation splits.

The grammar-based genetic programming approach was
configured to operate on a population size of 15, as in the
default configuration of Auto-MEKAGGP. The probabilities
for applying cross-over and mutation for recombination of
individuals were set to 0.9 and 0.1, respectively. Each new
generation keeps the best individual of the last generation.
In contrast to Auto-MEKAGGP, our implementation of
grammar-based genetic programming does no reshuffling
of train and validation splits but only uses the performance
estimation procedure provided by the benchmarking frame-
work as a fitness function. Moreover, the algorithm was
used in an anytime setting, i.e., it can return a solution as
soon as a first successful candidate evaluation was done,
and continues the evolution as long as time is left.

Train and test splits are derived by 10-fold cross-validation,
resulting in 10 train and test splits for eachdataset. A list of the
datasets used for benchmarking together with some descrip-
tive statistics is given in Table 2. The descriptive statistics
include the number of instances (#I), the number of labels
(#L), the label to instance ratio (L2IR), the unique labeling
combinations (ULC), and the average number of labels
assigned to an instance (aka label cardinality).

In total, we carried out 720 runs for eachmethod, except for
random search, which we executed only for 240 runs to
reduce computation costs. As random search does not make
any decisions based on candidate solutions seen so far, we
only need one run for all the three target losses together. Each
of the methods is executed with 8 parallel workers. Summing
up to a total of 3,840 experiments �a 24h, the experimental
evaluation contains data worth approximately 84 CPU years
(¼ 3; 840� 24h� 8 cores¼ 737; 280CPUh).

To specify the search space, we considered the multi-
label classifiers provided by MEKA [63], a multi-label classi-
fication extension of the well-known WEKA [64] machine
learning library. Both libraries are implemented in Java,
which is one reason why our benchmarking framework is
implemented in Java, too. For the global model of the search
space, we used the AILibs2 format of the project HASCO
and the extensive description of MEKA and WEKA pro-
vided in [65]. The source code for the benchmarking frame-
work and the experiments is publicly available via GitHub.3

7.2 Analysis of Generalization Performance

The test performances for all the methods and datasets
across 10 train and test splits and the three performance
measures (instance-wise, label-wise, and micro-averaged F-
Measure) are given in Table 3. At first glance, one can
observe that HTN-BF performs best in most of the cases and
tends to outperform all other methods on a wide range of
datasets. To obtain a better and more profound overall
impression, we have additionally visualized the results in
the form of scatter plots in Fig. 8, where we compare the
performance of one method against all others for each of the
performance measures. A single point in this plot depicts
the relative performance of the one method and another
compared method for one of the datasets, where the perfor-
mance of the one method is on the x-axis and that of the
compared method on the y-axis. The generalization perfor-
mance of the considered method improves from left to right,
and the performance of the compared methods bottom up.

TABLE 2
Benchmark Datasets Used in This Study

Dataset #I #L L2IR ULC card.

arts1 7,484 26 0.0035 0.08 1.65
bibtex 7,395 159 0.0215 0.39 2.40
birds 645 19 0.0295 0.21 1.01
bookmarks 87,856 208 0.0024 0.21 2.03
business1 11,214 30 0.0027 0.02 1.60
computers1 12,444 33 0.0027 0.03 1.51
education1 12,030 33 0.0027 0.04 1.46
emotions 593 6 0.0101 0.05 1.87
enron-f 1,702 53 0.0311 0.44 3.38
entertainment1 12,730 21 0.0016 0.03 1.41
flags 194 12 0.0619 0.53 4.12
genbase 662 27 0.0408 0.05 1.25
health1 9,205 32 0.0035 0.04 1.64
llog-f 1,460 75 0.0514 0.21 1.18
mediamill 43,907 101 0.0023 0.15 4.38
medical 978 45 0.0460 0.10 1.25
recreation1 12,828 22 0.0017 0.04 1.43
reference1 8,027 33 0.0041 0.03 1.17
scene 2,407 6 0.0025 0.01 1.07
science1 6,428 40 0.0062 0.07 1.45
social1 12,111 39 0.0032 0.03 1.28
society1 14,512 27 0.0019 0.07 1.67
tmc2007 28,596 22 0.0008 0.05 2.16
yeast 2,417 14 0.0058 0.08 4.24

The datasets are described by their name, number of instances (#I), number of
labels (#L), the label-to-instance ratio (L2IR), the portion of unique label com-
binations (ULC), and the average label cardinality (card.).

2. https://github.com/starlibs/AILibs
3. https://github.com/mwever/tpami-automlc

3048 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 43, NO. 9, SEPTEMBER 2021

https://github.com/starlibs/AILibs
https://github.com/mwever/tpami-automlc

A tie in the generalization performance is observed when-
ever a point is located on the diagonal. If a point lies below
(above) the diagonal, it means the considered method per-
forms better (worse).

These plots clearly show that HTN-BF mostly dominates
the other methods and yields (most of the time just slightly)
inferior results on a few datasets only. In fact, the few cases in
which another algorithm exhibits better performance are not
even statistically significant. While the advantage of HTN-BF

is clearly visible for all performance measures, it is especially
obvious for the case of label-wise F-Measure optimization. The
measure seems to be rather hard to optimize by the AutoML
approaches since the scores are in general rather low. Yet,
HTN-BF manages to obtain scores that improve up to a factor
of three compared to SMAC and Hyperband (let alone Ran-
dom Search, which is completely off the mark). Furthermore,
we can observe that SMAC is more in the midfield, whereas
HB and BOHB perform usually superior to the other methods
(except forHTN-BF). Apart from the random search, GGP typ-
ically performs inferior to the other considered methods, such
thatmost of the points are located above the diagonal.

In Table 3, we can see that the advantage of HTN-BF is
often statistically significant. For each dataset, we report the
mean result of each algorithm togetherwith its standard devi-
ation. The algorithm with the best mean score is marked in
bold, and we underline those results that are not significantly
worse in a statistical sense (according to a Wilcoxon signed-
rank test with a threshold for the p-value of 0.05) for the same
dataset. As suggested by the rather low standard deviations
and confirmed by the significance test, the results are not just
by chance. Instead, the advantage of HTN-BF appears to be
systematic. In spite of HTN-BF improving over other
approaches by factors on some datasets, the statistical differ-
ence in summary is less pronounced for the label-wise F-mea-
sure. For the other two performance measures, the great
majority of advantageous entries is also significant.

The random search baseline manages to return better sol-
utions than the other optimizers on several datasets even
after 24 hours of runtime. Furthermore, for two of the three
measures, it is even able to obtain a better average rank
than GGP, getting close to SMAC and GGP for the label-
wise F-measure. Random search does not offer a practically
useful alternative, however, as it also produces disastrous
results on a considerable number of datasets. The strongly
fluctuating performance can be explained by the fact that
the random search first draws one element from the set of
all possible unparameterized classifiers, which has, by defi-
nition, a bias towards more complex classifier structures
(i.e., a higher tendency for including meta classifiers for
multi-label classification as well as single-label base learn-
ers) since those represent a larger fraction of the set.

In the nested donut charts of Fig. 11,we present the relative
frequency of an algorithm being selected by the respective
optimizer across all runs. The layers of the nested donut charts
represent the five different component types reading from
outside to inside: meta multi-label, base multi-label, meta sin-
gle-label, base single-label, and kernel algorithms. For a better
readability, only algorithms with a portion of at least 0.05 are
shown. Algorithms below this threshold are grouped together
under the label “Others”. If no algorithmhas been selected for
a particular layer, this is denoted by a “/”. Note that meta
methods do not necessarily need to be selected as opposed to
base multi-label algorithms that are required to occur in any
solution. This figure makes very clear that SMAC, HB, and
BOHB select somewhat similar solutions which also explains
their similar performance in various settings. However,
SMAC’s and HB’s choices differ more from each other than
each of themdiffers fromBOHB.Another interesting observa-
tion is that the bias of the random search towards more com-
plex classifier structures is obvious and clearly distinguishes

TABLE 3
Test Performances (mean
 std) of the Considered Approaches

Best performances are highlighted in bold, whereas results not significantly worse
than the best performance are underlined. Average ranks across the datasets are
given at the bottom of each part for the respective performancemeasure.

WEVER ETAL.: AUTOML FOR MULTI-LABEL CLASSIFICATION: OVERVIEW AND EMPIRICAL EVALUATION 3049

Fig. 8. Pair-wise comparison of one method (shown on the x-axis) against all other methods with respect to instance-wise F-Measure (left), label-wise
F-Measure (center), andmicro-averaged F-Measure (right).

3050 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 43, NO. 9, SEPTEMBER 2021

it from any other method. On one hand, this bias enables ran-
dom search to yield best performances on some of the data-
sets. On the other hand, classifier evaluations are more prone
to timeouts, because more complex classifiers usually also
need considerablymore evaluation time, explaining the disas-
trous results previouslymentioned. Lastly, GGP andHTN-BF
favor simpler solutions barely incorporating meta algorithms
at all. Still the methods selected by GGP and HTN-BF differ
significantly, especially the set of chosenmulti-label base algo-
rithms iswaymore diverse in the case ofHTN than for GGP.

Methods that are based on a reduction to hyper-parameter
optimization are usually inferior to HTN-BF but still better on
a few datasets. Overall, however, it is obvious that HB and
BOHB compare favorably to SMAC,which we attribute to the
feature of multifidelity optimization. Since HB and BOHB are
allowed to evaluate single iterations of the Monte Carlo cross-
validation (MCCV), they can use more time to explore a more
diverse array of classifiers and then focus more and more on
the promising candidates. In the anytime average rank plots
in Fig. 10, we can observe that these methods usually perform
superior in the beginning, but HTN-BF passes by after one
hour (first vertical dashed line). While HB and BOHB race
head-to-head, SMAC is more or less off the mark, especially
for FL and Fm. Nevertheless, in the case ofFI , SMACmanages
to perform competitively to BOHB. GGP andRandomquickly
drop to the back ranks, which is due to sampling the (first)

incumbent uniformly at random leading to rather complex
models that take longer to evaluate or might even timeout
and any method is considered to have a score of 0 as long as
no incumbentwas found.

Grammar-based genetic programming performs the
worst on average. After 12h (third dashed vertical line) it
significantly loses in terms of average ranks compared to all
other methods, at this point performing even worse than
random search for FI and Fm. However, the bad perfor-
mance can be attributed to the parameterization of the eval-
uated GGP approach, which has been configured with a
population containing only 15 individuals, as it was advised
in [5]. While this seems to be a reasonable value for moder-
ate runtimes of up to 6 hours (second dashed vertical line),
it impedes a sufficient exploration of the search space as car-
ried out by other methods. Additionally, we only use a
straight-forward version of GGP which does not leverage
more sophisticated features, as for example restarting.

Another interesting insight is with respect to the “stability”
of the approaches. We can see that the standard deviation is
smaller for HTN-BF than for all other algorithms, both on
average and in the extremes. In other words, HTN-BF produ-
ces high-quality results on a quite constant level. As a conse-
quence, HTN-BF can be expected to produce better results
than SMAC or HB in almost all cases, not only on average.
Furthermore, results obtained from other methods can also
perform considerably worse than the mean performance,
entailing a certain riskwhen being used in practice.

Finally, even if HTN-BF is playing quite a dominant role,
it is worth mentioning that each of the other methods yields

Fig. 10. Average ranks over time (in ms) for the three performance
measures: instance-wise F-Measure (FI), label-wise F-Measure (FL),
and micro-averaged F-Measure (Fm).

Fig. 9. Evaluation times of successful classifier evaluations.

WEVER ETAL.: AUTOML FOR MULTI-LABEL CLASSIFICATION: OVERVIEW AND EMPIRICAL EVALUATION 3051

the best performance for at least one combination of dataset
and performance measure.

7.3 Discussion of Results

The first conclusion one may want to draw from the results is
that greedily pursuing candidate lines pays off in the multi-
label scenario. Among all compared algorithms, HTN-BF
along with GGP is clearly the most greedy algorithm; its only
exploration is in the number of samples drawn for each node
evaluation. But this number is small (here 3), and there is no
further update of those values once the node evaluation has
been completed. However, although GGP can also be consid-
ered quite greedy due to its local search behavior, it very
much depends on its initialization and gets stuck in local
optima quite easily. Given HTN-BF’s great overall perfor-
mance, we conclude that greediness is preferable over explo-
ration for this setting, which is characterized by an extremely
large search space.

This also seems to have an intuitive explanation in the long
evaluation times inmulti-label classification,which are shown
in terms of boxplots in Fig. 9. There is simply not enough time
for exhaustive evaluation, and being stuck in a local optimum,
at least provided enough exploration in the beginning, is a
substantially smaller risk here than not optimizing at all.

However, taking a closer look, it is not entirely clear
whether the advantage of HTN-BF is due to the search behav-
ior or due to the formal model for specifying the search space.

In other words, maybe the advantage already comes from
using a grammar-based approach for modeling the search
space instead of flattening the space to a hyper-parameter
optimization vector, whereas the (greedy) algorithm used to
traverse that space has a less strong influence.

This suspicion seems to be confirmed by the fact that the
random search, being the least greedy algorithm, does also
sometimes perform well. In fact, among all cases in which
HTN-BF is not best, the random search has the highest
chance to be the winner. For these particular datasets, this is
either attributed to the fact that the more sophisticated
methods tend to focus on flatter classifiers and thus simpler
classifier structures, or it does not seem to advocate any
strategy that exploits the information encountered so far.

On the other hand, the results of the random search are
often also quite disastrous, as it repeatedly runs into time-
outs and cannot find any reasonable solution. For example,
the score on mediamill, social1, society1, and tmc2007 is 0,
compared to values between .3 and .6 for the other algo-
rithms.4 Hence, random search is certainly not a reasonable
alternative. Note that in cases where the score is 0, classifiers
are returned that are fast to evaluate but low in perfor-
mance. Often these solutions employ a majority classifier as
a base learner for the transformation methods, which due to
the rare label activation always scores 0.

Overall, all methods seem to struggle with the tremendous
size of the search space. While greediness still seems to be the
bestway to copewith this challenge, just like all othermethods,
it tends to ignore classifiers that are structurallymore complex.
As indicated by the results of the random search, which is
more biased towards such methods, simply leaving out the
more complex methods would come at the price of excluding
the optimal solution for some tasks. Nevertheless, to improve
the performance of the obtained solutions, either the methods
need to be adapted further to work more effectively in the
MLC search space, or the problem needs to be transformed so
that the methods can better cope with it. For the latter, one
option would be to implement meta-learning approaches to
dynamically prune parts of the search space, i.e., in an
instance-wise manner, which are anticipated not to be relevant
for the final solution. For example this could be done employ-
ing approaches to extreme algorithm selection (XAS), which
proved beneficial in settings with a large number of different
algorithms [66]. In this way the optimizers could focus on the
more promising candidates as anticipated by the XAS model.
Another option would be to incorporate safeguards for the
evaluation of solution candidates to avoid timeouts, thus
allowing one to waste time for regions that are omitted from
the effective solution space anyways. Interestingly, the obser-
vation that either method needs to be adapted to better fit the
MLC setting, or that the search space needs to be transformed
in away to better suit themethods we already have developed
for SLC, perfectly matches the philosophy according to which
classifiers forMLChave been developed in the literature so far.

Fig. 11. Frequencies of chosen algorithms per optimizer and algorithm.

4. One may wonder how any algorithm can have positive results if
such results cannot be obtained even with maximum exploration. The
explanation here is that the systematic searches have a more systematic
exploration. For example, if the evaluation of a node in HTN-BF obtains
a timeout, the corresponding sub-tree of this node is ignored, whereas
random search may consider repeatedly instances of this algorithm
which are also very likely to produce a timeout.

3052 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 43, NO. 9, SEPTEMBER 2021

8 CONCLUSION

In this work, we considered existing optimization approaches
for automatingmulti-label classification and,moreover, trans-
ferred other AutoML approaches commonly used for single-
label classification to the problem domain of MLC. Further-
more, we defined a benchmarking framework for multi-label
classification, which allows for isolated optimizer compari-
sons ensuring that all of them run within the same computa-
tional and time constraints, and that they operate on the same
search space, i.e., the same solution candidates can be found
and the same performance estimation of solution candidates
is used.

Our extensive study revealed that a reduction of the
AutoML problem to hyper-parameter optimization does not
scale well to the problem domain ofMLC out of the box. Con-
sequently, to apply those techniques properly, more work on
dealing with the extremely large search space and the deep
hierarchical configuration structures of multi-label classifiers
is necessary.

On the contrary, a greedy global search approach based
on hierarchical task network planning yields promising
results, showing the potential to properly deal with the hier-
archical structures that are also reflected in the model of the
search space. However, all of the considered AutoML
approaches have in common that they focus on classifiers
having a flatter structure than others. As a result, more com-
plex classifiers with a better generalization performance are
not yet sufficiently considered. To address this problem, we
outlined two interesting research directions, which are in
line with the two ways classifiers for MLC have been devel-
oped in the past: to either adapt the methods to the specifics
of the MLC search space, or to transform the original
AutoML problem for MLC into a problem that is more ame-
nable to the already existing approaches.

ACKNOWLEDGMENTS

This work was supported by the German Research Founda-
tion (DFG) within the Collaborative Research Center
“On-The-Fly Computing” (SFB 901/3 project no. 160364472).
The authors gratefully acknowledge the support of this project
by the Paderborn Center for Parallel Computing (PC2), which
provided computational resources and computing time.

REFERENCES

[1] M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum, and
F. Hutter, “Efficient and robust automated machine learning,” in
Proc. 28th Int. Conf. Neural Inf. Process. Syst., 2015, pp. 2755–2763.

[2] R. S. Olson, N. Bartley, R. J. Urbanowicz, and J. H. Moore,
“Evaluation of a tree-based pipeline optimization tool for auto-
mating data science,” in Proc. Genetic Evol. Comput. Conf., 2016,
pp. 485–492.

[3] W. Waegeman, K. Dembczy�nski, and E. H€ullermeier, “Multi-target
prediction: A unifying view on problems and methods,” Data Min-
ing Knowl. Discov., vol. 33, no. 2, pp. 293–324, 2019.

[4] A. G. de S�a, G. L. Pappa, and A. A. Freitas, “Towards a method for
automatically selecting and configuring multi-label classification
algorithms,” in Proc. Genetic Evol. Comput. Conf. Companion, 2017,
pp. 1125–1132.

[5] A. G. de S�a, A. A. Freitas, and G. L. Pappa, “Automated selection
and configuration of multi-label classification algorithms with
grammar-based genetic programming,” in Proc. Int. Conf. Parallel
Problem Solving Nat., 2018, pp. 308–320.

[6] M. Wever, F. Mohr, and E. H€ullermeier, “Automated multi-label
classification based on ML-plan,” 2018, arXiv: 1811.04060.

[7] M. Wever, F. Mohr, A. Tornede, and E. H€ullermeier, “Automating
multi-label classification extending ML-plan,” in Proc. Autom.
Mach. Learn. Workshop ICML, 2019, vol. 2020.

[8] A. Pakrashi and B. Mac Namee, “CascadeML: An automatic neu-
ral network architecture evolution and training algorithm for
multi-label classification (best technical paper),” in Proc. Int. Conf.
Innovative Techn. Appl. Artif. Intell., 2019, pp. 3–17.

[9] C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Auto-
WEKA: Combined selection and hyperparameter optimization of
classification algorithms,” in Proc. 19th ACM SIGKDD Int. Conf.
Knowl. Discov. Data Mining, 2013, pp. 847–855.

[10] F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Sequential model-
based optimization for general algorithm configuration,” in Proc.
Int. Conf. Learn. Intell. Optim., 2011, pp. 507–523.

[11] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar,
“Hyperband: A novel bandit-based approach to hyperparameter
optimization,” J.Mach. Learn. Res., vol. 18, no. 1, pp. 6765–6816, 2017.

[12] S. Falkner, A. Klein, and F. Hutter, “BOHB: Robust and efficient
hyperparameter optimization at scale,” in Proc. 35th Int. Conf.
Mach. Learn., 2018, pp. 1437–1446.

[13] B. Komer, J. Bergstra, and C. Eliasmith, “Hyperopt-sklearn,”
in, Automated Machine Learning. Berlin, Germany: Springer,
2019.

[14] S. C. N. das Dôres, C. Soares, and D. Ruiz, “Bandit-based auto-
mated machine learning,” in Proc. 7th Brazilian Conf. Intell. Syst.,
2018, pp. 121–126.

[15] P. Gijsbers and J. Vanschoren, “GAMA: Genetic automated
machine learning assistant,” J. Open Source Softw., vol. 4, no. 33,
2019, Art. no. 1132.

[16] A. G. de S�a, W. J. G. Pinto, L. O. V. Oliveira, and G. L. Pappa,
“RECIPE: A grammar-based framework for automatically evolv-
ing classification pipelines,” in Proc. Eur. Conf. Genetic Program.,
2017, pp. 246–261.

[17] F. Mohr, M. Wever, and E. H€ullermeier, “ML-plan: Automated
machine learning via hierarchical planning,” Mach. Learn., vol. 107,
no. 8/10, pp. 1495–1515, 2018.

[18] M. Wever, F. Mohr, and E. H€ullermeier, “ML-plan for unlimited-
length machine learning pipelines,” in Proc. ICML Autom. Mach.
Learn. Workshop, 2018.

[19] H. Rakotoarison, M. Schoenauer, and M. Sebag, “Automated
machine learning with monte-carlo tree search,” in Proc. 28th Int.
Joint Conf. Artif. Intell., 2019, pp. 3296–3303.

[20] I. Drori et al., “AlphaD3M: Machine learning pipeline synthesis,”
in Proc. Autom. Mach. Learn. Workshop ICML, 2018.

[21] X. He, K. Zhao, and X. Chu, “AutoML: A survey of the state-of-the-
art,” 2019, arXiv: 1908.00709.

[22] N. Erickson et al., “AutoGluon-tabular: Robust and accurate
AutoML for structured data,” 2020, arXiv: 2003.06505.

[23] B. Chen, H. Wu, W. Mo, I. Chattopadhyay, and H. Lipson,
“Autostacker: A compositional evolutionary learning system,” in
Proc. Genetic Evol. Comput. Conf., 2018, pp. 402–409.

[24] X. Sun, J. Lin, and B. Bischl, “ReinBo:Machine learning pipeline con-
ditional hierarchy search and configuration with Bayesian optimiza-
tion embedded reinforcement learning,” in Proc. Joint Eur. Conf.
Mach. Learn. Knowl. Discov. Databases, 2019, pp. 68–84.

[25] E. LeDell and S. Poirier, “H2OAutoML: Scalable automatic machine
learning,” in Proc. Autom. Mach. Learn. Workshop ICML, 2020,
vol. 2020.

[26] A. Balaji and A. Allen, “Benchmarking automatic machine learning
frameworks,” 2018, arXiv: 1808.06492.

[27] P.Gijsbers, E. LeDell, S. Poirier, J. Thomas, B. Bischl, and J.Vanschoren,
“An open source AutoML benchmark,” in Proc. 6th ICML Workshop
Autom.Mach. Learn., 2019.

[28] G. Tsoumakas, I. Katakis, and I. Vlahavas, “Mining multi-label
data,” in, Data Mining and Knowledge Discovery Handbook. Berlin,
Germany: Springer, 2009.

[29] M.-L. Zhang andZ.-H. Zhou, “A review onmulti-label learning algo-
rithms,” IEEE Trans. Knowl. Data Eng., vol. 26, no. 8, pp. 1819–1837,
Aug. 2014.

[30] G. Tsoumakas and I. Katakis, “Multi-label classification: An
overview,” Int. J. Data Warehousing Mining, vol. 3, no. 3, pp. 1–
13, 2007.

[31] D. Kocev, C. Vens, J. Struyf, and S. D�zeroski, “Ensembles of multi-
objective decision trees,” in Proc. Eur. Conf. Mach. Learn., 2007,
pp. 624–631.

[32] M.-L. Zhang, Y.-K. Li, X.-Y. Liu, and X. Geng, “Binary relevance
for multi-label learning: An overview,” Front. Comput. Sci., vol. 12,
no. 2, pp. 191–202, 2018.

WEVER ETAL.: AUTOML FOR MULTI-LABEL CLASSIFICATION: OVERVIEW AND EMPIRICAL EVALUATION 3053

[33] J. Read, B. Pfahringer, G. Holmes, and E. Frank, “Classifier chains
for multi-label classification,” Mach. Learn., vol. 85, no. 3, 2011,
Art. no. 333.

[34] R. Senge, J. J. Del Coz, and E. H€ullermeier, “On the problem of error
propagation in classifier chains for multi-label classification,” in
Proc. Data Anal.Mach. Learn. Knowl. Discov., 2014, pp. 163–170.

[35] A. Rivolli, J. Read, C. Soares, B. Pfahringer, and A. C. de Carvalho,
“An empirical analysis of binary transformation strategies and
base algorithms for multi-label learning,” Mach. Learn., vol. 109,
pp. 1509–1563, 2020.

[36] M. Wever, A. Tornede, F. Mohr, and E. H€ullermeier, “LiBRe: Label-
wise selection of base learners in binary relevance for multi-label
classification,” in Proc. Int. Symp. Intell. Data Anal., 2020, pp. 561–573.

[37] J. Nam, Y.-B. Kim, E. L. Mencia, S. Park, R. Sarikaya, and
J. F€urnkranz, “Learning context-dependent label permutations for
multi-label classification,” in Proc. 36th Int. Conf. Mach. Learn.,
2019, pp. 4733–4742.

[38] F. Hutter, L. Kotthoff, and J. Vanschoren, Automated Machine
Learning: Methods, Systems, Challenges. Berlin, Germany: Springer
Nature, 2019.

[39] M.-A. Z€oller and M. F. Huber, “Benchmark and survey of auto-
mated machine learning frameworks,” 2019, arXiv: 1904.12054.

[40] Q. Yao et al., “Taking human out of learning applications: A sur-
vey on automated machine learning,” 2018, arXiv: 1810.13306.

[41] R. Elshawi, M. Maher, and S. Sakr, “Automated machine learning:
State-of-the-art and open challenges,” 2019, arXiv: 1906.02287.

[42] J. Snoek, H. Larochelle, and R. P. Adams, “Practical Bayesian opti-
mization of machine learning algorithms,” in Proc. 25th Int. Conf.
Neural Inf. Process. Syst., 2012, pp. 2951–2959.

[43] L. Kotthoff, C. Thornton, H.H.Hoos, F.Hutter, andK. Leyton-Brown,
“Auto-WEKA 2.0: Automatic model selection and hyperparameter
optimization in WEKA,” J. Mach. Learn. Res., vol. 18, no. 1, pp. 1–5,
2017.

[44] K. Jamieson and A. Talwalkar, “Non-stochastic best arm identifi-
cation and hyperparameter optimization,” in Proc. 19th Int. Conf.
Artif. Intell. Statist., 2016, pp. 240–248.

[45] M. Hoffman, B. Shahriari, and N. Freitas, “On correlation and
budget constraints in model-based bandit optimization with
application to automatic machine learning,” in Proc. 17th Int. Conf.
Artif. Intell. Statist., 2014, pp. 365–374.

[46] M. Feurer, K. Eggensperger, S. Falkner, M. Lindauer, and F. Hutter,
“Practical automated machine learning for the AutoML challenge
2018,” in Proc. Int.Workshop Autom.Mach. Learn. ICML, 2018.

[47] M. Mitchell, An Introduction to Genetic Algorithms. Cambridge,
MA, USA: MIT Press, 1998.

[48] R. I. Mckay, N. X. Hoai, P. A. Whigham, Y. Shan, and M. O’neill,
“Grammar-based genetic programming: A survey,” Genetic Pro-
gram. Evolvable Machines, vol. 11, no. 3/4, pp. 365–396, 2010.

[49] M. Ghallab, D. Nau, and P. Traverso, Automated Planning: Theory
and Practice. Amsterdam, Netherlands: Elsevier, 2004.

[50] F. Mohr, M. Wever, and E. H€ullermeier, “Automated machine
learning service composition,” 2018, arXiv: 1809.00486.

[51] F. Mohr, M. Wever, E. H€ullermeier, and A. Faez, “(WIP) towards
the automated composition of machine learning services,” in Proc.
IEEE Int. Conf. Services Comput., 2018, pp. 241–244.

[52] P. I. Frazier, “A tutorial on Bayesian optimization,” 2018, arXiv:
1807.02811.

[53] J. S. Bergstra, R. Bardenet, Y. Bengio, and B. K�egl, “Algorithms for
hyper-parameter optimization,” in Proc. 24th Int. Conf. Neural Inf.
Process. Syst., 2011, pp. 2546–2554.

[54] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32,
2001.

[55] P. Hennig and C. J. Schuler, “Entropy search for information-effi-
cient global optimization,” J. Mach. Learn. Res., vol. 13, no. 1,
pp. 1809–1837, 2012.

[56] P. I. Frazier, W. B. Powell, and S. Dayanik, “A knowledge-gradient
policy for sequential information collection,” SIAM J. Control Optim.,
vol. 47, no. 5, pp. 2410–2439, 2008.

[57] J. Mo�ckus, “On Bayesian methods for seeking the extremum,” in
Proc. IFIP Tech. Conf. Optim. Techn., 1975, pp. 400–404.

[58] D.R. Jones,M. Schonlau, andW. J.Welch, “Efficient global optimiza-
tion of expensive black-box functions,” J. Global Optim., vol. 13, no. 4,
pp. 455–492, 1998.

[59] Z. Karnin, T. Koren, and O. Somekh, “Almost optimal exploration
in multi-armed bandits,” in Proc. 30th Int. Conf. Mach. Learn., 2013,
pp. 1238–1246.

[60] M. Wever, F. Mohr, and E. H€ullermeier, “Automatic machine
learning: Hierarchical planning versus evolutionary optimization,”
in Proc. 27thWorkshop Comput. Intell., 2017.

[61] F. Mohr, T. Lettmann, E. H€ullermeier, and M. Wever,
“Programmatic task network planning,” in Proc. 1st ICAPS Work-
shop Hierarchical Planning, 2018, pp. 31–39.

[62] J.-U. Kietz, F. Serban, A. Bernstein, S. Fischer, J. Vanschoren, and
P. Brazdil, “Designing KDD-workflows via HTN-planning for
intelligent discovery assistance,” in Proc. 20th Eur. Conf. Artif.
Intell., 2012, pp. 1011–1012.

[63] J. Read, P. Reutemann, B. Pfahringer, and G. Holmes, “MEKA: A
multi-label/multi-target extension to WEKA,” J. Mach. Learn. Res.,
vol. 17, no. 21, pp. 667–671, 2016. [Online]. Available: http://jmlr.
org/papers/v17/12–164.html

[64] F. Eibe, M. Hall, and I. Witten, “The weka workbench. online
appendix for “data mining: Practical machine learning tools and
techniques–Morgan Kaufmann,” 2016.

[65] A. G. de S�a, A. A. Freitas, and G. L. Pappa, “Multi-label classifica-
tion search space in the MEKA software,” 2018, arXiv: 1811.11353.

[66] A. Tornede, M. Wever, and E. H€ullermeier, “Extreme algorithm
selection with dyadic feature representation,” in Proc. Discov. Sci.
Conf., 2020, pp. 309–324.

Marcel Wever received the BSc and MSc degrees
from Paderborn University, Germany, in 2015,
respectively 2017. He is currently working toward
the PhD degree in automated machine learning
and multi-label classification, Paderborn University,
Germany. He is currently working as a research
assistant at the intelligent systems and machine
learning group at Paderborn University, Germany.

Alexander Tornede received the BSc and MSc
degrees in computer science from Paderborn
University, Germany, in 2015, respectively 2018.
He is currently working toward the PhD degree
from Paderborn University, Germany. He is
currently working as a research assistant with the
intelligent systems and machine learning group at
Paderborn University, Germany.

Felix Mohr received the PhD degree from Pader-
born University, Germany, in 2016. He is a currently
professor at the Faculty of Engineering, Universi-
dad de laSabana, Colombia. His research interests
include stochastic tree search, as well as auto-
mated software configuration with a particular spe-
cialization on automatedmachine learning.

Eyke H€ullermeier (Senior Member, IEEE) received
the PhD degree, in 1997 and the Habilitation
degree, in 2002. He is currently a professor at the
Department of Computer Science, Paderborn
University, Germany, where he heads the Intelligent
Systems and Machine Learning Group, a member
of the Heinz Nixdorf Institute, and a director of the
Software Innovation Campus Paderborn. Prior to
joining Paderborn University, Germany, in 2014, he
held professorships at theUniversities of Dortmund,
Magdeburg, andMarburg.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

3054 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 43, NO. 9, SEPTEMBER 2021

http://jmlr.org/papers/v17/12--164.html
http://jmlr.org/papers/v17/12--164.html

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

