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Abstract. In multi-label classification (MLC), each instance is associ-
ated with a set of class labels, in contrast to standard classification, where
an instance is assigned a single label. Binary relevance (BR) learning,
which reduces a multi-label to a set of binary classification problems,
one per label, is arguably the most straight-forward approach to MLC.
In spite of its simplicity, BR proved to be competitive to more sophisti-
cated MLC methods, and still achieves state-of-the-art performance for
many loss functions. Somewhat surprisingly, the optimal choice of the
base learner for tackling the binary classification problems has received
very little attention so far. Taking advantage of the label independence
assumption inherent to BR, we propose a label-wise base learner selection
method optimizing label-wise macro averaged performance measures. In
an extensive experimental evaluation, we find that or approach, called
LiBRe, can significantly improve generalization performance.

Keywords: Multi-label classification · Algorithm selection · Binary
relevance

1 Introduction

By relaxing the assumption of mutual exclusiveness of classes, the setting of
multi-label classification (MLC) generalizes standard (binary or multinomial)
classification—subsequently also referred to as single-label classification (SLC).
MLC has received a lot of attention in the recent machine learning literature [23,
29]. The motivation for allowing an instance to be associated with several classes
simultaneously originated in the field of text categorization [19], but nowadays
multi-label methods are used in applications as diverse as image processing [4,26]
and video annotation [14], music classification [18], and bioinformatics [2].

Common approaches to MLC either adapt existing algorithms (algorithm
adaptation) to the MLC setting, e.g., the structure and the training procedure
for neural networks, or reduce the original MLC problem to one or multiple SLC
problems (problem transformation). The most intuitive and straight-forward
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problem transformation is to decompose the original task into several binary
classification tasks, one per label. More specifically, each task consists of train-
ing a classifier that predicts whether or not a specific label is relevant for a query
instance. This approach is called binary relevance (BR) learning [3]. Beyond BR,
many more sophisticated strategies have been developed, most of them trying
to exploit correlations and interdependencies between labels [28]. In fact, BR
is often criticized for ignoring such dependencies, implicitly assuming that the
relevance of one label is (statistically) independent of the relevance of another
label. In spite of this, or perhaps just because of this simplification, BR proved to
achieve state-of-the-art performance, especially for so-called decomposable loss
functions, for which its optimality can even be corroborated theoretically [7,9].

Techniques for reducing MLC to SLC problems involve the choice of a
base learner for solving the latter. Somewhat surprisingly, this choice is often
neglected, despite having an important influence on generalization performance
[10–12,15]. Even in more extensive studies [10,12], a base learner is fixed a
priori in a more or less arbitrary way. Broader studies considering multiple
base learners, such as [6,22], are relatively rare and rather limited in terms
of the number of base learners considered. Only recently, greater attention to
the choice of the base learner has been paid in the field of automated machine
learning (AutoML) [17,24,25], where the base learner is considered as an impor-
tant “hyper-parameter” to tune. Indeed, while optimizing the selection of base
learners is laborious and computationally expensive in general, which could be
one reason for why it has been tackled with reservation, AutoML now offers new
possibilities in this direction.

Motivated by these opportunities, and building on recent AutoML methodol-
ogy, we investigate the idea of base learner selection for BR in a more systematic
way. Instead of only choosing a single base learner to be used for all labels simul-
taneously, we even allow for selecting an individual learner for each label (i.e.,
each binary classification task) separately. In an extensive experimental study,
we find that customizing BR in a label-wise manner can significantly improve
generalization performance.

2 Multi-label Classification

The setting of multi-label classification (MLC) allows an instance to belong to
several classes simultaneously. Consequently, several class labels can be assigned
to an instance at the same time. For example, a single image could be tagged
with labels Sun and Beach and Sea and Yacht.

2.1 Problem Setting

To formalize this learning problem, let X denote an instance space and L =
{λ1, . . . , λm} a finite set of m class labels. An instance x ∈ X is then (non-
deterministically) associated with a subset of class labels L ∈ 2L. The subset L
is often called the set of relevant labels, while its complement L\L is considered
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irrelevant for x. Furthermore, a set L of relevant labels can be identified by a
binary vector y = (y1, . . . , ym) where yi = 1 if λi ∈ L and yi = 0 otherwise (i.e.,
if λi ∈ L \ L). The set of all label combinations is denoted by Y = {0, 1}m.

Generally speaking, a multi-label classifier h is a mapping h : X −→ Y
returning, for a given instance x ∈ X , a prediction in the form of a vector

h(x) =
(
h1(x), h2(x), . . . , hm(x)

)
.

The MLC task can be stated as follows: Given a finite set of observations as
training data Dtrain

..= (Xtrain, Ytrain) =
{
(xi,yi)

}N

i=1
⊂ XN × Y N , the goal is

to learn a classifier h : X −→ Y that generalizes well beyond these observations
in the sense of minimizing the risk with respect to a specific loss function.

2.2 Loss Functions

A wide spectrum of loss functions has been proposed for MLC, many of which are
generalizations or adaptations of losses for single-label classification. In general,
these loss functions can be divided into two major categories: instance-wise and
label-wise. While the latter first compute a loss for each label and then aggregate
the values obtained across the labels, e.g., by taking the mean, instance-wise loss
functions first compute a loss for each instance and subsequently aggregate the
losses over all instances in the test data. As an obvious advantage of label-wise
loss functions, note that they can be optimized by optimizing a standard SLC loss
for each label separately. In other words, label-wise losses naturally harmonize
with label-wise decomposition techniques such as BR. Since this allows for a
simpler selection of the base learner per label, we focus on two such loss functions
in the following. For additional details on MLC and loss functions, especially
instance-wise losses, we refer to [23,29].

Let Dtest
..= (Xtest, Ytest) = {(xi,yi)}Si=1 ⊂ XS × YS be a test set of size S.

Further, let H = (h(x1), . . . ,h(xS)) ⊂ YS . Then, the Hamming loss, which can
be seen as a generalized form of the error rate, is defined1 as

LH(Ytest,H) ..=
1
m

m∑

j=1

1
S

S∑

i=1

�
yi,j �= hj(xi))

�
. (1)

Moreover, the label-wise macro-averaged F-measure (which is actually a measure
of accuracy, not a loss function, and thus to be maximized) is given by

F(Ytest,H) ..=
1
m

m∑

j=1

2
∑S

i=1 yi,jhj(xi)
∑S

i=1 yi,j +
∑S

i=1 hj(xi)
. (2)

Obviously, to optimize the measures (1) and (2), it is sufficient to optimize each
label individually, which corresponds to optimizing the inner term of the (first)
sum.
1 �·� is the indicator function.
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2.3 Binary Relevance

As already said, binary relevance learning decomposes the MLC task into several
binary classification tasks, one for each label. For every such task, a single-label
classifier, such as an SVM, random forest, or logistic regression, is trained. More
specifically, a classifier for the jth label is trained on the dataset {(xi, yi,j)}Ni=1.
Formally, BR induces a multi-label predictor

BRb : X −→ Y, x �→ (
b1(x), b2(x), . . . , bm(x)

)
,

where bj : X −→ {0, 1} represents the prediction of the base learner for the jth

label.

3 Related Work

Binary relevance has been subject to modifications in various directions, an
excellent overview of which is provided in a recent survey [28]. Extensions of
BR mainly focus on its inability to exploit label correlations, due to treating
all labels independently of each other. Three types of approaches have been
proposed to overcome this problem. The first is to use classifier chains [15]. In
this approach, one first defines a total order among the m labels and then trains
binary classifiers in this order. The input of the classifier for the ith label is the
original data plus the predictions of all classifiers for labels preceding this label in
the chain. Similarly, in addition to the binary classifiers for the m labels, stacking
uses a second layer of m meta-classifiers, one for each label, which take as input
the original data augmented by the predictions of all base learners [11,21]. A
third approach seeks to capture the dependencies in a Bayesian network, and
to learn such a network from the data [1,20]. One can then use probabilistic
inference to compute the probability for each possible prediction.

Another line of research looks at how the problem of imbalanced classes can
be addressed using BR. Class imbalance constitutes an important challenge in
multi-label classification in general, since most labels are usually irrelevant for
an instance, i.e., the overwhelming majority of labels in a binary task is negative.
Using BR, the imbalance can be “repaired” in a label-wise manner, using tech-
niques for standard binary classification, such as sampling [5] or thresholding
the decision boundary [13]. An approach taking dependencies among labels into
account (and hence applied prior to splitting the problem) is presented in [27].

To the best of our knowledge, this is the first approach in which the base
learner used for the different labels is subject to optimization itself. In fact,
except for AutoML tools, we are not even aware of an approach optimizing a
single base learner applied to all labels. In all the above approaches, the choice
of the base learners is an external decision and not part of the learning problem
itself.
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4 Label-Wise Selection of Base Learners

As already stated before, while various attempts at improving binary relevance
learning by capturing label dependencies have been made, the choice of the
base learner for tackling the underlying binary problems—as another potential
source of improvement—has attracted much less attention in the literature so
far. If considered at all, this choice has been restricted to the selection of a single
learner, which is applied to all m binary problems simultaneously.

We proceed from a portfolio of base learners

A ..=
{
a | a : (Xn × {0, 1}n) −→ (X −→ {0, 1})

}
.

Then, given training data Dtrain = (Xtrain, Ytrain), the objective is to find the
base learner a for which BR performs presumably best on test data Dtest =
(Xtest, Ytest) with respect to some loss function L:

arg min
a∈A

L(
Ytest,BRb(Xtest)

)
, with bj ..= a

(
Xtrain, Y

(j)
train

)
, (3)

where Y
(i)
train denotes the jth column of the label matrix Ytrain.

Moreover, we propose to leverage the independence assumption underlying
BR to select a different base learner for each of the labels, and refer to this
variant as LiBRe. We are thus interested in solving the following problem:

arg min
a∈Am

L(
Ytest,BRb(Xtest)

)
, with bj ..= aj

(
Xtrain, Y

(j)
train

)
. (4)

Compared to (3), we thus significantly increase flexibility. In fact, by taking
advantage of the different behavior of the respective base learners, and the ability
to model the relationship between features and a class label differently for each
binary problem, one may expect to improve the overall performance of BR. On
the other side, the BR learner as a whole is now equipped with many degrees of
freedom, namely the choice of the base learners, which can be seen as “hyper-
parameters” of LiBRe. Since this may easily lead to undesirable effects such
as over-fitting of the training data, an improvement in terms of generalization
performance (approximated by the performance on the test data) is by no means
self-evident. From this point of view, the restriction to a single base learner in (3)
can also be seen as a sort of regularization. Such kind of regulation can indeed
be justified for various reasons. In most cases, for example, the binary problems
are indeed not completely different but share important characteristics.

Computationally, (4) may appear more expensive than choosing a single base
learner jointly for all the labels, at least at first sight. However, the complexity in
terms of the number of base learners to be evaluated remains exactly the same.
In fact, just like in (3), we need to fit a BR model for every base learner exactly
once. The only difference is that, instead of picking one of the base learners for
all labels in the end, LiBRe assembles the base learners performing best for the
respective labels (recall that we head for label-wise decomposable performance
measures).
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5 Experimental Evaluation

This section presents an empirical evaluation of LiBRe, comparing it to the
use of a single base learner as a baseline. We first describe the experimental
setup (Sect. 5.1), specify the baseline with the single best base learner (Sect. 5.2),
and define the oracle performance (Sect. 5.3) for an upper bound. Finally, the
experimental results are presented in Sect. 5.4.

5.1 Experimental Setup

For the evaluation, we considered a total of 24 MLC datasets. These datasets
stem from various domains, such as text, audio, image classification, and biology,
and range from small datasets with only a few instances and labels to larger
datasets with thousands of instances and hundreds of labels. A detailed overview
is given in Table 1, where, in addition to the number of instances (#I) and
number of labels (#L), statistics regarding the label-to-instance ratio (L2IR), the
percentage of unique label combinations (ULC), and the average label cardinality
(card.) are given.

The train and validation folds were derived by conducting a nested 2-fold
cross validation, i.e., to assess the test performance we have an outer loop of 2-
fold cross validation. To tune the thresholds and select the base learner, we again
split the training fold of the outer loop into train and validation sets by 2-fold
cross validation. The entire process is repeated 5 times with different random
seeds for the cross validation. Throughout this study, we trained and evaluated
a total of 14,400 instances of BR and 649,800 base learners accordingly.

Furthermore, we consider two performance measures, namely the Hamming
loss LH and the macro-averaged label-wise F-measure as defined in (1) and (2),
respectively. A binary prediction is obtained by thresholding the prediction of
an underlying scoring classifier, which produces values in the unit interval (the
higher the value, the more likely a label is considered relevant). The thresholds
τ = (τ1, τ2, . . . , τm) are optimized by a grid search considering values for τi ∈
[0, 1] and a step size of 0.01. When optimizing the thresholds, we either allow for
label-wise optimization or constrain the threshold to be the same for all labels
(uniform τ), i.e., τi = τj for all i, j ∈ {1, . . . , m}.

In order to determine significance of results, we apply a Wilcoxon signed rank
test with a threshold for the p-value of 0.05. Significant improvements of LiBRe
are marked by • and significant degradations by ◦.

We executed the single BR evaluation runs, i.e., training and evaluating either
on the validation or test split, on up to 300 nodes in parallel, each of them
equipped with 8 CPU cores and 32 GB of RAM, and a timeout of 6 h. Due to
the limitation of the memory and the runtime, some of the evaluations failed
due to memory overflows or timeouts.

The implementation is based on the Java machine learning library WEKA [8]
and an extension for multi-label classification called MEKA [16]. In our study, we
consider a total of 20 base learners from WEKA: BayesNet (BN), DecisionStump
(DS), IBk, J48, JRip (JR), KStar (KS), LMT, Logistic (L), MultilayerPerceptron
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Table 1. The datasets used in this study. Furthermore, the number of instances (#I),
the number of labels (#L), the label-to-instance ratio (L2IR), the percentage of unique
label combinations (ULC), and the label cardinality (card.) are given.

Dataset #I #L L2IR ULC card. Dataset #I #L L2IR ULC card.

arts1 7484 26 0.0035 0.08 1.65 bibtex 7395 159 0.0215 0.39 2.40

birds 645 19 0.0295 0.21 1.01 bookmarks 87856 208 0.0024 0.21 2.03

business1 11214 30 0.0027 0.02 1.60 computers1 12444 33 0.0027 0.03 1.51

education1 12030 33 0.0027 0.04 1.46 emotions 593 6 0.0101 0.05 1.87

enron-f 1702 53 0.0311 0.44 3.38 entertainment1 12730 21 0.0016 0.03 1.41

flags 194 12 0.0619 0.53 4.12 genbase 662 27 0.0408 0.05 1.25

health1 9205 32 0.0035 0.04 1.64 llog-f 1460 75 0.0514 0.21 1.18

mediamill 43907 101 0.0023 0.15 4.38 medical 978 45 0.0460 0.10 1.25

recreation1 12828 22 0.0017 0.04 1.43 reference1 8027 33 0.0041 0.03 1.17

scene 2407 6 0.0025 0.01 1.07 science1 6428 40 0.0062 0.07 1.45

social1 12111 39 0.0032 0.03 1.28 society1 14512 27 0.0019 0.07 1.67

tmc2007 28596 22 0.0008 0.05 2.16 yeast 2417 14 0.0058 0.08 4.24

(MlP), NaiveBayes (NB), NaiveBayesMultinomial (NBM), OneR (1R), PART
(P), REPTree (REP), RandomForest (RF), RandomTree (RT), SMO, SimpleL-
ogistic (SL), VotedPerceptron (VP), ZeroR (0R). All the data and source code
is made available via GitHub (https://github.com/mwever/LiBRe).

5.2 Single Best Base Learner

To figure out how much we can benefit from selecting a base learner for each label
individually, and whether this flexibility is beneficial at all, we define the single
best base learner, subsequently referred to as SBB, as a baseline. In principle,
SBB is nothing but a grid search over the portfolio of base learners (3).

When considering a base learner a, it is chosen to be employed as a base
learner for every label. After training and validating the performance, we pick
the base learner that performs best overall. This baseline thus gives an upper
bound on the performance of what can be achieved when the base learner is
not chosen for each label individually. As simple and straight-forward as it is,
this baseline represents what is currently possible in implementations of MLC
libraries, and already goes beyond what is most commonly done in the literature.

5.3 Optimistic Versus Validated Optimization

In addition to the results obtained by selecting the base learner(s) according
to the validation performance (obtained in the inner loop of the nested cross
validation), we consider optimistic performance estimates, which are obtained
as follows: After having trained the base learners on the training data, we select
the presumably best one, not on the basis of their performance on validation
data, but based on their actual test performance (as observed in the outer loop

https://github.com/mwever/LiBRe
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Fig. 1. The heat map shows the average share of each base learner being employed
for a label with respect to the optimized performance measure: Hamming (LH) or the
label-wise macro averaged F-measure (F ).

of the nested cross-validation). Intuitively, this can be understood as a kind of
“oracle” performance: Given a set of candidate predictors to choose from, the
oracle anticipates which of them will perform best on the test data.

Although these performances should be treated with caution, and will cer-
tainly tend to overestimate the true generalization performance of a classifier,
they can give some information about the potential of the optimization. More
specifically, these optimistic performance estimates suggest an upper bound on
what can be obtained by the nested optimization routine.

5.4 Results

In Fig. 1, the average share of a base learner per label is shown. From this
heatmap, it becomes obvious that for the SBB baseline only a subset of base
learners plays a role. However, one can also notice that the distribution of the
shares varies when different performance measures are optimized. Furthermore,
although random forest (RF) achieves significant shares of 0.8 for the Hamming
loss and around 0.6 for the F-measure, it is not best on all the datasets. To put
it differently, one still needs to optimize the base learner per dataset. This is
especially true, when different performance measures are of interest.

In the case of LiBRe, it is clearly recognizable how the shares are distributed
over the base learners, in contrast to SBB. For example, the shares of RF decrease
to 0.29 for F-measure and to 0.25 for Hamming, respectively. Moreover, base
learners that did not even play any role in SBB are now gaining in importance
and are selected quite often. Although there are significant differences in the
frequency of base learners being picked, there is not a single base learner in the
portfolio that was never selected.

In Table 2, the results for optimizing Hamming loss are presented. The opti-
mistic performance estimates already indicate that there is not much room for
improvement. This comes at no surprise, since the datasets are already pretty
much saturated, i.e., the loss is already close to 0 for most of the datasets. While
LiBRe performs competitively to SBB for the setting with uniform τ , SBB com-
pares favourably to LiBRe in the case where the thresholds can be tuned in a
label-wise manner. Apparently, the additional degrees of freedom make LiBRe
more prone to over-fitting, especially on smaller datasets.

In contrast to the previous results, for the optimization of the F-measure,
the optimistic performance estimates already give a promising outlook on the
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Table 2. Results obtained for minimizing LH optimistically resp. with validation per-
formances. Thresholds are optimized either jointly for all the labels (uniform τ) or
label-wise. Best performances per setting and dataset are highlighted in bold. Signifi-
cant improvements of LiBRe are marked by a • and degradations by ◦.

Dataset Optimistic uniform τ Validated uniform τ Optimistic label-wise τ Validated label-wise τ

LiBRe SBB LiBRe SBB LiBRe SBB LiBRe SBB

arts1 0.0515 0.0536 0.0531 0.0538 0.0504 0.0513 0.0526 0.0525

bibtex 0.0118 0.0126 0.0126 0.0127 0.0115 0.0120 0.0151 0.0139

birds 0.0357 0.0397 0.0476 0.0420 ◦ 0.0329 0.0352 0.0470 0.0422 ◦
bookmarks 0.0085 0.0087 0.0086 0.0087 • 0.0085 0.0086 0.0105 0.0114 •
business1 0.0233 0.0248 0.0241 0.0249 • 0.0218 0.0223 0.0227 0.0228

computers1 0.0313 0.0334 0.0329 0.0335 0.0301 0.0306 0.0323 0.0312

education1 0.0352 0.0365 0.0359 0.0369 • 0.0340 0.0344 0.0354 0.0349 ◦
emotions 0.1762 0.1800 0.1926 0.1856 ◦ 0.1684 0.1712 0.1961 0.1875 ◦
enron-f 0.0447 0.0474 0.0481 0.0477 0.0437 0.0445 0.0485 0.0469 ◦
entertainment1 0.0432 0.0466 0.0440 0.0469 • 0.0414 0.0434 0.0430 0.0443 •
flags 0.1732 0.1979 0.2134 0.2088 0.1635 0.1799 0.2105 0.2158

genbase 7.0E-4 0.0014 0.0069 0.0016 ◦ 6.0E-4 7.0E-4 0.0070 0.0023 ◦
health1 0.0305 0.0344 0.0313 0.0347 • 0.0282 0.0297 0.0303 0.0302

llog-f 0.0149 0.0153 0.0202 0.0157 ◦ 0.0145 0.0149 0.0230 0.0178 ◦
mediamill 0.0268 0.0270 0.0271 0.0270 0.0261 0.0262 0.0265 0.0265

medical 0.0084 0.0103 0.0115 0.0109 0.0078 0.0093 0.0136 0.0116

recreation1 0.0459 0.0472 0.0472 0.0473 0.0446 0.0453 0.0468 0.0462

reference1 0.0244 0.0264 0.0267 0.0268 0.0230 0.0245 0.0255 0.0251

scene 0.0781 0.0788 0.0817 0.0794 ◦ 0.0757 0.0762 0.0816 0.0800 ◦
science1 0.0281 0.0311 0.0311 0.0317 0.0269 0.0291 0.0304 0.0302

social1 0.0197 0.0208 0.0227 0.0210 0.0188 0.0196 0.0223 0.0200

society1 0.0474 0.0495 0.0479 0.0496 • 0.0444 0.0455 0.0455 0.0461 •
tmc2007 0.0601 0.0611 0.0600 0.0611 • 0.0590 0.0611 0.0613 0.0611

yeast 0.1914 0.1926 0.2002 0.1930 ◦ 0.1886 0.1890 0.1940 0.1929 ◦

potential for improving the generalization performance through the label-wise
selection of the base learners. More precisely, they indicate that performance
gains of up to 11% points are possible. Independent of the threshold optimization
variant, LiBRe outperforms the SBB baseline, yielding the best performance on
two third of the considered datasets, 13 improvements of which are significant in
the case of uniform τ , and 11 in the case of label-wise τ . Significant degradations
of LiBRe compared to SBB can only be observed for 2 respectively 3 datasets.
Hence, for the F-measure, LiBRe compares favorably to the SBB baseline.

In summary, we conclude that LiBRe does indeed yield performance improve-
ments. However, increasing the flexibility of BR also makes it more prone to
over-fitting. Furthermore, these results were obtained by conducting a nested
2-fold cross validation. While keeping the computational costs of this evaluation
reasonable, this implies that, for the purpose of validation, the base learners were
trained on only one fourth of the original dataset. Therefore, considering nested
5-fold or 10-fold cross validation could help to reduce the observed over-fitting.



570 M. Wever et al.

Table 3. Results for maximizing the F-measure optimistically resp. with validation
performances. Thresholds are optimized either jointly for all the labels (uniform τ) or
label-wise. Best performances per setting and dataset are highlighted in bold. Signifi-
cant improvements of LiBRe are marked by a • and degradations by ◦.

Dataset Optimistic uniform τ Validated uniform τ Optimistic label-wise τ Validated label-wise τ

LiBRe SBB LiBRe SBB LiBRe SBB LiBRe SBB

arts1 0.3445 0.2749 0.3018 0.2684 • 0.3680 0.3211 0.3184 0.3001 •
bibtex 0.4020 0.3027 0.3391 0.2998 • 0.4194 0.3516 0.3378 0.3041 •
birds 0.5404 0.4424 0.3707 0.3961 ◦ 0.5832 0.5310 0.3843 0.3981 ◦
bookmarks 0.2495 0.2244 0.2347 0.2239 • 0.2646 0.2516 0.2435 0.2416

business1 0.3692 0.2854 0.2970 0.2659 • 0.3874 0.3197 0.3006 0.2790 •
computers1 0.3646 0.2861 0.3099 0.2810 • 0.3833 0.3486 0.3224 0.3190

education1 0.3346 0.2468 0.2594 0.2437 • 0.3591 0.3022 0.2652 0.2612

emotions 0.7068 0.6946 0.6670 0.6779 0.7186 0.7135 0.6761 0.6859 ◦
enron-f 0.2870 0.2192 0.2056 0.2096 0.3138 0.2773 0.2077 0.2069

entertainment1 0.4470 0.3673 0.3929 0.3500 • 0.4639 0.4049 0.3950 0.3774 •
flags 0.6280 0.5634 0.5230 0.5098 0.6474 0.5981 0.5150 0.5145

genbase 0.8126 0.7798 0.6039 0.7421 ◦ 0.8141 0.8119 0.6201 0.6390

health1 0.4203 0.3259 0.3486 0.3208 • 0.4312 0.3582 0.3464 0.3225 •
llog-f 0.1569 0.0808 0.0730 0.0689 0.1834 0.1264 0.0744 0.0741

mediamill 0.3766 0.3499 0.3481 0.3483 0.4010 0.3898 0.3543 0.3600 ◦
medical 0.4960 0.3852 0.3560 0.3639 0.5251 0.4523 0.3547 0.3208 •
recreation1 0.4964 0.4224 0.4669 0.4160 • 0.5093 0.4675 0.4670 0.4494 •
reference1 0.3185 0.2254 0.2477 0.2021 • 0.3393 0.2860 0.2587 0.2418 •
scene 0.7831 0.7816 0.7734 0.7776 0.7909 0.7897 0.7759 0.7812

science1 0.3824 0.2724 0.2928 0.2637 • 0.4033 0.3240 0.3036 0.2662 •
social1 0.3629 0.3073 0.3046 0.3060 0.3737 0.3119 0.3103 0.2769 •
society1 0.3437 0.2807 0.3180 0.2688 • 0.3597 0.3382 0.3215 0.3238

tmc2007 0.5659 0.5342 0.5467 0.5342 0.5782 0.5525 0.5656 0.5484 •
yeast 0.4970 0.4750 0.4800 0.4731 • 0.5145 0.5084 0.4922 0.4947

6 Conclusion

In this paper, we have not only demonstrated the potential of binary relevance
to optimize label-wise macro averaged measures, but also the importance of
the base learner as a hyper-parameter for each label. Especially for the case of
optimizing for F1 macro-averaged over the labels, we could achieve significant
performance improvements by choosing a proper base learner in a label-wise
manner. Compared to selecting the best single base learner, choosing the base
learner for each label individually comes at no additional cost in terms of base
learner evaluations. Moreover, the label-wise selection of base learners can be
realized by a straight-forward grid search.

As the label-wise choice of a base learner has already led to considerable
performance gains, we plan to examine to what extent the optimization of the
hyper-parameters of those base learners can lead to further improvements. Fur-
thermore, we want to increase the efficiency of the tuning by replacing the grid
search with a heuristic approach.
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Another direction of future work concerns the avoidance of over-fitting effects
due to an overly excessive flexibility of LiBRe. As already explained, the restric-
tion to a single base learner can be seen as a kind of regularization, which, how-
ever, appears to be too strong, at least according to our results. On the other
side, the full flexibility of LiBRe does not always pay off either. An interesting
compromise could be to restrict the number of different base learners used by
LiBRe to a suitable value k ∈ {1, . . . , m}. Technically, this comes down to finding
the arg min in (4), not over a ∈ Am, but over {a ∈ Am |#{a1, . . . , am} ≤ k}.
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