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Property-Driven Black-Box Testing of Numeric Functions
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Abstract:

In this work, we propose a property-driven testing mechanism to perform unit testing of functions
performing numerical computations. Our approach, similar to the property-based testing technique,
allows the tester to specify the requirements to check. Unlike property-based testing, the specification
is then used to generate test cases in a targeted manner. Moreover, our approach works as a black-box
testing tool, i.e. it does not require knowledge about the internals of the function under test. Therefore,
besides on programmed numeric functions, we also apply our technique to machine-learned regression
models. The experimental evaluation on a number of case studies shows the effectiveness of our
testing approach.
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1 Property-Driven Testing

Our testing approach is a form of learning-based testing (LBT) [Me], where – given a
black-box system under test (SUT) – a model of the SUT is learned, and thereafter test
cases are generated on the model. We in particular employ LBT for learning models of
machine-learned functions. Based on this, we develop an approach which in addition to
LBT allows for property specification and systematically generates test cases based on the
property. Our approach consists of the following steps.

Property specification. We aim to generate test cases based on a requirement specification
given by the user. In this, we follow the style used by property-based testing which takes
the following form: Assume ⇒ Assert, where the Assume specifies a pre-condition on
the input, and Assert specifies a post-condition on the output of the SUT. These logical
conditions involve standard predicate logic using integers or real numbers and basic
arithmetic and Boolean operators.

Test data generation. Once we have the property specification and the SUT, the next step is
to use the property to generate test cases on the SUT. To this end, we first of all, learn a
model using standard machine learning techniques. Since we consider numerical functions
here, we learn regression models, to be precise either decision trees or neural networks.
Next, the learned model as well as the negation of the property are translated into logical
formulas. The conjunction of these two formulae is then given to an SMT solver. If the solver
finds a (logically) satisfiable model to the formula as a counterexample to the property,
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Tab. 1: Results of detected violations (✓ = violation detected, ✗ = no violation detected)

Property
SUT L-OWA

MLC/PT
L-Uni

MLC/PT
LAF

MLC/PT
DeepSet
MLC/PT

Total
MLC/PT

infimum ✗/✗ ✗/✗ ✓/✓ ✓/✓ 2/2
supremum ✗/✗ ✗/✗ ✓/✓ ✓/✓ 2/2
monotonicity ✓/✓ ✓/✗ ✓/✓ ✓/✓ 4/3
Lipschitz ✓/✓ ✓/✓ ✓/✓ ✓/✗ 4/3
symmetry ✗/✗ ✗/✗ ✗/✗ ✗/✗ 0/0
idempotency ✗/✗ ✓/✗ ✓/✓ ✓/✓ 3/2
conjunction ✓/✓ ✗/✗ ✓/✓ ✓/✓ 3/3
disjunction ✓/✓ ✓/✓ ✓/✓ ✓/✗ 4/3
internality ✗/✗ ✓/✗ ✓/✓ ✓/✓ 3/2
invariance ✗/✗ ✓/✗ ✓/✓ ✓/✓ 3/2
additivity ✓/✓ ✗/✗ ✓/✗ ✓/✗ 3/1
total 5/5 6/2 10/9 9/6 30/22

we cross-check it on the SUT. This is necessary since we calculated the logical formula
from the model approximating the SUT. If the counterexample is also valid for the SUT
itself, we are done with testing and return the counterexample as a violation of the property.
Otherwise, we use the counterexample to retrain the model.

We have implemented our approach as part of our existing tool MLcheck and have
evaluated it on a number of predefined (i.e., implemented) and machine-learned numeric
functions [Sh]. Table 1 shows some experimental results for 4 machine-learned SUTs testing
for 11 properties (all common to aggregation functions). The table also gives a comparison
of our approach (MLC) with property-based testing (PT)5. The blue-shaded cells are cases
where the property holds for the SUT.

Data Availability

Our artifact can be found at https://github.com/arnabsharma91/MLCHECK-formalise.
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