
cba

Gregor Engels. Regina Hebig, Matthias Tichy (Hrsg.): SE 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 111

Property-Driven Black-Box Testing of Numeric Functions

Arnab Sharma1, Vitalik Melnikov2, Eyke Hüllermeier3, Heike Wehrheim4

Abstract:

In this work, we propose a property-driven testing mechanism to perform unit testing of functions
performing numerical computations. Our approach, similar to the property-based testing technique,
allows the tester to specify the requirements to check. Unlike property-based testing, the specification
is then used to generate test cases in a targeted manner. Moreover, our approach works as a black-box
testing tool, i.e. it does not require knowledge about the internals of the function under test. Therefore,
besides on programmed numeric functions, we also apply our technique to machine-learned regression
models. The experimental evaluation on a number of case studies shows the effectiveness of our
testing approach.

Keywords: Property-based testing; Regression; Testing machine-learning models

1 Property-Driven Testing

Our testing approach is a form of learning-based testing (LBT) [Me], where – given a
black-box system under test (SUT) – a model of the SUT is learned, and thereafter test
cases are generated on the model. We in particular employ LBT for learning models of
machine-learned functions. Based on this, we develop an approach which in addition to
LBT allows for property specification and systematically generates test cases based on the
property. Our approach consists of the following steps.

Property specification. We aim to generate test cases based on a requirement specification
given by the user. In this, we follow the style used by property-based testing which takes
the following form: Assume ⇒ Assert, where the Assume specifies a pre-condition on
the input, and Assert specifies a post-condition on the output of the SUT. These logical
conditions involve standard predicate logic using integers or real numbers and basic
arithmetic and Boolean operators.

Test data generation. Once we have the property specification and the SUT, the next step is
to use the property to generate test cases on the SUT. To this end, we first of all, learn a
model using standard machine learning techniques. Since we consider numerical functions
here, we learn regression models, to be precise either decision trees or neural networks.
Next, the learned model as well as the negation of the property are translated into logical
formulas. The conjunction of these two formulae is then given to an SMT solver. If the solver
finds a (logically) satisfiable model to the formula as a counterexample to the property,

1 Universität Paderborn, arnab.sharma@upb.de, 2 Universität Paderborn, melnikov@mail.upb.de, 3 LMU München,
eyke@ifi.lmu.de, 4 Universität Oldenburg, heike.wehrheim@uol.de

https://creativecommons.org/licenses/by-sa/4.0/
mailto:arnab.sharma@upb.de
mailto:melnikov@mail.upb.de
mailto:eyke@ifi.lmu.de
mailto:heike.wehrheim@uol.de


112 Arnab Sharma et al.

Tab. 1: Results of detected violations (✓ = violation detected, ✗ = no violation detected)

Property
SUT L-OWA

MLC/PT
L-Uni

MLC/PT
LAF

MLC/PT
DeepSet
MLC/PT

Total
MLC/PT

infimum ✗/✗ ✗/✗ ✓/✓ ✓/✓ 2/2
supremum ✗/✗ ✗/✗ ✓/✓ ✓/✓ 2/2
monotonicity ✓/✓ ✓/✗ ✓/✓ ✓/✓ 4/3
Lipschitz ✓/✓ ✓/✓ ✓/✓ ✓/✗ 4/3
symmetry ✗/✗ ✗/✗ ✗/✗ ✗/✗ 0/0
idempotency ✗/✗ ✓/✗ ✓/✓ ✓/✓ 3/2
conjunction ✓/✓ ✗/✗ ✓/✓ ✓/✓ 3/3
disjunction ✓/✓ ✓/✓ ✓/✓ ✓/✗ 4/3
internality ✗/✗ ✓/✗ ✓/✓ ✓/✓ 3/2
invariance ✗/✗ ✓/✗ ✓/✓ ✓/✓ 3/2
additivity ✓/✓ ✗/✗ ✓/✗ ✓/✗ 3/1
total 5/5 6/2 10/9 9/6 30/22

we cross-check it on the SUT. This is necessary since we calculated the logical formula
from the model approximating the SUT. If the counterexample is also valid for the SUT
itself, we are done with testing and return the counterexample as a violation of the property.
Otherwise, we use the counterexample to retrain the model.

We have implemented our approach as part of our existing tool MLcheck and have
evaluated it on a number of predefined (i.e., implemented) and machine-learned numeric
functions [Sh]. Table 1 shows some experimental results for 4 machine-learned SUTs testing
for 11 properties (all common to aggregation functions). The table also gives a comparison
of our approach (MLC) with property-based testing (PT)5. The blue-shaded cells are cases
where the property holds for the SUT.

Data Availability

Our artifact can be found at https://github.com/arnabsharma91/MLCHECK-formalise.

Bibliography

[Me] Meinke, Karl: Learning-Based Testing: Recent Progress and Future Prospects. In: Machine
Learning for Dynamic Software Analysis: Potentials and Limits - International Dagstuhl
Seminar 16172, Germany, 2016.

[Sh] Sharma, Arnab; Melnikov, Vitalik; Hüllermeier, Eyke; Wehrheim, Heike: Property-Driven
Testing of Black-Box Functions. In: 10th IEEE/ACM International Conference on Formal
Methods in Software Engineering, FormaliSE@ICSE 2022, Pittsburgh, PA, USA, 2022.

5 https://github.com/HypothesisWorks/hypothesis


