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Abstract
Explainable artificial intelligence has mainly focused on static learning scenarios so far. We 
are interested in dynamic scenarios where data is sampled progressively, and learning is 
done in an incremental rather than a batch mode. We seek efficient incremental algorithms 
for computing feature importance (FI). Permutation feature importance (PFI) is a well-
established model-agnostic measure to obtain global FI based on feature marginalization of 
absent features. We propose an efficient, model-agnostic algorithm called iPFI to estimate 
this measure incrementally and under dynamic modeling conditions including concept 
drift. We prove theoretical guarantees on the approximation quality in terms of expecta-
tion and variance. To validate our theoretical findings and the efficacy of our approaches in 
incremental scenarios dealing with streaming data rather than traditional batch settings, we 
conduct multiple experimental studies on benchmark data with and without concept drift.
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1 Introduction

Online learning from dynamic data streams is a prevalent machine learning (ML) approach 
for various application domains (Bahri et  al., 2021). For instance, predicting energy 
consumption for individual households can foster energy-saving strategies such as load-
shifting. Concept drift resulting from environmental changes, such as pandemic-induced 
lock-downs, drastically impacts the energy consumption patterns necessitating online ML 
(García-Martín et  al., 2019). Explaining these predictions yields a greater understanding 
of an individual’s energy use and enables prescriptive modeling for further energy-saving 
measures (Wastensteiner et al., 2021). For black-box ML methods, so-called post-hoc XAI 
methods seek to explain single predictions or entire models in terms of the contribution of 
specific features (Adadi & Berrada, 2018).

We are interested in feature importance (FI) as a global assessment of features, which 
indicates their respective relevance to the given task and model. A prominent representa-
tive of model-agnostic FI measures is the permutation feature importance (PFI), which, 
in its original form, has been introduced for tree-based models in Breiman (2001) with 
various applications and extensions (Strobl et al., 2007, 2008; Altmann et al., 2010; Hap-
felmeier et al., 2014; Zhu et al., 2015; Gregorutti et al., 2015, 2017). Recent work (Fisher 
et al., 2019) adapts PFI to a model-agnostic FI measure (model reliance) and establishes 
important theoretical guarantees. Albeit its limitations (Hooker et al., 2019; Fisher et al., 
2019), we focus on PFI as a well-established, efficiently implementable, model-agnostic 
FI measure, which has served as a baseline for various more powerful extensions (Casal-
icchio et  al., 2018; Covert et  al., 2020; Molnar et  al., 2020; König et  al., 2021). So far, 
PFI requires a holistic view of the entire dataset in a static batch learning environment, 
which does not account for changes in the model structure, efficient anytime computations 
or sparse storage capabilities in data stream settings.

More generally, explainable artificial intelligence (XAI) has been studied mainly in the 
batch setting, where learning algorithms operate on static datasets. In scenarios where data 
does not fit into memory or computation time is strictly limited, like in progressive data 
science for big datasets (Turkay et al., 2018), or rapid online learning from data streams 
(Bahri et  al., 2021), high computation times prohibit the use of traditional FI or XAI 
measures. Incremental, time- and memory-efficient implementations that provide anytime 
results have received much attention in recent years (Losing et  al., 2018; Montiel et  al., 
2020). In particular, incremental algorithms enable a lifelong adaptation of machine learn-
ing technologies and their applications to possibly infinite data streams, addressing com-
putational challenges as well as the challenge of dealing with changes of the underlying 
data distribution called drift. In this article, we are interested in efficient incremental algo-
rithms for FI (see Fig. 1). Especially in the context of drifting data distributions, this task 
is particularly relevant—but also challenging, as many common FI methods are already 
computationally costly in the batch setting. While we focus with our implementation and 
theoretical results on PFI, our methodology of incremental FI could also be extended to 
other XAI measures.

Contribution
We propose an incremental variant of PFI as a model-agnostic global FI estimator which 

is capable of dealing with data streams of arbitrary length in limited memory and linear 
time. Our algorithm can be applied to any model that is incrementally learned on a data 
stream and provides anytime explanations that immediately react to changes in the model 
and the underlying data distribution in case of concept drift. The main idea is that these 
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estimates are efficiently updated at each time step by computing a one-sample estimate 
of FI, which is then exponentially averaged over time. To approximate marginal feature 
distributions we introduce two sampling strategies, which can be applied in scenarios with 
and without concept drift. The core idea, inspired by reservoir sampling (Vitter, 1985), is 
to efficiently maintain a reservoir to sample observations that are used to approximate the 
marginal distribution. Our core contributions include:

• We introduce iPFI as an incremental and model-agnostic estimator for global FI by 
constructing an online variant of PFI (Sect. 3). Up to our knowledge, this constitutes 
the first mathematically substantiated approach for online global FI estimation. In con-
trast to PFI, iPFI reacts to concept drift in non-stationary environments and provides 
an explanation stream alongside the data stream in linear time and constant memory. 
The explanation stream can be utilized for further downstream tasks, such as inspecting 
possible causes for observed drift.

• We motivate iPFI by establishing the concrete connection of permutation tests (Defini-
tion 2) (Breiman, 2001) and model reliance (Definition 3) (Fisher et al., 2019) in the 
batch setting (Theorem 1). This finding extends on (Fisher et al., 2019, Appendix A.3) 
and shows only properly scaled permutation tests are unbiased estimates of global FI.

• We provide two sampling strategies for iPFI to incrementally compute marginal feature 
distributions and establish theoretical guarantees regarding bias, variance, and approxi-
mation error in terms of a single sensitivity parameter in a static and dynamic learning 
scenario.

Fig. 1  Incremental feature importance on an electricity data stream to create anytime explanations. Concept 
drift in the data (rectangles) lead to model adaption without visible changes in the model’s performance
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• We implement iPFI and conduct experiments on its ability to efficiently provide any-
time global FI values under different types of concept drift, as well as its approximation 
quality compared to batch permutation tests in static modeling scenarios.

All experiments and algorithms are publicly available and integrated natively into the well-
known incremental learning framework river (Montiel et al., 2020).1

Related work A variety of model-agnostic local FI methods (Ribeiro et al., 2016; Lun-
dberg & Lee, 2017; Lundberg et  al., 2020; Covert & Lee, 2021) exist that provide rel-
evance values for single instances. In addition, model-specific variants have been proposed 
for neural networks (Bach et al., 2015; Selvaraju et al., 2017) and trees (Lundberg et al., 
2020). In contrast, global FI methods provide relevance values across all instances. PFI 
(or permutation tests) (Breiman, 2001) are a prominent global FI approach that has been 
widely applied (Archer & Kimes, 2008; Calle & Urrea, 2011; Wang et al., 2016), studied 
and extended (Strobl et al., 2007, 2008; Altmann et al., 2010; Hapfelmeier et al., 2014; Zhu 
et al., 2015; Gregorutti et al., 2015, 2017) for tree-based models. The method has recently 
been introduced as a model-agnostic approach in Fisher et al. (2019) and extended to sce-
narios with strongly correlated features in Molnar et  al. (2020); König et  al. (2021). In 
this regard, our definition of global FI also relates to an ongoing debate, if absent features 
should be marginalized using the conditional distribution (Aas et  al., 2021; Frye et  al., 
2021) or the marginal distribution (Janzing et al., 2020), as proposed by PFI, where it was 
argued that the choice should depend on the application (Chen et al., 2020), and the mar-
ginal distribution was used as an approximation of the conditional distribution (Covert 
et al., 2020; Lundberg & Lee, 2017). A particular popular extension is SAGE, a Shapley-
based (Shapley, 1953) approach, which averages marginal feature contributions over arbi-
trary subsets of marginalized features. It has been proposed and compared with existing 
methods in Covert et  al. (2020) and a closely related idea was previously introduced in 
Casalicchio et al. (2018), called SFIMP. As calculating FI values is computationally expen-
sive, especially for Shapley-based methods, more efficient approaches such as FastSHAP 
(Jethani et al., 2021) have been introduced. Yet, none of the above methods and extensions 
natively support an incremental or dynamic setting in which the underlying model and its 
global FI can rapidly change due to concept drift.

An initial approach to explaining model changes by computing differences in FI utiliz-
ing drift detection methods is Muschalik et al. (2022). However, this does not constitute 
an incremental FI measure. The explanations are created with a time delay and without 
efficient anytime calculations. A first step towards anytime FI values has been proposed 
for online random forests by computing mean decrease in impurity (MDI) and accuracy 
(MDA) over time by using online confusion matrices (Cassidy & Deviney, 2014) or main-
taining node statistics incrementally (Gomes et  al., 2019). While online feature scores 
are of particular interest in streaming scenarios, these methods are limited to a specific 
model class, need access to the inherent model structure and cannot be extended to a 
model-agnostic approach. They further do not provide any theoretical guarantees about the 
approximation quality in comparison to the batch versions.

Similar to batch learning, incremental FI values could be used in further downstream 
tasks. As an example, incremental FI is also relevant to the field of incremental feature 
selection, where FI is calculated periodically with a sliding window to retain features for 

1 We provide iPFI as an open-source implementation in the iXAI online explanation framework available at 
https:// github. com/ mmsch lk/ iXAI.

https://github.com/mmschlk/iXAI
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the incrementally fitted model (Barddal et al., 2019; Yuan et al., 2018). Lastly, changes 
in FI can also be used for concept drift detection, as described in Haug et al. (2022).

In this work, we provide a mathematically substantiated model-agnostic incremental 
FI measure, whose time sensitivity can be controlled by a single smoothing parameter. 
To our knowledge, this is the first approach that combines online ML and model-agnos-
tic XAI measures and provides extensive theoretical guarantees on its approximation 
quality.

2  Global feature importance

We consider a supervised learning scenario, where X  is the feature space and Y  
the target space, e.g., X = ℝ

d and Y = ℝ (regression), Y = {0, 1} (binary classifica-
tion) or Y = {0, 1}c (multiclass classification). Let h ∶ X → Y  be a model, which 
is learned from a set or stream of observed data points z = (x, y) ∈ X × Y  . Let 
D = {1,… , d} be the set of feature indices for the vector-wise feature representations of 
x = (x(i) ∶ i ∈ D) ∈ X  . Consider a subset S ⊂ D and its complement S̄ ∶= D⧵S , which 
partitions the features, and denote x(S) ∶= (x(i) ∶ i ∈ S) as the feature subset of S for a 
sample x. We write h(x(S̄), x(S)) ∶= h(x) to distinguish between features from S̄ and S. For 
the basic setting, we assume that N observations are drawn independently and identi-
cally distributed (iid) from the joint distribution of unknown random variables (X,  Y) 
and denote by ℙS the marginal distribution of the features in S, i.e., zn ∶= (xn, yn) from 
Zn ∶= (Xn, Yn)

iid
∼ ℙ(X,Y) and x(S)

n
from X(S)

n

iid
∼ ℙS for samples n = 1,… ,N.

Feature importance refers to the relevance of a set of features S for a model h. To 
quantify FI, the key idea of measures such as PFI is to compare the model’s perfor-
mance when using only features in S̄ with the performance when using all features in 
D = S ∪ S̄ . The idea is that the “removal” of an important feature (i.e., the feature is not 
provided to a model) substantially decreases a model’s performance. The model per-
formance or risk is measured based on a norm ‖ ⋅ ‖ ∶ Y → ℝ on Y  , e.g., the Euclidean 
norm, as �(X,Y)[ ‖h(X) − Y‖ ].

As the model is trained on all features and retraining is computationally expensive, a 
common method to restrict h to S̄ is to marginalize h over the features in S. We denote 
the marginalized risk

We then define FI for a model h and a feature set S as the difference of the marginalized 
risk and the inherent risk.

Definition 1 (Global FI) For a model h and a subset S ⊂ D , the global feature importance 
(global FI) is defined as

This global FI measures the increase in risk when the features in S are marginalized.

(1)fS
�
x(S̄), y

�
∶= 𝔼X̃∼ℙS

�
‖h(x(S̄), X̃) − y‖

�
.

𝜙(S)(h) ∶= 𝔼(X,Y)

�
fS(X

(S̄), Y)
�

���������������������

marginalized risk over ℙS

−𝔼(X,Y)

�
‖h(X) − Y‖

�

�����������������������
risk

.
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Remark 1 Our definition is best suited and inherent for PFI (Breiman, 2001; Fisher et al., 
2019) with single feature subsets. However, it is also related to a more general definition 
of FI given in Covert et al. (2020). Therein, FI is based on the reduction in risk, if features 
in S are included compared to marginalizing all features. In contrast to our definition, it 
relies on the conditional distribution X(S̄) ∣ X(S) . In practice, however, the marginal distribu-
tion is often used to approximate the conditional distribution, where both coincide, if fea-
ture independence is assumed (Lundberg & Lee, 2017; Covert et al., 2020, 2021). In this 
case, it directly corresponds to our definition with different notation. In the literature, it was 
argued that the choice of distribution should depend on the application (Chen et al., 2020). 
The conditional distribution was preferred in Aas et al. (2021); Frye et al. (2021), which 
includes causal relationships in the explanation (Chen et al., 2020), whereas the marginal 
distribution was preferred in Janzing et al. (2020), which explains the model independent 
of the relationships between the features (Janzing et al., 2020; Chen et al., 2020).

2.1  Empirical estimation of global FI

Given observations (x1, y1),… , (xN , yN) , we estimate global FI for a given model h with the 
canonical estimator

where � ∶ {1,… ,N} → {1,… ,N} represents the realization of a (possibly random) sam-
pling strategy that chooses for xn an observation x�(n) as a replacement value with

Given the iid assumption, it is clear that due to Xn ⟂ Xn′ for n ≠ n′ , the estimator is an 
unbiased estimator of the global FI �(S)(h) , if �(n) ≠ n for all n = 1,… ,N . In the 
case of �(n) = n , the term in the sum is zero as well as its expectation, which implies 
�[�̂�(S)

𝜑
] ≤ 𝜙(S)(h) for any � . We will now discuss a well understood choice of feature sub-

sets S ⊂ D , sampling strategy � and two estimators for �(S)(h).

2.2  Permutation feature importance (PFI)

A popular example of global FI is the well-known PFI (Breiman, 2001) that measures the 
importance of each feature j ∈ D by using a set Sj ∶= {j} . More precisely, the FI for each 
feature j ∈ D is given by �(Sj) with sets Sj and their complement S̄j ∶= D ⧵ {j} . The sam-
pling strategy � used in PFI samples uniformly generated permutations � ∈ �N over the 
set {1,… ,N} , where each permutation has a probability of 1/N!.

2.2.1  Empirical PFI

Permutation tests, as proposed initially in Breiman (2001), effectively approximate 
�𝜑[�̂�

(Sj)

𝜑 ] by averaging over M uniformly sampled random permutations. We now introduce 

(2)�̂�(S)
𝜑

∶=
1

N

N∑
n=1

�̂�(S)(xn, x𝜑(n), yn),

�̂�(S)(xn, xm, yn) ∶= ‖h(x(S̄)
n
, x(S)

m
) − yn‖ − ‖h(xn) − yn‖.
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a corrected version of the originally proposed estimator, which we refer to as PFI by intro-
ducing a normalizing factor N

N−1
.

Definition 2 (PFI) Given samples (x1, y1),… , (xN , yN) and uniformly sampled permuta-
tions �1,… ,�m

iid
∼ unif(�N) , we define the PFI estimator as

As discussed above, the estimator �̂�(Sj)

𝜑  for a given � is an unbiased estimator for global 
FI �(Sj)(h) , if the permutation is a derangement (no fixed points). Our version differs by 
the factor N

N−1
 from the initially proposed approach (Breiman, 2001; Fisher et al., 2019). 

In the following, we show that, if the expectation over uniformly sampled permutations 
� ∼ unif(�N) is taken, our definition is an unbiased estimator of global FI. This expecta-
tion directly links PFI to model reliance (Fisher et  al., 2019), which we thus refer to as 
expected PFI. While our definition of PFI is closely related to the original method (Brei-
man, 2001), the link to expected PFI allows to provide further theoretical results. We uti-
lize this link in an incremental learning setting to provide theoretical guarantees.

2.2.2  Expected PFI

The PFI estimator can be efficiently computed but highly depends on the sampled permu-
tations complicating the theoretical analysis. Another definition of PFI (model reliance), 
which was given and extensively studied in Fisher et al. (2019), is independent of sampled 
permutations. We refer to it as the expected PFI.

Definition 3 (Expected PFI) Given observations (x1, y1),… , (xN , yN) the expected PFI is 
defined as

The expected PFI computes the difference of the error of the model averaged over all 
feature instantiations êswitch with the model error êorig2. We now show that the expected 
PFI is actually the expectation over the sampling procedure � of PFI, which directly links 
Definition 2 and Definition 3. As expected PFI is an unbiased estimator for global FI, we 
conclude that PFI is an unbiased estimator, if properly scaled as in Definition 2.

(3)
PFI ∶ �̂�(Sj) ∶=

N

N − 1

1

M

M∑
m=1

�̂�
(Sj)

𝜑m

���������

≈�𝜑[�̂�
(Sj )

𝜑 ]

.

�̄�(Sj) ∶=
1

N(N − 1)

N�
n=1

�
m≠n

‖h(x(S̄j)n , x
(Sj)

m ) − yn‖
�������������������������������������������������������

=∶êswitch

−
1

N

N�
n=1

‖h(xn) − yn‖
�����������������������

=∶êorig

2 As compared to Fisher et al. (2019), we consider the loss function L(f , (y, xn, xm)) ∶= ‖h(x(S̄j)n , x
(Sj)

m ) − y‖ 
and denote �̄�(Sj) ∶= �MRdifference(h) in our case.
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Theorem 1 The expected PFI (model reliance) can be rewritten as a normalized expecta-
tion over uniformly sampled permutations

i.e. expected PFI is canonically estimated by the PFI estimator and in particular 
�̄�(Sj) = �𝜑[�̂�

(Sj)].

Due to space restrictions, all proofs are deferred to the supplementary material in 
Sect.  A. Theorem  1 shows that the PFI estimator �̂�(Sj) is a canonical Monte-Carlo esti-
mate of the theoretically well understood expected PFI estimator �̄�(Sj) . Both êswitch and 
êorig as well as the estimator �̄�(Sj) are U-statistics, which implies unbiasedness, asymptotic 
normality and finite sample boundaries under weak conditions (Fisher et al., 2019). The 
variance can, thus, be directly computed and it is easy to show that � [�̄�(Sj)] = O(1∕N) , 
which by Chebyshev’s inequality implies a bound on the approximation error as 
ℙ(|�̄�(Sj) − 𝜙(Sj)(h)| > 𝜖) = O(1∕N) . Hence, the approximation error of the expected PFI is 
directly controlled by the number of observations N used for computation. A possible link 
between permutation tests and the U-statistic �̄�(Sj) was already suggested in (Fisher et al., 
2019, Appendix A.3), where it was shown that the sum over permutations without fixed 
points is proportional to êswitch . Theorem 1 shows that both approaches are directly linked, 
if permutation tests are properly scaled (Definition 2). The biased estimator 1

M

∑M

m=1
�̂�
(Sj)

𝜑m
 

appears in Breiman (2001); Fisher et  al. (2019); Gregorutti et  al. (2017). To our knowl-
edge, the unbiased version in Definition 2 has not yet been introduced. In practice, while 
this factor does not change the relative importance scores, it should be considered when 
comparing PFI estimates with varying N. Furthermore, Theorem 1 justifies to average over 
repeatedly sampled realizations of � in order to approximate the computationally prohib-
itive estimator �̄�(Sj) . In the following, we will pick up this notion when constructing an 
incremental FI estimator.

3  Incremental permutation feature importance

In incremental learning, one deals with an a priory unlimited stream of training data. The 
challenge is to infer a model at any time point t based on the previous model and the cur-
rently observed data point, thereby using a fixed, limited amount of memory and efficient 
update schemes for the model. While incremental classification and regression models 
have been proposed (Bahri et al., 2021; Losing et al., 2018), technologies which accom-
pany such methods by incremental explanation technologies are rare. In the following, 
we introduce an efficient incremental scheme for the popular PFI supported by theoretical 
guarantees using the link to expected PFI (model reliance) (Fisher et al., 2019).

We now consider a sequence of models (ht)t∈ℕ from an incremental learning algorithm. 
At time t the observed data is {(x0, y0),… , (xt, yt)} . The model is incrementally learned 
over time, such that at time t the observation (xt, yt) is used to update ht to ht+1 . Our goal 
is to efficiently provide an estimate of PFI at each time step t for each feature j ∈ D using 
subsets Sj ∶= {j} . Note that our results can immediately be extended to arbitrary feature 
subsets S ⊂ D.

(4)�̄�(Sj) =
N

N − 1
�𝜑∼unif(�N )

[
�̂�
(Sj)

𝜑

]
≈ �̂�(Sj)
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In the following, we construct an efficient incremental estimator for PFI. We first dis-
cuss how (2) can be efficiently approximated in the incremental learning scenario, given 
a sampling strategy �t . In the sequel, we will rely on a random sampling strategy which is 
specifically suitable for the incremental setting and easier to implement than permutation-
based approaches. Note that a permutation-based approach at time t is difficult to replicate 
in the incremental setting, as at time s < t not all samples until time t are available. Moreo-
ver, as the model changes over time, naively computing (2) at each time step t using N pre-
vious observations results in N model evaluations per time step. Instead, we propose to use 
an estimator that averages the terms in (2) over time rather than over multiple data points at 
one time step. That means, we evaluate the current model only twice to compute the time-
dependent quantity

where �t is a stochastic sampling strategy to select a previous observation with values in 
{0,… , t − 1} , which we discuss in a second step in Sect. 3.1. We propose to average these 
calculations over time (rather than iterations over multiple data points) by using exponen-
tial smoothing. This yields to the definition of the incremental PFI (iPFI) estimator.

Definition 4 (iPFI) For a data stream at time t with previous observations 
(x0, y0),… , (xt, yt) and a sampling strategy (�s)s=t0,…,t for t0 > 0 the incremental PFI (iPFI) 
estimator is recursively defined as

for t > t0 , �̂�
(Sj)

t0−1
∶= 0 , and � ∈ (0, 1).

The parameter � is a hyperparameter that should be chosen based on the application. 
Note that a specific choice of � corresponds to a window size N, where � =

2

N+1
 based on 

the well-known conversion formula, see e.g. (Nahmias & Olsen, 2015, p.73). Given a reali-
zation �s , observations zs ∶= (xs, ys) from iid Zs ∶= (Xs, Ys)

iid
∼ ℙ(X,Y) and x(Sj)s  from 

X
(Sj)

s

iid
∼ ℙSj

 , each 𝜆s
(Sj) is an unbiased estimate of �(Sj)(hs) . We further require �s ⟂ (X, Y) 

and denote

�̂�
(Sj)

t (xt, x𝜑t
, yt) ∶= ‖ht(x(S̄j)t , x

(Sj)

𝜑t
) − yt‖ − ‖ht(xt) − yt‖,

iPFI ∶ �̂�
(Sj)

t ∶= (1 − 𝛼)�̂�
(Sj)

t−1
+ 𝛼�̂�

(Sj)

t (xt, x𝜑t
, yt),
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i.e. the probability to select a previous observation from time r at time s. Note that t0 > 0 
is the first time step where �̂�(Sj)

t  can be computed, as we need previous observations for the 
sampling process. In the following, we assume that the sampling strategy (�s)t0≤s≤t is fixed 
and clear from the context, and thus omit the dependence on �̂�(Sj)

t  . We illustrate one expla-
nation step at time t in Algorithm 1 and Fig. 2. This directly corresponds to (3) with M = 1 
and can be extended to M > 1 by repeatedly running the procedure in parallel and averag-
ing the results. Next, we discuss two possible sampling strategies, which are illustrated in 
Fig. 3.

(5)ps,r ∶= ℙ(�s = r) for s = t0,… , t and r = 0,… , s − 1,

Fig. 2  Illustration of the incremental explanation procedure

Fig. 3  Comparison of uniform (left) and geometric (right) sampling strategies. A reservoir of length L sum-
marizes the data stream (rectangles) until time t. The insertion probability denotes the probability that a 
data point is added to the reservoir at time s when it is observed. The sampling probability denotes the like-
lihood of drawing the individual observations at time t 
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3.1  Incremental sampling strategies '

Since random permutations cannot easily be realized in an incremental setting as they 
require infinite memory of previous observations and knowledge of future events, we 
now present two alternative types of sampling strategies. We formalize (�s)t0≤s≤t to 
choose the previous observation r at time s for the calculation in 𝜆s

(Sj) . To do so, we will 
specify the probabilities ps,r in (5). An illustration of both approaches can be found in 
Fig. 3.

3.1.1  Uniform sampling

In uniform sampling we assume that each previous observation is equally likely to be 
sampled at time s, i.e., ps,r = 1∕s for s = t0,… , t and r = 0,… , s − 1 . It could be naively 
implemented by storing all previous observations and uniformly sampling at each time 
step. However, since memory is limited, uniform sampling may be implemented with his-
tograms for categorical features of known and small cardinality. For others, a reservoir of 
fixed length L can be maintained, known as reservoir sampling (Vitter, 1985). The proba-
bility of a new observation to be included in the reservoir, referred to as insertion probabil-
ity, then decreases over time, see Fig. 3. Clearly, observations are drawn independently, but 
can be sampled more than once. In a data stream scenario, where changes to the underlying 
data distribution occur over time, the uniform sampling strategy may be inappropriate, and 
sampling strategies that prefer recent observations may be better suited.

3.1.2  Geometric sampling

Geometric sampling arises from the idea to maintain a reservoir of size L, which is updated 
by a new observation at each time step by randomly replacing a reservoir observation with 
the newly observed one. Until time t0 the first L observations are stored in the reservoir. 
At each sampling step ( t ≥ t0 ) an observation is uniformly chosen from the reservoir with 
probability p ∶= 1∕L . Independently, a sample from the reservoir is selected with the same 
probability p ∶= 1∕L for replacement with the new observation. The resulting probabilities 
are of the geometric form  ps,r = p(1 − p)s−r−1 for r ≥ t0 and ps,r = p(1 − p)s−t0 for r < t0 . 
Clearly, the geometric sampling strategy yields increasing probabilities for more recent 
observations and we demonstrate in our experiments that this can be beneficial in scenarios 
with concept drift.

3.2  Theoretical results of estimation quality

The estimator �̂�(Sj)

t  picks up the notion of the PFI estimator �̂�(Sj) in (3), which approxi-
mates the expectation over the random sampling strategy (�)t0≤s≤t by averaging repeated 
realizations. While �̂�(Sj)

t  only considers one realization of the sampling strategy, it is easy to 
extend the approach in the incremental learning scenario by computing the estimator �̂�(Sj)

t  
in multiple separate runs in parallel. While this yields an efficient estimate of PFI, it is dif-
ficult to analyze the estimator theoretically as each estimator highly depends on the reali-
zations of the sampling strategy. We, thus, again study the expectation over the sampling 
strategy and introduce the expected iPFI.
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Definition 5 (Expected iPFI) For a data stream at time t with previous observations 
(x0, y0),… , (xt, yt) and a sampling strategy � ∶= (�s)s=t0,…,t for t0 > 0 , we defined the 
expected iPFI as

which corresponds to the expected PFI (model reliance) �̄�(Sj) in the batch setting.

To evaluate the estimation quality, we will analyze the bias |�̄�(Sj)

t − 𝜙(Sj)(ht)| and the 
variance of �̄�(Sj)

t  . Both can be combined by Chebyshev’s inequality to obtain bounds on 
the approximation error of �(Sj)(ht) for 𝜖 > |�̄�(Sj)

t − 𝜙(Sj)(ht)| as

As already said, all proofs are deferred to the supplementary material in Sect. A. Our theo-
retical results are stated and proven in a general manner, which allows one to extend our 
approach to other sampling strategies, other feature subsets, and even other aggregation 
techniques.

Static model Given iid observations from a data stream, we consider an incremental 
model that learns over time. We begin under the simplified assumption that the model 
does not change over time, i.e., ht ≡ h for all t.

Theorem 2 (Bias for static Model) If h ≡ ht , then

From the above theorem it is clear that the bias of the expected iPFI �̄�(Sj)

t  is exponen-
tially decreasing towards zero for t → ∞ and we thus continue to study the asymptotic 
estimator limt→∞ �̄�

(Sj)

t  . While the bias does not depend on the sampling strategy, our next 
results analyzes the variance of the asymptotic estimator, which does depend on the 
sampling strategy.

Theorem 3 (Variance for static Model) If ht ≡ h and � [‖h(X(S̄j)

s ,X
(Sj)

r ) − Ys‖ − ‖h(Xs) − Ys‖] < ∞ , 
then

The variance is therefore directly controlled by the choice of parameters � and p. As 
the asymptotic estimator is unbiased, it is clear that these parameters control the approx-
imation error, as shown in (6).

Changing model So far, we discussed properties of �̄�(Sj)

t  under the simplified assump-
tion that ht does not change over time. In an incremental learning scenario, ht is updated 
incrementally at each time step. In cases where no concept drift affects the underly-
ing data generating distribution, we can assume that an incremental learning algorithm 
gradually converges to an optimal model. We thus assume that the change of the model 
is controlled and show results similar to the case where ht is static. To control model 

�̄�
(Sj)

t ∶= �𝜑[�̂�
(Sj)

t ],

(6)ℙ(|�̄�(Sj)

t − 𝜙(Sj)(ht)| > 𝜖) = O(𝕍 [�̄�
(Sj)

t ]).

𝜙(Sj)(h) − �[�̄�
(Sj)

t ] = (1 − 𝛼)t−t0+1𝜙(Sj)(h).

Uniform: �
[
lim
t→∞

�̄�
(Sj)

t

]
= O(−𝛼 log(𝛼)).

Geometric: �
[
lim
t→∞

�̄�
(Sj)

t

]
= O(𝛼) +O(p).
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change formally, we introduce fΔ
S
(x(S̄j), hs, ht) ∶= 𝔼X̃∼ℙS

[‖ht(x(S̄j), X̃) − hs(x
(S̄j), X̃)‖] . The 

expectation of fΔ
S

 is denoted ΔS(hs, ht) ∶= �X[f
Δ
S
(X, hs, ht)] and Δ(hs, ht) ∶= Δ�(hs, ht) . 

We show that ΔS and Δ bound the difference of FI of two models ht and hs and the bias 
of our estimator.

Theorem 4 (Bias for changing Model) If Δ(hs, ht) ≤ � and ΔS(hs, ht) ≤ �S for t0 ≤ s ≤ t , then

In the case of a changing model the estimator is therefore only unbiased if ht → h as 
t → ∞ . For results on the variance, we control the variability of the models at different 
points in time. In the case of a static model, the covariances can be uniformly bounded, 
as they do not change over time. Instead, for a changing model, we introduce the time-
dependent function

and assume existence of some �2
max

 such that

for t0 ≤ s, s′ ≤ t , r < s and r′ < s′.

Theorem 5 (Variance for changing Model) Given (7) for a sequence of models (ht)t≥0 , the 
results of Theorem 3 apply.

Summary We have shown that the approximation error of iPFI for FI is controlled by 
the parameters � and p. In the case of drifting data, the approximation error is addition-
ally affected by the changes in the model, as it is then possibly biased and the covariances 
may change over time. As the expected PFI estimator has an approximation error of order 
O(1∕N) for FI, we conclude that the above bounds on the approximation error of expected 
iPFI are also valid when compared with the expected PFI, if � is chosen according to 
� =

2

N+1
 . In the next section, we corroborate our theoretical findings with empirical evalu-

ations and showcase the efficacy of iPFI in scenarios with concept drift. We also elaborate 
on the differences between the two sampling strategies.

4  Experiments

We conduct multiple experimental studies to validate our theoretical findings and present 
our approach on real data. We consider three benchmark datasets, which are well-established 
in the FI literature (Covert et al., 2020; Lundberg & Lee, 2017) called adult (Kohavi, 1996), 
bank (Moro et  al., 2011), and bike (Fanaee-T & Gama, 2014), where bike constitutes a 
regression task. We further consider two binary classification real-world data streams called 
elec2 (Harries, 1999) and ozone (de Souza et al., 2020). Moreover, we apply the multi-class 
insects (de Souza et al., 2020) data stream. Lastly, we create multiple synthetic data streams 
based on the agrawal (Agrawal et  al., 1993) and stagger (Schlimmer & Granger, 1986) 
concept generators where we manually induce concept drifts. As our approach is inher-
ently model-agnostic, we present experimental results for different model types. In the static 

|�[�̄�(Sj)

t ] − 𝜙(Sj)(ht)| ≤ 𝛿S + 𝛿 +O((1 − 𝛼)t).

fs(Zs, Zr) ∶= ‖hs(X(S̄j)

s ,X
(Sj)

r ) − Ys‖ − ‖hs(Xs) − Ys‖

(7)cov(fs(Zs, Zr), fs� (Zs� , Zr� )) ≤ �2
max
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batch scenario we apply Gradient Boosting Tree (GBT) (Friedman, 2001) and LightGBM 
(LGBM) (Ke et al., 2017) ensembles and train small 2-layer Neural Networks (NN) with 
layer sizes (128, 64). In the dynamic incremental learning setting, we apply Adaptive Ran-
dom Forest classifiers (ARF) (Gomes et al., 2017), small scale 3-layer NNs with layer sizes 
(100, 100, 10) and Hoeffding Adaptive Trees (HATs) Bifet & Gavaldà (2009). The models’ 
and data streams’ implementation is based on scikit-learn (Pedregosa et  al., 2011), river 
(Montiel et al., 2020), PyTorch (Paszke et al., 2017), and OpenML (Feurer et al., 2020). We 
mainly rely on default parameters, yet the supplement in Sect. C contains additional infor-
mation about the datasets and details about the applied models.3 In all our experiments, we 
compute the iPFI estimator �̂�(Sj)

iPFI
 as the average over ten realizations �̂�(Sj)

t  of the incremental 
sampling strategies (uniform or geometric). All baseline approaches are chosen, such that 
they require the same amount of model evaluations as iPFI.

4.1  Experiment A: online PFI calculation under drift

First, we consider a dynamic modeling scenario. Here, instead of a pre-trained model, 
we fit different models incrementally on real data streams and compute iPFI on the fly. 
We incrementally train ARF, HAT and NN models. However, as our approach is inher-
ently model-agnostic, any incremental model (implemented for example in river) can be 
explained. As a baseline, we compare our approach to the interval PFI for feature j ∈ D , 
which computes the PFI over fixed time intervals during the online learning process with 
ten random permutations in each interval. This can be seen as a naive implementation of 
iPFI with large gaps of uncertainty and a substantial time delay.

With the synthetic agrawal stream we induce two kinds of real concept drifts: First, 
we switch the classification function of the data generator, which we refer to as function-
drift (changing the functional dependency but retaining the distribution of X). Second, we 
switch the values of two or more features with each other, which we refer to as feature-drift 
(changing the functional dependency by changing the distribution of X). Note that feature-
drift can be applied to datasets, where the classification function is unknown (like elec2).

Figure 4 showcases how well iPFI reacts to both concept drift scenarios. Both concept 
drifts are induced in the middle of the data stream (after 10,000 samples). For the function-
drift example (Fig. 4, left), the agrawal classification function was switched from Agrawal 

Fig. 4  iPFI on two agrawal concept drift data streams for ARF classifiers. The most important features are 
highlighted in color. The dashed line denotes the batch calculation at set intervals (Color figure online)

3 All experiments can be found at https:// github. com/ mmsch lk/ iPFI.

https://github.com/mmschlk/iPFI
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et al. (1993)’s concept 2 to concept 3. Theoretically, only two features should be important 
for both concepts: For the first concept the pink salary and the purple age features are 
needed, and for the second concept the classification function relies on the cyan education 
and the purple age features. However, the ARF model also relies on the blue commission 
feature, which can be explained as commission directly depends on salary and, thus, is 
transitively correlated with the target variable.

In the feature-drift scenario (Fig.  4, right), the ARF model adapts to a sudden drift 
where both important features (education and age) are switched with two unimportant fea-
tures (car and salary). In both scenarios iPFI instantly detects the shifts in importance. 
From both simulations, it is clear that iPFI and its anytime computation has clear advan-
tages over interval PFI. In fact, iPFI quickly reacts to changes in the data distribution while 
still closely matching the “ground-truth” results of the interval-wise computation.

Next to synthetic concept drifts on agrawal, Fig. 5 illustrates how iPFI explanations are 
model-agnostic on the original elec2 data stream. There, we incrementally train a NN and 
an ARF classifier on the stream without inducing an additional feature drift. For further 
concept drift scenarios, we refer to the supplementary material in Sect. C.

Time complexity
Aside from the approximation quality in the incremental setting, we also summarize 

the additional time complexity of iPFI in Table  1 and observe a linear relationship 

Fig. 5  iPFI on elec2 (without inducing a feature drift) for an incrementally fitted NN (left) and an ARF 
(right)

Table 1  Summary of the additional time complexity of iPFI

The additional explanation time is given relatively to the case where the models are trained without explain-
ing. The inference time denotes the portion of the explanation time in which the models are queried. All 
values for each dataset are derived from ten independent runs. The run time of iPFI scales linearly with 
0.104 ⋅ |D| over the number of features ( R2

= 0.966)

Data stagger elec2 agrawal adult bank insects ozone

Feature count 3 8 9 14 16 33 72
Explanation 

time
0.734 1.210 1.411 1.976 2.386 5.070 7.717
(.017) (.039) (.020) (.118) (.048) (.078) (.182)

Inference time 0.959 0.989 0.987 0.991 0.991 0.990 0.998
(.001) (.002) (.001) (.002) (.001) (.021) (.000)
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( 0.104 ⋅ |D|,R2 = 0.966 ) over the feature count |D| . For a detailed illustration of the 
linear relationship we refer to Sect. C.4. We run the explanation procedure ten times 
for seven datasets and track the run-time with and without iPFI explanations. To iso-
late the variability of the run-times to the explanation procedure, we use the same ARF 
classification model for all seven datasets. We further decompose the explanation time 
into the time it takes to run the model in inference (line 3 in Algorithm  1) and the 
remaining storing and sampling overhead. Most of the explanation time (95% to 99%) 
is dedicated to the inference time of the models for which performance gains cannot be 
easily achieved without parallelization.

Sanity check with tree-specific mean decrease in impurity To further illustrate the 
efficacy of our approach, we also compare our model-agnostic iPFI explainer to the 
model-specific baseline of Mean Decrease in Impurity (MDI). Earlier works (Cassidy 
& Deviney, 2014; Gomes et al., 2019) leverage MDI as an importance measure in the 
incremental setting. Similar to Gomes et  al. (2019), we manually compute the MDI 
on incremental summary statistics stored at each split-node of a HAT classifier. As a 
impurity measure, we compute the gini impurity index like in Cassidy and Deviney 

Fig. 6  Comparison of iPFI (solid) and MDI (dotted) on an agrawal concept drift stream (concept 2 to 3 
(Agrawal et  al., 1993), left) and elec2 (right). For each stream a single HAT classifier is trained and 
explained

Fig. 7  iPFI with uniform (left) and geometric sampling (right) on elec2 with a feature-drift
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(2014). Figure 6 shows the comparison of iPFI and MDI for an agrawal concept drift 
data stream and elec2. Aside from the differing scales, both measures detect the same 
importance rankings and react to concept drift. However, as MDI can only be com-
puted for tree-based models such as HATs and ARFs, its applicability is strictly limited 
compared to the model-agnostic approach of calculating iPFI, which can be applied to 
any model class and loss function.

4.2  Experiment B: Geometric vs. uniform sampling

Second, we focus on the question, which sampling strategy to prefer in which learning 
environments. We conclude that geometric sampling should be applied under feature-drift 
scenarios, as the choice of sampling strategy substantially impacts iPFI’s performance in 
concept drift scenarios where feature distributions change over time. If a dynamic model 
adapts to changing feature distributions, and the PFI is estimated with samples from the 
outdated distribution, the resulting replacement samples are outside the current data man-
ifold. Estimating PFI by using this data can result in skewed estimates, as illustrated in 
Fig. 7. There, we induce a feature-drift by switching the values of the most important fea-
ture for an ARF model on elec2 with a random feature. The uniform sampling strategy 
(Fig. 7, left) is incapable of matching the “ground-truth” interval PFI estimation like the 
geometric sampling strategy (Fig. 7, right). Hence, in dynamic learning environments like 
data stream analytics or continual learning, we recommend applying a sampling strategy 
that focuses on more recent samples, such as geometric distributions. For applications 
without drift in the feature-space like progressive data science, uniform sampling strate-
gies, which evenly distribute the probability of a data point being sampled across the data 
stream, may still be preferred.

Fig. 8  The importance of the nswprice feature for an ARF model training on elec2 for different values of � 
(left) and reservoir length (right)

Table 2  Median error of iPFI 
compared to batch PFI (IQR 
between Q

1

 and Q
3

 in braces)

Model performance is measured in accuracy and MAE (bike)

Data (N) Model (perf.) Error

Uniform Geometric

agrawal (20k) LGBM (99%) 0.011 (.006) 0.010 (.006)
elec2 ( ≈45k) LGBM (88%) 0.038 (.012) 0.037 (.011)
adult ( ≈45k) GBT (86%) 0.126 (.040) 0.114 (.025)
bank ( ≈45k) NN (91%) 0.126 (.024) 0.132 (.013)
bike ( ≈17k) LGBM (26.6) 0.022 (.005) 0.019 (.008)
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Parameter considerations We, further, conduct an analysis of the two most impor-
tant hyperparameters on the elec2 data stream. The results are shown in Fig.  8. 
Therein, we show that the smoothing parameter � substantially effects iPFI’s FI esti-
mates. Like any smoothing mechanism, this parameter controls the deviation of iPFI’s 
estimates. This parameter should be set individually for the task at hand. In our experi-
ment, values between � = 0.001 (conservative) and � = 0.01 (reactive) appeared to be 
reasonable. The size of the the reservoir does not substantially effect the estimation 
quality for values between 50 and 2 000.

4.3  Experiment C: Approximation of batch PFI

We further consider the static model setting where models are pre-trained before they 
are explained on the whole dataset (no incremental learning). This experiment demon-
strates that iPFI correctly approximates batch PFI estimation. We compare iPFI with 
the classical batch PFI �̂�(Sj)

batch
 for feature j ∈ D , which is computed using the whole 

static dataset over ten random permutations. We normalize �̂�(Sj)

iPFI
 and �̂�(Sj)

batch
 between 

0 and 1, and compute the sum over the feature-wise absolute approximation errors ∑
j∈D ��̂�(Sj)

iPFI
− �̂�

(Sj)

batch
� . Table  2 shows the median and interquartile range (IQR) (differ-

ence between the first and third quartile) of the error based on ten random orderings 
of each dataset. Figure 9 illustrates the approximation quality of iPFI with geometric 
and uniform sampling per feature for the bike regression dataset. Further results can 
be found in the supplement material in Sect. C. In the static modeling case, there is no 
clear difference between geometric and uniform sampling. However, in the dynamic 
modeling context under drift, the sampling strategy has a substantial effect on the iPFI 
estimates.

Fig. 9  Boxplot of PFI estimates per feature of the bike regression dataset for batch PFI (left), geometric 
sampling iPFI (middle), and uniform sampling iPFI (right) on a pre-trained LGBM regressor
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5  Conclusion and future work

In this work, we considered global FI as a statistic measure of change in the model’s 
risk when features are marginalized. We discussed PFI as an approach to estimate fea-
ture importance and proved that only appropriately scaled permutation tests are unbi-
ased estimators of global FI (Theorem 1). In this case, the expectation over the sampling 
strategy (expected PFI) then corresponds to the model reliance U-Statistic (Fisher et al., 
2019).

Based on this notion, we presented iPFI, which is a model-agnostic algorithm to incre-
mentally estimate global FI with PFI by averaging importance scores for individual obser-
vations over repeated realizations of a sampling strategy. We introduced two incremental 
sampling strategies and established theoretical results for the expectation over the sampling 
strategy (expected iPFI) to control the approximation error using iPFI’s parameters. On 
various benchmark datasets, we demonstrated the efficacy of our algorithms by compar-
ing them with the batch PFI baseline method in a static progressive setting as well as with 
interval-based PFI in a dynamic incremental learning scenario with different types of con-
cept drift and parameter choices.

Applying XAI methods incrementally to data stream analytics offers unique insights 
into models that change over time. In this work, we rely on PFI as an established and 
inexpensive FI measure. Other computationally more expensive approaches (such as 
SAGE) address some limitations of PFI. As our theoretical results can be applied to 
arbitrary feature subsets, analyzing these methods in the dynamic environment offers 
interesting research opportunities. In contrast to this work’s technical focus, analyz-
ing the dynamic XAI scenario through a human-focused lens with human-grounded 
experiments is paramount (Doshi-Velez & Kim, 2017).

Organisation of the appendix

The supplement material is organized as follows. Section  A contains all proofs of 
the theoretical analysis conducted in the main body of the work. Section  B covers 
the approximation error of expected PFI. Further experimental results and detailed 
descriptions of the datasets and models used for the empirical analysis is discussed in 
Sect. C. Lastly, Sect. D shows how PFI may be computed analytically for a pre-defined 
classification function illustrated with the agrawal concepts.

A Proofs

In the following, we provide the proofs of all theorems. We further present more general 
results that are stated as propositions.

Theorem 6 The expected PFI (model reliance) can be rewritten as a normalized expecta-
tion over uniformly random permutations, i.e.

(8)�̄�(Sj) =
N

N − 1
�𝜑∼unif(�N )

[
�̂�
(Sj)

𝜑

]
≈ �̂�(Sj)
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i.e. expected PFI is canonically estimated by the PFI estimator and in particular 
�̄�(Sj) = �𝜑[�̂�

(Sj)].

Proof We write f (zn, zm) ∶= ‖h(x(S̄j)n , x
(Sj)

m ) − yn‖ − ‖h(xn) − yn‖ and compute the expecta-
tion over randomly sampled permutations � ∈ �N . Each permutation has probability 1

N!
 , 

which yields

where we used in the third line that there are (N − 1)! permutations with �(n) = m . We thus 
conclude,

  ◻

Theorem 7 (Bias for static Model) If h ≡ ht , then

Proof We consider the more general estimator �̃�(S)
t ∶= �𝜑[

∑t

s=t0
ws�̂�

(S)
t (xt, x𝜑t

, yt)] and 
prove a more general result that can be used for arbitrary sampling and aggregation 
techniques.

Proposition 8 If h ≡ ht , then

with �w ∶=
∑t

s=t0
ws.

Proof As each 𝜆s
(S) is an unbiased estimator of �(S)(hs) , we have 

�[�̃�
(S)
t ] =

∑t

s=t0
ws𝜙

(S)(h) = 𝜇w𝜙
(S)(h) , where we used (�)t0≤s≤t ⟂ (X, Y) .   ◻

�𝜑[�̂�
(Sj)

𝜑 ] =
1

N!

�
𝜑∈�N

�̂�
(Sj)

𝜑

=
1

N

1

N!

N�
n=1

�
𝜑∈�N

f (zn, z𝜑(n))

=
1

N

1

N!

N�
n=1

N�
m=1

(N − 1)!f (zn, zm)

=
1

N

1

N

N�
n=1

�
m≠n

f (zn, zm)

=
1

N

1

N

N�
n=1

�
m≠n

‖h(xn, xm) − yn‖

−
N − 1

N2

N�
n=1

‖h(xn) − yn‖,

N

N − 1
�𝜑[�̂�

(Sj)

𝜑 ] = êswitch − êorig = �̄�(Sj).

𝜙(Sj)(h) − �[�̄�
(Sj)

t ] = (1 − 𝛼)t−t0+1𝜙(Sj)(h).

𝜙(S)(h) − �[�̃�
(S)
t ] = (1 − 𝜇w)𝜙

(S)(h)
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The result then follows directly, as �̄�(S) = �̃�(S) for ws ∶= �(1 − �)t−s , 
�w = 1 − (1 − �)t−t0+1 and S ∶= Sj .   ◻

Theorem  9 (Variance for static Model) If ht ≡ h and � [‖h(X(S̄j)

s ,X
(Sj)

r ) − Ys‖
−‖h(X

s
) − Y

s
‖] < ∞ , then

Proof We again consider the more general estimator �̃�(S)
t ∶= �𝜑[

∑t

s=t0
ws�̂�

(S)
t (xt, x𝜑t

, yt)] 
and prove a result, that can be used for arbitrary sampling and aggregation techniques.  
 ◻

Proposition 10 For � from (5) with �s ⟂ �r for r < s and ps,r ≤ ps′ ,r for s > s′ , i.e., the 
probability to sample a previous observation r is non-increasing over time, it holds

provided that 𝜎2
2
∶= � [f (Zs, Zr)] < ∞ and with �2

w
∶=

∑t

s=0
w2
s
.

Proof We denote f (Zs, Zr) ∶= ‖h(X(S̄j)

s ,X(S)
r
) − Ys‖ − ‖h(Xs) − Ys‖ . Using ps,r ∶= ℙ(�s = r) 

and properties of variance, we can write

where cov((s, r), (s�, r�)) ∶= cov(f (Zs, Zr), f (Zs� , Zr� )) denotes the covariance of the two ran-
dom variables. The above sum ranges over all possible combinations of pairs (s, r), where 
s = t0 … , t and r = 0,… , s − 1 . As r < s and r′ < s′ , it holds |{s, s�, r, r�}| ≥ 2 . When 
|{s, s�, r, r�}| = 2 then s = s� and r = r� and the covariance reduces to the variance. When 
none of the indices match, i.e., |{s, s�, r, r�}| = 4 , then the covariance is zero, due to the 
independence assumption. When exactly one index matches, then there are three possible 
cases:

• Case 1: s = s�, r ≠ r�,
• Case 2: s ≠ s′, r ≠ r with r� = s or s� = r

• Case 3: s ≠ s�, r = r�.

Case 2 yields the same covariances due to the iid assumption and the symmetric of the 
covariance. For case 1, with �(Zs,Zr)

[f (Zs, Zr)] = �Zs
�Zr

[f (Zs, Zr)] = �(S)(h) , we denote 
f̃ (Zs, Zr) ∶= f (Zs, Zr) − 𝜙(S)(h) to compute the covariance as

Uniform: �
[
lim
t→∞

�̄�
(Sj)

t

]
= O(−𝛼 log(𝛼)).

Geometric: �
[
lim
t→∞

�̄�
(Sj)

t

]
= O(𝛼) +O(p).

�

[
�̃�
(S)
t

]
≤ 4𝜎2

w
𝜎2
2
+ 2𝜎2

2

t∑
s=t0

s−1∑
s�=t0

wsws�

s�−1∑
r=0

p2
s�,r

���
=∶I𝜑(s)

,

� [�̃�
t
] = � [

t∑
s=t−N+1

ws

s−1∑
r=0

pr,sf (Zs, Zr)]

=

t∑
s,s�=t0

wsws�

s−1∑
r=0

s�−1∑
r�=0

ps,rps� ,r�cov((s, r), (s
�, r�)),
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where we have used �Zs
[�Zr

[f̃ (Zs, Zr)]] = 𝜙(S)(h) as well as the iid assumption multiple 
times, in particular when �Zr

[f (Zs, Zr)] = �Zr�
[f (Zs, Zr� )] . The same arguments apply for the 

second argument for case 3, as

We thus summarize

By the Cauchy–Schwarz inequality all covariances are bounded by �2
2
∶= � [f (Zs, Zr)] . 

With I ∶= {t0,… , t} and Is ∶= {0,… , s − 1} and Q2 ∶= {(s, r) ∶ s = s� ∈ I, r = r� ∈ Is} 
Q3 ∶= {(s, s�, r, r�) ∶ s, s� ∈ I, r ∈ Is, r

� ∈ Ir� , |{s, s�, r, r�}| = 3} . We thus obtain

For the first sum, we have

For the second sum, Q3 decomposes into the three cases. For case 1,

For case 2 w.l.o.g assume r = s� , which implies s > s′ and thus ws ≥ ws′ , then

cov((s, r), (s�, r�)) = �[f̃ (Zs, Zr)f̃ (Zs, Zr� )]

= �Zs
[�Zr

[f̃ (Zs, Zr)]�Zr�
[f̃ (Zs, Zr� )]]

= �Zs
[�Zr

[f̃ (Zs, Zr)]
2]

= �Zs
[�Zr

[f (Zs, Zr)]],

cov((s, r), (s�, r�)) = �Zr
[�Zs

[f (Zs, Zr)]].

cov((s, r), (s�, r�)) =

⎧
⎪⎪⎨⎪⎪⎩

� [f (Zs, Zr)], if s = s�, r = r�

�Zs
[�Zr

[f (Zs, Zr)]], if case 1

cov((s, r), (s�, r�)), if case 2

�Zr
[�Zs

[f (Zs, Zr)]], if case 3

0, if �{s, s�, r, r�}� = 4.

� [�̃�
(S)
t ] = 𝜎2

2

∑
(s,r)∈Q2

w2
s
p2
s,r

+
∑

(s,s�,r,r�)∈Q3

wsws�ps,rps� ,r�cov((s, r), (s
�, r�)).

∑
(s,r)∈Q2

w2
s
p2
s,r

≤
∑

(s,r)∈Q2

w2
s
ps,r =

t∑
s=t0

w2
s
= �2

w
.

∑
(s, s�, r, r�) ∈ Q3

s = s�, r ≠ r�

wsws�ps,rps,r� =

t∑
s=t0

wsws�

∑
(r, r�) ∈ I2

s

r ≠ r�

ps,rps,r�

≤

t∑
s=t0

w2
s
(

s−1∑
r=0

ps,r)
2 = �2

w
.
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For case 3, we have

In summary, we conclude

  ◻

The last sum depends on both the choices of weights ws and the collision probability 
I�(s) =

∑s−1

r=0
p2
s,r

= P(Q1 = Q2) for Q1,Q2

iid
∼ ℙ�s

 , which is related to the Rényi entropy 
(Rényi, 1961). The variance increases with the collision probabilities of the sampling 
strategy, in particular Iunif(s) =

1

s
 and Igeom(s) =

p

2−p
(1 + (1 − p)2(s−t0)+1) for uniform and 

geometric sampling, respectively.

Lemma 1 For geometric sampling and p ∈ (0, 1) it holds

Proof The probabilities for geometric sampling are

Then

∑
(s, s�, r, r�) ∈ Q3

s ≠ s�, r ≠ r�, s� = r

wsws�ps,s�ps� ,r� =

t∑
s=t0

ws

s−1∑
s�=t0

ws�ps,s�

≤

t∑
s=t0

w2
s
= �2

w
.

∑
(s, s�, r, r�) ∈ Q3

s ≠ s�, r = r�

wsws�ps,rps�,r =
∑

(s, s�) ∈ I2

s ≠ s�

wsws�

min(s,s�)−1∑
r=0

ps,rps� ,r

= 2
∑

(s, s�) ∈ I2

s > s�

wsws�

s�−1∑
r=0

ps,rps�,r

≤ 2
∑

(s, s�) ∈ I2

s > s�

wsws�

s�−1∑
r=0

p2
s� ,r

.

�

[
�̃�
(S)
t

]
≤ 4𝜎2

w
𝜎2
2
+ 2𝜎2

2

t∑
s=t0

s−1∑
s�=t0

wsws�

s�−1∑
r=0

p2
s�,r

.

Igeom(s) =

s−1∑
r=0

p2
s,r

=
p

2 − p
(1 + (1 − p)2(s−t0)+1).

ps,r =

{
p ⋅ (1 − p)s−r−1, r > t0 =

1

p

p ⋅ (1 − p)s−t0 , r ≤ t0 =
1

p
.
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  ◻

We now apply Proposition 10 to our particular estimator �̄�(S) = �̃�(S) with 
ws ∶= �(1 − �)t−s and take the limit for t → ∞ . Note that both uniform and geo-
metric sampling fulfill the condition of the theorem. Furthermore, we have 
�2
w
= �2

∑t−t0
s=0

(1 − �)s ↗
�

2−�
.

Uniform sampling For uniform sampling, we have

For the first sum, we have �
∑t−t0

s=0
(1 − �)s ↗ 1 for t → ∞ . For the second sum

Hence,

Geometric sampling For geometric sampling, we have

Igeom(s) =

s−1∑
r=0

p2
s,r

=

t0−1∑
r=0

p2 ⋅ (1 − pr)
2(s−t0) +

s−1∑
r=t0

p2(1 − p)2(s−r−1)

= t0 ⋅ p
2
⋅ (1 − p)2(s−t0) +

s−1∑
r=t0

p2(1 − p)2(s−r−1)

= p ⋅ (1 − p)2(s−t0) + p2
s−t0−1∑
r=0

(1 − p)2r

= p ⋅ (1 − p)2(s−t0) + p2
1 − (1 − p)2(s−t0)

1 − (1 − p)2

= p ⋅ (1 − p)2(s−t0) +
p

2 − p
(1 − (1 − p)2(s−t0))

=
p

2 − p
(1 + (1 − p)2(s−t0)+1).

� [�̄�
(S)
t ] ≤

𝛼

2 − 𝛼
4𝜎2

2
+ 2𝜎2

2

t∑
s=t0

s−1∑
s�=t0

𝛼2 (1 − 𝛼)t−s+t−s
�

s�

≤
𝛼

2 − 𝛼
4𝜎2

2
+ 2𝜎2

2
𝛼2

t−t0∑
s=0

(1 − 𝛼)s
t−t0∑
s�=0

(1 − 𝛼)s
�

t − s�

𝛼

t−t0∑
s�=0

(1 − 𝛼)s
�

t − s�
≤ 𝛼(

t−t0∑
s� = 0

s� ≥ t∕2

(1 − 𝛼)s
�

+ 1 +

t−t0∑
s� = 1

s� < t∕2

(1 − 𝛼)s
�

s�
)

≤ (1 − 𝛼)t∕2 − (1 − 𝛼)t−t0+1 + 𝛼 − 𝛼 log(𝛼)

t→∞
⟶ 𝛼 − 𝛼 log(𝛼).

� [ lim
t→∞

�̄�
(S)
t ] = O(−𝛼 log(𝛼)).
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For the second term it is enough to show that 0 < limt→∞ q(𝛼) < ∞ to prove the result, as 
Igeom(s) = O(p) . By using the properties of geometric progression, we obtain

Hence,

  ◻

Theorem 11 (Bias for changing Model) If Δ(hs, ht) ≤ � and ΔS(hs, ht) ≤ �S for t0 ≤ s ≤ t , 
then

Proof We again consider the more general estimator �̃�(S)
t ∶= �𝜑[

∑t

s=t0
ws�̂�

(S)
t (xt, x𝜑t

, yt)] 
and prove a more general result.

Proposition 12 If Δ(hs, ht) ≤ � and ΔS(hs, ht) ≤ �S for t0 ≤ s ≤ t , then |�[�̂�(S)
t
] − 𝜙(S)(h

t
)| ≤

�
w
(�

S
+ �) + |(1 − �

w
)�(S)(h

t
)|.

Proof For the proof, we first show that for two models hs, ht and a subset S ⊂ D , it holds 
that |�(S)(ht) − �(S)(hs)| ≤ ΔS(hs, ht) + Δ(hs, ht) . This follows directly from the reverse tri-
angle inequality for fΔ

S
(x(S̄), hs, ht) ≥ �X̃[‖ht(x(S̄), X̃) − y‖ − ‖y − hs(x

(S̄), X̃)‖] . The result 

� [�̄�
(S)
t ] ≤

𝛼

2 − 𝛼
4𝜎2

2

�������
=O(𝛼)

+ 2𝜎2
2
𝛼2

t∑
s=t0

s−1∑
s�=t0

(1 − 𝛼)t−s+t−s
�

]

���������������������������������
=∶q(𝛼)

Igeom(s).

q(�) = �

t∑
s=t0

(1 − �)t−s�

t−t0∑
s�=t−s

(1 − �)s
�

= �

t∑
s=t0

(1 − �)t−s((1 − �)t−s − (1 − �)t−t0+1)

= �

t−t0∑
s=0

(1 − �)s((1 − �)s − (1 − �)t−t0+1)

= �

t−t0∑
s=0

(1 − �)2s

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

↗
1

2−�

−(1 − �)t−t0+1 �

t−t0∑
s=0

(1 − �)s

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
↗1

t→∞
⟶

1

2 − �
.

� [ lim
t→∞

�̄�
(S)
t ] ≤ O(𝛼) + 2𝜎2

2

2

2 − 𝛼

p

2 − p
= O(𝛼) +O(p).

|�[�̄�(Sj)

t ] − 𝜙(Sj)(ht)| ≤ 𝛿S + 𝛿 +O((1 − 𝛼)t).
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then follows directly by definition, the observation that 𝜆s
(S) is an unbiased estimate of 

�(S)(hs) , as

  ◻

With �w = 1 − (1 − �)t−t0+1 our special case follows immediately.   ◻

Theorem 13 (Variance for changing Model) If

for t0 ≤ s, s′ ≤ t , r < s and r′ < s′ , then for a sequence of models (ht)t≥0 the results of Theo-
rem 3 apply.

Proof In all proofs a changing model ht adds a time dependency on the function 
fs(Zs, Zr) ∶= ‖hs(X(S̄)

s
,X(S)

r
) − Ys‖ − ‖hs(Xs) − Ys‖ . Instead of bounding the covariances 

by �2
2
 , we now bound the covariances of the time-dependent functions by �2

max
 . This only 

directly affects Proposition 10, as

All remaining arguments and proofs are still valid for a changing model due to the iid 
assumption.   ◻

|�[�̄�(S)
t
] − 𝜙(S)(h

t
)| = |

(
t∑

s=t
0

w
s
𝜙(S)(h

s
)

)
− 𝜙(S)(h

t
)|

≤

t∑
s=t

0

w
s
|𝜙(S)(h

s
) − 𝜙(S)(h

t
)|

�����������������������
≤𝛿+𝛿

S

+ |
(

t∑
s=t

0

w
s
− 1

)
𝜙(S)(h

t
)|

≤ 𝜇
w
(𝛿 + 𝛿

S
) + |(1 − 𝜇

w
)𝜙(S)(h

t
)|

���������������������
bias for static model

.

(9)cov(fs(Zs, Zr), fs� (Zs� , Zr� )) ≤ �2
max

� [�̄�
(S)
t ] = �

[
t∑

s=t−N+1

ws

s−1∑
r=0

pr,sfs(Zs, Zr)

]

=

t∑
s,s�=t0

wsws�

s−1∑
r=0

s�−1∑
r�=0

ps,rps�,r�cov((s, r), (s
�, r�))

≤ 𝜎2
max

t∑
s,s�=t0

wsws�

s−1∑
r=0

s�−1∑
r�=0

ps,rps� ,r� .
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B Approximation error for expected PFI

With f (Zn, Zm) ∶= ‖h(X(S̄j)

n ,X
(Sj)

m ) − Yn‖ − ‖h(Xn) − Yn‖ and symmetric U-statistic kernel 
f0(Zn, Zm) ∶=

f (Zn,Zm)+f (Zm,Zn)

2
 , we can write

which is the basic form of a U-statistic and therefore the variance can be computed as

where �2
1
∶= �Zn

[�Zm
[f0(Zn, Zm)]] and �2

2
∶= � [f0(Zn, Zm)] are assumed to be 

finite (Hoeffding, 1948). For 𝜖 > 0 , we then obtain by Chebyshev’s inequality 
ℙ(|�̄�(Sj) − 𝜙(Sj)(h)| > 𝜖) = O(1∕N) , as �̄�(Sj) is unbiased.

C Experiments

In the following, we give more comprehensive details about the datasets and models used 
in our experiments.

C.1 Dataset description

Adult (Kohavi, 1996) Binary classification dataset that classifies 48,842 individuals based 
on 14 features into yearly salaries above and below 50k. There are six numerical features 
and eight nominal features.

Bank (Moro et  al., 2011) Binary classification dataset that classifies 45,211 market-
ing phone calls based on 17 features to decide whether they decided to subscribe a term 
deposit. There are seven numerical features and ten nominal features.

Bike (Fanaee-T & Gama, 2014) Regression dataset that collects the number of bikes in 
different bike stations of Toulouse over 187,470 time stamps. There are six numerical fea-
tures and two nominal features.

elec2 (Harries, 1999) Binary classification dataset that classifies, if the electricity price 
will go up or down. The data was collected for 45,312 time stamp from the Australian 
New South Wales Electricity Market and is based on eight features, six numerical and two 
nominal.

agrawal (Agrawal et al., 1993) Synthetic data stream generator to create binary classi-
fication problems to decide whether an indivdual will be granted a loan based on nine fea-
tures, six numerical and three nominal. There are ten different decision functions available.

stagger (Schlimmer & Granger, 1986) The stagger concepts makes a simple toy clas-
sification data stream. The syntethtical data stream generator consists of three independent 
categorical features that describe the shape, size, and color of an artificial object. Different 
classification functions can be derived from these sharp distinctions.

insects (de Souza et  al., 2020) The insects concept drift data streams capture flight 
information about different kinds of mosquito in various experimental settings. In total, 

�̄�(Sj) =

(
N

2

)−1 ∑
1≤n<m≤N

f0(Zn, Zm),

�
[
�̄�(Sj)

]
=

(
N

2

)−1 2∑
c=1

(
2

c

)(
N − 2

2 − c

)
𝜎2
c
= O(1∕N),
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11 different variants of this stream (i.e. experimental settings) are available. The streams 
were created in a synthetic experiment with real mosquitoes and sensors. The data stream 
captures flight information about different mosquito kinds in various experimental settings. 
The dataset contains 33 numerical features. The variant called “abrupt balanced” used here 
contains 52, 848 samples.

ozone (de Souza et al., 2020) The ozone dataset contains air measurements values in the 
years of 1998 to 2004. The learning task is a binary classification problem of determining 
the ozone level (“ozone” day or “normal” day). In total the dataset contains 72 numerical 
features for 2 534 days.

C.2 Model description

All models are implemented with the default parameters from scikit-learn (Pedregosa 
et al., 2011) and River (Montiel et al., 2020) unless otherwise stated.

ARF The Adaptive Random Forest Classifier (ARF) uses an ensemble of 50 trees with 
binary splits, ADWIN drift detection and information gain split criterion. We used the 
default implementation AdaptiveRandomForestClassifier from River with n_models=50 
and binary_split=True.

NN The Neural Network classifier (NN) was implemented with two hidden layers of 
size 128 × 64 , ReLu activation function and optimized with stochastic gradient descent 
(ADAM). We used the default implementation MLPClassifier from scikit-learn.

GBT The Gradient Boosting Tree (GBT) uses 200 estimators and additively builds a 
decision tree ensemble using log-loss optimization. We used the GradientBoostingClassi-
fier from scikit-learn with n_estimators=200.

LGBM The LightGBM (LGBM) constitutes a more lightweight implementation of 
GBT. We used HistGradientBoostingRegressor for regression tasks and HistGradient-
BoostingClassifier for classification tasks from scikit-learn with the standard parameters.

C.3 Hardware details

The experiments were mainly run on an computation cluster on hyperthreaded Intel Xeon 
E5-2697 v3 CPUs clocking at with 2.6Ghz. In total the experiments took around 300 CPU 
hours (30 CPUs for 10 h) on the cluster. This mainly stems from the number of parameters 
and different initializations. Before running the experiments on the cluster, the implemen-
tations were validated on a Dell XPS 15 9510 containing an Intel i7-11800 H at 2.30GHz. 
The laptop was running for around 12 h for the validation.

C.4 Additional time complexity

As described in 4.1, the runtime of iPFI scales linearly with the number of features. This 
relationship is illustrated in Fig. 10. Each dataset or data stream was explained in ten inde-
pendent iterations. The average explanation time in relation to the time without explain-
ing was averaged and plotted over the feature count. A linear regression describes the 
relationship between ( 0.104 ⋅ |D| ) the relative explanation time and feature count with an 
R2 = 0.966 implying a linear effect.
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C.5 Summary of incremental experiments

Table  3 contains summary information about the supplementary experiments conducted 
in the incremental learning scenario (cf. Sect. 4.1). Figures 11, 12,  13,  14,  15, and  16 
illustrate the experiments conducted on the agrawal concept drift data streams. Figure 17 
shows our additional experiments conducted on the synthetic stagger concept drift data 
streams. Lastly, Fig. 18 shows the experiments conducted on the elec2 data stream with 
an induced concept drift. The corresponding entries in Table 3 denote the approximation 
qualities for these experiments.

C.6 Summary of batch experiments

Next to single batch experiment showcased in Sect. 4.3 and Fig. 9, we also show the results 
for the other datasets. Figures 19, 20,  21,  22 and  23 show the static batch model experi-
ments for the other corresponding datasets.

D Ground‑truth PFI for the agrawal stream

River (Montiel et  al., 2020) implements the agrawal (Agrawal et  al., 1993) data stream 
with multiple classification functions. In our experiments we consider the following clas-
sification function (among others):

Both feature age and salary are uniformly distributed with X(age) ∼ U[20,80] and 
X(salary) ∼ U[20,150] . Given iid. samples from the data stream the classification problem can 
be transformed into a two-dimensional problem following the above defined classification 

Class A:((age < 40) ∧ (50K ≤ salary ≤ 100K)) ∨

((40 ≤ age < 60) ∧ (75K ≤ salary ≤ 125K)) ∨

((age ≥ 60) ∧ (25K ≤ salary ≤ 75K))

agrawal, 9

stagger, 3

elec2, 8

adult, 14

bank, 16

insects, 33

ozone, 72

y = 0.1042x + 0.6211
R² = 0.9658
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Fig. 10  iPFI’s runtime scales linearly with the feature count. The relative explanation time is averaged over 
10 independent runs



4892 Machine Learning (2023) 112:4863–4903

1 3

Ta
bl

e 
3 

 S
um

m
ar

y 
of

 a
dd

iti
on

al
 c

on
ce

pt
 d

rif
t e

xp
er

im
en

ts
 o

n 
ag

ra
wa

l, 
st

ag
ge

r, 
an

d 
el

ec
2 

D
at

a 
str

ea
m

Sa
m

pl
in

g
�

W
ho

le
 st

re
am

B
ef

or
e 

dr
ift

A
fte

r d
rif

t

St
ra

te
gy

Q
2

IQ
R

Q
1

Q
3

Q
2

IQ
R

Q
1

Q
3

Q
2

IQ
R

Q
1

Q
3

ag
ra

w
al

 fu
. 1

U
ni

fo
rm

.0
01

.0
50

.0
54

.0
25

.0
79

.0
75

.0
18

.0
63

.0
80

.0
24

.0
28

.0
09

.0
38

G
eo

m
et

ric
.0

01
.0

52
.0

60
.0

24
.0

84
.0

71
.0

20
.0

68
.0

88
.0

22
.0

23
.0

14
.0

37
U

ni
fo

rm
.0

1
.0

47
.0

75
.0

21
.0

96
.0

98
.0

20
.0

91
.1

11
.0

18
.0

11
.0

17
.0

29
G

eo
m

et
ric

.0
1

.0
40

.0
80

.0
27

.1
07

.1
16

.0
44

.0
78

.1
22

.0
27

.0
08

.0
21

.0
29

ag
ra

w
al

 fu
. 2

U
ni

fo
rm

.0
01

.0
67

.0
60

.0
50

.1
10

.0
64

.0
23

.0
47

.0
70

.0
72

.0
65

.0
58

.1
23

G
eo

m
et

ric
.0

01
.0

63
.0

66
.0

44
.1

10
.0

59
.0

26
.0

41
.0

67
.0

74
.0

71
.0

51
.1

22
U

ni
fo

rm
.0

1
.1

11
.1

35
.0

61
.1

96
.2

08
.0

88
.1

53
.2

40
.0

58
.0

16
.0

52
.0

69
G

eo
m

et
ric

.0
1

.1
03

.0
88

.0
71

.1
59

.1
66

.1
01

.1
40

.2
41

.0
70

.0
28

.0
59

.0
87

ag
ra

w
al

 fu
. 2

, e
ar

ly
U

ni
fo

rm
.0

01
.0

67
.1

23
.0

35
.1

58
.1

10
.0

60
.0

80
.1

40
.0

64
.1

05
.0

32
.1

37
G

eo
m

et
ric

.0
01

.0
66

.1
32

.0
36

.1
68

.1
16

.0
67

.0
82

.1
49

.0
63

.1
06

.0
32

.1
38

U
ni

fo
rm

.0
1

.0
69

.1
13

.0
52

.1
65

.2
17

.0
43

.1
95

.2
38

.0
66

.0
42

.0
46

.0
88

G
eo

m
et

ric
.0

1
.0

78
.1

03
.0

55
.1

57
.1

87
.0

20
.1

77
.1

96
.0

69
.0

42
.0

50
.0

92
ag

ra
w

al
 fu

. 2
, l

at
e

U
ni

fo
rm

.0
01

.0
71

.1
06

.0
45

.1
51

.0
51

.0
31

.0
42

.0
72

.2
44

.2
31

.1
63

.3
94

G
eo

m
et

ric
.0

01
.0

81
.1

05
.0

51
.1

56
.0

61
.0

42
.0

41
.0

82
.2

46
.2

30
.1

70
.4

00
U

ni
fo

rm
.0

1
.1

17
.0

93
.0

66
.1

59
.1

39
.0

87
.0

69
.1

56
.0

95
.0

91
.0

71
.1

62
G

eo
m

et
ric

.0
1

.1
03

.1
15

.0
63

.1
78

.1
28

.1
06

.0
65

.1
70

.0
77

.1
01

.0
63

.1
63

ag
ra

w
al

 fu
. 3

U
ni

fo
rm

.0
01

.0
79

.0
71

.0
37

.1
08

.0
97

.0
26

.0
86

.1
11

.0
32

.0
37

.0
16

.0
53

G
eo

m
et

ric
.0

01
.0

81
.0

78
.0

35
.1

13
.0

95
.0

36
.0

84
.1

19
.0

29
.0

36
.0

17
.0

53
U

ni
fo

rm
.0

1
.0

97
.1

08
.0

53
.1

61
.1

49
.0

44
.1

34
.1

78
.0

56
.0

09
.0

51
.0

60
G

eo
m

et
ric

.0
1

.1
24

.0
67

.0
87

.1
53

.1
42

.0
22

.1
35

.1
57

.0
90

.0
38

.0
74

.1
12

ag
ra

w
al

 fe
. 1

U
ni

fo
rm

.0
01

.0
48

.1
02

.0
18

.1
21

.0
21

.0
36

.0
17

.0
54

.0
87

.1
77

.0
43

.2
20

G
eo

m
et

ric
.0

01
.0

35
.0

91
.0

15
.1

06
.0

23
.0

31
.0

18
.0

49
.0

47
.1

17
.0

08
.1

25
U

ni
fo

rm
.0

1
.0

62
.0

44
.0

34
.0

77
.0

72
.0

23
.0

56
.0

79
.0

46
.0

37
.0

30
.0

67
G

eo
m

et
ric

.0
1

.0
44

.0
52

.0
35

.0
87

.0
79

.0
47

.0
42

.0
89

.0
43

.0
14

.0
32

.0
46

st
ag

ge
r f

u.
 1

U
ni

fo
rm

.0
01

.0
18

.1
18

.0
14

.1
32

.0
09

.0
05

.0
07

.0
12

.1
32

.4
43

.0
75

.5
18



4893Machine Learning (2023) 112:4863–4903 

1 3

Ta
bl

e 
3 

 (c
on

tin
ue

d)

D
at

a 
str

ea
m

Sa
m

pl
in

g
�

W
ho

le
 st

re
am

B
ef

or
e 

dr
ift

A
fte

r d
rif

t

St
ra

te
gy

Q
2

IQ
R

Q
1

Q
3

Q
2

IQ
R

Q
1

Q
3

Q
2

IQ
R

Q
1

Q
3

G
eo

m
et

ric
.0

01
.0

18
.1

17
.0

15
.1

31
.0

08
.0

06
.0

05
.0

11
.1

31
.4

40
.0

75
.5

15
st

ag
ge

r f
e.

 1
U

ni
fo

rm
.0

01
.2

70
.3

05
.0

42
.3

47
.0

41
.0

61
.0

33
.0

93
.3

53
.0

68
.3

11
.3

78
G

eo
m

et
ric

.0
01

.0
37

.0
39

.0
33

.0
72

.0
37

.0
66

.0
32

.0
98

.0
37

.0
22

.0
36

.0
57

el
ec

2 
fe

. 1
, g

ra
du

al
U

ni
fo

rm
.0

01
.1

58
.2

63
.0

50
.3

13
.0

48
.0

75
.0

25
.1

01
.3

21
.0

89
.2

83
.3

72
G

eo
m

et
ric

.0
01

.0
37

.0
24

.0
27

.0
51

.0
40

.0
69

.0
26

.0
95

.0
37

.0
13

.0
28

.0
41

Th
e 

im
ag

e 
id

en
tifi

er
 p

oi
nt

 to
 th

e 
su

bs
eq

ue
nt

 se
ct

io
n 

of
 fi

gu
re

s. 
Q

2

 d
en

ot
es

 th
e 

m
ed

ia
n 

of
 th

e 
er

ro
r d

es
cr

ib
ed

 in
 E

xp
er

im
en

t A
 c

om
pu

te
d 

fo
r i

PF
I a

nd
 in

te
rv

al
 P

FI
 (s

ol
id

 li
ne

 v
s. 

da
sh

ed
 li

ne
 in

 th
e 

fig
ur

es
). 

Th
e 

in
te

rq
ua

rti
le

 ra
ng

e 
is

 c
al

cu
la

te
d 

be
tw

ee
n 
Q

1

 a
nd

 Q
3



4894 Machine Learning (2023) 112:4863–4903

1 3

Fig. 11  iPFI on agrawal with a function-drift (fu. 1) after 10k samples with � = 0.001 (top) and � = 0.01 
(bottom)

Fig. 12  iPFI on agrawal with a function-drift (fu. 2) after 10k samples with � = 0.001 (top) and � = 0.01 
(bottom)
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Fig. 13  iPFI on agrawal with a function-drift (fu. 2, early) after 5k samples with � = 0.001 (top) and 
� = 0.01 (bottom)

Fig. 14  iPFI on agrawal with a function-drift (fu. 2, late) after 15k samples with � = 0.001 (top) and 
� = 0.01 (bottom)
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Fig. 15  iPFI on agrawal with a function-drift (fu. 3) after 10k samples with � = 0.001 (top) and � = 0.01 
(bottom)

Fig. 16  iPFI on agrawal with a feature-drift (fe. 1) after 10k samples with � = 0.001 (top) and � = 0.01 
(bottom)
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function. The two-dimensional classification problem is illustrated in Fig. 24. A sample is 
classified as concept A when it occurs contained in A1 , A2 , or A3 . Otherwise the sample is 
classified as concept B.

The theoretical PFIs can be calculated with the base probability of an sample belong-
ing to concept A ( P(A1) = P(A2) = P(A3) =

5

39
 ) times the probability of switching the 

Fig. 17  iPFI on stagger with a function-drift (fu. 1) after 5k samples with � = 0.001

Fig. 18  iPFI on elec2 with a sudden feature-drift (fe. 1) (top) and a gradual feature-drift (fe. 1, gradual) 
(bottom) after 20k samples with � = 0.001
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Fig. 19  Boxplot of PFI estimates per feature of the agrawal dataset for batch baseline (left), iPFI with geo-
metric sampling (middle), and iPFI with uniform sampling (right) on a pre-trained static LGBM

Fig. 20  Boxplot of PFI estimates per feature of the elec2 dataset for batch baseline (left), iPFI with geomet-
ric sampling (middle), and iPFI with uniform sampling (right) on a pre-trained static LGBM

Fig. 21  Boxplot of PFI estimates per feature of the adult dataset for batch baseline (left), iPFI with geomet-
ric sampling (middle), and iPFI with uniform sampling (right) on a pre-trained static GBT
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Fig. 22  Boxplot of PFI estimates per feature of the bank dataset for batch baseline (left), iPFI with geomet-
ric sampling (middle), and iPFI with uniform sampling (right) on a pre-trained static NN

Fig. 23  Boxplot of PFI estimates per feature of the bike dataset for batch baseline (left), iPFI with geomet-
ric sampling (middle), and iPFI with uniform sampling (right) on a pre-trained static LGBM

Fig. 24  Two-dimensional clas-
sification problem of the agrawal 
data stream
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class through changing a feature ( P(Ai → Bn,m) ) plus the vice versa for a sample origi-
nally belonging to concept B.
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