Advances in Data Analysis and Classification
https://doi.org/10.1007/s11634-023-00553-7

REGULAR ARTICLE

n

Check for
updates

On the efficient implementation of classification rule
learning

Michael Rapp'® - Johannes Fiirnkranz? - Eyke Hiillermeier’

Received: 2 June 2022 / Revised: 4 April 2023 / Accepted: 10 July 2023
© The Author(s) 2023

Abstract

Rule learning methods have a long history of active research in the machine learning
community. They are not only a common choice in applications that demand human-
interpretable classification models but have also been shown to achieve state-of-the-art
performance when used in ensemble methods. Unfortunately, only little information
can be found in the literature about the various implementation details that are crucial
for the efficient induction of rule-based models. This work provides a detailed discus-
sion of algorithmic concepts and approximations that enable applying rule learning
techniques to large amounts of data. To demonstrate the advantages and limitations of
these individual concepts in a series of experiments, we rely on BOOMER—a flexible
and publicly available implementation for the efficient induction of gradient boosted
single- or multi-label classification rules.

Keywords Classification rules - Multi-label classification - Gradient boosting -
Large-scale machine learning - Parallelization

Mathematics Subject Classification 68T09 - 62RO7

B Michael Rapp
michael.rapp @ifi.lmu.de

Johannes Fiirnkranz
juffi@faw.jku.at

Eyke Hiillermeier

eyke @ifi.lmu.de

Chair of Artificial Intelligence and Machine Learning, Ludwig-Maximilians-Universitit
Miinchen, Munich, Germany

Institute for Application-oriented Knowledge Processing, Johannes Kepler University Linz, Linz,
Austria

Published online: 27 July 2023 @ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11634-023-00553-7&domain=pdf
http://orcid.org/0000-0001-8570-8240

M. Rapp et al.

1 Introduction

Due to the increasing access to computational resources and the availability of large
amounts of data in our digitalized world, machine learning methods are gaining impor-
tance and are nowadays used for many diverse applications. Among the wide variety
of topics addressed by research on this growing and multidisciplinary field, the devel-
opment of classification systems, which can provide categorical predictions for given
data examples, belongs to the most established and well-known machine learning dis-
ciplines. This includes concept learning problems, where each example belongs to
one out of two predefined classes. Based on the properties of an example, which we
refer to as attributes or features, a classification method should be able to identify the
class to which a particular example belongs. Many existing approaches to classifica-
tion problems are based on the principles of supervised learning, where a predictive
model is derived from given training examples for which the true classes are known.
Besides statistical machine learning methods (see, e.g., Friedrich et al. 2022), sym-
bolic approaches, which rely on symbolic descriptions to represent learned concepts,
have a long history of active research (see, e.g., (Langley 1996; Mitchell 1997), for
textbooks on the topic). Especially in safety-critical applications, where unexpected
behavior may lead to life-threatening situations or economic loss, there is a need for
interpretable machine learning models that can be analyzed and verified by human
experts. As they capture knowledge about a problem domain in terms of simple condi-
tional statements that humans can easily explore, understand and edit (see, e.g., Vojit
and Kliegr 2020), symbolic classification methods are often considered to meet these
requirements. Consequently, they have received widespread attention in the literature
on interpretable machine learning (see, e.g., Du et al. 2019; Murdoch et al. 2019;
Molnar et al. 2020, for surveys on the topic).

In symbolical learning, rule learning algorithms are among the best-known and
widely adopted approaches (see, e.g., Fiirnkranz et al. 2012, for a textbook on the
topic). A rule-based model is organized in terms of simple if -then statements referred
to as rules. Each rule consists of one or several conditional clauses that compare the
feature values of given examples to predetermined constants, which are well-suited
for discrimination between different classes. If a rule’s conditions are satisfied by an
example, the rule is responsible for providing a prediction for one of the available
classes. Rule-based models are closely related to decision trees, where the tests for
an example’s feature values are organized in a hierarchical, flowchart-like structure.
For this reason, many techniques from decision tree learning can be transferred to
rule learning approaches and vice versa. However, rule-based models provide addi-
tional flexibility when it comes to selecting rules that should be included in a model.
Every decision tree can be transformed into an equivalent set of non-overlapping rules,
where each path from the tree’s root node to one of its leaves is considered an individ-
ual rule. However, not all rule-based models can be encoded as a tree-like structure.
Consequently, rule-based models can be considered a more general concept class than
decision trees (Rivest 1987). They are often preferred in applications that demand
interpretability because decision trees tend to become quite complex in noisy domains
due to their restriction to non-overlapping branches (Bostrom 1995). Moreover, iden-
tical sub-trees often occur within a single decision tree due to the fragmentation of

@ Springer

On the efficient implementation of classification...

the example space that results from separation into non-overlapping regions (Pagallo
and Haussler 1990). Rule-based models have also received attention for their abil-
ity to make the decision-making process of complex statistical methods transparent.
Existing approaches either convert entire black-box models into rule-based represen-
tations (e.g., Zilke et al. 2016) or make use of rules to provide local explanations of
their predictions (e.g., Ribeiro et al. 2016). This illustrates another attractive property
of rule models. Whereas decision trees or rule sets can be viewed as global models,
individual rules provide local explanations for the examples they apply to (Fiirnkranz
2005; Lakkaraju et al. 2016). In addition, the locality of rules can be considered an
advantage when used in ensemble methods. Similar to tree-based ensemble meth-
ods, such as Random Forests (Breiman 2001) or Gradient Boosted Decision Trees
(GBDT) (Chen and Guestrin 2016; Ke et al. 2017), which combine the predictions of
several trees, rule-based ensemble methods like ENDER (Dembczyski et al. 2010)
or BOOMER (Rapp et al. 2020) achieve strong predictive results by employing a large
number of overlapping rules. However, instead of combining several global models,
the latter allow for a more efficient use of computational resources by learning more
rules for regions where accurate predictions are difficult and fewer rules for regions
that are easier to model. Such behavior has also been found to be beneficial in terms of
computational efficiency by the authors of LightGBM (Ke et al. 2017). Based on prior
work by Shi (2007), their GBDT method uses a “best-first” strategy, where only a few
branches of a decision tree—which can be viewed as individual rules—are grown to
the full extent, whereas less computational effort is put into others.

1.1 Motivation and goals

Despite the large number of publications on rule learning methods, only little infor-
mation can be found about how such algorithms should be implemented at a low
level. Rather than elaborating on algorithmic details that are important for a compu-
tationally efficient implementation, existing work on the topic primarily focuses on
high-level concepts and ideas that aim to improve the effectiveness of different learning
approaches in terms of predictive accuracy. With some notable exceptions, which we
highlight in this paper, this also applies to the literature on decision tree learning. This
is surprising because the increasing access to large amounts of data results in a growing
demand for machine learning algorithms that can be applied to vast numbers of training
examples. This requirement is also illustrated by the success and widespread adoption
of highly scalable symbolic learning methods like XGBoost (Chen and Guestrin 2016)
or LightGBM (Ke et al. 2017) that put great emphasis on computational efficiency.
This work sheds some light on the internals of some of the most efficient rule
learning algorithms available today. First and foremost, this refers to the idea of using
a so-called “pre-sorted” search algorithm for the construction of individual rules. In
addition, we elaborate on extensions of this fundamental principle that allow dealing
with nominal attributes and missing feature values natively. In contrast to most statis-
tical machine learning approaches, including artificial neural networks, the ability to
handle such data naturally, without any pre-processing techniques, is an advantage of

@ Springer

M. Rapp et al.

symbolic learning methods. We also discuss how sparsity in the feature values of train-
ing examples, which is a common characteristic of many datasets, can be exploited
to further reduce computational costs. In domains with many numerical features, the
ability to exploit sparsity in the feature values does not provide any significant advan-
tages in terms of scalability. As an alternative, we also investigate a histogram-based
search algorithm that generalizes existing ideas from decision tree learning to rule-
based models. Finally, we elaborate on different possibilities to use parallelization to
further speed up the training of predictive models. Even though most principles in
this paper originate from existing work on rule and decision tree learning, we provide
a unified view of these concepts and present them in great detail. Our discussion is
complemented by a series of experimental studies that demonstrate the advantages
and disadvantages of the individual optimizations and approximations examined in
this work.

For our experiments, we rely on BOOMER (Rapp et al. 2020), a recently pro-
posed and publicly available rule learning method.! Rapp (2021) provides a technical
overview of the algorithm’s capabilities. Even though this particular algorithm relies
on the gradient boosting framework for the induction of rules, all principles and ideas
discussed in this work apply to different types of rule learning methods as well. Fur-
thermore, the BOOMER algorithm was designed with the particularities of multi-label
classification in mind. This problem domain, where examples must not necessarily
belong to a single class, includes binary classification as a special case. Not being
restricted to single-class problems allows for a more general investigation of the algo-
rithmic concepts discussed in this work.

1.2 Outline

In the following section, we start by discussing the preliminaries of the present work.
First of all, this includes a definition of the classification problems we address in this
work in Sect. 2.1. Then, a discussion of algorithmic concepts that different rule learning
algorithms have in common and the particularities of the rule learning algorithm that
serves as a basis for our experiments is given in Sects. 2.2, 2.3 and 2.4. Afterward,
we discuss different aspects of the efficient induction of rules in each of the following
sections:

e In Sect. 3, we illustrate the principles of the pre-sorted search algorithm employed
by many existing rule learning methods. Its subsections are devoted to different
extensions of this basic algorithm. This includes the possibility to exploit sparsity
among the feature values in Sect. 3.2 and means to deal with nominal attributes and
missing values in Sects. 3.3 and 3.4, respectively.

e As an alternative to the pre-sorted search algorithm in Sect. 3, a histogram-based
approach is presented in Sect. 4. The individual subsections of this section focus on
different aspects of this particular approximation technique.

! The BOOMER algorithm is publicly available at https://github.com/mrapp-ke/Boomer.

@ Springer

https://github.com/mrapp-ke/Boomer

On the efficient implementation of classification...

e Sect. 5 is concerned with the use of multi-threading to speed up the pre-sorted
or histogram-based search algorithm. Section 5.1 considers the induction of single-
label rules, as used in binary classification. The induction of multi-label rules, which
is unique to the multi-label classification setting, is discussed in Sect. 5.2.

Each section mentioned above includes an experimental evaluation of the algorithmic
aspects it focuses on. In Sect. 6, we draw conclusions from the experimental results
and provide an outlook on ideas that are out of the scope of this work but may be used
to further improve the scalability of rule learning methods.

2 Preliminaries

In this section, we provide a definition of multi-label classification problems, as well as
an overview on the datasets and evaluation measures that we use for our experiments.
We also discuss the basic structure most rule learning approaches have in common and
recapitulate on the learning algorithm that we utilize in the remainder of this work.

2.1 Problem definition

In machine learning, classification systems are concerned with the assignment of data
examples to classes. Algorithms aimed at binary or multi-class classification should
be capable of assigning individual examples to one out of two or several mutually
exclusive classes. Supervised learning approaches derive a predictive model from a
limited set of labeled training examples for which the true classes are known. A good
model should generalize beyond the provided observations such that it can be used to
deliver predictions for yet unseen examples. Multi-label classification can be consid-
ered a generalization of traditional learning problems, where a single example may
be associated with several class labels simultaneously. For example, in text classifi-
cation, a single text document may belong to multiple topics. Hence, the goal of a
multi-label classifier is to assign a given example to a subset of predefined labels.
We specify the labels associated with the training examples in the form of a label
matrix Y € {0, 1}V*K where each element y,; € Y indicates whether the k-th label
is relevant (1) or irrelevant (0) to the n-th example. If only a single label is available,
i.e., if K = 1, a multi-label problem of this form simplifies to the task of predicting
for either one of two classes, as necessary in binary classification.

In this work, we deal with structured data, where each example can be represented by
a real-valued feature vector x,, = (x,1, ..., x,1) that assigns constant feature values
Xy to numerical or nominal attributes A;. Similar to the label matrix, we use a feature
matrix X € RN to specify the feature values that correspond to individual examples
and attributes. A value corresponding to a numerical attribute may be any positive
or negative real number. In contrast, the values of nominal attributes are restricted
to an unordered set of categorical values. They are usually encoded by assigning a
unique value to each available category. In this work, we also discuss means to deal
with missing feature values, i.e., datasets where individual elements of an example’s
feature vector are unspecified.

@ Springer

M. Rapp et al.

2.2 Classification rules

In the remainder of this work, we are concerned with the construction of predictive
models

R=(ri,...,r7), (D

which consist of a predefined number of T rules. A model of this kind is typically
assembled by following a sequential procedure, where one rule is added after the
other (cf. Sect. 2.3). In accordance with existing rule learning literature, we denote an
individual rule as

r : head < body,)

where the body is a conjunction of several conditions that specify the examples to
which a rule applies and the head provides a deterministic or probabilistic prediction
for these covered examples. Each condition that may be contained by a rule’s body
refers to one of the attributes in a dataset. It compares the value of an example for the
corresponding attribute to a constant using a relational operator, such as = and #, if
the attribute is nominal, or < and >, if the attribute is numerical.

2.3 Sequential model assemblage

Rule models are typically assembled by following a sequential procedure. As shown
in Algorithm 1, more rules are added to a model until a certain stopping criterion is
met, e.g., if a predefined model size has been reached. By learning one rule after the
other, information about previous rules can be considered for learning subsequent ones.
For example, in separate-and-conquer learning (Fiirnkranz 1999), only examples that
have not been covered by previous rules are taken into account when learning a new
one. Similarly, weighted covering algorithms (Weiss and Indurkhya 2000; Gamberger
and Lavra¢ 2000) weigh individual examples differently, depending on how often
they have been covered yet. Without loss of generality, we refer to the information
that is taken into account for inducing a single rule as label space statistics. Even
though their exact notion depends on a particular rule learning approach at hand, they
incorporate information about the true class labels of individual training examples and
the corresponding predictions provided by previously induced rules. Traditional rule
learning methods like RIPPER (Cohen 1995) typically characterize the predictions of
rules in terms of confusion matrix elements, such as true positives, false positives, etc.
In contrast, boosting algorithms like ENDER (Dembczynski et al. 2010), BOOMER
(Rapp et al. 2020) or isotonic boosting classification rules (Conde et al. 2021) employ
gradients and Hessians that guide the construction of rules (cf. Sect. 2.4). In both
cases, the induction of a new rule (cf. FIND_RULE in Algorithm 1) requires the label
space statistics to be updated, as it alters a model’s predictions for the available training
examples.

@ Springer

On the efficient implementation of classification...

Algorithm 1 Sequential assemblage of a rule model

input: Feature matrix X, label matrix Y
S = initialize label space statistics w.r.t. Y
t=1
while no stopping criterion is met do

w; = determine weight of each example

r+ = FIND_RULE (X, Y, wy, S)

=t+1

end while
return list of rules R = (r1,72,...)

© % NS T W

2.4 Top-down rule induction

As outlined by Hiillermeier et al. (2020), the construction of a single rule requires
enumerating potential candidates for the rule’s body and determining a corresponding
head, as well as an estimate of the rule’s quality, for each one of them.

2.4.1 Enumeration of rule bodies

Many rule learning algorithms employ a greedy top-down search, also referred to
as top-down hill-climbing, to search for potential bodies (Fiirnkranz et al. 2012). As
outlined in Algorithm 2, it starts with an empty body that is iteratively refined by
adding new conditions. The addition of new conditions results in fewer examples
being covered, i.e., the rule is successively tailored to a subset of the available training
examples. For each candidate body and depending on the head that is constructed
for it, the quality of the predictions provided for the covered examples is assessed in
terms of a numerical score g € R that allows comparing different candidates to each
other. The best candidate is selected at each iteration, and the possible refinements
that result from adding a condition to the respective body are considered next. The
search algorithm stops as soon as the quality of a rule cannot be improved by adding
additional conditions to its body.

When following the procedure outlined above, refinements of a rule are selected
greedily, i.e., the search focuses on a single refinement at each iteration. A beam search
that explores a fixed number of alternatives, rather than focusing on a single refinement,
may help overcome the search myopia that results from such a greedy hill-climbing
approach (Fiirnkranz et al. 2012). Alternatively, branch-and-bound algorithms (e.g.,
Boley et al. 2021) that rely on theoretical guarantees to prune the search space can
be used to construct certifiably optimal rules. Nevertheless, we focus on greedy rule
induction in the following. In particular, we elaborate on how the refinements of a rule
can be evaluated efficiently (cf. FIND_REFINEMENT in Algorithm 2; an implementation
is given in Algorithm 3), as this operation has the most significant impact on the
computational costs of a greedy rule learner. Per its design, such a method can be
implemented much more efficiently than branch-and-bound algorithms, approaches
based on association rule mining (e.g., Lakkaraju et al. 2016), or methods that extract

@ Springer

M. Rapp et al.

rules from decision trees (e.g., Friedman and Popescu 2008; Bénard et al. 2021).
Consequently, they are particularly well-suited for constructing large rule ensembles.

Algorithm 2 Recursive top-down search for a single rule (FIND_RULE)

1: input: Feature matrix X, label matrix Y, weights of training examples w,
label space statistics S, current rule r and its quality ¢ (both optional),
indicator function I (all examples are considered as covered if omitted)

2: best refinement r* = (), best quality ¢* = ¢

3: 8 = aggregate statistics of covered examples with non-zero weight

4. for all attributes A; to be considered do

5: x; = retrieve vector with (sorted) feature values for A4; from X

6: refinement r;, its quality ¢; = FIND_REFINEMENT (x;, ¢*, I, w, S, s)
7: if ¢; better than ¢* then

8: update best refinement r* = r; and its quality ¢* = ¢

9: end if

10: end for

=
[,

. if r* # () then

12: apply best refinement r* to current rule r
13: update I by marking all examples that satisfy r* as covered
14: return FIND_RULE (X, Y, w, S, 7, ¢*,)

15: end if
16: update statistics S w.r.t. ground truth Y and updated rule r
17: return updated rule r

2.4.2 Construction of rule heads

A corresponding head must be constructed for each candidate body considered during
training. As a rule only provides predictions for examples it covers, its head should
be tailored to the covered training examples. Compared to traditional classification
settings, where the head of a rule is obliged to predict one of the available classes, arule
may provide predictions for a single label or several ones in multi-label classification.
Following the terminology by Loza Mencia et al. (2018), we refer to rules that predict
for single or multiple labels as single- or multi-label rules, respectively. Depending
on the type of label space statistics used by a particular rule learning method, the
construction of rule heads and the assessment of their quality may differ. Heuristic
rule learning approaches like RIPPER (Cohen 1995) assess the quality of candidate
rules in terms of a heuristic function based on confusion matrices. In contrast, boosting
methods, such as the BOOMER (Rapp et al. 2020) algorithm used in this work, aim to
optimize a continuous and differentiable (surrogate) loss function £ : {0, I}K xR —
R . It compares the probabilistic predictions provided by a model for K labels to
binary ground truth labels. In such a case, the label space statistics for individual
examples x, consist of a gradient vector g, and a Hessian matrix H,. The elements
of the gradient vector g, = (gni)1<;<x correspond to the first-order partial derivative
of £ with respect to a model’s predictions for one of the K labels. Accordingly, the

@ Springer

On the efficient implementation of classification...

second-order partial derivatives form the Hessian matrix H, = (/ij) 1<i j<k- The
individual gradients and Hessians are formally defined as

a¢ R4
9 "(f—l)) d hii — —< "(f—l)) 3
8in 3ﬁm~ (yn, P, an ijn 8[3”,8[3,“ Yu> Py s ()

where y, denotes the ground truth labels for the n-th training example and 13,(,” spec-
ifies the corresponding predictions of a model after ¢ rules have been learned. In
a multi-label setting one has to distinguish between (label-wise) decomposable and
non-decomposable loss functions. Whereas the latter result in non-zero Hessians for
each pair of label and therefore require to take interactions between labels into account,
the former can be optimized more easily, as the gradient and Hessians for different
labels are independent of each other (Dembczyniski et al. 2012).

Regardless of the type of statistics used by a particular rule learning approach, con-
structing rule heads and evaluating their quality requires aggregating the statistics of
several examples (cf., e.g., Algorithm 2, line 12). For this purpose, the aforementioned
boosting approach sums up the gradient vectors and Hessian matrices that correspond
to different examples in an element-wise manner. Furthermore, the methodology used
to derive a rule’s head from previously aggregated statistics depends on the type of
rules to be learned (cf., FIND_HEAD in Algorithm 3). As the algorithmic concepts dis-
cussed in the following are independent of the methodology used for the construction
of rule heads, we consider a detailed discussion of different approaches out of the scope
of this work. Rapp et al. (2020) elaborate on how BOOMER derives the predictions
of rules from gradient and Hessians in Section 4.1 of their work.

3 Pre-sorted search algorithm

For an efficient implementation of Algorithm 2, which aims at learning a single rule,
an efficient evaluation of a rule’s possible refinements is crucial (cf. Algorithm 2,
FIND_REFINEMENT). Instead of evaluating each possible refinement in isolation, this
can often be sped up by integrating the evaluation of multiple refinements into a single
pass through the data. In this section, we discuss pre-sorting of examples as a way that
works particularly well for numeric data. We will first discuss the base algorithm, and
subsequently show how it can be extended to deal with sparse, nominal, and missing
feature values.

3.1 Base algorithm for continuous attributes

A pre-sorted search algorithm sorts the available training examples by their values
for individual attributes before training starts. Afterward, the examples are repeatedly
processed in this predetermined order to build a model. This idea originates from
early work on the efficient construction of decision trees (Mehta et al. 1996; Shafer
et al. 1996). Due to the conceptual similarities between tree- and rule-based models,
it can easily be generalized to rule learning methods. For example, it is used by

@ Springer

M. Rapp et al.

3 x 3 matrix: CSC format:

Fortran-contiguous:

column_indices:

H
H
H

[2fofr[afofo]2]e]o]

Fig. 1 Representation of a 3 x 3 matrix in the Fortran-contiguous and compressed sparse column (CSC)
format. The former uses a single one-dimensional array to store all values in column-wise order, whereas
the latter uses the following three arrays: (1) The array values stores all non-zero values in column-wise
order. (2) For each value in values, row_indices stores the index of the corresponding row, starting at zero.
(3) The i-th element in column_indices specifies the index of the first element in values and row_indices
that belongs to the i-th column

“JRip”, an implementation of RIPPER (Cohen 1995) that is part of the WEKA (Hall
et al. 2009) project, or the implementations of SLIPPER (Cohen and Singer 1999)
and RuleFit (Friedman and Popescu 2008) included in the “imodels” (Singh et al.
2021) package for interpretable models. Both rule- and tree-based learning approaches
require enumerating the thresholds that may be used to make up nodes in a decision
tree or conditions in a rule, respectively. These thresholds result from the feature
values of the training examples, given in the form of a feature matrix as previously
defined in Sect. 2.1. For each training example, it assigns a feature value to each of
the available attributes. In the following, we restrict ourselves to numerical attributes
before discussing means to deal with nominal attributes or missing feature values in
Sects. 3.3 and 3.4, respectively.

When searching for the best condition that may be added to a rule, the available
attributes are dealt with independently. For each attribute A; to be considered by the
algorithm, the thresholds that may be used by the first condition of a rule result from a
vector of feature values (xyy, . . ., x,7) that corresponds to the /-th column of the feature
matrix. To facilitate column-wise access to the feature matrix, it should be given in
the Fortran-contiguous memory layout (an example is given in Fig. 1). As different
attributes are dealt with in isolation, we omit the index of the respective attribute
for brevity. To enumerate the thresholds for a particular attribute, the elements in the
corresponding column vector must be sorted in increasing order. For this purpose, we
use a bijective permutation function t : N™ — NT, where 7 (i) specifies the index of
the example that corresponds to the i-th element in the sorted vector

(Xe(ys oo xevy) With (i) < T(i + 1), Vi € [1, N). 4)

An exemplary vector of sorted feature values, together with the corresponding thresh-
olds, is shown in Fig. 2. Each of the thresholds is typically computed by averaging two
adjacent feature values. Because these values do not change as additional conditions
or rules should be learned, sorting the values that correspond to a particular attribute

@ Springer

On the efficient implementation of classification...

Fig. 2 Sorted vector of numerical 1/=5.0
feature values for a single 230 —4.0
attribute. The thresholds that N —2.0
result from averaging adjacent 00 —0.5
feature values are shown to the
. 5 0.0
right
6| 0.0
7[2.0 b0
s| 50| P
o S0 6.5
Fig. 3 Coverage of numerical 1[—5.0]7]
conditions that can be created 2 =3.0
from a single threshold 1.0 using 3=1.0
the < or > operator 00 <1.0
50 0.0
6/ 0.0]]
7| 2.0
gl 5.0]|>10
9] 8.0]]

is necessary only once during training, and previously sorted vectors can be kept in
memory for repeated access.

If an existing rule should be refined by adding a condition to its body, only a subset
of the feature values must be considered to make up potential thresholds. The subset
corresponds to the examples that satisfy the existing conditions. We use an indicator
function I : N* — {0, 1} to check whether individual examples should be taken into
account by the search algorithm:

I(n) = { (1) if example x,, is currently covered)
otherwise.

If an example is not covered, its feature value may not be used to make up thresholds
for additional conditions. A data structure that helps to keep track of the covered
examples efficiently, rather than comparing the feature values of each example to the
existing conditions, is presented in Sect. 3.2 below. It also facilitates dealing with
sparse feature values.

@ Springer

M. Rapp et al.

Algorithm 3 Pre-sorted search for the best refinement (FIND_REFINEMENT)

1: input: Vector of sorted feature attributes (.%’T(n)):], quality of the current
rule ¢, indicator function I, weights of training examples w, statistics
S = {(gn,Hn)}fy, globally aggregated statistics s = (g, H) with g =

2: best refinement r* = (), best quality ¢* = ¢

3: fori=1to N do

4: if 1(7(i)) =1 and w,(;) > 0 then

5: break

6: end if

7. end for

8: initialize sum of gradients g’ = g,(;) and Hessians H' = H.,;

9: for j=i+1to N do

10: if I(7(j)) =1 and w,(;) > 0 then

11: update sum g’ = g’ + g, ;) and H' = H' + H, ;)

12: threshold t = avg (acT(Z-), xT(j))

13: updated head p’, quality ¢’ = FIND_HEAD (g, H')

14: if ¢ < ¢* then

15: update refinement r* = {t, S,ﬁ'} and its quality ¢* = ¢’
16: end if

17: p',q = FIND_HEAD (g — g’, H — H') > cf. Rapp et al (2020), Alg. 2
18: if ¢ < ¢* then

19: update refinement r* = {t, >,ﬁ/} and its quality ¢* = ¢
20: end if

21: 1=7

22: end if

23: end for
24: return best refinement r*, its quality ¢*

—5.0
-3.0
-1.0
0.0/~
0.0
0.0
2.0
5.0][>1.0
8.0

© 00 N O U e W N =

Fig. 4 Aggregation of statistics depending on the coverage of conditions that use the < or > operator and
a single threshold 1.0. In case of the > operator, the statistics are obtained by computing the difference
(orange) between previously aggregated statistics (green), which correspond to already processed feature
values, and globally aggregated statistics that are computed beforehand (blue) (color figure online)

@ Springer

On the efficient implementation of classification...

3.1.1 Enumeration of conditions

As shown in Algorithm 3, the feature values that correspond to a particular attribute
are processed in sorted order to enumerate the thresholds of potential conditions.
When dealing with numerical attributes, the thresholds result from averaging adjacent
feature values (cf. Algorithm 3, line 11). The calculation of thresholds is restricted to
the feature values of examples that are covered according to the indicator function /
and have non-zero weights according to a weight vector w. The weights result from the
application of an (optional) sampling method (cf. Algorithm 3, lines 4 and 10). When
dealing with numerical attributes, each threshold can be used to form two distinct
conditions, using the relational operator < or >, respectively. As can be seen in Fig. 3,
when a condition that uses the former operator is added to a rule, it results in all
examples that correspond to the previously processed feature values being covered.
In contrast, a condition that uses the latter operator covers all of the other examples.

3.1.2 Aggregation of statistics

As can be seen in the lines 13 and 17 of Algorithm 3, it is necessary to construct a
head for each candidate rule that results from adding a new condition to a rule. In
addition, the quality of the resulting rule must be assessed in terms of a numerical
score. Both the predictions provided by a head and the estimated quality depend on
the aggregated label space statistics of the covered examples. We exploit the fact
that conditions using the < operator, when evaluated in sorted order by increasing
thresholds, are satisfied by a superset of the examples covered by the previous condition
using the same operator but a smaller threshold. Processing the possible conditions
in the aforementioned order enables the pre-sorted search algorithm to compute the
aggregated statistics (corresponding to a vector of gradients g’ and a matrix of Hessians
H' in case of the BOOMER algorithm) incrementally (cf. Algorithm 3, line 12). For
the efficient evaluation of conditions that use the > operator, the search algorithm is
provided with the statistics that result from the aggregation over all training examples
that are currently covered and have a non-zero weight (denoted as g and H). The
difference between the globally aggregated statistics and the previously aggregated
ones (g — g’ and H — H’) yields the aggregated statistics of the examples covered
by such a condition (cf. Algorithm 3, line 17). As the global aggregation of statistics
does not depend on a particular attribute, this operation must be performed only once
per rule, even when searching for a rule’s best refinement across multiple attributes.
Figure 4 provides an example of how the aggregated statistics are computed for the
conditions that can be created from a single threshold.

3.2 Exploitation of feature sparsity

When dealing with training data where most feature values are equal to zero (or another
predominant value), using a sparse representation of the feature matrix reduces the
amount of memory required for storing its elements and facilitates the implementation
of algorithms that can deal with such data in a computationally efficient way. In

@ Springer

M. Rapp et al.

1]-=5.0 40 (O
[=30 '
s[—10] 20 W
—0.5 (IIT)
y é.O 1.0 (110
ED 3.5 (II)
<50 6.5 (II)

Fig. 5 Sparse representation of the vector of numerical features in Fig. 2, where values that are equal to
zero are omitted. The thresholds that result from averaging adjacent feature values are shown to the right.
The numbers in parentheses (I, 11, IIT) specify the phases of the sparsity-aware search algorithm that are
responsible for the evaluation of individual thresholds

[1[=5.0]]
2| —3.0
3|—1.0| | <10
g.
H .
, a[2.0]]
i,; 5/ 5.0|[>1.0
| 6| 8.0]]

Fig. 6 Evaluation of conditions that separate examples with positive values from the remaining ones. The
condition that uses the < operator requires to compute the difference (orange) between the statistics of
examples with positive values (red) and the globally aggregated ones (blue) (color figure online)

, { 1[=5.0
‘(1]]; 2[-3.0] | <05
L 3|—1.0
g, i
H :
4] 2.0||>-05
50 5.0
| 6 8.0]]

Fig. 7 Evaluation of conditions that separate examples with negative values from the remaining ones. The
difference (orange) between the statistics of examples with negative values (green) and the globally aggre-
gated ones (blue) is required in case of the < operator (color figure online)

the following, we discuss a variant of the previously introduced pre-sorted search
algorithm that allows to search for potential refinements of rules using both dense
and sparse feature matrices. As shown experimentally in Sect. 3.5, the use of sparse
input data, where feature values are provided in the compressed sparse column (CSC)
format (see Fig. 1 for an example), may drastically reduce training times.

@ Springer

On the efficient implementation of classification...

3.2.1 Enumeration of thresholds

When dealing with a sparse representation of the feature matrix, the sorted column
vector for each attribute, which serves as a basis for enumerating possible thresholds,
only contains non-zero feature values (an example is given in Fig. 5). On the one
hand, because only non-zero values must be processed, this reduces the algorithm’s
computational complexity. However, on the other hand, the algorithm cannot identify
the examples with zero feature values. Therefore, to enumerate all thresholds that
result from a sparse vector, including those that result from examples with zero feature
values, a “sparsity-aware” search algorithm must follow three phases:

e Phase I: It starts by processing the sorted feature values in increasing order as
before. Traversal of the feature values must be stopped as soon as a positive value
or a value equal to zero is encountered.

e Phase II: Afterward, it processes the sorted feature values in decreasing order until
a negative value or a value equal to zero is encountered.

e Phase III: After all elements in a given vector have been processed, it is possible
to deal with the thresholds that eventually result from examples with zero feature
values. To determine whether such examples exist, the number of elements with non-
zero weights processed so far can be compared to the total number of examples in a
dataset or a sample thereof. If all available examples have already been processed,
a single threshold can be formed by averaging the largest negative feature value
and the smallest positive one that has been encountered in the previous phases.
Otherwise, two thresholds between zero and each of these values can be made up.

An algorithm that follows the aforementioned procedure is not only able to deal with
dense and sparse vector representations, but also enumerates all thresholds that are
considered by Algorithm 3. However, if a large fraction of the feature values are equal
to zero, it involves far less computational steps. The step-wise procedure that we use
for the enumeration of thresholds resembles ideas that are used by XGBoost (Chen
and Guestrin 2016) for the construction of decision trees from sparse feature values.
However, the latter requires to traverse the values that correspond to each attribute
twice, whereas our approach processes the values only once. In general, the proposed
approach is not restricted to the space-efficient representation of zero values, but can
omit explicit storage of any value that is predominant in the data. For simplicity, we
restrict ourselves to the former.

3.2.2 Aggregation of statistics (phase I)

The first phase of the sparsity-aware search algorithm, where examples with negative
feature values are processed, is identical to Algorithm 3. During this initial phase,
the aggregated statistics of examples that satisfy potential conditions are obtained as
illustrated in Fig. 4. If a condition uses the < operator, the statistics of the examples
it covers correspond to the previously aggregated statistics (g’ and H’) of already
processed examples. To obtain the statistics of examples covered by a condition that
uses the > operator, the difference (g — g’ and H — H') between the globally aggregated
statistics (g and H) and the previously aggregated ones are computed. The first phase

@ Springer

M. Rapp et al.

ends as soon as an example with a positive or zero feature value is encountered. The
statistics that have been aggregated until this point (g’ and H’) include all examples
with negative feature values and are retained for later use during the third phase of the
algorithm.

3.2.3 Aggregation of statistics (phase Il)

The second phase, where examples with positive feature values are considered, follows
the same principles as the previous phase. However, the examples are processed in
decreasing order of the their respective feature values. Consequently, the incrementally
aggregated statistics (denoted as g” and H” to distinguish them from the variables
used in the first phase) updated at each step correspond to the examples that cover a
condition using the > operator. To obtain the aggregated statistics of examples that
satisfy a condition that uses the < operator, the difference (g — g” and H — H”)
between the globally aggregated statistics and the previously aggregated ones must
be computed. The end of the second phase is reached as soon as an example with
a negative or zero feature value is encountered. The statistics aggregated during this
phase (g” and H”) include the statistics of all examples with positive feature values.
They are kept in memory for use during the third and final phase.

3.2.4 Aggregation of statistics (phase IlI)

After the second phase has finished, the algorithm is able to decide whether any
examples with zero feature values, which are neither stored by a sparse representation
of the feature values nor can explicitly be accessed by the rule induction algorithm, are
available. This is the case if the sum of the weights of all examples processed until this
point is smaller than the total sum of weights of all examples in a dataset or a sample
thereof. In any case, it is necessary to evaluate potential conditions that separate the
examples with positive feature values from the remaining ones (possibly including
examples with zero feature values). As shown in Fig. 6, this requires considering
two conditions with the operator < and >, respectively. The statistics of examples
that satisfy the latter correspond to the statistics aggregated during the algorithm’s
second phase (g” and H"). To obtain the statistics of examples that are covered by the
former, the difference (g — g” and H — H") between the statistics aggregated during
the second phase and the globally aggregated ones must be computed. In addition, if
any examples with zero feature values are available, additional conditions using the
operators < and > that separate the examples with negative feature values from the
remaining ones must be considered. The statistics of examples that are covered by the
former correspond to the statistics that have been aggregated during the first phase of
the algorithm (g’ and H’). In contrast, the statistics of examples that satisfy the latter
must again be computed by taking the globally aggregated statistics into account. They
calculate as the difference (g — g’ and H — H') between the statistics corresponding
to examples with negative feature values, which have been processed during the first
phase, and the globally aggregated ones that have been computed beforehand. An
example of how the aggregated statistics for the evaluation of these conditions are

@ Springer

On the efficient implementation of classification...

obtained is given in Fig. 7. If no examples with zero feature values are available, the
evaluation of additional conditions, as depicted in Fig. 7, can be omitted.

3.2.5 Keeping track of covered examples

Once the best condition among all available candidates has been added to a rule, it is
necessary to keep track of the examples that are covered by the modified rule. This
is crucial because additional conditions that may be added during later refinement
iterations must only be created from the feature values of examples that satisfy the
existing conditions. When dealing with a dense representation of feature values, as
shown in Fig. 2, the feature values of all examples can directly be accessed. Keeping
track of the covered examples is straightforward in this case. However, given a sparse
representation, as shown in Fig. 5, it becomes a non-trivial task since the algorithm
does not know the examples that come with zero feature values. To overcome this
problem, we utilize a data structure suited to keep track of the covered examples in
both cases, regardless of the feature representation used. It maintains a vector that
stores a value for each example in a dataset, as well as an indicator value. If the value
that corresponds to a certain example is equal to the indicator value, it is considered to
be covered. This enables to answer queries to the indicator function I (n), as defined
in (5), in constant time by comparing the value of the n-th example to the indicator
value. Initially, when a new rule does not contain any conditions yet, the indicator
value and the values in the vector are all set to zero, i.e., all examples are considered
to be covered by the rule. An example of such a data structure for nine examples that
correspond to the feature values in Fig. 5 is shown in Fig. 8. Updating the data structure
after a new condition has been found requires to take the range of examples it covers
into account. If only examples with negative (or positive) feature values satisfy the
respective condition, i.e., if the condition’s threshold is less than (greater than or equal
to) zero and it uses the < (>) operator, the corresponding values of the proposed data
structure can be updated directly. In such a case, the values of covered examples and
the indicator value are set to the number of conditions that are currently contained
in the rule’s body, marking them as covered. If a condition is satisfied by examples
with zero feature values, for which the corresponding indices are unknown, the values
that correspond to the uncovered examples are updated instead by setting them to
the current number of conditions. However, the indicator value remains unchanged,
which renders the examples that correspond to the updated values uncovered, whereas
examples with unmodified values remain covered if they already satisfy the previous
conditions.

3.3 Dealing with nominal attributes

An advantage of rule learning algorithms is their ability to deal with nominal attributes
by using operators like = or 7 for the conditions in a rule’s body. This is in contrast
to many statistical machine learning methods that cannot deal with nominal attributes
directly. Instead, they require to apply preprocessing techniques to the data before
training. Most commonly, one-hot-encoding is used to convert nominal attributes to

@ Springer

M. Rapp et al.

numerical ones. It replaces a single nominal attribute with a fixed number of discrete
values with several binary attributes that specify for each of the original values whether
it applies to an example or not. Such a conversion may drastically increase the number
of attributes in a dataset and therefore can negatively affect the complexity of a learning
task.

To deal with nominal attributes, we rely on the same principles used by the pre-
sorted search algorithm in the case of numerical attributes, including the ability to use
sparse representations of feature values. In the case of a nominal attribute, the feature
values associated with the individual training examples are not arbitrary real numbers
but are limited to a predefined set of discrete values that do not necessarily correspond
to a continuous range and possibly include negative values. As a result, the thresholds
that potential conditions may use are not formed by averaging adjacent feature values
but correspond to the discrete values associated with the available training examples.
Two conditions must be evaluated for each of the values encountered by the algorithm
in a sorted vector of feature values. As shown in Fig. 9, they use the operator = and
#, respectively. Whereas a condition that uses the former operator covers neighboring

‘0‘0‘0’0‘0‘0‘0‘0‘0‘ indicator_value = 0

1 2 3 4 5 6 7 8 9

(1) Condition < —2.0

’1‘1‘0’0‘0‘0‘()‘0‘0‘ indicator-value = 1

1 2 3 4 5 6 7 8 9

(2) Condition > —2.0

’1|1‘0{0|0|010l0|()‘ indicator_value = 0

1 2 3 4 5 6 7 8 9
E Covered examples D Examples with zero feature value

Fig. 8 Visualization of the data structure that is used to keep track of the examples that are covered by a rule.
For each example (see Fig. 2 for their feature values), it stores a value that indicates whether the example is
covered or not. An example is considered to be covered if its value is equal to an indicator_value. Initially,
all examples are marked as covered (top). When a new condition is added to the rule, the data structure
is updated by following one of the following strategies: (1) If the examples that satisfy the condition do
not have zero feature values, the corresponding elements and the indicator_value are both set to the total
number of conditions. (2) Otherwise, the elements that correspond to uncovered examples are updated,
whereas the indicator_value remains unchanged

Fig. 9 Coverage of nominal 1[—=21
conditions that can be created o[=11 20
from a single threshold 0 using 3 —1]
the = or # operator I
=0
a[1]
5[2] |0
o 2|

@ Springer

On the efficient implementation of classification...

_172];&71
g’ 2| —
H" s[—1] |7
a| .
H .
4l 1]|2=1
5] 1|
672

Fig. 10 Evaluation of nominal conditions that separate examples with a particular value from the remaining
ones. The difference (orange) between the statistics of the covered examples (green) and the globally
aggregated ones (blue) is used to evaluate conditions with the # operator (color figure online)

. 1] —2
g |~
- 2| —11| [0
|| 3=l
9 .
: =0
H .
_ T
50 1|10
L _6 2 -

Fig. 11 Evaluation of nominal conditions that separate examples with zero values from the remaining ones.
The statistics of the former result from the difference (orange) between the globally aggregated statistics
(blue) and the ones of previously processed examples (red) (color figure online)

examples with the same value, the examples that satisfy a condition with the latter
operator do not correspond to a continuous range in a sorted vector of feature values.
This requires adjustments to the algorithm when it comes to the aggregating statistics
that correspond to examples that are covered by nominal conditions.

3.3.1 Aggregation of statistics in the nominal case (phase | and II)

The algorithm follows the same order for processing the sorted feature values as out-
lined in Sect. 3.2 to facilitate the use of sparse feature representation when dealing with
nominal attributes. At first, it processes the examples associated with negative feature
values. Afterward, it evaluates the conditions that result from positive feature values,
and finally, in a third phase, potential conditions with zero thresholds are considered.
During the first and second phase, the statistics of examples with the same feature value
are aggregated individually. In accordance with the notation in Fig. 10, we denote the
aggregated statistics for different feature values as g’, g”, ... and H', H”, This
is in contrast to the aggregation of statistics in the case of numerical attributes, where
the statistics of all examples with negative and positive feature values are aggregated.
As illustrated in Fig. 10, the globally aggregated statistics (g and H), which are pro-
vided to the algorithm beforehand, are used to obtain the statistics corresponding to
examples that satisfy conditions using the 7 operator. This requires to compute the

@ Springer

M. Rapp et al.

difference between the globally aggregated statistics and the aggregated statistics of
all examples associated with a particular discrete value.

3.3.2 Aggregation of statistics in the nominal case (phase IlI)

During the third phase of the algorithm, special treatment is required to evaluate
conditions with zero thresholds if any examples with zero feature values are available.
To determine whether such examples exist, the sum of the weights of all examples
that have previously been processed in the first and second phases of the algorithm is
compared to the weights of all examples in a dataset or a sample thereof, as described
earlier. To obtain the aggregated statistics that correspond to the examples with zero
feature values, the statistics g/, g”,... and H', H”, ... that have been computed
during the previous phases must be aggregated. We denote the resulting accumulated
statistics as g* = g’ + g”" +... and H* = H' 4+ H” + ..., respectively. As shown
in Fig. 11, they correspond to the examples with non-zero feature values covered by
a condition that uses the # operator. To evaluate a condition that uses the = operator
and covers all examples with zero feature values, inaccessible by the algorithm when
using a sparse feature representation, the difference between the globally aggregated
statistics (g and H) and the accumulated ones are computed.

3.4 Support for missing feature values

The ability to deal with training data, where the feature values of individual exam-
ples are partly unknown, is a common requirement of many real-world classification
problems. Therefore, we elaborate on ways to deal with unknown feature values in
the following.

Different strategies for handling missing values can be found in the rule learning
literature (see, e.g., Wohlrab and Fiirnkranz 2011, for an overview). The algorithm,
which is used for the experiments in this work, ignores examples with missing values
when evaluating the conditions that can be added to a rule’s body with respect to a
certain attribute. Consequently, rules that contain conditions on an attribute A; in their
body can never be satisfied by examples x,, for which the feature value x,,; is missing.
Other possible solutions include the opposite strategy, i.e., conditions on missing
feature values are always satisfied, as well as the possibility to learn conditions that
explicitly test for unknown values. Alternatively, some learning algorithms come with
strategies to impute the values that are unknown for an example or ignore examples
with missing values entirely.

Only minor adjustments are necessary to apply the previously presented search
algorithm to an attribute for which some examples may lack a value. First of all, the
examples that do not assign a value to the respective attribute are excluded from the
sorted feature vector in (4) and therefore are ignored when enumerating the possible
thresholds of conditions and aggregating the statistics of examples they cover. Instead,
the algorithm keeps track of the examples that do not assign a value to a particular
attribute in a separate data structure. When searching for possible conditions concerned
with the respective attribute, the statistics of the examples that are known to lack a

@ Springer

On the efficient implementation of classification...

value for the attribute must be subtracted from the globally aggregated statistics (pre-
viously denoted as g and H). This ensures that the statistics that are aggregated while
processing a vector of sorted feature values, as well as the statistics that are computed
as the difference between previously aggregated statistics and the globally aggregated
ones, do not include examples with missing values, the considered refinements of a
rule cannot cover.

3.5 Experimental evaluation

To evaluate the efficiency of the pre-sorted search algorithm employed by BOOMER
and, in particular, the advantages that result from using its sparsity-aware variant, we
applied the algorithm to several benchmark datasets (cf. Appendix A). For a complete
picture, we included datasets with varying degrees of feature sparsity in the exper-
imental study and considered both dense and sparse feature representations for the
experiments. Due to the focus on computational efficiency and because the presented
optimizations do not affect algorithmic behavior, the experimental results are mostly
restricted to training times. However, we report the predictive performance achieved
by relevant configurations of BOOMER in Appendix B.

3.5.1 Experimental setup

As we are interested in training efficiency, rather than predictive accuracy, we did
not use any parameter tuning for the following experiments but used the BOOMER
algorithm’s default parameters instead. By default, the algorithm constructs models
that consist of 1, 000 single-label rules. The search for rules is guided by a label-wise
decomposable loss function, which serves as a surrogate for the Hamming loss (see,
e.g., Gibaja and Ventura 2014, for a definition of the evaluation measures used in this
work). Whenever a rule should be refined, it considers a subset of |log, (L — 1) 4 1]
random attributes. For the construction of an individual rule, all available training
examples are taken into account rather than employing a sampling method. To deal
with the nominal attributes that are included in some of the considered datasets, we
relied on BOOMER’s native support for this kind of attribute rather than applying
one-hot-encoding to the data. The BOOMER algorithm’s ability to utilize multiple
computational threads was not used in the following experiments. A discussion of
different possibilities to speed up training via multi-threading, accompanied by per-
formance benchmarks, can be found in Sect. 5 below.

3.5.2 Experimental results

Table 1 provides an overview of the BOOMER algorithm’s training times, averaged
across the folds of a 10-fold cross validation, when applied to different datasets and
using dense or sparse representations of feature values.” In addition, it also shows
the relative speedup in training time that result from the exploitation of sparsity in

2 For each experiment in this work we provided exclusive access to the following computational resources:
AMD Ryzen 7 3800X (8 cores at 3.9 GHz) and 128 GB RAM.

@ Springer

M. Rapp et al.

Table 1 Average training times (in seconds) per cross validation fold on datasets with varying feature sparsity.
The small numbers indicate the speedup that results from using sparse feature representations, compared
to dense feature representations

Dataset Feature sparsity Feature representation
Dense Sparse

20NG 96.81 9.7 1.1 8.82
Bibtex 96.26 12.1 1.9 6.37
Birds 38.64 0.6 0.6 1.00
Bookmarks 94.16 308.4 44.0 7.01
Delicious 96.34 159.6 20.0 7.98
Emotions 0.33 0.5 0.5 1.00
Enron 91.60 1.0 0.2 5.00
EukaryoteGO 99.86 5.1 0.4 12.75
EukaryotePse AAC 43.37 6.5 4.6 1.41
EUR-Lex-SM 95.26 70.9 9.3 7.62
Image 0.22 2.3 2.3 1.00
IMDB 98.06 126.0 12.2 10.33
Langlog 81.38 0.9 0.3 3.00
Mediamill 0.00 235.2 235.5 1.00
Medical 99.32 0.9 0.2 4.50
Ohsumed 0.00 7.4 0.9 8.22
Reuters-K500 98.41 4.5 1.0 4.50
Scene 1.15 3.2 3.0 1.07
Slashdot 99.46 2.6 0.2 13.00
TMC2007 99.79 339 1.3 26.08
Yahoo-computers 99.62 19.6 0.9 21.78
Yahoo-reference 99.59 9.9 0.6 16.50
Yahoo-science 99.53 8.8 0.5 17.60
Yahoo-social 99.71 17.3 0.9 19.22
Yeast 0.00 2.7 2.6 1.04

The bold values are the best ones for each dataset/row

the feature space when using the latter type of feature representation.> As expected,
when applied to datasets with low feature sparsity (“Emotions”, “Image”, “Mediamill”,
“Scene” and “Yeast”), the training times remain mostly unaffected by using sparse data
structures. Notably, the use of sparse data structures does not harm training efficiency
in these cases. On datasets with a feature sparsity between 30 and 50% (“Birds”,
“EukaryotePseAAC”), a minor speedup can be observed. On the remaining datasets,
where at least 80% of the feature values are equal to zero, the sparsity-aware rule

3 Given the duration d; and d» required by two competing approaches M and M, for training, we measure
their relative difference in training time as the ratio d; /d;.

@ Springer

On the efficient implementation of classification...

30
25 ’
[]
o 20 .
=] °
? 15 ;
g °
Y10 d
4
5 L L
[]
0 e
0 20 40 60 80 100
Feature Sparsity (%)
e 20NG Bibtex Bookmarks Delicious
Enron EukaryoteGO EUR-Lex-SM IMDB
Medical Ohsumed Reuters-K500 Slashdot
TMC2007 Yahoo-Computers Yahoo-Reference Yahoo-Science
Yahoo-Social
e Emotions Image Mediamill Scene
Yeast
Birds EukaryotePseAAC

Fig. 12 The average speedup in training time per cross validation fold that results from a search algorithm
that is capable of exploiting sparsity in the feature space, compared to the use of dense data structures. The
considered datasets are grouped by small (green), medium (orange) and high (blue) feature sparsity (color
figure online)

induction algorithm clearly outperforms the baseline and significantly reduces training
time. This is also illustrated by the graphical representation of the experimental results
in Fig. 12, where the speed up that results from using a sparse feature representation
is related to the feature sparsity of the considered datasets.

4 Histogram-based rule induction

The exploitation of feature sparsity, as previously discussed in Sect. 3.2, helps reduce
training times on many benchmark datasets that are used in this work, as they often
come with high feature sparsity. However, it does not provide significant advantages on
datasets with low feature sparsity. The BOOMER algorithm provides an alternative to
the pre-sorted search algorithm introduced in Sect. 3 to efficiently deal with the latter
type of datasets. It is based on assigning examples with similar values for a particular
attribute to a predefined number of bins and using an aggregated representation of
their corresponding label space statistics, referred to as histograms. Depending on how
many bins are used, this approach drastically reduces the number of candidate rules the
rule induction algorithm must consider. Histogram-based approaches have previously
been used to deal with complex classification tasks in modern GBDT implementations,
such as XGBoost (Chen and Guestrin 2016) or LightGBM (Ke et al. 2017). In the
following, we discuss a generalization of the underlying concept, which has evolved
from prior research on decision tree learning (Alsabti et al. 1998; Jin and Agrawal

@ Springer

M. Rapp et al.

2003; Li et al. 2007; Kamath et al. 2002), to rule learning methods and investigate its
impact on predictive performance and training efficiency in an empirical study.

4.1 Assignment of examples to bins

A histogram-based rule induction algorithm requires grouping the available training
examples into a predefined number of bins. Different approaches can principally be
used to determine such a mapping (see, e.g., Kotsiantis and Kanellopoulos 2006, for a
survey on existing techniques). We restrict ourselves to unsupervised binning methods,
where the assignment is solely based on the feature values of the training examples.
This is in contrast to supervised methods, such as the weighted quantile sketch approach
that originates from the XGBoost algorithm (Chen and Guestrin 2016), where infor-
mation about the true class labels of individual examples, or even their label space
statistics, are taken into account. Compared to approaches that utilize the label space
statistics map from examples to bins, unsupervised binning methods can usually be
implemented more efficiently. This is because a mapping solely based on feature values
remains unchanged for the entire training process, whereas the statistics for individual
examples are subject to change and require adjusting the mapping whenever a model
is refined.

4.1.1 Equal-width feature binning

The first binning method that we consider for our experiments is referred to as equal-
width binning. This method, which is commonly used to discretize numerical feature
values, is based on dividing the range of values for a particular attribute into equally-
sized intervals, such that the absolute difference between the smallest and largest
value in each bin are the same. Given a predefined number of bins B, the maximum
difference between the values that are assigned to an interval calculates as

max — min
w=——" (6)
B
where min and max denote the largest and smallest value in a bin, respectively. Based
on the value w, a mapping o : R — N from individual feature values x;, to the index
of the corresponding bin can be obtained as

. X, — min
et =i 2 1. 0

4.1.2 Equal-frequency feature binning

Another well-known method to discretize numerical features considered in this work
is equal-frequency binning. Unlike equal-width binning, which is supposed to result in
bins with values close to each other, this particular discretization method aims to obtain
bins that contain approximately the same number of values. The available examples

@ Springer

On the efficient implementation of classification...

are first sorted in ascending order by their respective feature values to determine
the bins for a particular attribute. This results in a sorted vector of feature values
(xm), el x,(N)), where the permutation function 7 (i) specifies the index of the
example that corresponds to the i -th element in the sorted vector, as previously defined
in (4). Afterward, the sorted values are divided into a predefined number of intervals,
such that each bin contains the same number of values. Given an individual feature
value x,, the index of the corresponding bin calculates as

Oeq.-freq.(Xn) = [T(n) — 1] + 1. (8)

In practice, examples with identical feature values should be prevented from being
assigned to different bins. However, for reasons of brevity, this is omitted from the
above formula.

4.1.3 Assignment of discrete values to bins

To handle datasets that do not only include numerical feature values, but also come
with nominal attributes, we use an appropriate binning method to deal with the latter.
It creates a bin for each discrete value encountered in the training data and assigns
examples with identical values to the same bin.

4.2 Enumeration of thresholds

We denote the set of example indices that have been assigned to the b-th bin via a
mapping function o as

By,={nef{l,...,N}|o(x,) = b}.)

Given B bins previously created for a particular attribute, one can obtain B — 1
thresholds that the conditions of potential candidate rules may use. Depending on
whether the < or > operator is used by a condition, the b-th threshold separates the
examples that correspond to the bins 5y, ..., By from the examples that have been
assigned to the bins By, ..., Bp. The individual thresholds ¢1, ..., fp_; calculate
as the average of the largest and smallest feature value in two neighboring bins 53}, and
Bp+1. Depending on the characteristics of the binning method at hand, some bins may
remain empty. For the enumeration of potential thresholds, bins that are not associated
with any examples should be ignored. When dealing with bins that have been created
from nominal feature values, all examples in a particular bin have the same feature
value. In such a case, the conditions in a rule’s body may test for presence or absence
of these B feature values.

4.3 Creation of histograms

When using unsupervised binning methods, the mapping of examples to bins and
the thresholds resulting from individual bins must only be determined once during

@ Springer

M. Rapp et al.

training. They should be obtained when a particular attribute is considered by the rule
induction algorithm for the first time and should be kept in memory for repeated access.
In contrast, the histograms that serve as a basis for evaluating candidate rules must be
created from scratch whenever a rule should be refined. As shown in Algorithm 3, they
result from aggregating the label space statistics of examples that have been assigned
to the same bin. Examples that do not satisfy the conditions that have previously been
added to the body of a rule must be ignored. As defined in (5), we use an indicator
function 7 to keep track of the examples that are covered by arule. In addition, the extent
to which the statistics of individual training examples contribute to a histogram depends
on their respective weights. This enables the histogram-based search algorithm to use
different samples of the available training examples to induce individual rules.

Algorithm 4 Creation of histograms from label space statistics

1: input: Bins (l’)’b)f7 statistics S = {(g,, Hn)}g,
weights of training examples w
2: initialize empty histogram 5" = {(g}, H{,)}f, where all elements of g} and
Hj are set to zero
for n=1to N do
if I (n) =1 and w,, > 0 then
obtain bin index b = o (x,,)
update S’ by setting g, = g} + wng,, and H] = H, +w, H,
end if
end for
return histogram S’

indicator function I,

© % N> T AW

4.4 Evaluation of refinements

When using a histogram-based search algorithm, evaluating candidate rules in terms
of a given loss function follows the same principles as its pre-sorted counterpart in
Algorithm 3. However, instead of taking the feature values of individual training
examples into account for making up conditions that can be added to a rule’s body, the
conditions to be considered by the histogram-based algorithm result from the prede-
termined thresholds that correspond to the bins for a particular attribute. Even when
an existing rule should be refined, i.e., when an existing rule covers only a subset of
the training examples, the thresholds remain unchanged to increase the algorithm’s
efficiency. Similar to the pre-sorted rule induction algorithm, the histogram-based
approach is based on incrementally aggregating the statistics of training examples that
are covered by the considered refinements. However, instead of aggregating statistics
at the level of individual training examples, it relies on the statistics that correspond to
the individual bins of a histogram. For the efficient evaluation of conditions that use
the > operator in case of numerical attributes, or the # operator in case of nominal
attributes, the algorithm is provided with globally aggregated statistics that are deter-
mined beforehand and computes the difference between previously processed statistics

@ Springer

On the efficient implementation of classification...

that correspond to individual bins and the globally aggregated ones as illustrated in
Fig. 4. The statistics of examples with missing feature values are excluded from the
globally aggregated statistics, as previously described in Sect. 3.4. In addition, the
respective examples are ignored when determining the mapping to individual bins.
Consequently, the histogram-based rule induction method can handle missing feature
values.

4.5 Experimental evaluation

To compare the histogram-based rule induction algorithm to its pre-sorted counterpart,
we investigated the predictive performance and training times of both approaches in
an experimental study. We restricted our experiments to large datasets with many
examples and low feature sparsity, as the histogram-based algorithm aims to reduce
the time needed for training in such use cases. Among the considered benchmark
datasets, only two datasets—*“Mediamill” and “Nus-Wide cVLADplus”—meet these
criteria (cf. Table 5 in the appendix).

4.5.1 Experimental setup

For our experiments, we configured the BOOMER algorithm in the same way as
described in Sect. 3.5, i.e., we learned models of single-label rules that minimize a
surrogate for the Hamming loss. The algorithm’s ability to use multi-threading was
again not used. It is elaborated on in Sect. 5 below. The main goal of our experiments
was to investigate how the training time and predictive performance in terms of the
Hamming loss, the subset 0/1 loss, and the example-wise F1-measure are affected by
varying numbers of bins. Hence, we set the number of bins to be used by the histogram-
based approach to 64, 32, 16, 8, or 4% of the distinct feature values available for a
particular attribute. In addition, we also included a rather extreme setting, where the
number of bins was limited to 8 bins. To assign the available training examples to the
available bins, we further tested both binning methods supported by BOOMER, i.e.,
equal-width and equal-frequency binning.

4.5.2 Experimental results

Table 2 shows the predictive performances and training times that result from apply-
ing the pre-sorted and histogram-based algorithm to the considered datasets. It can be
seen that the latter can reduce the time needed for training, regardless of the dataset
and the configuration. As expected, the speedup in training time that results from the
histogram-based approach increases when fewer bins are used. The equal-width bin-
ning method tends to be slightly more efficient than the equal-frequency method. This
is most probably because the former does not require sorting the training examples and
therefore comes with linear instead of logarithmic complexity. On the dataset “Medi-
amill“ the use of equal-width binning reduces the training time up to a factor of 4.8,
whereas the training algorithm finishes up to 22 times faster on the dataset “Nus-Wise-
cVLADplus”. Regardless of the number of bins, we observe a minor deterioration in

@ Springer

M. Rapp et al.

Table 2 Predictive performance of the pre-sorted and histogram-based rule induction algorithm in terms
of Hamming loss, subset 0/1 loss and example-wise F1 measure, as well as the average training times (in
seconds) per cross validation fold. The number of bins to be used by the histogram-based approach was set
to 64, 32, 16, 8 or 4% of the distinct feature values for a particular attribute or to 8 bins

Dataset Pre-sorted Equal-frequency binning

64% 32% 16% 8% 4% 8 bins

Hamming loss

Mediamill 3.16 322 3.23 322 3.23 322 3.24
Nus-Wide cVLADplus 2.19 2.23 223 223 2.23 223 2.24
Subset 0/1 loss
Mediamill 93.01 93.89 93.93 93.84 93.89 93.89 93.99
Nus-Wide cVLADplus 77.03 77.52 77.53 77.54 77.52 77.55 7755
Example-wise F1 measure
Mediamill 50.61 49.67 49.67 49.75 49.69 49.65 49.27
Nus-Wide cVLADplus ~ 27.54 25.52 25.53 25.57 25.54 2557 25.10
Training time
Mediamill 238.6 167.0 109.8 71.9 52.8 46.1 39.6
Nus-Wide cVLADplus ~ 4623.7 760.3 641.1 5144 402.3 281.9 208.3
Dataset Pre-sorted Equal-width binning

64% 32% 16% 8% 4% 8 bins

Hamming loss

Mediamill 3.16 3.22 3.22 3.22 3.22 3.22 3.27
Nus-Wide cVLADplus 2.19 223 2.23 2.23 2.23 2.23 2.24
Subset 0/1 loss

Mediamill 93.01 9391 93.82 93.78 93.81 93.81 94.10
Nus-Wide cVLADplus 77.03 77.53 77.54 77.53 77.52 77.56 77.58
Example-wise F1 measure

Mediamill 50.61 49.64 49.70 49.75 49.68 49.74 48.79
Nus-Wide cVLADplus 27.54 25.51 25.52 25.54 25.52 25.59 25.09
Training time

Mediamill 238.6 106.9 75.9 58.6 50.1 45.8 40.0
Nus-Wide cVLADplus 4623.7 634.3 513.6 391.5 284.6 241.5 206.7

The bold values are the best ones for each dataset/row

predictive performance for all reported evaluation measures compared to the pre-
sorted rule induction algorithm. Even though the performance of the histogram-based
approach appears to be very resilient against a limitation of the available bins, the vari-
ant that is limited to 8 bins always comes with the most significant drop in predictive
performance. On the considered datasets, the evaluation scores that are achieved by
the equal-width and equal-frequency binning methods are close to each other and do
not differ to a degree that is statistically significant.

@ Springer

On the efficient implementation of classification...

5 Multi-threading

To utilize the multi-core architecture or hyper-threading capabilities of today’s
CPUs, one may consider to speed up the training of rule-based models by execut-
ing certain algorithmic aspects in parallel rather than sequentially. Unlike ensemble
methods, where individual members are independent of each other, e.g., in Random
Forests (Breiman 2001), most rule learning methods do not allow to construct indi-
vidual rules in parallel due to the sequential nature of their training procedure, where
each rule is built in the context of its predecessors. Instead, the following possibilities
exist to parallelize computational steps that are involved in the induction of a single
rule:

e Multi-Threaded Evaluation of Refinement Candidates The evaluation of conditions
that can possibly be added to a rule’s body requires enumerating the feature values
of the training examples for each available attribute, aggregating the label space
statistics of examples they cover, and computing the predictions and quality of
the resulting candidates. Multi-threading may be used to evaluate the refinement
candidates for different attributes in parallel.

e Parallel Computation of Predictions and Quality Scores For each candidate consid-
ered during the construction of a single rule, the predictions for different class labels
and an estimate of their quality must be obtained. These operations are particularly
costly if interactions between labels should be considered as is often the case in
multi-label classification. In such a scenario, the parallelization of these operations
across several labels may help reduce training times.

e Distributed Update of Label Space Statistics After a rule has been learned, the
label space statistics of all examples it covers must be updated. The complexity of
this operation depends on how many examples are covered and is affected by the
number of labels for which a rule predicts. Moreover, the update becomes more
costly if statistics are not only provided for individual labels but also for pairs of
labels or even entire label sets. Depending on the methodology used by a particular
rule learning approach, training times may be reduced by updating the statistics for
different examples in parallel.

The benefits of using the aforementioned possibilities for parallelization heavily
depend on the characteristics of a particular dataset and the learning algorithm. In
some cases, the overhead of managing and synchronizing multiple threads outweighs
the speedup that the parallel execution of computations may achieve. Consequently,
the use of multi-threading may even have a negative effect on the time that is needed for
training. To investigate the effects of multi-threading in an empirical study, we restrict
ourselves to two common use cases: First, we investigate a setting where single-label
rules are used to minimize a decomposable loss function. Second, we consider optimiz-
ing a non-decomposable loss function using multi-label rules that provide predictions
all available labels. As the latter requires taking dependencies between labels into
account, it is computationally more challenging to find the heads of candidate rules
(cf. FIND_HEAD in Algorithm 3). Similar to Sect. 3.5 and 4.5, we use default settings
for the remaining parameters and rely on the BOOMER algorithm’s ability to use
sparse feature representations, if appropriate according to Table 1.

@ Springer

M. Rapp et al.

5.1 The decomposable case

In the first experiment, we investigated how the time needed by the BOOMER algo-
rithm for learning single-label rules is affected by the use of multi-threading. According
to preliminary experiments, training efficiency is unlikely to benefit from updating the
label space statistics in parallel in this particular setting. This is because single-label
rules only affect the statistics that correspond to a single label. Due to the small costs
of such a++n update operation, there is only a small potential for improvements. Sim-
ilarly, we have observed that the benefits of using multiple threads for computing
predictions and quality scores tend to be small in the decomposable case. During the
first iteration of the rule induction algorithm, where candidate rules that contain a
single condition in their body are considered, the algorithm must yet decide on a label
to predict for. During this initial phase of rule construction, the aforementioned oper-
ations come with linear complexity. When evaluating the possible refinements of an
existing rule, after the algorithm has decided for a particular label, they even reduce
to constant-time operations that cannot be parallelized. Based on these findings, we
restrict our study to the multi-threaded evaluation of refinement candidates across
different attributes.

5.1.1 Experimental results

Table 3 reports the training times that result from using a single- or multi-threaded
implementation to evaluate candidate rules. By default, BOOMER selects a random
subset of the available attributes whenever a rule should be refined. This ensures that
the resulting model consists of diverse rules that achieve high predictive accuracy
in combination and results in a significant reduction of training time. With such a
method for complexity reduction in place, the degree to which multi-threading can be
expected to result in runtime improvements mostly depends on the feature sparsity of
the training data. Whereas training can be three times faster on datasets with low feature
sparsity, multi-threading tends to negatively affect training times if feature sparsity is
very high. To investigate how runtimes are affected by the number of attributes that the
rule induction algorithm must consider, we also conducted experiments with feature
sampling disabled. In such a setting, the multi-threaded implementation outperforms
the single-threaded baseline on all considered datasets. As shown in Fig. 13, the use
of multi-threading has greater potential for significant speedups (up to a factor of 7)
when the training algorithm must process more attributes.

5.2 The non-decomposable case

A key functionality of BOOMER is its capability to minimize non-decomposable
loss functions. In addition to the experiments in Sect. 5.1, we investigate the use of
multi-threading to speed up training in this particular scenario. As the training objec-
tive, we use a non-decomposable surrogate for the subset 0/1 loss. According to the
findings by Rapp et al. (2020), the use of multi-label rules is crucial for the success-
ful minimization of non-decomposable loss functions due to their ability to model

@ Springer

On the efficient implementation of classification...

Table 3 Average training times
(in seconds) per cross validation
fold on different datasets when
minimizing a decomposable loss
function. The small numbers
indicate the speedup that results
from the use of multi-threading
(using 8 threads) to evaluate the
potential refinements of rules
with respect to different
attributes in parallel, compared
to a single-threaded
implementation

Dataset Threads

1 8
With Feature Sampling
20NG 1.1 1.6 0.69
Bibtex 1.9 2.5 0.76
Birds 0.6 0.3 2.00
Bookmarks 44.0 353 1.25
Delicious 20.0 19.6 1.02
Emotions 0.5 0.2 2.50
Enron 0.2 0.3 0.67
EukaryoteGO 04 0.6 0.67
EukaryotePse AAC 6.5 2.6 2.50
EUR-Lex-SM 9.3 9.4 0.99
Image 2.3 0.8 2.88
IMDB 12.2 12.0 1.02
Langlog 0.3 0.4 0.75
Medical 0.2 0.3 0.67
Ohsumed 0.9 1.2 0.75
Reuters-K500 1.0 1.5 0.67
Scene 32 1.0 3.20
Slashdot 0.2 0.3 0.62
Yahoo-computers 0.9 1.4 0.64
Yahoo-reference 0.6 0.9 0.67
Yahoo-science 0.5 0.8 0.63
Yahoo-social 0.9 1.4 0.64
Yeast 2.7 0.9 3.00
Without Feature Sampling
20NG 39.0 14.6 2.67
Bibtex 86.1 20.2 4.26
Birds 15.7 2.8 5.61
Bookmarks 3729.1 1571.0 2.37
Delicious 261.4 129.9 2.01
Emotions 4.5 1.0 4.50
Enron 11.7 5.2 2.25
EukaryoteGO 71.3 62.2 1.15
EukaryotePseAAC 258.0 36.6 7.05
EUR-Lex-SM 1677.0 445.0 3.77
Image 60.3 9.7 6.22

@ Springer

M. Rapp et al.

Table 3 (continued)

IMDB 500.0 121.8 4.11
Langlog 17.7 4.5 3.93
Medical 6.4 54 1.19
Ohsumed 40.7 12.2 3.34
Reuters-K500 36.2 8.8 4.11
Scene 83.4 13.7 6.09
Slashdot 21.0 15.7 1.34
Yahoo-computers 1080.3 392.7 2.75
Yahoo-reference 759.8 282.7 2.69
Yahoo-science 733.4 274.0 2.68
Yahoo-social 1608.5 576.7 2.79
Yeast 329 5.3 6.21

The bold values are the best ones for each dataset/row

8
6 I
o
3
X
g 4 x x>
o g X
0 x %
3
2 X Xx
D
° ° ‘&‘3
0
0 20 40 60 80 100
Feature Sparsity (%)
*x 20NG Bibtex Bookmarks Delicious
Enron EukaryoteGO EUR-Lex-SM IMDB
Medical Ohsumed Reuters-K500 Slashdot
Yahoo-Computers Yahoo-Reference Yahoo-Science Yahoo-Social
ex Emotions Image Scene Yeast
Birds EukaryotePseAAC

Fig. 13 The average speedup (or slowdown) in training time per cross validation fold that results from
the use of multi-threading (using 8 threads) to evaluate the potential refinements of rules with respect to
different attributes in parallel, compared to a single-threaded implementation. Regardless of whether feature
sampling is used (circles) or not (crosses), the speedup mostly depends on whether a dataset has low (green),
medium (orange) or high (blue) feature sparsity (color figure online)

dependencies between labels. We learn complete rules that provide predictions for
all available labels in the following study to cater to these results. Calculating loss-
minimizing predictions for different candidate rules requires solving a linear system
in the non-decomposable case. Moreover, a matrix—vector multiplication must be per-
formed to obtain an estimate of a candidate’s quality. The BOOMER algorithm relies
on the software libraries LAPACK (Anderson et al. 1999) and BLAS (Blackford et al.

@ Springer

On the efficient implementation of classification...

Table 4 Average training times (in seconds) per cross validation fold on different datasets when minimizing
anon-decomposable loss function. Three different configurations that use multi-threading (using 8 threads)
to parallelize different aspects of the BOOMER algorithm are considered. Multi-threading can be used for
linear algebra operations, updating the statistics of different examples in parallel or evaluating the potential
refinements of rules across different attributes in parallel

Dataset Linear algebra Linear algebra & statistic Statistic update &
update refinements

20NG 6.3 5.6 1.13 4.1 1.54
Bibtex 171.7 99.1 1.73 86.4 1.99
Birds 32.8 34.0 0.97 46.1 0.71
Emotions 16.5 17.5 0.94 28.2 0.59
Enron 5.8 4.6 1.26 2.6 2.23
EukaryoteGO 3.9 2.5 1.56 2.6 1.50
EukaryotePse AAC 236.7 237.7 1.00 3354 0.71
EUR-Lex-SM 2483.8 2062.7 1.20 1309.5 1.90
Image 71.7 74.4 0.96 195.1 0.37
IMDB 80.5 48.3 1.67 41.3 1.95
Langlog 14.9 11.1 1.34 6.6 2.26
Medical 4.7 2.1 2.24 1.9 247
Ohsumed 6.3 55 1.15 4.0 1.58
Reuters-K500 130.2 104.1 1.25 88.6 1.47
Scene 187.8 189.8 0.99 519.7 0.36
Slashdot 2.9 2.8 1.04 35 0.83
Yahoo-computers 9.7 8.2 1.18 7.7 1.26
Yahoo-reference 7.5 6.3 1.19 5.8 1.29
Yahoo-science 8.5 7.2 1.18 6.3 1.35
Yahoo-social 13.0 9.7 1.34 9.3 1.40
Yeast 874 88.3 0.99 128.7 0.68

The bold values are the best ones for each dataset/row

2002) to implement these linear algebra operations. Multiple computational threads
may be utilized to solve these operations. In addition, multi-threading can optionally
be used to update the statistics that correspond to different examples in parallel when-
ever a new rule is added to a model. When dealing with a non-decomposable loss
function, the number of statistics that must be maintained for each example grows
exponentially with the number of available labels. Compared to the decomposable
case, this makes the update operation more complex and offers potential for runtime
improvements via parallelization. Finally, we also consider using multi-threading to
parallelize the search for refinements across different attributes. As the evaluation of
candidate rules involves the previously mentioned linear algebra operations, this par-
ticular parallelization strategy cannot be used in combination with the multi-threading
capabilities offered by BLAS and LAPACK, which must be disabled to avoid problems
that result from nested multi-threading. However, if the number of labels for which

@ Springer

M. Rapp et al.

a rule may predict is reasonably small and depending on the feature sparsity of a
particular dataset, a parallel search for refinements may exhibit greater speedups than
achievable by using multi-threaded linear algebra operations. As BOOMER comes
with an approximation technique, referred to as gradient-based label binning (Rapp
et al. 2021), which imposes an upper bound on the number of distinct predictions
that may be provided by a rule, the former strategy for parallelization appears to be
promising in many use cases.

5.2.1 Experimental results

The training times that result from the use of different multi-threading strategies in the
non-decomposable case are shown in Table 4. Compared to a configuration where mul-
tiple computational threads are only used for linear algebra operations, the additional
use of parallelization to update the statistics of different examples reduces training
times on 15 out of the 21 considered datasets. Whether a speedup (up to a factor
of 2) can be achieved primarily depends on the number of labels. On datasets with
less than 20 labels (“Birds”, “Emotions”, “Image”, “Scene” and “Yeast”), the over-
head that is introduced by the additional use of multiple threads negatively affects the
time needed for training. Similarly, the benefits of using multi-threading to evaluate
possible refinements of rules across different attributes in parallel, rather than utiliz-
ing multiple threads for linear algebra operations, depend on the dataset. Unlike in
the decomposable case, where this particular parallelization strategy is particularly
efficient on datasets with small feature sparsity, the opposite can be observed in the
non-decomposable setting. To understand this behavior, it is necessary to recall the
principles of the sparsity-aware rule induction algorithm in Sect. 3.2. When dealing
with datasets that come with sparse feature values, the number of candidate rules that
must be considered by the algorithm drastically reduces. Therefore, compared to a
dataset with small feature sparsity, the amount of training time spent on linear algebra
operations is significantly smaller in such a case. Consequently, there is less potential
to speed up these operations by using multi-threading. For this reason, multi-threading
should be used to parallelize the search for refinements across multiple attributes on
datasets with high feature sparsity (resulting in speedups up to a factor of 2.5). In con-
trast, the available processor cores are better utilized for parallelizing linear algebra
operations if the feature sparsity is small.

5.3 Parallelized prediction

In addition to the use of multi-threading to speed up training, parallelization can
also be used when predictions for several examples should be obtained. Delivering
predictions for a given set of examples requires first enumerating the rules in a model
and identifying those rules that cover each of the provided examples. Second, the
predictions provided by the heads of these rules must be aggregated to obtain an
overall prediction. As both of these steps may be carried out independently for each
example, multi-threading can be used to predict for different examples in parallel.
However, prediction time is usually not a limiting factor when dealing with datasets

@ Springer

On the efficient implementation of classification...

comparable to those used in this work in terms of dimensionality. Hence, we leave it
at the mention of this possibility and forego a closer examination of its advantages
and disadvantages.

6 Conclusions, limitations and future work

We provided a detailed discussion of the pre-sorted search algorithm used for the
efficient induction of rules by many successful rule learning approaches. We also dis-
cussed extensions to this algorithm that allow dealing with nominal attributes and
missing feature values. Furthermore, we demonstrated how sparse data structures can
be used to represent feature values. Our experiments suggest that the exploitation of
feature sparsity drastically improves training efficiency in many cases. These empir-
ical results are complemented by a study on the histogram-based induction of rules.
We showed that the latter helps to reduce training times on datasets with low feature
sparsity, where the ability to use sparse representations does not provide any benefits.
Although the algorithmic principles discussed in this work are widely adopted by exist-
ing algorithms for the construction of tree- or rule-based models, publications on the
topic are usually restricted to a high-level overview of the discussed techniques. The
present work complements existing literature by providing an extensive and unified
view of commonly used optimizations and approximations. Moreover, the empirical
investigation using real-world multi-label datasets provided valuable insights for the
practical use of rule learning algorithms. In particular, this applies to the idea of speed-
ing up different aspects of a multi-label rule learning algorithm through parallelization.
We observed that even though parallelization helps to reduce training times in many
cases, its benefits heavily depend on the characteristics of a dataset and the learning
algorithm at hand. The experimental results presented in this work helped us provide
sane defaults for the parameters of the publicly available BOOMER algorithm that
can be expected to work well in practice.

It should be noted, however, that empirical results regarding the runtime of algo-
rithms do generally depend on low-level implementation details and the hardware used.
Therefore, our experiments should not be considered as a replacement for benchmarks
that must unavoidably be conducted when optimizing a particular implementation in a
specific environment. Moreover, even though our experiments demonstrate the poten-
tial of the presented optimizations and approximations, they are not guaranteed to
provide similar results when integrated into different learning algorithms.

Similar to the histogram-based approach examined in this work, unsupervised or
supervised sampling techniques like Gradient-based One-side Sampling (Ke et al.
2017) may reduce the number of candidate rules to be evaluated by a rule learning
algorithm and speed up training. However, compared to the histogram-based algo-
rithm, we have found that sampling techniques of this kind have a more severe impact
on predictive performance. Hence, we refrained from elaborating on this topic. A
more promising direction for future work is motivated by the recent success of GPU-
accelerated decision tree learners. Due to the similarities between decision trees and
rule-based models, the underlying ideas used by such approaches (e.g., Mitchell and
Frank 2017) can easily be generalized to rule learning algorithms.

@ Springer

M. Rapp et al.

Acknowledgments This work was partly funded by the German Research Foundation (DFG) under grant
numbers 400845550 and 438445824.

Funding Open Access funding enabled and organized by Projekt DEAL.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use
is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/
by/4.0/.

Appendix A: Datasets

In Table 5, we provide an overview of the multi-label benchmark datasets that are used
in this work. For a broad comparison of different algorithms, we include datasets of
varying complexity that vastly differ in the number of examples, attributes and labels.
All of these datasets can be downloaded from a publicly available repository at https://
github.com/mrapp-ke/Boomer-Datasets.

Table 5 Characteristics of selected multi-label benchmark datasets from different domains, including the
number of examples, numerical and nominal attributes and labels

Dataset Domain Examples Attributes Labels
Numerical Nominal
20NG Text 19, 300 1006 0 20
Bibtex Text 7395 0 1836 159
Birds Audio 645 258 2 19
Bookmarks Text 87, 860 0 2150 208
Delicious Text 16, 110 0 500 983
Emotions Music 593 72 0 6
Enron Text 1702 0 1001 53
EukaryoteGO Biology 7766 12, 690 0 22
EukaryotePse AAC Biology 7766 440 0 22
EUR-Lex-SM Text 19350 5000 0 201
Image Image 2000 294 0 5
IMDB Text 120, 900 1001 0 28
Langlog Text 1460 1004 0 75
Mediamill Video 43,910 120 0 101

@ Springer

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/mrapp-ke/Boomer-Datasets

On the efficient implementation of classification...

Table 5 (continued)

Dataset Domain Examples Attributes Labels
Numerical Nominal
Medical Text 1954 1909 0 45
Nus-Wide cVLADplus Image 269, 648 128 1 81
Ohsumed Text 13,930 1002 0 23
Reuters-K500 Text 6000 500 0 103
Scene Image 2407 294 0 6
Slashdot Text 3782 3125 0 22
TMC2007 Text 28, 600 0 49, 060 22
Yahoo-computers Text 12, 444 34, 096 0 33
Yahoo-reference Text 8027 39,679 0 33
Yahoo-science Text 6428 37,187 0 40
Yahoo-social Text 12,111 52,350 0 39
Yeast Biology 2417 103 0 14

Appendix B: Predictive performance

In Sects. 3 and 5, we do not report the predictive performance achieved by the
BOOMER algorithm, as they focus on computational efficiency and because the con-
sidered implementation variants do not affect algorithmic behavior. For completeness,
an overview of the predictive performance achieved by the different configurations of
the BOOMER algorithm used in Sects. 3 and 5 is given in Tables 6, 7 and 8. We
assess predictive performance in terms of the Hamming loss, the subset 0/1 loss and
the example-wise F1 measure. No parameter tuning was conducted. Instead, we used
the algorithm’s default parameters. Accordingly, for optimizing the Hamming loss, we
learned 1, 000 single-label rules that minimize a decomposable variant of the logistic
loss. For optimizing the subset 0/1 loss, we learned multi-label rules with respect to a
non-decomposable variant of this loss function. A definition of these loss functions is
provided by Rapp et al. (2020).

@ Springer

M. Rapp et al.

Table 6 Predictive performance achieved by different configurations of the BOOMER algorithm in terms

of the Hamming loss (smaller values are better)

Dataset Decomposable Non-decomposable

With feature Without feature

Sampling Sampling
Hamming loss
20NG 3.24 2.92 2.82
Bibtex 1.36 1.31 1.35
Birds 4.09 3.93 3.87
Bookmarks 0.91 0.91 -
Delicious 1.93 1.93 -
Emotions 18.47 19.22 18.61
Enron 4.60 4.61 4.74
EukaryoteGO 3.60 1.96 1.98
EukaryotePse AAC 5.05 5.12 5.79
EUR-Lex-SM 0.89 0.78 0.48
Image 15.06 14.80 14.18
IMDB 7.14 7.16 7.85
Langlog 1.52 1.54 1.52
Mediamill 3.16 - -
Medical 1.30 0.88 0.87
Ohsumed 5.67 5.54 5.89
Reuters-K500 1.25 1.21 1.16
Scene 8.14 7.90 6.84
Slashdot 4.55 4.08 4.72
TMC2007 8.10 - -
Yahoo-computers 3.47 3.15 3.57
Yahoo-reference 2.75 2.25 2.93
Yahoo-science 3.30 2.75 3.60
Yahoo-social 2.44 1.79 2.36
Yeast 20.05 19.95 19.24

@ Springer

On the efficient implementation of classification...

Table 7 Predictive performance achieved by different configurations of the BOOMER algorithm in terms

of the subset 0/1 loss (smaller values are better)

Dataset Decomposable Non-decomposable

With Feature Without Feature

Sampling Sampling
Subset 0/1 loss
20NG 59.02 51.34 29.44
Bibtex 93.83 89.91 80.58
Birds 46.53 46.38 46.37
Bookmarks 88.76 87.87 -
Delicious 99.91 99.91 -
Emotions 69.81 70.99 66.79
Enron 90.72 89.96 84.02
EukaryoteGO 65.70 30.88 28.05
EukaryotePse AAC 86.21 86.47 66.86
EUR-Lex-SM 89.79 82.16 51.92
Image 55.70 54.00 43.40
IMDB 99.68 98.56 88.94
Langlog 81.44 80.00 80.27
Mediamill 93.01 - -
Medical 47.04 29.27 25.13
Ohsumed 79.95 77.12 70.97
Reuters-K500 84.12 79.48 55.27
Scene 39.55 38.97 23.89
Slashdot 74.46 62.67 50.19
TMC2007 87.01 - -
Yahoo-computers 63.98 58.31 54.41
Yahoo-reference 67.19 57.18 49.66
Yahoo-science 88.25 71.39 63.47
Yahoo-social 68.19 47.06 42.99
Yeast 86.10 85.40 76.95

@ Springer

M. Rapp et al.

Table 8 Predictive performance achieved by different configurations of the BOOMER algorithm in terms
of the example-wise F1 measure (larger values are better)

Dataset Decomposable Non-decomposable
With feature Without feature
Sampling Sampling

Example-wise F1 measure

20NG 43.11 51.06 72.72
Bibtex 14.85 24.54 41.23
Birds 62.18 64.10 63.71
Bookmarks 12.33 13.22 -
Delicious 0.93 0.92 -
Emotions 60.98 60.17 65.51
Enron 51.44 54.02 56.19
EukaryoteGO 39.05 80.53 81.63
EukaryotePse AAC 17.11 16.67 41.18
EUR-Lex-SM 24.80 38.10 69.55
Image 56.60 57.70 70.41
IMDB 0.70 3.87 27.79
Langlog 19.73 21.33 20.95
Mediamill 50.61 - -
Medical 63.13 81.03 84.19
Ohsumed 35.81 42.01 51.73
Reuters-K500 18.46 23.92 56.51
Scene 65.29 66.13 80.92
Slashdot 29.35 44.66 57.88
TMC2007 45.35 - -
Yahoo-computers 4491 51.29 56.69
Yahoo-reference 36.36 47.41 56.82
Yahoo-science 14.38 35.69 44.71
Yahoo-social 35.48 59.19 63.85
Yeast 60.05 60.43 62.92
References

Alsabti K, Ranka S, Singh V (1998) CLOUDS: a decision tree classifier for large datasets. In: Proceeding
international conference on knowledge discovery and data mining, p 2-8

Anderson E, Bai Z, Bischof C, et al (1999) LAPACK Users’ guide. SIAM

Bénard C, Biau G, Da Veiga S et al (2021) SIRUS: Stable and interpretable RUIe set for classification.
Electronic J Stat 15(1):427-505

Blackford LS, Petitet A, Pozo R et al (2002) An updated set of basic linear algebra subprograms (BLAS).
ACM Transact Math Softw 28(2):135-151

Boley M, Teshuva S, Bodic PL, et al (2021) Better short than greedy: interpretable models through optimal
rule boosting. In: Proc. STAM international conference on data mining, pp 351-359

@ Springer

On the efficient implementation of classification...

Bostrom H (1995) Covering vs. divide-and-conquer for top-down induction of logic programs. In: Proc.
international joint conference on artificial intelligence (IJCAI), pp 1194-1200

Breiman L (2001) Random forests. Mach Learn 45(1):5-32

Chen T, Guestrin C (2016) XGBoost: a scalable tree boosting system. In: Proc. ACM SIGKDD international
conference on knowledge discovery and data mining, pp 785-794

Cohen WW (1995) Fast effective rule induction. In: Proc. International conference on machine learning
(ICML), pp 115-123

Cohen WW, Singer Y (1999) A simple, fast, and effective rule learner. In: Proc. AAAI conference on
artificial intelligence, pp 335-342

Conde D, Ferndndez MA, Rueda C et al (2021) Isotonic boosting classification rules. Adv Data Anal Classif
15:289-313

Dembczynski K, Kottowski W, Stowiniski R (2010) ENDER: a statistical framework for boosting decision
rules. Data Min Knowl Disc 21(1):52-90

Dembczyriski K, Waegeman W, Cheng W et al (2012) On label dependence and loss minimization in
multi-label classification. Mach Learn 88(1-2):5-45

Du M, Liu N, Hu X (2019) Techniques for interpretable machine learning. Commun ACM 63(1):68-77

Friedman JH, Popescu BE (2008) Predictive learning via rule ensembles. Annals Appl Stat 2(3):916-954

Friedrich S, Antes G, Behr S et al (2022) Is there a role for statistics in artificial intelligence? Adv Data
Anal Classif 16(4):823-846

Fiirnkranz J (1999) Separate-and-conquer rule learning. Artif Intell Rev 13(1):3-54

Fiirnkranz J (2005) From local to global patterns: evaluation issues in rule learning algorithms. In: Local
pattern detection. Springer, p 20-38

Fiirnkranz J, Gamberger D, Lavra¢ N (2012) Foundations of rule learning. Springer Science & Business
Media

Gamberger D, Lavra¢ N (2000) Confirmation rule sets. In: Proc. European conference on principles of data
mining and knowledge discovery (PKDD), pp 34-43

Gibaja E, Ventura S (2014) Multi-label learning: a review of the state of the art and ongoing research. Wiley
Interdiscip Rev Data Mining Knowl Discov 4(6):411-444

Hall M, Frank E, Holmes G et al (2009) The WEKA data mining software: an update. SIGKDD Explor
11(1):10-18

Hiillermeier E, Fiirnkranz J, Loza Mencia E, et al (2020) Rule-based multi-label classification: challenges
and opportunities. In: International joint conference on rules and reasoning, pp 3—19

Jin R, Agrawal G (2003) Communication and memory efficient parallel decision tree construction. In: Proc.
SIAM international conference on data mining, pp 119-129

Kamath C, Canti-Paz E, Littau D (2002) Approximate splitting for ensembles of trees using histograms.
In: Proc. SIAM international conference on data mining, pp 370-383

Ke G, Meng Q, Finley T et al (2017) LightGBM: a highly efficient gradient boosting decision tree. Adv
Neural Inf Process Syst 30:3146-3154

Kotsiantis SB, Kanellopoulos D (2006) Discretization techniques: a recent survey. GESTS Int Transact
Comput Sci Eng 32(1):47-58

Lakkaraju H, Bach SH, Leskovec J (2016) Interpretable decision sets: a joint framework for description
and prediction. In: Proc. ACM SIGKDD international conference on knowledge discovery and data
mining, pp 1675-1684

Langley P (1996) Elements of machine learning. Morgan Kaufmann

Li P, Wu Q, Burges C (2007) McRank: Learning to rank using multiple classification and gradient boosting.
Adv Neural Inform Process Syst 20

Loza Mencia E, Fiirnkranz J, Hiillermeier E, et al (2018) Learning interpretable rules for multi-label classi-
fication. In: Explainable and interpretable models in computer vision and machine learning. Springer,
p 81-113

Mehta M, Agrawal R, Rissanen J (1996) SLIQ: a fast scalable classifier for data mining. In: Proc. Interna-
tional conference on extending database technology, pp 18-32

Mitchell R, Frank E (2017) Accelerating the XGBoost algorithm using GPU computing. Peer] Comput Sci
3:el27

Mitchell TM (1997) Machine learning. McGraw Hill

Molnar C, Casalicchio G, Bischl B (2020) Interpretable machine learning — a brief history, state-of-the-
art and challenges. In: Proc. European conference on machine learning and knowledge discovery in
databases (ECML-PKDD), pp 417-431

@ Springer

M. Rapp et al.

Murdoch WJ, Singh C, Kumbier K et al (2019) Definitions, methods, and applications in interpretable
machine learning. Proc Natl Acad Sci 116(44):22,071-22,080

Pagallo G, Haussler D (1990) Boolean feature discovery in empirical learning. Mach Learn 5(1):71-99

Rapp M (2021) BOOMER-an algorithm for learning gradient boosted multi-label classification rules. Softw
Impacts 10(100):137

Rapp M, Loza Mencia E, Fiirnkranz J, et al (2020) Learning gradient boosted multi-label classification rules.
In: Proc. european conference on machine learning and knowledge discovery in databases (ECML-
PKDD), pp 124-140

RappM, Loza Mencia E, Fiirnkranz J, et al (2021) Gradient-based label binning in multi-label classification.
In: Proc. european conference on machine learning and knowledge discovery in databases (ECML-
PKDD), pp 462477

Ribeiro MT, Singh S, Guestrin C (2016) “why should i trust you?” explaining the predictions of any
classifier. In: Proc. ACM SIGKDD international conference on knowledge discovery and data mining,
pp 1135-1144

Rivest RL (1987) Learning decision lists. Mach Learn 2(3):229-246

Shafer JC, Agrawal R, Mehta M (1996) SPRINT: a scalable parallel classifier for data mining. In: Proc.
international conference on very large data bases, pp 544-555

Shi H (2007) Best-first decision tree learning. PhD thesis, University of Waikato

Singh C, Nasseri K, Tan YS et al (2021) imodels: a python package for fitting interpretable models. J Open
Source Softw 6(61):3192

Vojitt S, Kliegr T (2020) Editable machine learning models? A rule-based framework for user studies of
explainability. Adv Data Anal Classif 14(4):785-799

Weiss SM, Indurkhya N (2000) Lightweight rule induction. In: Proc. international conference on machine
learning (ICML), pp 1135-1142

Wohlrab L, Fiirnkranz J (2011) A review and comparison of strategies for handling missing values in
separate-and-conquer rule learning. J Intell Inform Syst 36(1):73-98

Zilke JR, Loza Mencia E, Janssen F (2016) DeepRED - rule extraction from deep neural networks. In:
Proc. international conference on discovery science, pp 457-473

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer

	On the efficient implementation of classification rule learning
	Abstract
	1 Introduction
	1.1 Motivation and goals
	1.2 Outline

	2 Preliminaries
	2.1 Problem definition
	2.2 Classification rules
	2.3 Sequential model assemblage
	2.4 Top-down rule induction
	2.4.1 Enumeration of rule bodies
	2.4.2 Construction of rule heads

	3 Pre-sorted search algorithm
	3.1 Base algorithm for continuous attributes
	3.1.1 Enumeration of conditions
	3.1.2 Aggregation of statistics

	3.2 Exploitation of feature sparsity
	3.2.1 Enumeration of thresholds
	3.2.2 Aggregation of statistics (phase I)
	3.2.3 Aggregation of statistics (phase II)
	3.2.4 Aggregation of statistics (phase III)
	3.2.5 Keeping track of covered examples

	3.3 Dealing with nominal attributes
	3.3.1 Aggregation of statistics in the nominal case (phase I and II)
	3.3.2 Aggregation of statistics in the nominal case (phase III)

	3.4 Support for missing feature values
	3.5 Experimental evaluation
	3.5.1 Experimental setup
	3.5.2 Experimental results

	4 Histogram-based rule induction
	4.1 Assignment of examples to bins
	4.1.1 Equal-width feature binning
	4.1.2 Equal-frequency feature binning
	4.1.3 Assignment of discrete values to bins

	4.2 Enumeration of thresholds
	4.3 Creation of histograms
	4.4 Evaluation of refinements
	4.5 Experimental evaluation
	4.5.1 Experimental setup
	4.5.2 Experimental results

	5 Multi-threading
	5.1 The decomposable case
	5.1.1 Experimental results

	5.2 The non-decomposable case
	5.2.1 Experimental results

	5.3 Parallelized prediction

	6 Conclusions, limitations and future work
	Acknowledgments
	Appendix A: Datasets
	Appendix B: Predictive performance
	References

