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Abstract

Automated machine learning (AutoML) strives for the automatic configuration of ma-
chine learning algorithms and their composition into an overall (software) solution — a
machine learning pipeline — tailored to the learning task (dataset) at hand. Over the last
decade, AutoML has developed into an independent research field with hundreds of contri-
butions. At the same time, AutoML is being criticized for its high resource consumption
as many approaches rely on the (costly) evaluation of many machine learning pipelines, as
well as the expensive large-scale experiments across many datasets and approaches. In the
spirit of recent work on Green AI, this paper proposes Green AutoML, a paradigm to make
the whole AutoML process more environmentally friendly. Therefore, we first elaborate
on how to quantify the environmental footprint of an AutoML tool. Afterward, different
strategies on how to design and benchmark an AutoML tool w.r.t. their “greenness”, i.e.,
sustainability, are summarized. Finally, we elaborate on how to be transparent about the
environmental footprint and what kind of research incentives could direct the community
in a more sustainable AutoML research direction. As part of this, we propose a sustain-
ability checklist to be attached to every AutoML paper featuring all core aspects of Green
AutoML.

1. Introduction

A machine learning (ML) pipeline is a combination of suitably configured ML algorithms
into an overall (software) solution that can be applied to a specific learning task, which is
typically characterized by a dataset on which a (predictive) model ought to be trained. The
design of such pipelines is a time and resource consuming task due to the immense number
of solutions conceivable, each of them solving the same problem but varying in performance
(i.e., producing models of better or worse predictive accuracy). Therefore, aiming to find
the best performing pipeline, candidates are evaluated on the dataset at hand to further
adapt and improve its composition and configuration. Aiming at the automation of this
process, AutoML (Hutter et al., 2019) develops methods for searching the space of ML
pipelines in a systematic way, typically with a predefined timeout after which the most
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promising candidate is used to train the final model. The interest in the field of AutoML
has rapidly increased in the recent past, and the field has broadened in scope, though
predictive performance remains the main measure of interest.

In the field of AutoML, theoretical results are quite difficult to obtain, because the
problem is complex and hardly amenable to theoretical analysis. Accordingly, most research
contributions are of empirical nature: the proposition of a new technique or approach is
accompanied by large experimental studies to show the benefits of the proposed techniques.
As one is interested in techniques that work well in general, across a broad range of problems,
a large number of datasets is required for evaluation. Additionally, as there is not a single
AutoML system representing the state of the art (SOTA) and dominating all others, multiple
competitors need to be assessed. To this end, each competitor is usually re-evaluated on the
same datasets and ideally under identical conditions, for example, the same search space and
hardware restrictions. Combined with long evaluation times of a single solution candidate
of up to several hours or even days, like in the case of neural architecture search (NAS)
(Elsken et al., 2019b), all this culminates in a field that is quite resource-intensive and
therefore producing immense carbon emission — much of which could be mostly avoided
as we discuss later on. Note that carbon emissions or CO2e refer to CO2 equivalents, i.e.,
the amount of CO2 with the same global warming potential as the actual gas emitted.

To fully cover the carbon emissions produced through a single published AutoML paper,
one has to consider the whole production chain, starting with the generation and storage of
data, the computational effort and memory needed during the development of the according
AutoML system and also the final benchmark. Usually, most of the carbon emission is
caused by the AutoML process, namely the evaluations of ML pipelines and the storage of
the intermediate results of the search process, which is why we mostly focus on this part
throughout the paper.

However, we would like to stress that papers with a large environmental footprint are not
necessarily to be doomed (this will be discussed in more detail later on). What is important,
instead, is to carefully trade-off cost versus benefit. For example, a paper investing many
resources in creating a benchmark, which then allows other researchers to save resources on
their papers, might offer a much larger benefit than a paper investing the same resources in
evaluating a method that only grants a 0.001% improvement compared to SOTA methods.

The general problem is not exclusive to AutoML but similarly applies to many other
AI-related fields, in particular deep learning due to its ever-increasing architectures (Ben-
der et al., 2021; Patterson et al., 2022). Lately, there has been a growing interest in being
more environmentally friendly in the whole field of AI. While AI for sustainability is quite
commonly known, sustainability of AI has long been less of a concern. In 2019, Schwartz
et al. (2019) introduced the notion of Green AI, advocating to consider the energy efficiency
of AI algorithms during their development. Additionally, they propose to attach relevant
information, such as the elapsed runtime of all experiments or carbon emissions to every AI
paper published. Similarly, van Wynsberghe (2021) campaigns for more work on sustain-
ability of AI, especially economic, social, and environmental sustainability. Even large tech
companies such as Google advocate for the consideration of the CO2e footprint as part of
papers and corresponding transparency about it (Patterson et al., 2022).

In the spirit of the recent work on Green AI, we seek to transfer the ideas and problems
to the field of AutoML, we dub this paradigm Green AutoML. The foundation thereof is the
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quantification of the environmental footprint of AutoML approaches (Section 2). In general,
we identify four categories of actions the community may take towards the reduction of the
environmental footprint of research on AutoML. The design (Section 3) and benchmarking
(Section 4) of AutoML systems are both key aspects to consider for improving the environ-
mental footprint. Furthermore, being transparent about that footprint (Section 5) can give
valuable additional information about an AutoML approach. Lastly, appropriate research
incentives (Section 6) could direct the AutoML research in a more sustainable direction.
Additionally, we elaborate on the trade-off between focusing on environmental impact and
the freedom of research (Section 7) and on the prospects of AutoML (Section 8), prior to
concluding this paper.

2. Quantifying Sustainability

Quantifying the sustainability of an AutoML approach is usually the first step towards a
more environmentally friendly approach. However, measuring sustainability in terms of a
single number, suitable as a basis for comparing different approaches with each other, is a
challenging problem.

2.1 Measures for Post-Hoc Analysis

First and foremost, it is important to differentiate between the efficiency of an approach
and the environmental footprint of a specific experiment featuring the approach. When
assessing several measures in the following regarding their ability to quantify efficiency, we
always refer to the performance curve of the approach (cf. Section 4.3). This curve describes
the dependency between the measure of interest (e.g. runtime) and the performance (e.g.
accuracy) achieved by the approach after a certain amount of budget w.r.t. that measure has
been consumed. For example, we would consider a tool achieving an accuracy of 0.8 after
30 seconds of runtime to be more efficient than a tool requiring 60 seconds, if runtime was a
suitable measure for quantifying efficiency. Moreover, measures to quantify efficiency should
be hardware-independent, very much like the O-notation for characterizing complexity in
theoretical computer science, but of course not only asymptotic, because “constants” clearly
matter in this case.

In practice, however, approaches are often run on varying hardware with different prop-
erties, such as energy consumption. Furthermore, experiments often vary in terms of scope.
Consider, for example, two works suggesting different approaches where one evaluates on
only two datasets using an old laptop with a CPU having a high energy consumption and
the other one evaluates on 100 datasets on much more efficient and also suitable hardware
provided by a compute center. The second work will most likely have a larger environ-
mental footprint because more energy is consumed than the first one, although it could
potentially be a much more efficient approach. Moreover, while any reasonable measure
for efficiency should be hardware-independent, measures for the environmental impact of a
specific experiment on a specific machine must be hardware-dependent.

Accordingly, Green AutoML research can neither be quantified solely on the basis of the
efficiency of an approach nor the environmental impact of a specific (set of) experiment(s).
Instead, the two must be considered jointly. In the following, we discuss several such
measures w.r.t. their suitability for both measuring energy efficiency and environmental
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Runtime × X × × ◦
CPU/GPU Hours × X × × ◦
Floating Point Operations × X × × ×
Energy Consumption × × X × X
CO2e × × X × X

Table 1: Summary of discussed measures to quantify efficiency and environmental impact,
together with their properties (fulfilled: X; partially fulfilled: ◦; not fulfilled: ×).

impact, which is visually summarized in Table 1. For the following discussion, we focus
mostly on aspects of sustainability induced by computation and largely ignore other aspects,
such as the software lifecycle or reliability, which are considered in general research on
software sustainability (Calero et al., 2013; Lago et al., 2015; Calero et al., 2019; Lannelongue
et al., 2021). In particular, the measures we discuss in the following can be attributed to
the area of performance efficiency proposed by Calero et al. (2013) and, as the majority
of the measures in that area, our discussed measures focus on estimating time or resource
consumption in one way or the other.

2.1.1 Runtime

Although runtime completely ignores aspects such as memory consumption, it strongly
correlates with the energy consumption of the corresponding experiment, which is usually
a linear function of runtime and energy consumption of the components. However, runtime
by itself is not easy to interpret by a human with regard to the size of an environmental
footprint, as it is not a number that can be directly compared to something commonly used,
for example the footprint of a flight.

Nevertheless, if enough additional information, such as the energy consumption of the
used hardware (per time unit) and the composition of the energy mix, are available, it
is a suitable foundation for computing an estimate on the overall CO2e footprint of the
experiment at the location and time it was performed. Furthermore, compared to other
measures (to be discussed in the following), runtime is rather straightforward to measure
on most hardware.

Overall, runtime is a poor measure of efficiency, as it is not hardware-independent, but
it is quite practical as a proxy of the environmental impact.
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2.1.2 CPU/GPU Hours

Similarly, measuring CPU/GPU hours is both practical and easy to quantify environmental
impact. Unfortunately, CPU/GPU time is often used ambiguously, as one can measure
either wall clock CPU/GPU time or true CPU/GPU time, which results in different in-
terpretations for quantifying environmental impact. On one hand, if wall clock time is
used, the impact of other operations like memory access is implicitly included. This also
includes overloaded main memory where the computer starts swapping. On the other hand,
if real CPU/GPU time is used, those operations are partially ignored. Similarly, as before,
CPU/GPU hours make it hard for a human to quantify the impact in comparison to other
causes known from daily life. Moreover, counting CPU/GPU hours is a poor proxy for effi-
ciency, as it is hardware-dependent. Nevertheless, as of now, it is one of the most practical
proxies as it is easy to measure and rather easy to convert into CO2e assuming that the
CPU/GPU consistently uses a certain amount of energy and that the energy mix is known.

2.1.3 Floating Point Operations

Although counter-intuitive, floating point operations (FPO) are a hardware-dependent mea-
sure and as such they are not well suited for quantifying efficiency either. The hardware
dependence is caused by the optimization of the compiler when the corresponding code is
compiled. Depending on the degree of optimization (and the hardware the code is optimized
for), the amount of FPOs can vary. At the same time, it is also problematic as a proxy for
environmental footprint, because, similar to the previous measures, it ignores other elements
such as memory usage. However, FPOs are often easy to measure, as most CPU/GPUs
have corresponding counters that can be read. Once again, from a human perspective, this
measure is hard to interpret and put in comparison with others.

2.1.4 Energy Consumption

Similar to runtime, energy consumption is not hardware independent but heavily depends
on the energy efficiency of the hardware. Thus, while being a bad measure of efficiency of an
approach, it is an excellent measure for quantifying the environmental footprint of a specific
experiment on specific hardware, as energy, apart from the hardware itself, is the main
external resource required to perform AutoML experiments. Moreover, from the amount of
consumed energy, one can often reasonably approximate the actual CO2e emissions caused
by the experiment at the location and time of execution, if enough additional information
(such as the energy mix) is available. Even more so, humans can often quite easily put
energy consumption in perspective, as most people are aware of their own consumption at
home. Unfortunately, measuring energy consumption is often difficult in practice, where
HPC systems are used to perform experimental evaluations. While one can measure the
energy used by a personal computer quite easily, using appropriate electrical instruments,
measuring the energy consumption across several nodes of a cluster, which might even be
shared with other users, can be very complicated. We refer to Garćıa-Mart́ın et al. (2019)
for a comprehensive overview of available estimation methods and corresponding software.
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2.1.5 CO2 Equivalents

CO2e is, in principle, an excellent and probably the most direct measure for quantifying the
environmental footprint of an experiment, if the physical location and the time of execution
are provided as well. However, CO2e as a measure suffers even more from the problem of
measurability than energy consumption, because it is not directly measurable. Instead, it
can be computed based on the energy consumption and additional information on the energy
mix. In practice, obtaining corresponding information is often not possible, and in fact, the
energy mix might even vary depending on external effects, such as the weather, if it contains
renewable energy components. Moreover, while the energy consumption of an experiment
is mostly independent of the time and location of execution, the CO2e footprint of the same
experiment can vary drastically depending on these factors. Consequently, the energy mix
should be noted as part of the footprint. For example, running an experiment at a compute
center completely powered by renewable energy will result in no direct CO2e emissions,
whereas running the same experiment on a unit powered by energy produced from coal will
result in much larger CO2e emissions. Patterson et al. (2021) even demonstrate that the
choice of the actual (deep learning) model, the compute center and the compute unit can
influence the carbon footprint of a work by a factor of 1000, and that simply choosing the
right compute center location can result in a factor of up to 10.

2.2 Ignored Side Factors

None of the measures previously discussed includes other side factors such as the resources
used by the scheduler of the HPC system, or by a potential database holding the data, or
the whole process of generating and transferring the data. Especially the latter is crucial, as
reusing existing data (instead of generating new ones) makes a paper more environmentally
friendly if one does not account for the data generation. Similarly, the share of the footprint
caused by the production of the hardware itself is almost impossible to quantify, as this
would require knowledge of details about both the lifetime and the future usage of the
hardware in advance. Lastly, one actually needs to quantify the environmental impact in
terms of multiple measures, as the production of hardware, the operation of HPC systems
and other factors also impact the environment apart from CO2e emissions, for example,
through water usage. Overall, the problem of quantifying the environmental footprint of
scientific research is extremely complex and may constitute a custom paper on its own.
We refer the interested reader to the research area of software sustainability for more all-
encompassing general work on the matter (Calero et al., 2013; Lago et al., 2015; Calero
et al., 2019).

2.3 Best Practices for Quantifying Sustainability

To measure the environmental footprint of a specific experiment, it is most practical to use
the wall clock time based CPU/GPU hours as a proxy. This number is usually easy to
capture without any timely investigations about the energy mix and the energy consump-
tion, which, in case of HPC, might be impossible to obtain. Nevertheless, in case those
additional information is easy to access, the environmental footprint itself can be estimated
by multiplying the CPU/GPU hours with the energy consumption per unit and CO2e of
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the energy mix. Note that although the energy mix might be green, the computation is
still not for free. The mere usage of resources already leaves a footprint (tool wear, etc.),
which is why saving any CPU/GPU hours of any energy mix, or avoiding any unnecessary
computational time, will reduce the overall footprint of the research. Overall, it is most
important to be transparent about the environmental footprint, which might help inter-
ested readers to decide which method from a paper suits their needs. Therefore, attaching
this information to a published paper is key towards achieving Green AutoML, which we
elaborate on in Section 5.

When it comes to estimating the efficiency of an approach independent of the hardware,
we do not have a concrete suggestion, as none of the solutions previously discussed is truly
satisfying. Nevertheless, we think this is an important aspect that should be covered in
future work.

2.4 Tooling and Software

There exists software and tool support that can help to quantify environmental impact.
One example is Carbontracker (Anthony et al., 2020), which tracks and predicts the carbon
emissions consumed while training deep learning models. Similarly, IrEne (Cao et al., 2021)
predicts the energy consumption of transformer-based Natural Language Processing (NLP)
models. Parcollet and Ravanelli (2021) propose a framework to investigate carbon emis-
sions of end-to-end automatic speech recognition (ASR). EnergyVis (Shaikh et al., 2021)
is a more general tool, which is capable of tracking energy consumption for various kinds
of machine learning models and provides an interactive view to compare the consumption
across different locations. Unfortunately, it is limited to the USA at the moment. Similarly,
the Machine Learning Emissions Calculator1 (Lacoste et al., 2019) is an easy-to-use online
tool for estimating the CO2e footprint of a set of experiments. Similarly, the tool by Lan-
nelongue et al. (2021) called GreenAlgorithms2 estimates the CO2e of any software artifact
based on several quantities such as the CPU or GPU hours. Notably, they also consider the
energy consumed by memory and other factors making it perhaps the most comprehensive
tool. Schmidt et al. (2021) designed a python library, called CodeCarbon3, directly allowing
to measure the CO2e footprint of your application within code. We close the tool section
with (Garćıa-Mart́ın et al., 2019), which gives a comprehensive overview of methods and
software for estimating the energy consumption of machine learning techniques.

3. Design of AutoML Systems

Although, as mentioned earlier, the evaluation of AutoML approaches is presumably the
largest source of negative environmental impact directly caused by AutoML research, it can
arguably be seen as a symptom rather than a true cause. The evaluation of such systems is
only as expensive as the search process employed, and especially the evaluation of solution
candidates is often very resource intensive. Hence, we believe that developing methods
inherently considering their environmental footprint is a key idea towards Green AutoML.

1. https://mlco2.github.io/impact
2. http://calculator.green-algorithms.org/
3. https://www.codecarbon.io/
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In general, we differentiate between three research directions that could be taken in this
regard. First, one can focus on the development of methods that produce energy-efficient
ML pipelines (Section 3.1). Second, one can zoom in on designing approaches that strive
for a compromise between finding a good ML pipeline and minimizing the energy consumed
by their search process itself (Section 3.2). Third, one can try to optimize the development
process of AutoML approaches to be more energy-efficient (Section 3.3).

3.1 Finding Energy-Efficient Pipelines

Developing methods whose final output is very energy-efficient does not necessarily reduce
the environmental footprint of the AutoML system itself. However, it is a step in the right
direction, as it most likely reduces the long-term footprint of the resulting pipeline, which
will be used in production. Thus, quantifying the CO2e saved by the deployed model should
also be considered when quantifying the environmental footprint of the AutoML process
itself. In principle, it is even conceivable to estimate the saved CO2e by a deployed model
to determine if the execution of the AutoML system is actually worth it. Although the
pipeline resulting from an AutoML process in a research context is usually not deployed,
this is, of course, the case for industrial applications of AutoML where the reduction in
CO2e footprint can indeed make a difference.

Moreover, finding energy-efficient pipelines is not only of interest from a sustainability
driven point of view but also from a practical one. When trying to design pipelines for
embedded systems such as sensor nodes or mobile devices, which rely on a battery that
is not often recharged, energy efficiency becomes a core criterion. Recent work started to
target this issue (He et al., 2018; Wang et al., 2019b; Stamoulis et al., 2018b). For example,
He et al. (2018) suggest AutoML approaches to compress and accelerate neural network
models for usage on mobile devices and thus naturally reduce their energy consumption by
reducing the number of FLOPS required for a pass through the network. Similarly, Wang
et al. (2019b) suggest to iteratively enlarge a neural network through a splitting procedure
which explicitly considers the increase in energy cost by splitting a certain neuron such
that resulting networks are more energy-efficient than competitors. In this regard, it is also
conceivable to obtain more energy-efficient pipelines as a result of the search process through
the use of multi-objective AutoML methods such as (Elsken et al., 2019a; Pfisterer et al.,
2019; Schmucker et al., 2021; Candelieri et al., 2022), initialized with both performance and
energy-efficiency as target measures.

3.2 Energy-Efficient AutoML Methods

The second direction is targeted at improving the environmental footprint of AutoML meth-
ods themselves, i.e., the underlying search algorithms. To this end, once again, several
approaches are conceivable.

3.2.1 Warmstarting

Warmstarting refers to a mechanism that integrates knowledge gained in prior executions
into the current execution such that the optimization process does not start completely from
scratch, without any prior information. Clearly, the idea of warmstarting is to find good
candidates early, which hence would allow for shorter timeouts with the confidence that
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these are indeed (nearly) optimal. Research on warmstarting techniques has been heavily
boosted by AutoML challenges with short timeouts (cf. Section 6).

Typically, warmstarting is based on one or the other form of meta-learning (Vanschoren,
2018). That is, based on experiences from the past, which may or may not be associated
with particular dataset properties, a recommendation is made for the current dataset.

A very simple case of warmstarting is when there is just a constant initial sequence that
is followed. For example, in ML-Plan (Mohr et al., 2018), a fixed order of algorithms is
provided, which is determined based on the overall average performance of algorithms across
previous datasets. Similarly, auto-sklearn 2.0 (Feurer et al., 2022) scans a static portfolio
that tries to cover different use cases.

Alternatively, the dataset properties can be considered in order to make recommenda-
tions. Although various forms of warmstarting have been suggested in the field of hyper-
parameter optimization (Swersky et al., 2013; Bardenet et al., 2013; Yogatama and Mann,
2014), the first approach for AutoML we are aware of that applies this kind of warmstarting
was auto-sklearn (Feurer et al., 2015). Here, the dataset meta-features (such as numbers
of instances, features, skewedness, etc.) are used to match them to datasets seen in the
past. Then, the pipelines that performed best on those datasets are considered with prior-
ity. Meanwhile, warmstarting has become a standard technique for many AutoML systems
(Lindauer and Hutter, 2018; Perrone et al., 2017; Yang et al., 2019; Fusi et al., 2018).

3.2.2 Zero-Shot AutoML

An extreme case of warmstarting is zero-shot AutoML, motivated by the idea of zero-shot
learning (Xian et al., 2017). Here, the warmstarting mechanism recommends only a single
candidate pipeline, and this one is adopted by the system without even evaluating it at all.

Interestingly, zero-shot AutoML was among the first approaches in the field. For exam-
ple, the Meta-Miner approach was based on recommendations obtained from an ontology
over dataset and algorithm properties (Nguyen et al., 2011). Even though at that time the
term zero-shot AutoML was not yet coined, no evaluation was involved in this recommen-
dation.

A couple of zero-shot AutoML approaches have been proposed recently (Drori et al.,
2019; Singh et al., 2021; Mellor et al., 2021; Lin et al., 2021). Those approaches leverage
transfer (Torrey and Shavlik, 2010) and meta-learning (Vanschoren, 2018) in an offline phase
prior to their usage. During this phase, the approaches either use existing performance
data of ML pipelines on a variety of datasets or generate such data on their own in order
to learn a mapping from datasets to ML pipelines, which can then be queried more or less
instantaneously during the actual usage. To enable such a learning, datasets usually need
to be represented in terms of features, so-called meta-features (Rivolli et al., 2018). For
example, given a new dataset (Drori et al., 2019) compute meta-features based on a learned
embedding of the dataset description, find the closest dataset from their offline training
phase in terms of a measure defined on the meta-feature space and return the pipeline,
which performed best on that dataset.

Obviously, these methods cannot work completely without energy-consuming computa-
tions, but shift the need for computation away from the actual search phase to a prior offline
phase offering two potential advantages. First, it allows one to schedule such an offline phase
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at times where renewable energy is readily available while the actual system can then still
be used at any time in order to propose a pipeline for a given dataset. Second, it enables
one to save large amounts of energy if the AutoML system is used excessively enough, such
that the initial training phase requires less energy than using a standard AutoML system
during the search.

Clearly, less extreme variants such as one-shot (Lake et al., 2011) or few-shot (Wang
et al., 2020) approaches could be used as well. In fact, recent challenges in this field have
stimulated currently ongoing research (cf. Section 6).

3.2.3 Avoiding Evaluations with a Timeout

Typically, AutoML systems that are based on a trial and error strategy, i.e., training and
validating candidate ML pipelines on the given data, specify a timeout for the evaluation
of those candidates. The reason for such timeouts is that some candidates can be very
time-consuming to evaluate, and thus impair exploration or, in extreme cases, even lead to
a stall of the optimization process. While limiting the evaluation time and terminating the
assessment of candidate pipelines prematurely — if the specified time budget is exceeded
— is a technical necessity, it severely affects the efficiency of such AutoML systems. As
pointed out by Mohr et al. (2021), a large portion of computational resources are spent
on evaluating pipelines that will be prematurely terminated due to a timeout yielding only
very limited information for the search process. In fact, often there is no information at all,
so the CPU/GPU time is literally wasted.

It is hence a natural objective to reduce the number of such events. For this reason, Mohr
et al. (2021) suggest to equip AutoML systems relying on executing solution candidates
with a so-called safeguard, which estimates the runtime of a pipeline prior to execution and
prohibits its evaluation in case a timeout is likely to occur. Similarly, Yang et al. (2019)
involve a runtime prediction component allowing one to maximize the information gain in
comparison to the time spent on the evaluation of a pipeline.

The problem of pipeline runtime prediction is arguably harder than the one of predicting
the runtime of “atomic” learning algorithms alone. In fact, there has been a lot of work on
algorithm runtime prediction in general (e.g., (Hutter et al., 2014; Tornede et al., 2020a;
Huang et al., 2010; Smith-Miles and van Hemert, 2011; Eggensperger et al., 2020)). How-
ever, as shown by Mohr et al. (2021), predicting pipeline runtimes is more than just aggre-
gating runtimes of its components, because the output of components, e.g., pre-processing
steps, often impacts the runtime of subsequent components, e.g., other pre-processors or
the learner.

Concepts similar to the safeguard mentioned above can be found in the domain of algo-
rithm configuration (Hutter et al., 2009; Ansótegui et al., 2009; Hutter et al., 2011), where
an algorithm should be configured to optimize its runtime and racing or adaptive capping
mechanisms (Hutter et al., 2009) are used. Essentially, adaptive capping prematurely ter-
minates the evaluation of solution candidates to speed up the optimization process based
on some criterion, such as bounds on the achievable performance.
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3.2.4 Multi-Fidelity Performance Measurements

An alternative approach is to make evaluations so cheap that there is no longer a need to
consider timeouts. The idea here is to use a cheap-to-compute function to approximate the
relative performance of a candidate pipeline. Of course, the performance of a candidate is
always only estimated, but often this is done through (costly) cross-validation procedures
using a lot of data. The idea of low-fidelity estimation is to have a cheap estimator that
is trained on low-cost approximations and which is faithful with respect to the ordering of
candidates.

As one approach, one could try to pick models based on evaluations using subsamples
of the data for which the models are cheap to evaluate. In fact, this approach has been
proposed early on and was shown to be quite effective (Petrak, 2000). While this approach
assigns a constant (prior) evaluation sample size, more recent approaches in the area of
multi-fidelity optimization add the evaluation fidelity (sample size) as a degree of freedom
to the optimizer. Typical resource candidates to influence the degree of evaluation fidelity
are the size of the training set or the number of iterations for iterative learning algorithms
such as gradient descent. When being able to evaluate performance at different degrees
of fidelity, adapted Bayesian optimization methods can be leveraged in order to optimize
machine learning pipelines in a cost-effective manner (Kandasamy et al., 2017; Klein et al.,
2017; Falkner et al., 2018; Wu et al., 2019; Candelieri et al., 2021; Zimmer et al., 2021;
Candelieri et al., 2022; Feurer et al., 2022). In particular, the FABOLAS approach (Klein
et al., 2017) actively trades off the sample size against the expected performance. Similarly,
other optimization methods based on multi-armed bandits or differential evolution can be
equipped with ideas from multi-fidelity optimization (Li et al., 2017; Awad et al., 2021).

Orthogonal to this, it is possible to reduce the number of repetitions in a cross-validation.
That is, one trades the stability obtained from various validation iterations for evaluation
speed. While k-fold cross-validation is not very flexible in this regard, Monte-Carlo Cross-
Validation (MCCV) can be considered in a fine-granular manner configuring both the sample
size and the number of iterations. To our knowledge, there are no studies that analyze let
alone dynamically fine-tune MCCV in order to reduce computational time without losing
the order on the candidates.

3.2.5 Early Discarding of Unpromising Candidates

Early discarding means to abandon a candidate early in its training process if it gets appar-
ent that it will not be competitive. Early discarding is operationalized via empirical learning
curves. That is, by analyzing the partially available learning curves, one can decide on the
relevance of the respective candidate.

We distinguish between approaches that adopt early discarding based on a horizontal
or vertical model selection strategy. In a horizontal scenario, a portfolio of candidates is
fixed in the beginning, and learning curves are grown simultaneously for increasing anchor
sizes (hence horizontally from left to right). At each anchor, a set of candidates is dropped.
This is the core idea of successive halving (Jamieson and Talwalkar, 2016). Horizontal
approaches are also sometimes called multi-fidelity optimizers. In a vertical scenario, candi-
dates are generated sequentially and each of them is evaluated on increasing anchors until
it can be predicted that it will not be competitive. This approach was considered first for

437



Tornede, Tornede, Hanselle, Wever, Mohr, & Hüllermeier

neural networks in (Domhan et al., 2015) and more recently in the Learning Curve based
Cross-Validation scheme (LCCV) for all types of learners (Mohr and van Rijn, 2021). The
authors showed that, even if all learners are non-iterative, the time required to evaluate a
specific portfolio can be reduced by over 20% on average compared to a cross-validation.
For portfolios with iterative learners, one would expect this improvement to increase even
further.

Between these extremes, there are also hybrid approaches. For example, Hyperband (Li
et al., 2017) follows a horizontal approach but adds new candidates to the portfolio at each
stage. Another approach is Freeze-Thaw-Optimization (Swersky et al., 2014), which allows
for pausing training processes and resume them later if the candidate appears attractive
again.

3.2.6 Energy Consumption as Part of the Objective Function

It is also conceivable to make the AutoML search algorithm directly aware of the energy it
consumes. For example, one could adapt Bayesian optimization (BO) for AutoML (Thorn-
ton et al., 2013; Feurer et al., 2015; Komer et al., 2014) by incorporating a version of
expected improvement, which considers the energy consumed when evaluating the next so-
lution candidate. In analogy to the idea of expected improvement per second (Snoek et al.,
2012), one way of considering energy consumption in the optimization process is to employ
expected improvement per kWh of consumed energy as an acquisition function, i.e.,

EIkWh(p) =
EI(p)

kWh(p)
, (1)

where EI(p) denotes the expected improvement associated with pipeline p, and kWh(p)
denotes the estimated energy consumption associated with evaluating pipeline p, might
be a good candidate for further investigation. With such an acquisition function, BO is
guided towards carefully weighing between the information gain of a solution candidate and
its execution cost. However, similar to the methods presented in Section 3.2.3, this idea
requires knowledge about the energy consumption of a specific pipeline prior to its execution.
First work on corresponding estimation techniques exists (Cao et al., 2021; Stamoulis et al.,
2018a; Anthony et al., 2020). Stamoulis et al. (2018a) also suggest a similar acquisition
function explicitly incorporating energy constraints on models. However, they only consider
the amount of energy required for inference of a trained network instead of the energy for
training, which we are interested in. Similarly, instantiating Hyperband (Li et al., 2017)
with energy as a budget is also an option. In principle, one could even consider combining
both ideas in order to create an adapted version of BOHB (Falkner et al., 2018), which
essentially constitutes a BO-Hyperband hybrid.

3.2.7 Exploiting Heterogeneous Hardware Resources

As another possible approach, one could consider the design of AutoML systems that ex-
ploit the heterogeneity of solution candidates w.r.t. their energy consumption on different
hardware to improve the overall consumption. To this end, one could exploit a heteroge-
neous (w.r.t. the types of computational devices, i.e., CPUs, GPUs, FPGAs, etc.) cluster
and then schedule the evaluation of a solution candidate on the hardware best suited for the
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current model in terms of energy-efficiency. For example, while a neural network should be
evaluated on a GPU, other learners can potentially be more efficiently executed on CPUs.
This might not necessarily speed up the AutoML search process in terms of time, but can
still result in an improvement regarding energy consumption. While we believe that this is
a potentially interesting line of research, we are not aware of any work in this direction.

3.2.8 Intelligent Stopping Criteria

AutoML systems can also be improved by implementing intelligent stopping criteria, which
consider if it can be assumed that an improvement is possible within the remaining run-
time. The main idea is to decide whether the granted runtime is actually needed or if
the search can be stopped early. Those considerations are similar to the ideas of early
stopping (Prechelt, 2012) in machine learning or early stopping criteria from the field of
metaheuristics (Gendreau, 2003).

As an example, the concepts proposed in LeanML (Samo, 2021) could be used as such an
intelligent criterion. It is based on the idea of estimating the highest achievable performance
on a dataset, which can then be used to prematurely stop the AutoML search process, once
the chance of finding a better solution in the remaining time is very small.

A work in this direction, which won the best paper award at the first AutoML con-
ference in 2022, was recently presented by Makarova et al. (2022), who suggest stopping
hyperparameter optimization when the validation performance is presumably close to the
achievable performance. To this end, they analyze the estimated difference between the
validation loss and the test loss and stop when it is roughly equivalent to the estimation
error associated with this difference.

3.2.9 Use of Saved Resources

As we have seen, there are various possibilities to save runtime, such as avoiding timeouting
evaluations (cf. Section 3.2.3), discarding unpromising candidates early (cf. Section 3.2.5) or
implementing intelligent stopping criteria (cf. Section 3.2.8). In general, there are two ways
to make use of saved resources. One option is to terminate early, which directly influences
the environmental footprint. Alternatively, the search could be continued such that more
solution candidates can be considered, and eventually less of the allocated resources will be
wasted. Accordingly, it is important to note that simply reducing the amount of wasted
resources does not automatically coincide with energy savings unless the overall search
budget is reduced according to the search time saved. Nevertheless, such improvements can
be valuable even when the search time is not reduced as the benefit/environmental cost
ratio increases.

3.3 Efficiency of AutoML Approach Development

The third direction is to address the development phase of AutoML approaches. Due to the
complexity of AutoML approaches, one usually needs multiple evaluations until the system
is (mostly) free of bugs and all concepts are working as intended. Although a lot of effort
can be made to decrease the environmental footprint of an AutoML approach or its final
pipeline, in a research context, usually the development phase makes up a significant part
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of the actual environmental footprint and, therefore, the carbon emissions produced. In the
following, we elaborate on a few concepts that can be applied to avoid wasting resources.

A very basic concept, which can decrease the environmental footprint drastically, is
a simple caching strategy. The key idea is to cache the results of evaluated pipelines so
that at least some solution candidates do not need to be reevaluated when restarting the
AutoML approach. In such a case, the runtime should, of course, be cached as well in order
to add it to the elapsed time, such that a rerun does not benefit from previous executions.
This is especially important for AutoML settings, where the evaluation of a single solution
candidate takes a lot of time, like in neural architecture search (Elsken et al., 2019b) or in
the field of AutoML for predictive maintenance (Tornede et al., 2020b, 2021).

Another way to decrease the environmental footprint is to work with a very small de-
velopment dataset and search space. Based on that, testing the implementation can be
done within a short amount of time, thereby again decreasing the runtime and saving both
development time and energy.

4. Benchmarking

Since AutoML is an empirical research branch, experimentation is an inherent part of the
research in general and at the heart of almost every publication. Due to the complexity
of AutoML systems, theoretical results are rather hard to obtain and usually assume some
simplifications, which in turn limits the scope of conclusions that can be drawn from the
results. Moreover, most theoretical results are accompanied by experiments to show that
these are also reflected in practical scenarios. Typically, experimentation in AutoML not
only involves experimentation with the newly proposed method but also with its competitors
as baselines to demonstrate that the novel method is indeed superior to the current SOTA.

However, as in the case of the base algorithms being selected and configured by AutoML
systems, the performances of AutoML systems themselves are complementary to each other
(Mohr et al., 2018). Hence, there is not a single best AutoML system representing the
current SOTA, but rather an array of competitive methods. As a consequence, comparisons
are carried out to a (growing) set of baselines, in turn, leading to increased computational
costs. While Feurer et al. (2015) report computational cost of 11 CPU-years (CPUy), the
experimental data of Mohr et al. (2018) is the result of 52 CPUy worth of computations.
In (Wever et al., 2021), the experimental study is as extensive as 84 CPUy. In the sub-
field of neural architecture search (NAS) (Elsken et al., 2019b), computational costs for
experimentation can even be higher. Single AutoML runs use the computational power of
450 GPUs for 7 days (Real et al., 2019) or even 800 GPUs for 28 days (Zoph and Le, 2017)4.
Note that the published numbers usually only take into account the computational costs of
the results eventually presented and not those incurred during development for testing.

The main issue causing baselines to be executed repeatedly with almost every study
is that there is no gold standard for the experiment setup. That is, datasets as well as
specifics of the setup (such as hardware resources, timeouts, search spaces, configurations

4. Assuming a GTX 1080 Ti with a TDP of 250W, the GPU power demand per run amounts to 134.4MWh,
which is the equivalent of the yearly power consumption of roughly 30 4-persons households with a power
demand of 4,250kWh each. This does not yet include the power consumption of the remaining system.
On current AWS GPU Nodes, a single such run costs 483,840$.
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of the AutoML systems) vary from study to study, impeding not only comparability across
publications but also reproducibility as some important details concerning the experiment
setup might be missing. To address these issues, various benchmarks have been proposed
in order to foster reproducibility and comparability (Section 4.1) as well as sustainabil-
ity (Section 4.2). Moreover, we propose to consider ecological performance profiles when
benchmarking AutoML systems (Section 4.3).

4.1 Reproducibility and Comparability

From a research perspective, benchmarks serve the purpose of providing a common plat-
form for empirical research. The main goal is to establish or increase the comparability
and reproducibility of results. For the research area of automated machine learning this
includes, for example, the definition of certain variables such as the set of datasets to be
examined, the target metric to be optimized, time bounds for both the evaluation of single
candidate solutions and the total runtime of the AutoML system, the hardware to be used,
the search space definition, etc. According to the complexity of AutoML systems and the
many possible configurations, there is a large number of variables that can and need to be
fixed by benchmarks or explicitly left open.

For example, the OpenML (Vanschoren et al., 2013) AutoML benchmark (Gijsbers
et al., 2019) features 39 datasets, for each of which an AutoML system is given a total of 4
hours to search for a suitable pipeline. Every such run is repeated ten times with different
seeds. Furthermore, the benchmark suggests to use Amazon AWS m5.2xlarge compute
nodes, featuring an Intel Xeon Platinum 8000 Series Skylake-SP processor with 8 CPU
cores and 32GB memory. The reason for this is that, on the one hand, the specifications
are in line with the hardware specifications of the majority of AutoML publications and,
on the other hand, in principle anyone can get access to such compute nodes. According
to the specifications of the benchmark, the evaluation of a single AutoML system requires
12,480 CPUh. Hence, for estimating the computational resources of an entire study, the
amount of CPU hours can simply be multiplied by the number of considered AutoML
systems or baselines. Fortunately, when using the same computing infrastructure as well
as the exact same experiment setup, there is no need to re-evaluate already benchmarked
AutoML systems, as the results should be comparable in principle.

However, it is important to note that all the different criteria need to be met exactly
in order to ensure comparability. In the literature (Liu et al., 2019, 2018), results are
sometimes borrowed one-to-one from previous publications without accounting for changes
in the experiment setup based on which the newly proposed method is evaluated. While
this is certainly using as little energy as possible, the results are incomparable and valid
conclusions can hardly be drawn. Obviously, the energy consumption is relatively low,
however, energy efficiency in turn is poor since the information obtained through investing
energy is not as valuable as desired. Various benchmarks for AutoML systems have already
identified a plethora of confounding factors (Balaji and Allen, 2018; Gijsbers et al., 2019;
Wever et al., 2021; Zöller and Huber, 2021), which hinder interpretation of the results and
insights derived from them.
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4.2 Sustainability and Democratizing Research

Beyond the properties of reproducibility and comparability, benchmarks can also serve an-
other interest, namely to make experiments more sustainable and to democratize research
on extremely computationally expensive problems. For example, several benchmarks have
already been presented in the AutoML sub-field of neural architecture search (NAS), for
which all possible architectures within a certain search space have been evaluated once,
and the determined performances are stored in a lookup table (Ying et al., 2019; Dong and
Yang, 2020; Zela et al., 2020; Klyuchnikov et al., 2022; Li et al., 2021). When evaluating
new approaches for optimizing neural architectures, it is sufficient to look up the perfor-
mance of a solution candidate in that table instead of actually training and validating the
respective architecture. Typically, the lookup tables of such benchmarks comprise the per-
formance values of roughly 50,000 different architectures. While the costs for creating such
a benchmark are obviously quite substantial, they represent a one-time investment. More-
over, since the evaluation of such a large number of architectures requires massive amounts
of computations with GPUs, these benchmarks also enable researchers and practitioners,
who do not have access to such computational resources, to do research on NAS.

As the number of possible architectures is quite limited in the aforementioned bench-
marks, Siems et al. (2020) propose a surrogate model to predict the performance value of a
neural architecture. To this end, the surrogate model is trained on the performance values
of roughly 60, 000 different architectures and is found to generalize these training exam-
ples quite well. Using a surrogate model allows for more flexibility, as it can also provide
performance estimates for candidate solutions that have not been evaluated at all. Hence,
benchmarks centered around such a surrogate model can be even more sustainable. How-
ever, these models need to be constructed with care to ensure that they do not mislead the
research on new methods. Furthermore, in order to reach the level of quality of the surro-
gate model, Siems et al. (2020) need to create an extensive amount of training data, namely,
60, 000 architectures have been evaluated for this purpose. While this means an immense
amount of computation, it is again a one-time cost that amortizes with each subsequent eval-
uation. When employing a surrogate model, however, additional constraints on how to use
the benchmark need to be imposed. More specifically, the benchmark specification requires
the surrogate model to be used in a query-only mode, i.e., any approach is only allowed
to request performance estimates for some neural architecture. Consequently, it excludes
approaches exploiting the surrogate model, e.g., by analyzing its internal structure.

All in all, benchmarks are powerful tools to make research on AutoML more sustainable.
In particular, they can avoid repetitive evaluations of candidate solutions. This not only
helps to save energy but also enables institutions that cannot afford the necessary resources
to research on this topic. Moreover, in general, research can also be accelerated, since
evaluations of candidate solutions require only milliseconds instead of minutes, hours, or
even days. Consequently, the use of benchmarks should clearly be advocated and also
requested, since several advantages that benchmarks bring with them can be combined in
this way. However, within the community, care should also be taken to ensure that multiple
very similar or possibly even identical benchmarks are not developed in parallel, as this
would again unnecessarily drive up energy costs. Ideally, the development of benchmarks
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Runtime

Performance

Figure 1: Example figure of two performance curves, where the blue tool achieves a good
performance value (grey area) long before the orange one.

should be a community effort and thus be communicated at an early stage, as it was done
in the case of DACBench5, for example.

4.3 Ecological Performance Profiles

When assessing the performance of an AutoML system, it is not sufficient to compare the
final performances after the complete run has passed. Some AutoML approaches show
strong anytime performance while others may yield the best final performances. Instead,
one should take a look at the performance curve of the system, i.e., what solution quality
can be expected after a certain amount of computational budget has been consumed. An
example of the ecological performance profiles of two competing AutoML systems can be
found in Figure 1, where the blue tool achieves a good performance long before the orange
tool. Ideally, we would look at an ecological performance profile that relates predictive per-
formance to the amount of CO2e emitted for computations. However, as already discussed
in Section 2, it is more practical to investigate the CPU/GPU hours instead of the actual
environmental impact as a proxy of it. While we can assume for any reasonable AutoML
system that the performance profiles are monotonic, i.e., exhibiting better performances
with an increasing budget, the curves of the individual approaches may still cross each
other. The ecological performance profile of an AutoML system may depend on several
properties such as the runtime, the degree of parallelism, how well heterogeneous execution
environments can be utilized, etc. Assuming the same hardware setting has been used for
all competitors, runtime can indeed be a good proxy. Having access to such performance
profiles would allow the user to choose the AutoML system which is most suitable for their
budget and CO2e footprint. A single evaluation at a fixed point is not a sufficient basis for
such a decision. However, those performance profiles still depend on the hardware used for
assessing the performance of the approaches and deriving their profiles.

5. https://github.com/automl/DACBench
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5. Transparency

Being transparent about the efficiency and environmental footprint is a key step towards
Green AutoML and in general a more sustainable world, which we believe should be manda-
tory when publishing a paper. The acceptance of a paper is usually based on its novelty and
performance improvement, but the environmental footprint should also be considered. One
may wonder whether rejecting a paper with strong results solely for reasons of environmental
impact is unreasonable — after all, the pollution cannot be undone, and pollution with pub-
lished results might be better than pollution without results. Nevertheless, authors should
be incentivized to avoid environmental impact right from the beginning. Accordingly, as a
first step, we advocate extending checklists recently introduced in major machine learning
conferences by the questions noted below. Such checklists need to be filled out prior to
paper submission and are intended to help authors reflect on issues such as reproducibility,
transparency, research ethics, and societal impact. Obviously, authors could also be asked
for the compute resources used for their paper, whether any measures have been taken to
quantify or reduce the consumption, etc.

One aspect of being transparent is to include information about the compensation of the
footprint, and in the best case, also about how it is compensated. If it is done via planting
trees, for example, those trees have to survive 10 years to compensate the footprint. This
might also create more awareness that it takes a long time until the consumed resources are
actually compensated, and therefore researchers might run experiments with more caution.

In addition, we as a community should strongly advocate the publication of failed at-
tempts and negative results in order to foster Green AutoML or more general green science.
We all know cases, where despite a promising idea, a lot of work, and experiments, one
just could not get the idea to work as well as expected in practice and hence, it was never
published. This is not only unfortunate from an environmental but also from a scientific per-
spective. First, due to the rapidly growing scientific community (especially in AI), chances
are high that someone else might work or might have worked on the same idea at a distance
in time and potentially come to a similar conclusion. This work would not have been done
multiple times if the negative result was published. Second, withholding negative results
can decelerate scientific progress as chances are high that even if one deems an idea fully
explored, someone else might have a good idea on how to turn a negative result into a
positive one by making the correct adjustment to the idea. Especially, due to the large
amount of computational resources needed to perform research in the field of AutoML, it
is even more important to find a way to share failed attempts. A compiled list of journals
targeting negative results can be found online6.

5.1 Sustainability Checklist

Apart from all aspects mentioned above, we believe that a key aspect towards Green Au-
toML is to be transparent about the environmental impact. Accordingly, authors should
provide a summary of all the efforts made to make the AutoML design, development, and
evaluation more sustainable, as well as information about the environmental footprint of
their work, such that other people can take this information into account when deciding

6. https://www.enago.com/academy/top-10-journals-publish-negative-results/
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which method to use. We propose to attach a sustainability checklist to each paper sub-
mitted, that includes the following aspects:

Design, Development and Evaluation

� What key aspects does your approach design include to be efficient? State
if and how your approach is built with efficiency in mind. For example: Do you
use warmstarting? Do you apply multi-fidelity evaluations? Does it avoid timeout-
ing evaluations? Is your approach aware of its environmental impact, like expected
improvement per kWh or per g/CO2e?

� What steps did you consider during the development to reduce the foot-
print of the development process? State whether and how you attempted to
avoid wasting resources.

� Does the evaluation consider a metric related to environmental footprint?
State whether and how the evaluation does not only consider performance but also
other metrics, e.g., related to improvement per invested CO2e tons.

� Does the work yield an improvement over SOTA in terms of efficiency or
environmental impact? State whether and how the presented method improves
compared to the SOTA in terms of efficiency or environmental impact.

� Did you add your approach to an existing benchmark? State whether you
added your approach to an appropriate existing benchmark.

� Did you make the generated data publicly available? State whether you
created a publicly available repository of the data generated during the creation of
the work such as pipeline evaluations on datasets.

Resource Consumptions

� What resources have you used for the final evaluation? State the type of
CPU/GPU hours and the kind of parallelization that has been used.

� How many CPU/GPU hours have been used for the final evaluation? State
the amount of CPU hours that have been used for the evaluation presented in the
paper.

� What is the used energy mix? State if and to what degree your experiments
were run using renewable energy. To this end, reaching out to your compute center
provider will most likely be necessary.

� What is your footprint? State how many tons of CO2e you produced during the
creation of the paper.

� Did you compensate the carbon emissions? Especially if non-renewable energy
has been used for the creation of your paper, state to what degree the corresponding
amount of carbon emissions have been compensated, e.g., through supporting a carbon
offset project.
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6. Research Incentives

In order to foster research on Green AutoML, we believe that it is of great help to set
according research incentives.

A potential driver for advances in Green AutoML are scientific challenges. Those chal-
lenges often impose narrow and rigidly realized timeouts, which oblige approaches not only
to adhere to the timeouts but also to be fast in finding good solutions. For example, the Au-
toML challenge realized in 2015-2018 granted only 20 minutes of compute time to identify
a model (Guyon et al., 2019). In some cases, datasets assumed sizes of several hundreds of
megabytes, in some cases over a gigabyte. In such situations it is impossible to conduct any
sort of “exhaustive” search, so very resource efficient approaches needed to be developed;
maybe even entirely abstaining from search in a classical sense. One immediate evidence
for the impact of challenges is the PoSH (Feurer et al., 2018) approach, which combines
portfolios with successive halving to be successful in the previously mentioned challenge,
and which is the basis for auto-sklearn 2.0 (Feurer et al., 2022). This challenge has been
continued for the problem of deep learning (El Baz et al., 2021) and in its latest edition,
which is active at the time of writing, looks at the problem of few-shot deep learning.
Since challenges at a time provide meaningful baselines, they are a valuable resource for
researchers in supporting the efficiency of their approaches and hence serve as catalysts for
efficient approaches in whole research fields.

Moreover, funding agencies can advocate research on Green AutoML, or more broadly,
green/sustainable AI, by a variety of means. For example, they can complement the pro-
posal evaluation criteria by considering both the potential environmental footprint and the
environmental benefits of a project (proposal). To this end, applicants need to include
this information in their proposals, of course. Similarly, special programs can be initiated
especially targeted at sustainable and green AI. As a commendable example, the German
Research Foundation (DFG) has recently released a press release7 promoting their focus
on sustainability. To this end, they have set up a special committee (called the German
Committee Future Earth) targeted at advancing interdisciplinary research on sustainability.
Furthermore, since the end of 2020, carbon emissions resulting from business trips as part
of DFG funded projects can be compensated for by buying according compensation certifi-
cates, which can be accounted as travel costs8. In fact, new proposals can even contain a
special category for CO2e compensation as part of the travel expenses category. Unfortu-
nately, according to personal communication with the DFG, it is currently not possible to
budget money for CO2e compensation of experiments.

Finally, journals and conferences can advocate special issues and special tracks focus-
ing on green AutoML, or, more broadly green/sustainable AI. Similarly, special awards for
work on sustainability are tools to put a spotlight on noteworthy work, but also the topic
itself. As an example of such efforts, in 2013 the AAAI offered a special track on compu-
tational sustainability and AI9. However, the track was mainly focused on applying AI for
sustainability in general and less on improving the sustainability of AI itself. Remarkably,
in 2021 the first conference on Sustainable AI10 was held in Germany organized by Prof.

7. https://www.dfg.de/en/service/press/press_releases/2020/press_release_no_38/index.html
8. https://www.dfg.de/en/service/press/press_releases/2020/press_release_no_59/index.html
9. https://www.aaai.org/Conferences/AAAI/2013/aaai13csaicall.php

10. https://www.sustainable-ai.eu/
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Dr. van Wynsberghe from the University of Bonn. The first AutoML conference11 held in
2022 featured parts of the checklist suggested by us in an earlier version of this manuscript
in their submission form.

7. Discussion on Trade-Off between Freedom of Research and
Environmental Impact

So far, we have discussed why we believe that sustainability and, in particular, the environ-
mental footprint induced by (research on) AutoML is an important topic, which is already
addressed in some works, but should be focused on much more. However, an important
question is to what degree this should be done and to what extent this limits the potential
of the freedom of research. For example, questions of the following nature arise:

• How strong should incentives made by a conference or a funding agency be?

• What is considered a wasteful or too extensive evaluation in a paper?

• When is a certain improvement, e.g., in terms of performance or another measure,
worth the invested resources?

• What is a reasonable degree of transparency which authors should focus on for their
publications?

Naturally, none of these questions is easy to answer due to the corresponding impli-
cations. In essence, we, as a community, are faced with a many-objective optimization
problem where two of the objectives are sustainability and freedom of research. On the
one hand, making any of the incentives for sustainability too strict and thus essentially
designing and enforcing rules, for example, on the side of the funding agencies, bears the
danger of limiting the freedom of research and therefore the potential progress of research
quite strongly. On the other hand, completely ignoring sustainability is also not an op-
tion considering the global climate crisis, which impacts everyone and thus should also be
addressed by everyone to a certain degree. In practice, the multi-objective problem actu-
ally has many more dimensions, such as social responsibility related aspects (Cheng et al.,
2021), FAIR data principles (Wilkinson et al., 2016), and others. As a consequence, the
community always has to strike a trade-off among all of these dimensions. Naturally, such
a trade-off is hard to achieve and a rather continuous process, which is constantly shifting.

Due to the complexity of the matter, we believe that there is no clear answer to the
questions raised in this section, and even more importantly, it is not clear who is responsible
for answering them in particular. Nevertheless, we believe that every member of the research
community can strive to achieve a trade-off that they deem good in their research. The
most important thing is to stay open to new ideas and be aware of the different, perhaps
not so obvious, aspects of one’s research, such as sustainability or social responsibility.

8. Prospects of AutoML

While we have so far focused on how to make AutoML approaches themselves or research
on AutoML greener, AutoML can in turn be used to make other systems or processes more

11. https://automl.cc/
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sustainable as well (van Wynsberghe, 2021; Tu et al., 2022). First, manually configuring
machine learning algorithms is usually both time-consuming and inefficient. This is due
to the fact that human intuition is usually a good heuristic for manageable problems, but
rather unsuitable for traversing a high-dimensional space of possible candidate solutions,
which in turn leads to a lower solution quality (Bergstra et al., 2011). AutoML can possi-
bly remedy this situation, since corresponding systems typically try to traverse the search
space as efficiently as possible, thereby also wasting less energy on uninformative candidate
evaluations.

Second, AutoML gives a broader range of users access to ML technology, which in turn
can be used to optimize other processes or (technical) systems, e.g., production facilities.
For example, computationally complex simulations could be approximated by quick-to-
evaluate ML models, so-called surrogate models, thus saving the energy to calculate the
simulation (Reiner et al., 2021). Data-driven surrogate models (Martins and Ning, 2021)
can be obtained using AutoML, which can further improve the sustainability aspect of
surrogate models (Bliek, 2022). In addition, other resources can be saved, such as spare
parts, when AutoML is used for predictive maintenance tasks (Tornede et al., 2020b, 2021),
for instance. While the actual task in predictive maintenance is to schedule maintenance
cycles of plants more precisely so that the maintenance takes place as late as possible but
still without any unplanned downtime or a breakdown of the plant, resources in terms of
spare parts can also be saved. If parts of a plant are replaced too early, this not only costs
money unnecessarily but also negatively affects the eco-balance, since the bottom line is that
more spare parts are needed over time and therefore also have to be produced. Obviously,
this production again requires energy and raw materials. Consequently, if AutoML enables
more companies to reduce the usage of spare parts, AutoML can be leveraged to not only
reduce the expenses of the company but also to save energy and physical resources.

Similarly, AutoML can also be used to find a model that predicts when renewable energy
will be readily available in the energy distribution grid (Wang et al., 2019a), and hence when
energy extensive operations such as AutoML benchmarking should preferably be performed.
This does not only help in making benchmarking itself more environmentally friendly but
also in taking pressure off the distribution grid because too much energy in the distribution
grid is as much a problem as too few. Overall, one can think of many such scenarios where
data-driven models, possibly produced by AutoML, can contribute to sustainability.

9. Conclusion

In this paper, we proposed the idea of Green AutoML, a paradigm to make AutoML more
efficient and environmentally friendly. We have shown varying ways to determine the car-
bon emissions produced, motivated different methods that can be integrated with AutoML
approaches to make the process more efficient, discussed existing methods as well as new
ideas, and elaborated on strategies to reduce the required resources of the benchmark. Fur-
ther work on empirical studies about the environmental footprint of AutoML systems could
provide further insights into this topic. One could be a study about the behavior of different
AutoML systems with varying CO2e budget. Furthermore, we suggested giving detailed
information about different aspects of the efficiency and environmental friendliness of the
approach at the end of each published AutoML paper. In particular, we think that the
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environmental impact of a paper should be considered as a criterion in the review process.
On the other side, failed attempts and negative results should also be published to avoid
duplicated work on the same ideas. In general, appropriate research incentives can push
the research in the direction of Green AutoML due to special issues and special tracks of
journals and conferences. Furthermore, the funding agencies should force the researchers
to work in the direction of Green AutoML through corresponding calls for projects or ac-
ceptance criteria for projects, and allow also CO2e compensation for experimental analysis.
Additionally, one could question if it is reasonable to publish a paper at a conference hosted
on the other side of the world if an on-site presentation and thus, a long and CO2e expensive
flight is required. Regardless of the aforementioned aspects, it is the community that has
to take action, sooner rather than later.
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Bardenet, R., Brendel, M., Kégl, B., and Sebag, M. (2013). Collaborative hyperparam-
eter tuning. In Proceedings of the 30th International Conference on Machine Learning
(ICML’13).

449



Tornede, Tornede, Hanselle, Wever, Mohr, & Hüllermeier
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Calero, C., Bertoa, M., and Moraga, M. Á. (2013). A systematic literature review for
software sustainability measures. In GREENS 2013: 2nd International Workshop on
Green and Sustainable Software.
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Vanschoren, J. (2018). Meta-learning: A survey. arXiv/1810.03548.

Vanschoren, J., van Rijn, J., Bischl, B., and Torgo, L. (2013). OpenML: Networked science
in machine learning. SIGKDD Explorations.
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Wever, M., Tornede, A., Mohr, F., and Hüllermeier, E. (2021). AutoML for multi-label clas-
sification: Overview and empirical evaluation. IEEE Transactions on Pattern Analysis
and Machine Intelligence (TPAMI’21).

Wilkinson, M., Dumontier, M., Aalbersberg, I., Appleton, G., Axton, M., Baak, A.,
Blomberg, N., Boiten, J., da Silva Santos, L., Bourne, P., Bouwman, J., Brookes, A.,
Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C., Finkers, R.,
Gonzalez-Beltran, A., Gray, A., Groth, P., Goble, C., Grethe, J., Heringa, J., ’t Hoen,
P., Hooft, R., Kuhn, T., Kok, R., Kok, J., Lusher, S., Martone, M., Mons, A., Packer,
A., Persson, B., Rocca-Serra, P., Roos, M., van Schaik, R., Sansone, S., Schultes, E.,
Sengstag, T., Slater, T., Strawn, G., Swertz, M., Thompson, M., van der Lei, J., van
Mulligen, E., Velterop, J., Waagmeester, A., Wittenburg, P., Wolstencroft, K., Zhao, J.,
and Mons, B. (2016). The FAIR guiding principles for scientific data management and
stewardship. Scientific Data.

Wu, J., Toscano-Palmerin, S., Frazier, P., and Wilson, A. (2019). Practical multi-fidelity
bayesian optimization for hyperparameter tuning. In Proceedings of the 35th Conference
on Uncertainty in Artificial Intelligence (UAI’19).

Xian, Y., Schiele, B., and Akata, Z. (2017). Zero-shot learning - the good, the bad and the
ugly. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR’17).

Yang, C., Akimoto, Y., Kim, D., and Udell, M. (2019). OBOE: collaborative filtering for
AutoML model selection. In Proceedings of the 25th ACM International Conference on
Knowledge Discovery and Data Mining, (KDD’19).

Ying, C., Klein, A., Christiansen, E., Real, E., Murphy, K., and Hutter, F. (2019). NAS-
Bench-101: Towards reproducible neural architecture search. In Proceedings of the 36th
International Conference on Machine Learning (ICML’19).

Yogatama, D. and Mann, G. (2014). Efficient transfer learning method for automatic
hyperparameter tuning. In Proceedings of the 17th International Conference on Artificial
Intelligence and Statistics (AISTATS’14).

456



Towards Green AutoML: Status Quo and Future Directions

Zela, A., Siems, J., and Hutter, F. (2020). NAS-Bench-1Shot1: Benchmarking and dissect-
ing one-shot neural architecture search. In Proceedings of the 8th International Conference
on Learning Representations (ICLR’20).

Zimmer, L., Lindauer, M., and Hutter, F. (2021). Auto-Pytorch: Multi-fidelity meta learn-
ing for efficient and robust AutoDL. IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI’21).
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