
PyExperimenter: Easily distribute experiments and
track results
Tanja Tornede 1¶, Alexander Tornede 1, Lukas Fehring 1, Lukas
Gehring1, Helena Graf 1, Jonas Hanselle 1, Felix Mohr 2, and Marcel
Wever 3

1 Department of Computer Science, Paderborn University, Germany 2 Universidad de La Sabana, Chia,
Cundinamarca, Colombia 3 MCML, Institut for Informatics, LMU Munich, Germany ¶ Corresponding
author

DOI: 10.21105/joss.05149

Software
• Review
• Repository
• Archive

Editor: Tim Tröndle
Reviewers:

• @ArsamAryandoust
• @schnorr

Submitted: 22 November 2022
Published: 20 April 2023

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
PyExperimenter is a tool to facilitate the setup, documentation, execution, and subsequent
evaluation of results from an empirical study of algorithms and in particular is designed to
reduce the involved manual effort significantly. It is intended to be used by researchers in the
field of artificial intelligence, but is not limited to those.

The empirical analysis of algorithms is often accompanied by the execution of algorithms for
different inputs and variants of the algorithms, specified via parameters, and the measurement
of non-functional properties. Since the individual evaluations are usually independent, the
evaluation can be performed in a distributed manner on an HPC system. However, setting
up, documenting, and evaluating the results of such a study is often file-based. Usually, this
requires extensive manual work to create configuration files for the inputs or to read and
aggregate measured results from a report file. In addition, monitoring and restarting individual
executions is tedious and time-consuming.

PyExperimenter adresses theses challenges by means of a single well defined configuration file
and a central database for managing massively parallel evaluations, as well as collecting and
aggregating their results. Thereby, PyExperimenter alleviates the aforementioned overhead
and allows experiment executions to be defined and monitored with ease.

Figure 1: General schema of PyExperimenter.

A general schema of PyExperimenter can be found in Figure 1. PyExperimenter is designed
based on the assumption that an experiment is uniquely defined by certain inputs, i.e.,

Tornede et al. (2023). PyExperimenter: Easily distribute experiments and track results. Journal of Open Source Software, 8(84), 5149.
https://doi.org/10.21105/joss.05149.

1

https://orcid.org/0000-0001-9954-462X
https://orcid.org/0000-0002-2415-2186
https://orcid.org/0000-0001-8057-4650
https://orcid.org/0000-0001-9447-0609
https://orcid.org/0000-0002-1231-4985
https://orcid.org/0000-0002-9293-2424
https://orcid.org/0000-0001-9782-6818
https://doi.org/10.21105/joss.05149
https://github.com/openjournals/joss-reviews/issues/5149
https://github.com/tornede/py_experimenter
https://doi.org/10.5281/zenodo.7838280
https://github.com/timtroendle
https://orcid.org/0000-0002-3734-8284
https://github.com/ArsamAryandoust
https://github.com/schnorr
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.05149


parameters, and a function computing the results of the experiment based on these parameters.
The set of experiments to be executed can be defined through a configuration file listing the
domains of each parameter, or manually through code. Those parameters define the experiment
grid, based on which PyExperimenter sets up the table in the database featuring all experiments
with their input parameter values and additional information such as the execution status.
Once this table has been created, a PyExperimenter instance can be run on any machine,
including a distributed system. Each instance automatically pulls open experiments from
the database, executes the function provided by the user with the corresponding parameters
defining the experiment and writes back the results computed by the function. Errors arising
during the execution are logged in the database. In case of failed experiments or if desired
otherwise, a subset of the experiments can be reset and restarted easily. After all experiments
are done, results can be jointly exported as a Pandas DataFrame (The pandas development
team, 2020) for further processing, such as generating a LaTeX table averaging results of
randomized computations over different seeds.

Statement of Need
The recent advances in artificial intelligence have uncovered a need for experiment tracking
functionality, leading to the emergence of several tools addressing this issue. Prominent
representatives include Weights and Biases (Biewald, 2020), MLFlow (Zaharia et al., 2018),
TensorBoard (Abadi et al., 2015), neptune.ai (neptune.ai, 2022), Comet.ML (Comet ML
Inc., 2021), Aim (Arakelyan et al., 2022), Data Version Control (Kuprieiev et al., 2022),
Sacred (Greff et al., 2017), and Guild.AI (Smith, 2019). These tools largely assume that
users define the configuration of an experiment together with the experiment run itself. In
case of the evaluation of different hyperparameter configurations, this process is suboptimal,
since it requires to communicate the hyperparameters through scripts. This task can become
cumbersome to manage as the number of configuration options and desired combinations
grows and becomes more complex. Weights and Biases (Biewald, 2020), Polyaxon (Mourafiq,
2018), and Comet.ML (Comet ML Inc., 2021) allow so-called sweeps, i.e., hyperparameter
optimization, albeit in a limited way. For a sweep, usually hyperparameters that should be
optimized are specified along with the desired search domains, and an optimizer can be selected
from a pre-defined list to carry out the optimization. However, the implementation of this
functionality usually imposes several restrictions on the way the sweep can be carried out.

In contrast, PyExperimenter follows an inverted workflow. Instead of experiment runners
registering experiments to a tracking entity such as a tracking server or database, the exper-
iments are predefined and runners are pulling open experiments from a database. Similarly,
ClearML (ClearML, 2019) and Polyaxon (Mourafiq, 2018) support a more generic workflow
where experiments are first enqueued in a central orchestration server and agents can then
pull tasks from the queue to execute them. However, both are much more heavyweight
than PyExperimenter regarding the implementation of both the agents and backend-features.
Moreover, they are neither completely free nor completely open-source.

In addition to the inverted workflow, a core property of PyExperimenter is that the user has
direct access to the experiment database, which is usually not the case for alternative tools.
This allows users to view, analyze and modify both the experiment inputs and results directly
in the database, although not having to deal with the setup of the database itself. Sticking to
available database technology further does not force the user to learn new query languages
just to be able to retrieve files from a database. Furthermore, PyExperimenter offers some
convenience functionality like logging errors and the possibility to reset experiments with a
specific status such as experiments that failed.

PyExperimenter was designed to be used by researchers in the field of artificial intelligence,
but is not limited to those. The general structure of the project allows using PyExperimenter

for many kinds of experiments as long as they can be defined in terms of input parameters
and a correspondingly parameterized function.

Tornede et al. (2023). PyExperimenter: Easily distribute experiments and track results. Journal of Open Source Software, 8(84), 5149.
https://doi.org/10.21105/joss.05149.

2

https://doi.org/10.21105/joss.05149


Acknowledgements
This work was partially supported by the German Federal Ministry for Economic Affairs and
Climate Action (FLEMING project no. 03E16012F) and the German Research Foundation
(DFG) within the Collaborative Research Center “On-The-Fly Computing” (SFB 901/3 project
no. 160364472).

References
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis,

A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia,
Y., Jozefowicz, R., Kaiser, L., Kudlur, M., … Zheng, X. (2015). TensorFlow: Large-scale
machine learning on heterogeneous systems. https://www.tensorflow.org/

Arakelyan, G., Torosyan, A., Alkamyan, A., mihran113, Hovhannisyan, V., Karapetyan, R.,
Gev, Karo, Aprikyan, R., Arthur, Hambardzumyan, K., Hambardzumyan, H., Manukyan,
M., aramaim, Wu, J., Galstyan, K., Jiao, J., Tatevv, Yu, X., … Ulhaq, M. (2022). Aim
(Version v3.9.3). Zenodo. https://doi.org/10.5281/zenodo.6536395

Biewald, L. (2020). Experiment tracking with weights and biases. https://www.wandb.com/

ClearML. (2019). ClearML - your entire MLOps stack in one open-source tool. https://clear.ml/

Comet ML Inc. (2021). Comet.ML. https://www.comet.com/

Greff, K., Klein, A., Chovanec, M., Hutter, F., & Schmidhuber, J. (2017). The sacred
infrastructure for computational research. Proceedings of the 16th Python in Science
Conference, 28, 49–56. https://doi.org/10.25080/shinma-7f4c6e7-008

Kuprieiev, R., skshetry, Petrov, D., Redzyński, P., Rowlands, P., Costa-Luis, C. da, Schep-
anovski, A., Shcheklein, I., Gao, Taskaya, B., Orpinel, J., Iglesia Castro, D. de la, Santos,
F., Lamy, R., Sharma, A., daniele, Berenbaum, D., Zhanibek, Hodovic, D., … Mangal,
S. (2022). DVC: Data version control - git for data & models (Version 2.33.0). Zenodo.
https://doi.org/10.5281/zenodo.7264816

Mourafiq, M. (2018). Polyaxon: Cloud native machine learning platform. Web page. https:
//github.com/polyaxon/polyaxon

neptune.ai. (2022). Neptune: Experiment tracking and model registry. https://neptune.ai

Smith, G. (2019). GuildAI: Simple reproducibility in machine learning. SysML Conference.
https://guild.ai/

The pandas development team. (2020). Pandas (latest). Zenodo. https://doi.org/10.5281/
zenodo.3509134

Zaharia, M., Chen, A., Davidson, A., Ghodsi, A., Hong, S. A., Konwinski, A., Murching, S.,
Nykodym, T., Ogilvie, P., Parkhe, M., & others. (2018). Accelerating the machine learning
lifecycle with MLflow. IEEE Data Eng. Bull., 41(4), 39–45.

Tornede et al. (2023). PyExperimenter: Easily distribute experiments and track results. Journal of Open Source Software, 8(84), 5149.
https://doi.org/10.21105/joss.05149.

3

https://www.tensorflow.org/
https://doi.org/10.5281/zenodo.6536395
https://www.wandb.com/
https://clear.ml/
https://www.comet.com/
https://doi.org/10.25080/shinma-7f4c6e7-008
https://doi.org/10.5281/zenodo.7264816
https://github.com/polyaxon/polyaxon
https://github.com/polyaxon/polyaxon
https://neptune.ai
https://guild.ai/
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.21105/joss.05149

	Summary
	Statement of Need

	Acknowledgements
	References

