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Abstract

Multi-class classification methods that produce
sets of probabilistic classifiers, such as ensem-
ble learning methods, are able to model aleatoric
and epistemic uncertainty. Aleatoric uncertainty
is then typically quantified via the Bayes error,
and epistemic uncertainty via the size of the set.
In this paper, we extend the notion of calibration,
which is commonly used to evaluate the valid-
ity of the aleatoric uncertainty representation of a
single probabilistic classifier, to assess the valid-
ity of an epistemic uncertainty representation ob-
tained by sets of probabilistic classifiers. Broadly
speaking, we call a set of probabilistic classi-
fiers calibrated if one can find a calibrated convex
combination of these classifiers. To evaluate this
notion of calibration, we propose a novel non-
parametric calibration test that generalizes an ex-
isting test for single probabilistic classifiers to the
case of sets of probabilistic classifiers. Making
use of this test, we empirically show that ensem-
bles of deep neural networks are often not well
calibrated.

1 INTRODUCTION

There is a general consensus that trustworthy machine
learning systems should not only return accurate predic-
tions, but also a credible representation of their uncertainty.
In this regard, two inherently different sources of uncer-
tainty are often distinguished, referred to as aleatoric and
epistemic (Hora, 1996), and various methods that quantify
these types of uncertainty have been proposed (Senge et al.,
2014; Kendall and Gal, 2017; Hüllermeier and Waegeman,
2021). In multi-class classification problems, which will
be the setting of interest in this paper, such methods typi-
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cally focus on the uncertainty in the outcome y ∈ Y given
a query instance x ∈ X for which a prediction is sought.

Background. Consider a standard multi-class classifica-
tion setting with instance space X and label space Y =
{1, . . . ,K}. We assume that the data is i.i.d. according to
an underlying joint probability measureP onX×Y . Corre-
spondingly, each instance x ∈ X is associated with a con-
ditional distribution p(x), where the component pk(x) =
p(Y = k |x) is the probability to observe class k as an out-
come given x. A probabilistic classifier p̂ can then be de-
fined as an estimator of p(x). Usually, p̂ is learned from a
hypothesis space H, which is a subset of all possible map-
pings from X to ∆K , where ∆K denotes the (K − 1)-
simplex

∆K
..=
{
θ = (θ1, . . . , θK) ∈ [0, 1]K | ‖θ‖1 = 1

}
(1)

of probability vectors θ. Each of these vectors identifies a
categorical distribution Cat(θ). Let us remark that we will
utilize bold lowercase letters for vectors and vector func-
tions, e.g., θ and p̂(x), whereas a normal font will depict
the components of these vectors, e.g., θk and p̂k(x).

In this setting, aleatoric uncertainty is usually defined as
uncertainty that cannot be reduced by collecting more train-
ing samples, as it originates from wrong class annotations
or a lack of informative features. Therefore, the “ground-
truth” is the above-mentioned conditional probability dis-
tribution p(x), and the Bayes error of this distribution tells
us whether the aleatoric uncertainty is high. Even with per-
fect knowledge about the underlying data-generating pro-
cess, the outcome cannot be predicted with certainty. How-
ever, the learner does not know p(x) in practice. Instead,
it uses an estimate p̂(x) based on the training data as a
surrogate. In essence, epistemic uncertainty refers to the
uncertainty about the true p, or the “gap” between p and
p̂. Methods that represent this (second-order) uncertainty
typically do not return a single p̂(x), but either a distribu-
tion over p̂(x), as in Bayesian methods, or sets containing
different p̂(x), as in ensemble methods.

The validity of an aleatoric uncertainty representation is
typically evaluated by statistically testing whether a fitted
model p̂(x) is calibrated, see e.g. (Hosmer and Lemeshow,



On the Calibration of Probabilistic Classifier Sets

2003; Vaicenavicius et al., 2019; Widmann et al., 2019).
However, to be very precise, calibration tests do not test
whether a model p̂(x) corresponds to the ground-truth
p(x), because calibration is only a necessary condition.
Likewise, since the true p(x) is in practice never observed,
the evaluation of epistemic uncertainty representations is
also far from trivial. For lack of an objective ground-truth,
most methods assess epistemic uncertainty representations
in an indirect manner, using downstream tasks such as out-
of-distribution detection (Ovadia et al., 2019), robustness to
adversarial attacks (Kopetzki et al., 2021) or active learn-
ing (Nguyen et al., 2022). However, all those tasks are
characterized by a scenario where training and test data are
not identically distributed. Therefore, several recent stud-
ies have raised concerns about the usefulness of such tasks
w.r.t. epistemic uncertainty evaluation (Abe et al., 2022;
Dewolf et al., 2021; Bengs et al., 2022).

Contribution. In this work, we present a statistical ap-
proach to test the validity of epistemic uncertainty repre-
sentations of methods that use sets of distributions for pre-
diction purposes. This includes various types of ensemble
methods, such as random forests (Shaker and Hüllermeier,
2020), deep ensembles (Lakshminarayanan et al., 2017;
Rahaman and Thiery, 2021; Schulz and Lerch, 2022),
dropout networks (Gal, 2016), stacking methods (Ting and
Witten, 1999) and linear opinion pooling (Hora, 2004; Ran-
jan and Gneiting, 2010; Lichtendahl et al., 2013). With
ensemble methods and a predefined hypothesis space H of
probabilistic classifiers, one can assume that in totalM dif-
ferent probabilistic models are fitted to the training data,
denoted as P = {p̂(1), . . . , p̂(M)} ⊆ H, where p̂(m) rep-
resents the m-th model.

Inspired by the literature on linear opinion pools and stack-
ing, we are interested in the convex set that contains all
convex combinations of these M models:

S(P) =

{
p̂λ

∣∣∣ p̂λ(x) =

M∑
m=1

λmp̂
(m)(x),λ ∈ ∆M

}
(2)

with ∆M
..=
{
λ = (λ1, . . . , λM ) ∈ [0, 1]M | ‖λ‖1 = 1

}
.

Two properties are of crucial importance for these convex
sets. On the one hand, the size of the convex set quanti-
fies the degree of epistemic uncertainty, so this size should
be as small as possible. On the other hand, the convex
set should be a valid representation, i.e., it should contain
the true p. To measure the size of the convex set, which
is typically done in a pointwise manner, various measures
are used in the literature, such as the mutual information
(Malinin et al., 2020) or the generalized Hartley measure
(Hüllermeier et al., 2022). Conversely, to evaluate the va-
lidity, no method exists today.

Therefore, we introduce in this paper the first calibration
test to evaluate the validity of set-based epistemic uncer-
tainty representations, starting from existing calibration

tests for aleatoric uncertainty representations. Informally,
we call a set-based epistemic uncertainty representation
calibrated if there exists a calibrated convex combination in
the set of Eq. (2). This testing problem gives rise to a chal-
lenging scenario of multiple hypothesis testing, since all
members in the corresponding convex set need to be tested
(in the worst case). We propose a novel test based on re-
sampling and analyze empirically the Type I and Type II er-
ror for various calibration measures and conditions. Lastly,
we apply our newly-developed test to analyze whether deep
ensembles and dropout networks represent epistemic un-
certainty in a correct manner.

2 ALEATORIC UNCERTAINTY
EVALUATION

In this section we formally review existing calibration tests
for multi-class classification problems. With such tests,
aleatoric uncertainty representations of classifiers can be
evaluated in a natural and direct way. In the following sec-
tion, these tests will be extended for epistemic uncertainty
representations in the form of probabilistic classifier sets.
This section can hence be interpreted as a discussion of
closely-related work, but it also intends to introduce the
mathematical concepts needed further on.

2.1 Different Notions Of Calibration

We start by formally defining confidence calibration (Guo
et al., 2017). This notion of calibration is by far the
most often used in literature (Filho et al., 2021). Let’s as-
sume that we have fitted a probabilistic classifier that esti-
mates p(x), leading to the estimate p̂(x). Furthermore, let
c(x) = maxk p̂k(x) be the mode of the estimated condi-
tional class distribution for instance x (or confidence score)
and let f(x) = argmaxk p̂k(x) be the corresponding pre-
diction.

Definition 1. A multi-class classifier is confidence cali-
brated if it holds that

P(X,Y )∼P (Y = f(X) | c(X) = s) = s .

This is a rather weak notion of calibration, as only the
mode of the conditional distribution needs to be calibrated.
A stronger form of calibration is classwise calibration
(Zadrozny and Elkan, 2001).

Definition 2. A multi-class classifier is classwise cali-
brated if for all k ∈ {1, ...,K} it holds that

P(X,Y )∼P (Y = k | p̂k(X) = s) = s .

A few authors define an even stronger notion of calibration,
sometimes referred to as calibration in the strong sense
(Widmann et al., 2019; Filho et al., 2021).
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Definition 3. A multi-class classifier is calibrated in the
strong sense if for all k ∈ {1, ...,K} it holds that

P(X,Y )∼P (Y = k | p̂(X) = s) = sk ,

with sk the k-th component of s.

2.2 Calibration Tests

All three definitions of calibration assume that one knows
the true underlying distribution P . However, in practice,
this distribution is unknown, so one needs to replace the
expectation by a finite-sample estimate. In addition, a cal-
ibration measure that quantifies the discrepancy between
observed and expected frequencies is needed. In a final
step, this calibration measure can be used to construct a
statistical test that decides whether a multi-class classifier
is calibrated or not. In the literature, three different types of
tests have been developed. The Hosmer-Lemeshow test is a
specific type of chi-squared test that is commonly used as a
goodness-of-fit test for logistic and multinomial regression
models in statistics (Hosmer and Lemeshow, 2003; Fager-
land et al., 2008). The resampling-based test of Vaicenavi-
cius et al. (2019) and the kernel-based test of Widmann
et al. (2019) have been proposed more recently in the ma-
chine learning literature. The Hosmer-Lemeshow test can
only be used to assess classwise calibration, whereas the
other tests are more general, because they can be used in
combination with a wide range of calibration measures. All
tests analyze the null hypothesisH0 : p̂ is calibrated versus
the alternative H1 : p̂ is not calibrated, where the notion of
calibration (i.e., confidence, classwise or strong) depends
on the underlying test.

Hosmer and Lemeshow (2003) originally proposed the
Hosmer-Lemeshow (HL) test for binary logistic regres-
sion, and later Fagerland et al. (2008) extended it to the
more general class of multinomial probabilistic models.
Let Dval = {(x1, y1), ..., (xN , yN )} be a validation set
of size N , i.i.d. according to P . We will use the short-
hand notation p̂ik for the estimated probability p̂k(xi). Let
ci = maxk p̂ik be the highest probability for instance xi
and let ŷi = argmaxk p̂ik be the predicted label. For every
label yi, let us consider a K-dimensional vector yi that de-
fines the one-hot encoding of yi, i.e., yik = 1 iff yi = k.
Similarly as for the true label, we transform ŷi to a K-
dimensional vector ŷi that defines the one-hot encoding of
ŷi, i.e., ŷik = 1 iff ŷi = k.

For class k, the probabilities p̂1k, ..., p̂Nk are sorted, and the
corresponding instances are placed into equal-frequency
bins B1k, ...,BBk with B the number of bins. Furthermore,
the following test statistic is considered:

HLcwise(p̂,Dval) =

K∑
k=1

B∑
j=1

(o(Bjk)− p(Bjk))2

p(Bjk)
, (3)

with o(Bjk) =
1

|Bjk|
∑

i:p̂ik∈Bjk

yik ,

p(Bjk) =
1

|Bjk|
∑

i:p̂ik∈Bjk

p̂ik , (4)

where o(Bjk) and p(Bjk) denote the observed and ex-
pected probabilities in bin Bjk, respectively. Fagerland
et al. (2008) argued that (3) follows approximately a chi-
squared distribution with (K − 1)(B − 2) degrees of free-
dom, and they derived p-values using this assumption. Let
us remark that, besides the HL test, many other alternative
goodness-of-fit tests exist in statistics, but these usually do
not assess model calibration in a direct manner.

Vaicenavicius et al. (2019) developed a more general (non-
parametric) test that can be adopted to assess confidence
calibration, classwise calibration and calibration in the
strong sense, depending on the calibration measure that is
used. This test constructs a bootstrap distribution of any
calibration measure empirically, under the null hypothe-
sis that a classifier is calibrated, by resampling new labels
multiple times from the probabilistic model that is under
assessment. After constructing the distribution of the cali-
bration measure under the null hypothesis, the test verifies,
for the observed labels, how likely the calibration measure
is under the assumption of a calibrated model.

The test of Vaicenavicius et al. (2019) is often used with
the expected calibration error (ECE) as calibration mea-
sure. This measure has been originally introduced for bi-
nary problems as a way to evaluate reliability diagrams in a
quantitative manner. The classwise extension of this mea-
sure in fact looks very similar to the Hosmer-Lemeshow
test statistic, so it is used to assess classwise calibration
(Def. 2):

ECEcwise(p̂,Dval) =
1

K

K∑
k=1

B∑
j=1

|Bjk|
N
|o(Bjk)−p(Bjk)| ,

(5)
with o(Bjk) and p(Bjk) as in (4). However, for the ex-
pected calibration error, the [0, 1]-interval is often subdi-
vided in intervals of equal length instead of equal fre-
quency, i.e., Bjk := {i : j−1B ≤ p̂ik < j

B }.

For the confidence-based extension of expected calibration
error, which is used to assess confidence calibration (Def.
1), binning only has to be done once (so, not for every class
k). Let us divide the unit interval into B subintervals of
equal length. With the j-th subinterval we associate the
bin Bj := {i : j−1

B ≤ ci <
j
B }

1. Then, the calibration
measure becomes:

ECEconf (p̂,Dval) =

B∑
j=1

|Bj |
N
|Acc(Bj)− c(Bj)| , (6)

1the last bins BBk and BB are right-closed.
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with Acc(Bj) =
1

|Bj |
∑

i:ci∈Bj

K∑
k=1

yikŷik ,

c(Bj) =
1

|Bj |
∑

i:ci∈Bj

ci .

Widmann et al. (2019) proposed a class of measures de-
rived from matrix-valued kernel functions, the so-called
squared kernel calibration error (SKCE), to test calibration
in the strong sense, without the need for binning. For ex-
ample, if one analyses all pairs of instances, while using a
general matrix-valued kernel Γ : ∆K × ∆K → RK×K ,
then the measure becomes:

ŜKCEuq(p̂,Dval) =

(
N

2

)−1
×
N−1∑
i=1

N∑
j=i+1

K∑
s=1

K∑
t=1

(p̂is − yis)

× (p̂jt − yjt)Γst(p̂(xi), p̂(xj)) .
(7)

However, it is clear that calculating the above measure is
computationally expensive when the number of instances
N increases. For that reason, a similar estimator was pro-
posed by the same authors:

ŜKCEul(p̂,Dval) =
1

bN/2c

×
bN/2c∑
i=1

K∑
s,t=1

(p̂(2i−1)s − y(2i−1)s)(p̂2it − y2it)

× Γst(p̂(x2i−1), p̂(x2i)) , (8)

which is linear in N . Widmann et al. (2019) also consider
other calibration measures, and they derive bounds and ap-
proximations on the p-value for the null hypothesisH0 that
the model is calibrated. These tests require a lot of space
to explain, so we refer to the original paper for a further
discussion.

3 EPISTEMIC UNCERTAINTY
EVALUATION

In this section we develop calibration tests for epistemic
uncertainty representations of type S(P), as defined in
Eq. (2), starting from the methodology that was reviewed
in the previous section. In the literature, this type of set is
sometimes called a credal set, which is typically assumed to
be convex and closed (Walley, 1991; Corani and Antonucci,
2014; Yang et al., 2014). Furthermore, from a statistical
point of view, there is also a close connection to linear
opinion pooling, where the goal is to aggregate probabil-
ity expert forecasts in an appropriate way, e.g. keeping in
mind a proper scoring rule (Hora, 2004; Ranjan and Gneit-
ing, 2010; Lichtendahl et al., 2013). In this work, S(P)

represents epistemic uncertainty, i.e., due to a limited train-
ing dataset, one cannot estimate the ground-truth proba-
bility distribution precisely, but this distribution should be
contained in the set. An interpretation of that kind allows
us to present natural extensions of confidence calibration,
classwise calibration, and calibration in the strong sense for
probabilistic classifier sets.

Definition 4. A probabilistic classifier set S(P) is con-
fidence calibrated (cf. classwise calibrated or calibrated
in the strong sense) if there exists a probabilistic model
p̂λ(x) ∈ S(P) that is confidence calibrated (cf. classwise
calibrated or calibrated in the strong sense).

In what follows, we develop a statistical test to verify
whether a probabilistic classifier set is calibrated according
to Def. 4, which translates to the following hypotheses:

H0 : S(P) is calibrated, H1 : ¬H0 (9)

The above set of hypotheses can also be written as:

H0 : ∃λ ∈ ∆M s.t. p̂λ is calibrated, H1 : ¬H0 (10)

Furthermore, in what follows, we will use the generic term
“calibrated” or “calibration” to denote any notion of cali-
bration. While the test problem in Section 2.2 focuses on
the question whether a single fixed probabilistic classifier
p̂ is calibrated, the test problem in (9) or (10) asks for the
existence of a calibrated convex combination of the finite
set of probabilistic classifiers. Thus, the latter is essentially
a multiple comparison problem, as we simultaneously test
for all λ the hypotheses

H0,λ : p̂λ is calibrated, H1,λ : ¬H0,λ (11)

Since the number of possible convex combinations is in-
finite, one cannot resort to standard ways for addressing
multiple hypothesis testing problems, such as Bonferroni-
correction or the Holm-Bonferroni method. In what fol-
lows, we will adopt the extreme value approach for high-
dimensional testing (Dickhaus, 2015). All calibration mea-
sures considered in Section 2 are in essence decreasing
functions of the degree of calibration of a probabilistic
model, so one can simply search for the minimum of any
calibration measure of interest over λ ∈ ∆M . Then,
the multiple hypothesis testing problem in (10) can be ad-
dressed by considering the distribution of the minimum un-
der the null hypothesis.

This principle leads to a nonparametric test that is in
fact a direct generalization of the test of Vaicenavicius
et al. (2019). The pseudocode of this procedure is given
in Alg. 1. Starting from a set P containing M fit-
ted probabilistic models, a validation dataset Dval =
{(x1, y1), ..., (xN , yN )}, and a general calibration mea-
sure g, such as HLcwise or ECEconf , the method first
constructs the distribution of the calibration measure un-
der the null hypothesis. To this end, it performs in total D



Mortier, Bengs, Hüllermeier, Luca, Waegeman

Algorithm 1 Calibration Test for Probabilistic Classifier
Sets – input: P,Dval, g, α,D

1: for d = 1, . . . , D do
2: Dd ← extract bootstrap sample of sizeN fromDval (only

features are further used)
3: Sample uniformly λ0,d ∈ ∆M

4: For all xi ∈ Dd, sample yi from Cat(p̂λ0,d
(xi))

5: t0d ← g(p̂λ0,d
,Dd) . g represents an arbitrary

calibration measure
6: q1−α ← compute (1 − α)-quantile of empirical distribution
{t0,1, . . . , t0,D}

7: t← minλ∈∆M g(p̂λ,Dval) . Use an appropriate
optimization algorithm for g

8: reject H0 if t > q1−α and don’t reject H0 otherwise

runs with D a hyperparameter that trades off runtime ver-
sus p-value precision. In each run, a bootstrap sample of
size N is sampled from the original validation dataset (line
2). Then, one λ ∈ ∆M is selected at random and the corre-
sponding element of the convex set S(P) is chosen as the
ground-truth probability distribution, since we are working
under the assumption that the null hypothesis is true (line
3). We assume that every element of S(P) is equally likely
to correspond to the ground-truth distribution P , thus a uni-
form sample is drawn. Subsequently, for every instance in
the bootstrap replicate, a label is randomly drawn from the
selected probability distribution (line 4). In the last step
of every run, the calibration measure is computed for the
generated artificial labels and the ground-truth probability
distribution (line 5). After D runs, we assume that a good
estimate of the distribution of the calibration measure is
obtained, under the assumption that the null hypothesis is
true. Given a controlled Type I error rate α, the (1 − α)-
quantile of this distribution is computed (line 6). This quan-
tile defines the maximum allowed value of the calibration
measure to not reject the null hypothesis. Subsequently,
the minimum of the calibration measure is computed for
all members of the convex set, using now the original val-
idation dataset (line 7). The null hypothesis is rejected if
this minimum exceeds the threshold that was found under
the empirical null distribution (line 8).

Two lines in the algorithm deserve some more discussion.
In line 5, we compute the minimum of the calibration mea-
sure without solving an optimization problem. This is be-
cause we know the ground-truth probability distribution in
this case. In the limit, when the sample size grows to in-
finity, the calibration measure g will even be zero, so in
fact we are looking for the natural deviation from zero for
a sample of size N .

Conversely, in line 7, we have to solve an optimization
problem to find the minimum over λ ∈ ∆M . Specific
solvers are needed here, because the objective functions are
in most cases not differentiable, e.g., for the measures in
(3), (5) and (6) this is not the case. The objective functions
constructed from (7) and (8) are differentiable, but not con-

vex. In this work we use constrained optimization by linear
approximation (COBYLA), which is a numerical optimiza-
tion method for constrained problems where the derivative
of the objective function is not known (Powell, 1994). In
principle, any constrained derivative-free optimization al-
gorithm can be used in line 7, and exploring other solvers
will be considered in future work.

4 EXPERIMENTS

Two types of experiments are considered in this work.
First, we analyse the empirical Type I and II error of our
statistical test for synthetic datasets. Second, we apply our
test on several real-world datasets and popular ensemble-
based methods to investigate whether these methods return
calibrated representations. Detailed information regarding
the experimental setup and datasets can be found in the sup-
plementary materials (see Section 1).

4.1 Type I And II Error Analysis

In a first set of experiments, we analyse the empirical Type
I and II error rate for Alg. 1, with number of bootstrap sam-
ples D = 100, where we consider the calibration mea-
sures that have been discussed in Section 2: SKCEul,
HLcwise, ECEconf and ECEcwise. For computational
reasons, we choose not to incorporate SKCEuq . For sim-
plicity, we use a bin size ofB = 5 andB = 10 forHLcwise
and ECEconf,cwise. Similar as in Widmann et al. (2019),
for SKCEul, we use the matrix-valued kernel Γ(p,p′) =
exp(−‖p− p′‖/2)IK , combining the commonly-used to-
tal variation distance and the K × K identity matrix IK .
Moreover, we analyse the statistical Type I and II error un-
der three different scenarios, which we denote by S1, S2
and S3, respectively. S1 generates data under the null hy-
pothesis that the probabilistic classifier set is calibrated,
whereas S2 and S3 generate data under the alternative hy-
pothesis that the probabilistic classifier set is not calibrated.
To this end, we construct R = 1000 synthetic datasets that
containN = 100 instances. For each instance, we generate
predictions for M probabilistic models and a ground-truth
label: {(p(1)(Xi), . . . ,p

(M)(Xi), Yi)}Ni=1, with ensemble
size M = 10, for K = 10 classes. For each dataset, we as-
sume a mean pe|Xi ∼ Dir(ae), with aek = 1/K for
all k = 1, . . . ,K, and sample an ensemble from the prior
p(1), . . . ,p(M)|Xi ∼ Dir(Kpe/u). By means of this
prior, we are able to control the center pe and uncertainty
(or spread) u of the convex sets, similarly as in (Sensoy
et al., 2018). Then, we simulate the corresponding labels
Yi conditionally on the probabilistic classifier set in three
ways:

S1: The null hypothesis is true. For each dataset, we sam-
ple uniformly at random λ ∈ ∆M , and select pλ as
the ground-truth probability distribution, i.e., the la-
bels are generated according to Cat(pλ).
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S2: The null hypothesis is false. For each dataset, we gen-
erate labels using a categorical distribution that is ran-
domly chosen outside the convex set on the line seg-
ment between the closest corner in ∆K and pe.

S3: The null hypothesis is false, too. Similarly as in S2, a
categorical distribution is randomly chosen outside the
convex set, but this time on the line segment between a
randomly chosen corner in ∆K and pe. In this case, it
should be somewhat easier to reject the null hypothesis
than in scenario S2.

The three different scenarios are illustrated in Fig. 1 (left)
for K = 3 and M = 10. For scenarios S2 and S3, an
additional algorithm is needed to compute the line segment
outside the convex set. This algorithm is explained in the
supplementary materials (see Section 1).

The results are shown in Fig. 1 (right). Our test with
SKCEul is not correct, because it makes more errors than
defined by the significance level. However, for the other
measures, our test is more reliable, because the Type I er-
ror is mostly lower than the significance level. HLcwise
does not seem to yield high power for S2, for different bin
sizes. Empirically, our test with ECEconf,cwise results in
reliable tests when it comes to both the Type I and Type
II error. In the supplementary materials (see Section 2),
we also show some results obtained for u = 0.1 (Fig. 1),
M = 100 (Fig. 2) and K = 100 (Fig. 3). Similar find-
ings are obtained w.r.t. the calibration measure SKCEul.
For most cases, larger probabilistic classifier sets result in
more conservative tests, as can be observed in Fig. 1. In-
creasing the ensemble size, however, does not seem to have
a significant influence on the results, following Fig. 2. Fi-
nally, when looking at Fig. 3, by increasing the number of
classes, the empirical test error approaches the significance
level, making most tests less conservative.

4.2 Calibration Of Probabilistic Classifier Sets Based
On Deep Neural Networks

In a last set of experiments, we apply our test in Alg. 1 on
six benchmark datasets, where we consider a single clas-
sifier (S) and three ensemble-based models: two dropout
networks with rate 0.1 and 0.6 (DN(0.1), DN(0.6)) and a
deep ensemble (DE), where we use an ensemble size of
ten. For the deep ensembles, a probabilistic classifier set is
obtained by training ten different models, i.e., with differ-
ent initializations of the weights (Lakshminarayanan et al.,
2017). For the dropout networks, a probabilistic classifier
set is obtained by using dropout in the last layer and sam-
pling ten predictions (Gal, 2016). For the image datasets,
we consider a small and large neural network architecture
that are commonly used in the literature: MobileNetV2
(MOB) with 3.4×106 parameters and VGG16 (VGG) with
138 × 106 parameters, respectively (Sandler et al., 2018;
Simonyan and Zisserman, 2014). For the last two biologi-

cal datasets, a simple neural network with one hidden layer
is considered, together with textual feature representations.
For more information related to the training of the mod-
els and datasets, we refer the reader to the supplementary
materials (see Section 1). Furthermore, we analyse the cal-
ibration of the probabilistic classifier sets by means of the
ECEconf andECEcwise calibration measures, since those
measures gave reliable tests in terms of the Type I and Type
II error in the previous simulations.

The results are shown in Table 1. For each classifier, we
report results for the ensemble average, i.e., one the aver-
age of the ensemble predictions, and the weighted ensem-
ble average, with the weights λ obtained in line 7 of Alg. 1.
More precisely, two different weighted ensemble averages
are considered by running our test with the ECEconf and
ECEcwise measure, respectively, on a specific calibration
set. For each weighted average, we show the outcome of
our test w.r.t. the set of hypotheses in (9), together with the
average accuracy and calibration measure obtained on the
test set. For the single classifier case, our test in Alg. 1
corresponds to the specific test from Vaicenavicius et al.
(2019).

The single classifiers based on deep neural networks are in
general not calibrated, and this corresponds to similar find-
ings that have been reported in the literature (Guo et al.,
2017). For most cases, the classifiers are not calibrated in
terms of ECEcwise, which is not so surprising, because
classwise calibration is already a very strong form of cal-
ibration. Our findings are in line with what has been re-
ported in the literature on linear opinion pooling and deep
ensembles, namely, a linear opinion pool is often not cali-
brated in the strong sense, even in the ideal case in which
the individual models are calibrated (Hora, 2004; Ranjan
and Gneiting, 2010; Lichtendahl et al., 2013; Rahaman and
Thiery, 2021; Schulz and Lerch, 2022). When it comes to
ECEconf and dropout networks, in some cases, our test
does not reject the null hypothesis when a higher dropout
rate is considered. This indicates that dropout networks
tend to be better confidence calibrated when using a higher
dropout rate, which is also confirmed by comparing the
average ECEconf on the test set between DN(0.1) and
DN(0.6). A possible explanation could be given by the
fact that the prior, from which models are sampled in the
dropout network with higher dropout rate, is more diverse
and results in large probabilistic classifier sets that include
the ground-truth distribution. Finally, when it comes to
ECEconf , deep ensembles appear to be calibrated for most
datasets and architectures, since the null hypothesis is al-
most never rejected. For those classifiers, there is also a
significant difference in terms of ECEconf between the
average and weighted average, which indicates that using
a simple averaging strategy results in less calibrated deep
ensembles.
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Figure 1: Left: A visualization of the setup in scenarios S1, S2 and S3. In all three scenarios, black stars correspond to an
ensemble that has been sampled as outlined in the main text. In S1, the red dots correspond to a convex set from which
the ground-truth distribution is uniformly sampled. In S2 and S3, the ground-truth distribution is uniformly sampled from
the red line segment, outside the convex set. For S2, the line segment connects the calculated boundary (blue star) and
closest corner in the simplex (purple star) of the convex set. For S3, the line segments connects a boundary of the convex
set and a random corner in the simplex. Right: empirical Type I (S1) and Type II (S2, S3) error rate for different calibration
measures in function of the significance level for R = 1000 randomly sampled datasets from S1, S2 and S3 and with
N = 100,M = 10,K = 10 and u = 0.01. For all tests we use D = 100 bootstrap samples.
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Table 1: Results obtained for four different classifiers: single classifier (S), dropout network with rate 0.1 (DN(0.1)) and
0.6 (DN(0.6)) and a deep ensemble (DE). Classifiers are tested on six benchmark datasets. For the image datasets, we use
two different architectures: VGG16 (VGG) and MobileNetV2 (MOB). For each classifier we consider the average and two
different weighted averages, defined by the convex combination found in line 7 of Alg. 1, for ECEconf and ECEcwse,
respectively. We report the average accuracy (Acc.) and calibration measure (ECEconf,cwise) obtained on the test sets.
For the two weighted averages, which correspond to confidence and classwise calibration, respectively, we also present the
outcome (ie. reject or not/¬ reject H0) of our test on a separate calibration dataset.

AVG. WEIGHTED AVG.
λconf λcwise

DATASET ARCH. CLASSIFIER ACC. ECEconf ECEcwise H0 ACC. ECEconf H0 ACC. ECEcwise

CIFAR-10

MOB

S 0.7804 0.0194 0.0071 REJ. 0.7804 0.0194 REJ. 0.7804 0.0071
DN(0.1) 0.7740 0.0612 0.0134 REJ. 0.7726 0.0629 REJ. 0.7730 0.0137
DN(0.6) 0.3039 0.0196 0.0108 ¬REJ. 0.3025 0.0142 REJ. 0.3007 0.0111

DE 0.8329 0.1680 0.0327 ¬REJ. 0.7642 0.0150 REJ. 0.7668 0.0062

VGG

S 0.8438 0.0828 0.0183 REJ. 0.8438 0.0828 REJ. 0.8438 0.0183
DN(0.1) 0.8476 0.0821 0.0183 REJ. 0.8474 0.0832 REJ. 0.8462 0.0181
DN(0.6) 0.8355 0.0950 0.0202 REJ. 0.8353 0.0954 REJ. 0.8351 0.0203

DE 0.8754 0.0044 0.0042 ¬REJ. 0.8756 0.0052 ¬REJ. 0.8766 0.0044

CALTECH-101

MOB

S 0.9477 0.0135 0.0010 REJ. 0.9477 0.0135 REJ. 0.9477 0.0010
DN(0.1) 0.9384 0.0081 0.0010 ¬REJ. 0.9389 0.0087 REJ. 0.9361 0.0010
DN(0.6) 0.9338 0.0129 0.0012 ¬REJ. 0.9338 0.0107 REJ. 0.9324 0.0012

DE 0.9625 0.0175 0.0009 ¬REJ. 0.9509 0.0076 ¬REJ. 0.9579 0.0009

VGG

S 0.9287 0.0395 0.0013 REJ. 0.9287 0.0395 REJ. 0.9287 0.0013
DN(0.1) 0.9218 0.0192 0.0013 ¬REJ. 0.9204 0.0212 REJ. 0.9218 0.0014
DN(0.6) 0.9259 0.0155 0.0015 ¬REJ. 0.9162 0.0062 REJ. 0.9157 0.0015

DE 0.9500 0.0231 0.0011 ¬REJ. 0.9329 0.0079 ¬REJ. 0.9306 0.0011

CALTECH-256

MOB

S 0.7829 0.0638 0.0009 REJ. 0.7829 0.0638 REJ. 0.7829 0.0009
DN(0.1) 0.7820 0.0473 0.0008 REJ. 0.7816 0.0480 REJ. 0.7823 0.0008
DN(0.6) 0.7395 0.0201 0.0009 ¬REJ. 0.7313 0.0085 REJ. 0.7336 0.0009

DE 0.8383 0.0358 0.0007 ¬REJ. 0.8082 0.0130 REJ. 0.8312 0.0006

VGG

S 0.7552 0.0948 0.0011 REJ. 0.7552 0.0948 REJ. 0.7552 0.0011
DN(0.1) 0.7458 0.0645 0.0011 REJ. 0.7452 0.0663 REJ. 0.7421 0.0011
DN(0.6) 0.7427 0.0106 0.0010 ¬REJ. 0.7414 0.0103 REJ. 0.7421 0.0010

DE 0.8128 0.0326 0.0007 ¬REJ. 0.7864 0.0104 REJ. 0.8108 0.0007

PLANTCLEF2015

MOB

S 0.4842 0.1300 0.0005 REJ. 0.4842 0.1300 REJ. 0.4842 0.0005
DN(0.1) 0.4357 0.0866 0.0005 ¬REJ. 0.4320 0.0920 REJ. 0.4319 0.0005
DN(0.6) 0.4382 0.0199 0.0005 ¬REJ. 0.4343 0.0245 REJ. 0.4348 0.0005

DE 0.5973 0.0993 0.0004 ¬REJ. 0.5364 0.0171 REJ. 0.5757 0.0004

VGG

S 0.4085 0.1362 0.0006 REJ. 0.4085 0.1362 REJ. 0.4085 0.0006
DN(0.1) 0.4156 0.1009 0.0006 ¬REJ. 0.4151 0.1020 REJ. 0.4146 0.0006
DN(0.6) 0.3927 0.0566 0.0005 ¬REJ. 0.3928 0.0566 REJ. 0.3894 0.0005

DE 0.5488 0.1045 0.0004 ¬REJ. 0.4705 0.0197 REJ. 0.5236 0.0004

BACTERIA –

S 0.8785 0.0507 0.0002 ¬REJ. 0.8785 0.0507 ¬REJ. 0.8785 0.0002
DN(0.1) 0.8398 0.1504 0.0002 REJ. 0.8345 0.1508 REJ. 0.8371 0.0002
DN(0.6) 0.8407 0.2085 0.0002 ¬REJ. 0.7491 0.0829 ¬REJ. 0.7879 0.0002

DE 0.8926 0.1437 0.0002 ¬REJ. 0.8565 0.0642 ¬REJ. 0.9032 0.0001

PROTEINS –

S 0.8001 0.0454 0.0001 REJ. 0.8001 0.0454 REJ. 0.8001 0.0001
DN(0.1) 0.7909 0.0788 0.0001 REJ. 0.7895 0.0779 REJ. 0.7915 0.0001
DN(0.6) 0.8117 0.0393 0.0001 REJ. 0.8033 0.0353 REJ. 0.8119 0.0001

DE 0.8076 0.0764 0.0001 REJ. 0.7968 0.0528 REJ. 0.8050 0.0001

5 DISCUSSION

In this paper we addressed the following question: What
does it mean that a probabilistic classisfier set represents
epistemic uncertainty in a faithful manner? To answer this
question, we referred to the notion of calibration of proba-
bilistic classifiers and extended it to probabilistic classifier
sets. We called a probabilistic classifier set S(P) calibrated
if the set contained at least one calibrated classifier. To ver-
ify this property for the important case of ensemble-based
models, we proposed a novel nonparametric calibration test

that generalizes existing tests for probabilistic classifiers to
the case of probabilistic classifier sets. In our experiments,
we analyzed the Type I and II error of the newly-proposed
test for different scenarios. The best results were obtained
when using expected calibration error as underlying cali-
bration measure, but for most measures the Type I and II
error were both sufficiently low. Making use of this test,
we empirically show that probabilistic classifier sets based
on deep neural networks are often not calibrated.
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Goëau, H., Bonnet, P., and Joly, A. (2015). Lifeclef plant
identification task 2015. In Working Notes of CLEF
2015, volume 1391.

Griffin, G., Holub, A., and Perona, P. (2007). Caltech-256
object category dataset. Technical Report 7694, Califor-
nia Institute of Technology.

Guo, C., Pleiss, G., Sun, Y., and Weinberger, K. Q. (2017).
On calibration of modern neural networks. In ICML, vol-
ume 70 of Proceedings of Machine Learning Research,
pages 1321–1330.

Hora, S. (1996). Aleatory and epistemic uncertainty in
probability elicitation with an example from hazardous
waste management. Reliability Engineering and System
Safety, 54(2–3):217–223.

Hora, S. C. (2004). Probability judgments for continuous
quantities: Linear combinations and calibration. Man-
agement Science, 50(5):597–604.

Hosmer, D. and Lemeshow, S. (2003). Applied Logistic
Regression. Wiley.
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Mortier, Bengs, Hüllermeier, Luca, Waegeman

A EXPERIMENTAL SETUP

A.1 Type I And II Error Analysis

Here we explain in detail how the ground-truth distribution is generated in scenarios S2 and S3. In both cases, the null
hypothesis is false, so one needs to sample a ground-truth distribution outside the convex set. To find a distribution outside
the convex set, for every x, we need to find the largest λb ∈ [0, 1], such that pλb

∈ S(P), with pλb
= (1− λb)pe + λbpc,

pe the mean and pc the randomly chosen corner. This can be calculated by means of an exhaustive line search for λ over
the interval [0, 1] and a linear program. Pseudocode for this procedure is given by Alg. 2. After finding the boundary, one
can simply sample a random distribution on the line segment between pλb

and pc.

Algorithm 2 findBoundary – input: S(P), p0, pc, LP

1: P ← [p(1); . . . ;p(M)], i.e., P ∈ [0, 1]M×K . P represents P in matrix-notation
2: A = [P T ;1M ] with row vector 1M = [1, . . . , 1]
3: pλb

← p0

4: for λ′ = 0 to 1 do . Begin exhaustive line search
5: pλ′ ← (1− λ′)p0 + λ′pc
6: z = [pλ′ ; 1]
7: if LP(A,z) finds a solution then . Check if pλ′ falls inside the convex
8: pλb

← pλ′

9: else
10: break . We are outside the convex set, hence, break and return previous solution
11: return pλb

A.2 Calibration of probabilistic classifier sets based on deep neural networks

Table 2: Overview of of image (top) and text (bottom) datasets used in the experiments. Notation: K – number of classes, D – number
of features, N – number of samples for training, calibration and test set.

Dataset K D Ntrain Ncal. Ntest

CIFAR-10 (Krizhevsky et al., 2010) 10 1000 50000 4992 4992
Caltech-101 (Li et al., 2003) 97 1000 4338 2160 2160
Caltech-256 (Griffin et al., 2007) 256 1000 14890 7440 7440
PlantCLEF2015 (Goëau et al., 2015) 1000 1000 91758 10720 10720

Bacteria (RIKEN, 2013) 2659 1000 10587 1136 1136
Proteins (Li et al., 2018) 3485 1000 11830 5088 5088

We use a MobileNetV2 or VGG16 convolutional neural network (Sandler et al., 2018; Simonyan and Zisserman, 2014),
pretrained on ImageNet (Deng et al., 2009), in order to obtain hidden representations for all image datasets. For the bacteria
dataset, tf-idf representations are obtained by means of extracting 3-, 4- and 5-grams from the 16S rRNA sequences
that were provided in the dataset (Fiannaca et al., 2018). For the proteins dataset, tf-idf representations are obtained
by considering 3-grams only. Furthermore, to comply with literature, the tf-idf representations are concatenated with
functional domain encodings, which contain distinct functional and evolutional information about the protein sequence (Li
et al., 2018). Next, obtained feature representations for the biological datasets are passed through a single-layer neural net
with 1000 output neurons and a ReLU activation function. We use the categorical cross-entropy loss by means of stochastic
gradient descent with momentum, where the learning rate and momentum are set to 1e− 5 and 0.99, respectively. We set
the number of epochs to 2 and 20, for the Caltech and other datasets, respectively. We train all models end-to-end on a
GPU, by using the PyTorch library (Paszke et al., 2017) and infrastructure with the following specifications:

• CPU: i7-6800K 3.4 GHz (3.8 GHz Turbo Boost) – 6 cores / 12 threads,

• GPU: 2x Nvidia GTX 1080 Ti 11GB + 1x Nvidia Tesla K40c 11GB,

• RAM: 64GB DDR4-2666.
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B ADDITIONAL EXPERIMENTS

Figure 2: Empirical Type I (S1) and Type II (S2, S3) error for different calibration measures in function of the significance
level for R = 1000 randomly sampled datasets from S1, S2 and S3 and with N = 100,M = 10,K = 10 and u = 0.1.
For all tests we use D = 100 bootstrap samples.
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Figure 3: Empirical Type I (S1) and Type II (S2, S3) error for different calibration measures in function of the significance
level for R = 1000 randomly sampled datasets from S1, S2 and S3 and with N = 100,M = 100,K = 10 and u = 0.01.
For all tests we use D = 100 bootstrap samples.
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Figure 4: Empirical Type I (S1) and Type II (S2, S3) error for different calibration measures in function of the significance
level for R = 1000 randomly sampled datasets from S1, S2 and S3 and with N = 100,M = 10,K = 100 and u = 0.01.
For all tests we use D = 100 bootstrap samples.


