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Abstract

The representation and quantification of uncer-
tainty has received increasing attention in machine
learning in the recent past. The formalism of credal
sets provides an interesting alternative in this re-
gard, especially as it combines the representation
of epistemic (lack of knowledge) and aleatoric (sta-
tistical) uncertainty in a rather natural way. In this
paper, we elaborate on uncertainty measures for
credal sets from the perspective of machine learn-
ing. More specifically, we provide an overview of
proposals, discuss existing measures in a critical
way, and also propose a new measure that is more
tailored to the machine learning setting. Based on
an experimental study, we conclude that theoret-
ically well-justified measures also lead to better
performance in practice. Besides, we corroborate
the difficulty of the disaggregation problem, that
is, of decomposing the amount of total uncertainty
into aleatoric and epistemic uncertainty in a sound
manner, thereby complementing theoretical find-
ings with empirical evidence.

1 INTRODUCTION

In the literature, two inherently different sources of uncer-
tainty are commonly distinguished, referred to as aleatoric
and epistemic [[Horal [1996]]. While the former refers to vari-
ability due to inherently random effects, the latter is un-
certainty caused by a lack of knowledge and hence relates
to the epistemic state of an agent. Thus, epistemic uncer-
tainty can in principle be reduced on the basis of additional
information, while aleatoric uncertainty is non-reducible.

Related to the representation of different types of uncer-
tainty (in terms of a probability distribution, a set of alter-
natives, or a more general representation) is the problem of
uncertainty quantification, i.e., of quantifying the amount

of uncertainty associated with a representation in terms of
a single number. Uncertainty quantification has been ad-
dressed by many scholars and from various perspectives. As
a quantification induces a complete order relation on repre-
sentations, it allows for sorting them from the least to the
most uncertain, thereby supporting reasoning, inference, and
learning principles such as “least commitment”, “minimum
specificity”, or “maximum uncertainty reduction”. However,
many such complete orderings or precise quantifications are
possible, especially when seeing them as refinements of a
partial order between representations induced by more qual-
itative or robust notions, such as set-inclusion [Klein et al.,
2016]] or cumulative dominance [[Dubois and Hiillermeier,
2007]. Then, a standard way to choose a suitable measure,
critically discussed in this paper, is to characterise it through
sets of axioms [Bronevich and Klir, 2010]].

The distinction between different types of uncertainty and
their quantification has also been adopted in the recent ma-
chine learning (ML) literature [Senge et al., 2014} [Kendall
and Gal, 2017]. This is motivated by safety-critical appli-
cations, where a proper representation of uncertainty is im-
portant, along with the observation that learning algorithms
such as deep neural networks in general seem to exhibit
limited awareness of their own competence [[Papernot and
McDaniel, 2018| Sato et al.,[2018]]. In order to improve the
uncertainty-awareness of learning algorithms, various meth-
ods have been proposed and various ways of quantifying the
uncertainty in predictions have been proposed [Hillermeier
and Waegeman), 2021].

In this paper, we focus on the connection between ML and
credal sets, i.e., (convex) sets of probability distributions,
and more specifically on the related question of uncertainty
quantification. The usefulness of credal sets for capturing
uncertainty in ML has been advocated by various scholars
[De Bock et al.| 2014} (Corani et al., |[2012]], most recently
also in connection with the distinction between aleatoric
and epistemic uncertainty [Sensoy et al.l 2018]. Uncertainty
quantification in credal ML can be examined from different
perspectives and with different goals in mind:
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* From the perspective of ML, the most important ques-
tion concerns suitable uncertainty measures: How to
quantify the uncertainty contained in a “credal predic-
tion”? In the literature on credal sets (and related uncer-
tainty formalisms), a large repertoire of such measures
has been proposed, but their usefulness in the context
of ML is not always very clear.

* From the perspective of credal sets and uncertainty
quantification, the usefulness and performance of dif-
ferent measures is arguably of interest, too: In our view,
ML may provide interesting empirical evidence in fa-
vor or against different measures, thereby complement-
ing a more theoretical line of work. In fact, existing
measures are mostly of generic nature and have been
proposed on a purely axiomatic basis.

Our investigations and the empirical study presented in this
paper led to the following observations and insights:

* Measures that exhibit desirable mathematical proper-
ties show better performance than measures that are
theoretically (axiomatically) less well supported —in
this sense, practice confirms theory.

The theoretical difficulty of the disaggregation prob-
lem, that is, of decomposing the amount of total uncer-
tainty into aleatoric and epistemic uncertainty, is not
without reason. On the contrary, there are good reasons
to question the usefulness of a disaggregation of that
kind.

Properties and axioms should be tailored to the pur-
pose of a measure and the application at hand, as not
all axioms are equally important or useful for all appli-
cations.

2 UNCERTAINTY IN ML

We consider a standard setting of supervised learning, in
which a learner is given access to a set of (i.i.d.) training
data D := {(x;,9:)} Y, C X x ), where X is an instance
space and Y the set of outcomes that can be associated with
an instance. In particular, we focus on the classification
scenario, where ) = {y1, ...,y } consists of a finite set
of class labels, with binary classification () = {0, 1}) as an
important special case. We denote by A = P()) the set
of all probability measures on ).

Suppose a hypothesis space H to be given, where a hypoth-
esis h € ‘H is a mapping X — Ag. Thus, a hypothesis
maps instances € X to probability distributions on out-
comes. The goal of the learner is to induce a hypothesis
h* € H with low risk (expected loss)

R(h) = /X @ dP@y)

where P is the (unknown) data-generating process (a proba-
bility measure on X’ x V), and £ : Ax x Y — Raloss
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function. The choice of a hypothesis is commonly guided
by the empirical risk Re,,p,(h), i.e., the performance of a
hypothesis on the training data. However, since Rep(h) is
only an estimation of the true risk R(h), the empirical risk
minimizer h := argming c4; Remp(h) (or any other predic-
tor) favored by the learner will normally not coincide with
the true risk minimizer (Bayes predictor)

h* := argmin R(h) . )
heH

Correspondingly, there remains uncertainty regarding h* as
well as the approximation quality of h (in the sense of its
proximity to k*) and its true risk R(h).

Eventually, one is often interested in the predictive un-
certainty, i.e., the uncertainty related to the prediction g,
for a concrete query instance ¢, € X. Assuming a non-
deterministic dependency, part of this uncertainty is irre-
ducible and hence of aleatoric nature: Even knowing the
ground-truth conditional probability, we get

p(xq,y)

3
D(y) ®

pylzy) =

on Y, and the outcome y, cannot be predicted with certainty.

In addition, a prediction fz(wq) also involves epistemic un-
certainty, because h(x,) is only an estimation of the dis-
tribution l| h(x,) ~ h*(x,) ~ p(y,|x,). Indeed, the
Bayes predictor (2), restricted by the hypothesis space H,
may not necessarily coincide with the pointwise Bayes pre-
dictor (i.e., h*(xzq) # p(- | ®4)). Moreover, the hypothesis
h produced by the learning algorithm is only an estimate of
h*, and the quality of this estimate strongly depends on the
quality and the amount of training data.

Recall that a probabilistic predictor A € H is a mapping
X — Ag. A predictor of that kind captures aleatoric but
no epistemic uncertainty: By predicting a precise probability
distribution p(- | &,) for any query z,, it accounts for the
non-determinism of the sought dependence but pretends pre-
cise knowledge about this dependence. In order to account
for epistemic uncertainty, an “uncertainty-aware” predictor
of the form
h: X — [[A K]]

is needed, where [A k] is a suitable second-order formalism
that allows for representing uncertainty about uncertainty.
An obvious example is second-order probabilities as used
in Bayesian learning.

An interesting alternative is the concept of credal sets, that
is, (convex) sets of probability distributions. In fact, a key
motivation of the credal approach, compared to Bayesian in-
ference, is to model a lack of knowledge in a more adequate
way, essentially arguing that epistemic uncertainty is better
captured by sets than distributions. In our setting, this means
that a hypothesis & would no longer be assumed to provide



probabilistic predictions h(x,) € Ak, but generalized pre-
dictions in the form of a credal sets h(x,) = Q C Ag.
In particular, total ignorance about the class would cor-
respond to Q = Ak (and not to the uniform probabil-
ity). Similarly, a set A C ), can simply be represented by
Q=P(A) ={PeP()|P(A) =1}.

Our interest in this paper is less how to learn a predictor
of this kind — see [Shaker and Hillermeier| [2020] for a
recent proposal using ensemble learning and /Augustin et al.
[2014, Ch. 10] for a review. Instead, we are interested in
the problem of uncertainty quantification: How to quantify
the uncertainty associated with a prediction h(xzy) = Q?
As will be seen in the next section, various uncertainty
measures that could principally be used for that purpose
have been proposed in the literature on credal sets (and
related formalisms).

3 QUANTIFYING UNCERTAINTY OF
CREDAL SET REPRESENTATIONS

As already mentioned in the introduction, uncertainty quan-
tification is important and useful for many purposes. In ML,
for example, it supports prediction with (partial) abstention
or active learning [Nguyen et al.| [2021]]. Yet, it should also
be clear that uncertainty quantification is a challenging and
non-trivial problem, especially in light of the multi-faceted
nature of uncertainty and its representation (cf. Section [2)).
In this section, we review and discuss the main previous
proposals in the literature on credal sets, pointing out some
of the issues we see in general and especially when applying
them to ML problems. In the next section, we also sug-
gest a new quantification, arguing that it overcomes at least
some of the issues mentioned and fits well the purpose of
uncertainty quantification in ML.

3.1 HARTLEY AND SHANNON

In the credal setting, sets and probabilities represent pure
epistemic and pure aleatoric uncertainty, respectively. As
the problem of quantifying uncertainty has been thoroughly
addressed for both set theory and probability theory, and
well-founded measures have been proposed in both cases, it
seems useful to first recall them here.

The standard uncertainty measure in classical set theory,
where uncertain information is simply represented in the
form of subsets A C Y of alternatives deemed possible
(while the complement ) \ A is excluded), is the Hartley
measure [Hartley, [1928]]:

H(A) = log(|Al). ©)
This measure can be justified axiomaticallyﬂ It is minimal

"For example, see Chapter IX, pages 540-616, in the book by
Rényi [Rényil [1970].
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when the set is reduced to a singleton (precise information)
and maximal when A = ) (complete ignorance).

Likewise, the most well-known measure of uncertainty of
a single probability distribution ¢ € A is the (Shannon)
entropy, which, in the case of discrete ), is given by

S(g) == qly)logy q(y), )

yey

with Olog0 = 0 by definition. Again, this measure can
be justified axiomatically, and different axiomatic systems
have been proposed in the literature [[Csiszar, 2008]]. Sim-
ilar to (@), entropy is minimal when a single element y is
assigned probability 1, and maximal for the uniform distribu-
tion gyn; = 1/]Y|, which is the prototypical representation
of full aleatoric uncertainty.

3.2 EXTENSIONS OF STANDARD MEASURES

As credal sets and other generalized uncertainty theories
such as evidence theory or possibility theory extend both
sets and probabilities, the question of extending measures
of uncertainty such as @) and (3) has received quite a lot
of attention. Notably, following the axiomatic approach
underlying the measures of Shannon and Hartley, some
authors have proposed axioms that a measure of uncertainty
U over credal sets should obey [Abellan and Klir, 2005}
Jirousek and Shenoy, |2018]]:

Al Non-negativity, range: U is non-negative and upper-
bounded by some value » € R, for example r =
log(K), which is assumed for QQ = Ak (the case
of complete ignorance).

A2 Continuity: U is a continuous functional.

A3 Monotonicity: If @ C Q' for credal sets Q, @Q’, then
UQ) <U(@).

A4 Probability consistency: U reduces to standard Shan-

non entropy in the case where () reduces to a single
probability distribution.

A5 Sub-additivity: For a (joint) credal set () on a product
space )’ x )’ with marginals Q' resp. Q"

UQ) <U@)+U(Q"). (6)

A6 Additivity: The inequality (6)) is an equality in the case
where Q' and Q" are independenﬂ

A first measure that satisfies the above requirements is the
maximal entropy [Abellan and Moral, [2003]:

S*(Q) = max S(q). (M

2This presupposes a suitably defined notion of independence;
see|Couso et al.|[2000] for a review of such notions.



It is an upper bound of Shannon entropy and commonly
perceived as a reasonable measure of foral uncertainty, al-
though it has at least one obvious defect: S*(()) is maximal
as soon as () contains the uniform distribution g,,,,;, which
implies an insensitivity toward further imprecisiation in the
sense that S*(Q’) = S*(Q) for all Q' 2 @ —in particular,
" ({guni}) = S*(Ax).

Another well-founded measure is a generalization of the
Hartley measure @), defined as follows [Abellan and Moral,
2000]:

GH(Q) : ®)

S mg(4) log(|4]),

ACY

where mg : 2Y — [0,1] is the M&bius inverse of the
capacity function vg : 2¥ — [0, 1] defined by vg(A) =
inf,eg q(A) for all A C Y. This measure obeys a number
of desirable properties, which, as a whole, are not shared
by any other generalization of the Hartley measure[Klir and
Mariano, |1987]]. Obviously, it does not satisfy A4, because
GH({q}) = 0 for all ¢ € Ak, i.e., GH vanishes as soon
as the (ground truth) distribution is precisely known. This,
however, is coherent with an epistemic interpretation of this
measure, i.e., the idea of GH as a measure of the lack of
knowledge about this distribution.

3.3 DISAGGREGATION

In the literature on generalized uncertainty measures (includ-
ing credal sets), aleatoric and epistemic uncertainty is also
referred sometimes to as conflict (randomness, discordﬂ
and non-specificity [[Yager, 1983|]. While the latter appears
to be adequately captured by (8], an equally well-justified
measure of conflict in the form of an extension of Shannon
entropy has not been found so far. Instead, all measures
proposed in the literature turned out to be non-satisfactory,
due to the violation of important properties [Klir, [2005]. As
a possible way out, it was suggested to proceed from a mea-
sure of total or aggregate uncertainty, T'U, and to assume an
additive representation of the following type:

TU(Q) = AU(Q) + EU(Q) ©

Then, given TU(Q) and a generalized measure of epistemic
uncertainty (non-specificity) EU(Q), a generalized mea-
sure of aleatoric uncertainty (conflict) can be derived via
disaggregation, viz. in terms of the difference AU(Q)
TU(Q) —EU(Q). More specifically, taking (7) as a measure
of total uncertainty and generalized Hartley as a measure of
non-specificity, the following disaggregation was proposed

3This aspect should not be confused with the conflict under-
stood as a partial inconsistency or incoherence of the uncertainty
representation [Destercke and Burger,2013], [Quaeghebeur;,[2015]],
which is not considered here, as predictions are assumed to be con-
sistent, e.g., to be normalised probabilities.
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[[Abellan et al., |2006]:

S°(Q) = (57(Q) - GH(Q) ) + GH(Q)
—_—————
GS(Q)
The first part on the right-hand side is also called the gener-
alized Shannon entropy. However, unlike the other parts it is

derived from, S* and GH, it does not enjoy “nice” axiomatic
properties.

(10)

The idea of fixing the aggregate uncertainty as well as one
of the two constituent uncertainties, and then deriving the
second one by the difference between these two, can of
course also be applied the other way around, namely by
fixing (generalized) conflict and deriving (generalized) non-
specificity. As a measure of generalized conflict, the lower
Shannon entropy has been proposed:

5.(Q) = gggS(q) an)

Correspondingly, the following disaggregations of total un-
certainty is obtained [[Abellan et al.,|2006]:

S°(Q) = S:(Q) + (57(Q) — 5.(@))

In this case, non-specificity is defined in terms of the differ-
ence between upper and lower entropy. An obvious defect
of (TI) is its non-monotonicity: The lower entropy may de-
crease by increasing the credal set (). Nevertheless, S, can
still be considered as an appealing measure of conflict resp.
aleatoric uncertainty, as it indeed corresponds to the natural
measure of irreducible uncertainty: Given a credal set (),
S, (Q) is a lower bound of the (aleatoric) uncertainty that
remains even when all epistemic uncertainty is removed,
i.e., when @ is reduced to a single distribution ¢ € @ thanks
to additional information.

12)

3.4 CRITIQUE AND DISCUSSION

In this section, we discuss some issues and potential prob-
lems we see with the above uncertainty measures for credal
sets, especially in light of their use in machine learning.

Disaggregation. As already said, a fully satisfactory rep-
resentation of aggregate uncertainty in the form (9), with
all three measures having nice theoretical properties, has
not yet been found for the case of credal sets. While S* and
GH appear to be well justified, this is not completely true
for S, (which violates the property of monotonicity) and
even less so for the “derived” measures. Klir argues that
this is unproblematic as long as the measures of conflict and
non-specificity complement each other in the sense that the
properties are satisfied by the aggregate uncertainty.

Regardless of the technical difficulties, one may wonder
whether a decomposition (9)) is meaningful from a seman-
tical perspective. First, in the case of credal sets, the un-
certainty formalisms underlying epistemic and aleatoric un-
certainty, viz. sets and probability distributions, are of very



different nature. Hence, why should one expect correspond-
ing uncertainty measures to be sufficiently “commensurable”
to allow simple addition? For example, while GH measures
imprecision about the knowledge of ¢ € Ag, Shannon
entropy captures randomness on the level of outcomes ).

Also, epistemic and aleatoric uncertainty are two types of un-
certainty on different levels: epistemic uncertainty is a kind
of “meta-level” uncertainty that partly comprises aleatoric
uncertainty on the “base level”. Indeed, if an agent is epis-
temically uncertain, it is also uncertain about the (ground-
truth) aleatoric uncertainty. Take the extreme case of com-
plete ignorance () = Ag) as an example. In this case,
both the total and epistemic uncertainty should be maximal.
Then, however, an additive decomposition forces aleatoric
uncertainty to be 0, which is not meaningful. Actually, the
aleatoric uncertainty is somehow contained in the epistemic
uncertainty: because the agent does not know anything, it
does not know the true aleatoric uncertainty either.

In the above example, the value of 0 should arguably not
be seen as a measure of aleatoric uncertainty but rather as a
lower bound on the (true) measure of aleatoric uncertainty.
More generally, S, provides a bound of exactly that kind.
From this point of view, one may indeed wonder what ax-
iomatic properties one should demand. Even if a specific
property is natural for a measure of uncertainty, it does not
mean that the property must also hold for a bound on that
measure. This is quite obvious for monotonicity (A3) in the
case of S,: although monotonicity is a natural property of a
measure of uncertainty, it is also natural that S, increases
when () decreases, because the smaller (), the higher the
lower bound on entropy. This supports the view of Klir,
namely, to demand the axioms only for total uncertainty.
But it also shows that one should be careful with the no-
tion of conflict or aleatoric uncertainty in the decomposition
@]), and better speak about a lower bound on conflict or
guaranteed aleatoric uncertainty.

Going one step further, one may even abandon the disaggre-
gation altogether, and argue that the two types of uncertainty
should better be kept separate. Aleatoric uncertainty would
naturally be specified in terms of the interval [S,, S*] in-
stead of a single number. As for epistemic uncertainty, both
GH and the difference S* — S, appear to be meaningful
measures. The important point to notice, however, is that
these measures refer to different things: GH measures the
size of the set of candidate probabilities, and hence refers to
uncertainty or imprecision about the ground-truth probabil-
ity g, whereas S* — S, as the size of the set of candidate
entropies [S™*, S.], quantifies uncertainty about the aleatoric
uncertainty S(q) of g.

Properties and axioms. In addition to the idea of decom-
position, one may critically question the reasonableness of
the axioms themselves. In particular, looking at the large
body of literature on generalized uncertainty measures (we
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refer to JirouSek and Shenoy|[2018] for a quite exhaustive
review in the case of belief functions, which can be seen as
specific credal sets), it is noticeable that most measures are
proposed without considering the need of a specific domain
of application. This somehow deviates from Shannon’s orig-
inal agenda, who specifically developed his measure with
an application to communication and information theory in
mind (and not to quantify the uncertainty of a subjective
probability, for example). That said, there are some no-
table exceptions. For instance, Jirousek and Shenoy| [2020]
propose a measure with the goal to build multivariate un-
certainty representations within belief function theory and
propose axioms that are specific to this agenda.

In the context of ML, we are mostly interested in predictive
uncertainty, i.e., the learner’s uncertainty about the best
prediction of the target variable Y given a query instance x.
While axioms A1-A3 might still appear indisputable in this
context, this is less the case for A4—A6, especially because
additivity seems to be less relevant. Besides, even Shannon
entropy (largely characterized through additivity) could be
questioned as the right measure of aleatoric uncertainty. For
example, consider the case of binary classification () =
{—1,41}) and let the probability gy on ) be specified by
q(+1) = 0 and ¢(—1) = 1 — . The Shannon entropy is
more “sensitive” (has a steeper slope) toward the extremes
of the unit intervals (6 close to 0 or 1) and less in the middle
(6 close to 1/2). While this might be meaningful from an
information-theoretic point of view (where rare events are
critical), it is arguably less in the context of prediction,
where the critical region is around the middle point 1/2 but
not at the boundaries. In particular, due to the properties of
entropy, the derived measure EU(Q) = S*(Q) — S.(Q) is
not shift-invariant: shifting an interval [a, b] more toward the
middle of the unit interval (around 1/2) will decrease EU(Q),
shifting it more to the boundary will increase it. This appears
counter-intuitive, because in (binary) classification it should
just be the other way around: a boundary interval suggests
less uncertainty about the prediction than an interval of the
same size in the middle of the unit interval.

4 ANOTHER MEASURE

As suggested by our previous discussion, uncertainty mea-
sures should be tailored to a specific domain and the purpose
they are used for. In the context of ML, instead of measuring
the uncertainty about the true probability or the uncertainty
about the (aleatoric) uncertainty, it would be natural to seek
a measure of uncertainty about the best prediction to be
made, which is related to the uncertainty about the outcome
in the respective situation. Interestingly, a measure of that
kind has been proposed in the context of active learning
[[Antonucci et al.l [2012f]. In this section, taking this measure
as a point of departure, we develop a new measure of uncer-
tainty, along with a decomposition into an aleatoric and an



epistemic part, specifically suitable for quantifying predic-
tive uncertainty. We restrict ourselves to the simple (though
practically relevant) case of binary classification, where
predictions and outcomes are restricted to Y = {—1,+1},
leaving a generalization to multinomial classification for
future work.

This aforementioned measure is based on the notion of dom-
inance, which is commonly adopted for decision making
based on credal knowledge representation: We say that a
class iy dominates another class 3 if y is more probable than
y’ for each distribution in the credal set, that is,

)

>1.
a€Q q(y')

Yy, y') = (13)
Uncertainty is then considered as a lack of dominance, i.e.,
a situation is considered uncertain if there is no class that
dominates all others. To this end, it makes sense to look at
the maximum degree of dominance over all classes. In the
case of binary classification, this is expressed by the score

w = max (y(+1,-1),7(=1,+1)) . (14)
Note that this is actually a measure of certainty rather
than uncertainty, as it will increase as we increase our cer-
tainty that a class is dominated by another. For interval-
representation{f] specifying Q by the constraint g(+1) €
[a, b], this yields

1 1
(1, -1) = g WDy dCD @
€Qq(—1) qeQl—gq(+1l) 1-—a
C.q-1) . 1—q(+1) 1-0b
—1,41) = inf =——= = inf = ,
VLA = I e T ot b
so that (T4)) can be expressed as follows:
1-b
u(a,b)zmax(lia,b). (15)

The wider the interval [a, b], the smaller the score , with
the minimum being obtained for the case [0, 1] of com-
plete ignorance. This is well in agreement with the idea of
epistemic uncertainty. In the limit, when [a, b] reduces to a
precise probability (a = b), i.e., the epistemic uncertainty
disappears, is minimal for ¢ = b = 1/2 and maximal
for a = b close to 0 or 1. This behavior is in agreement
with the conception of aleatoric uncertainty. More generally,
comparing two intervals of the same length, will be
smaller for the one that is closer to the middle point 1/2.
Thus, it seems that the credal uncertainty score @]) does
indeed combine both epistemic and aleatoric uncertainty in
a single measure.

As one disadvantage of the measure, one may note that it
is not bounded. Moreover, one may prefer larger values to

“In the binary case, all credal sets () are of this form.
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indicate higher and not lower uncertainty. Therefore, let us
propose the transformation

. 1

TP(a,b) := TFu(@d)

(16)

= min(l — a,b),

where TP stands for fotal measure of predictive uncertainty.
This measure takes values between O and 1, the latter in-
dicating full uncertainty ([a, b] = [0, 1]) and the former no
uncertainty (a,b — 0 or a,b — 1). Since b — « is a natu-
ral measure of epistemic uncertainty, which coincides with
GH in the case of binary classification, one may further
define a decomposition of (I6) into aleatoric and epistemic
uncertainty as follows:

TP(a,b) = min(1 — a,b)
I
tota

=min(a,1 —b)+ (b—a) 17
—_———

——
aleatoric (AP) epistemic (EP)

What could be questioned is that aleatoric uncertainty is
upper-bounded by 1/2 in this case. In fact, full (total) un-
certainty is only assumed for the interval [0, 1], whereas the
interval [1/2,1/2] has a total uncertainty of only 1/2. In
other words, complete ignorance is considered a state of
knowledge that is more uncertain than perfect knowledge
about the uniform distribution. This does make sense from
a knowledge representation point of view, but arguably less
from a predictive perspective (for which the uniform distri-
bution is already a kind of worst case). On the other side,
this property avoids the problem of (partial) insensitivity
of measures like the upper entropy, which is maximal as
soon as the uniform distribution is contained in the credal
set—in this case, the size of the credal set does not matter
anymore. Also, (T6) sorts the credal sets according to their
uncertainty in a quite natural way: TP(a,b) < 1/2 for in-
tervals completely on the left (b < 1/2) or completely on
the right (@ > 1/2) of 1/2 and TP (a, b) > 1/2 for intervals
covering 1/2 (i.e., a < 1/2 < b).

On the one side, one may speculate that this property is
a necessary prerequisite for a meaningful decomposition:
If a measure of total uncertainty is the sum of a mea-
sure of aleatoric and a measure of epistemic uncertainty,
it can only be maximal if both types of uncertainty are
fully present— which is clearly not the case for the interval
[1/2,1/2], for which the epistemic uncertainty is 0. On the
other side, it arguably remains a bit peculiar that aleatoric
uncertainty ranges between 0 and 1/2, whereas epistemic
uncertainty takes values in [0, 1], suggesting that the two
types of uncertainty are measured on two different scales.
Why should epistemic uncertainty be potentially twice as
high as aleatoric uncertainty? As an intuitive explanation for
this asymmetry, recall our argument that a positive epistemic
uncertainty also implies a (potentially) positive aleatoric un-
certainty, but not vice versa. In other words, if an agent



is epistemically uncertain, there is necessarily a potential
aleatoric uncertainty involved, whereas an agent can be
aleatorically uncertain without being epistemically uncer-
tain.

Note that, when specifying the aleatoric uncertainty of a
measure gy in terms of min(#, 1 — 0), i.e., in terms of the
closeness of # to the middle-point !/2, then AP(a,b) =
min(a, 1 — b) does again establish a lower bound on the
(true) aleatoric uncertainty, because 6 € [a,b] implies
min(a,1 —b) < min(d,1 — ).

To justify the measure (6] axiomatically, let us represent
an interval [a,b] C [0, 1] in the form [z — 6, 4 + &]. There
are two operations on such an interval that can increase (or
vice versa decrease) uncertainty: shifting and widening. By
shifting we mean moving the interval “closer to the middle”,
i.e., replacing [p — &, u + 6] by [’ — &, ' + 8] such that
@' —1/2] < |p — 1/2|. By widening we mean increasing
d, i.e., replacing [ — 6, u + 8] by [ — &', u + '] such that
0" > 4. The following theorem justifies axiomatically;
the proof is given in the supplement.

Theorem 1: Consider an uncertainty measure U : [ — R,
where I is the set of intervals in [0, 1]. If U satisfies the
following properties, then it is necessarily given by (16):

Al
A2
A3

Complete certainty: U(0,0) = U(1,1) = 0.
Complete uncertainty: U(0,1) = 1.

Symmetry: U(a,b) =U(1 —b,1 —a)forall0 < a <
b<1.

Isometry: Widening has always the same effect, regard-

less of the location of the interval, i.e., U(a — §,b +
0) — U(a,b) only depends on 4 but neither on a nor b.

A4

A5 Shift-invariance: Shifting a precise interval [a, a] has
always the same effect in the sense that U(a + €, a +
€)—U(a, a) only depends on |a —1/2| — |a+¢€—1/2]
(to what extent the distance to 1/2 has been reduced or
increased) but not on a.

A6 Shifting and widening are equally important, i.e., the
(maximal) effect of an e-shift is the same as the (maxi-

mal) effect of a §-widening if € = §.

Obviously, also satisfies monotonicity, i.e., TP(a,b) <
TP(a',¥’) for ' < a and b < b’'. Compared to the more
classical information-theoretic uncertainty measures dis-
cussed before, @ has a more geometric flavor. Note that,
in the dichotomous case, b — a corresponds to both the gen-
eralized Hartley measure as well as the “size” of a credal
set. Therefore, it has an information-theoretic as well as a
geometric interpretation.

S EXPERIMENTS

In the absence of ground-truth uncertainties, predicted un-
certainties are often evaluated indirectly, for example by
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assessing their usefulness for improved prediction and de-
cision making. Here, we conduct such an evaluation by
producing accuracy-rejection (AR) curves in the setting of
selective classification. An AR curve depicts the accuracy
of a predictor as a function of the percentage of rejections
[Hithn and Hiillermeier, 2009]: A learner that is allowed
to select those instances on which to predict while abstain-
ing on a certain percentage p of predictions will predict
on those (1 — p) % on which it feels most certain. Being
able to quantify its own uncertainty well, it should improve
its accuracy with increasing p, hence the AR curve should
be monotone increasing (unlike a flat curve obtained for
random abstention).

Here, we compare the AR curves for the different uncer-
tainty measures discussed above (see the supplement for the
derivation of explicit expressions in the Bernoulli case, i.e.,
where uncertainty about a binary outcome is represented in
terms of an interval [a, b] for the probability of the positive
class):

Aleatoric uncertainty:

Lower: AL = S,
Upper: AU = S
Derived: AD = S*—GH =5"-b+a
Predictive: AP := min(a,1—b)
Epistemic uncertainty:
Basedon Hartley: EH := GH=b-a
Based on Shannon: ES S* — S,
Total uncertainty:
Axiomatic: TA := §*
Predictive: TP := min(l —a,b)

Note that the upper entropy S* occurs twice, namely as an
upper bound on the aleatoric uncertainty (AU) and as an
axiomatically justified measure of total uncertainty (TA).

To produce predictions in the form of credal sets, we follow
the ensemble-based (Random Forest) approach proposed
by [Shaker and Hiillermeier| [2021]]. More specifically, we
performed experiments on 9 well-known data sets from the
ucCl repositoryﬂThe data sets are randomly split into 70%
for training and 30% for testing, and AR curves are produced
on the latter. Each experiment is repeated and averaged over
100 runs. We create ensembles using the Random Forest
Classifier from SKlearn. All of the hyper-parameters are set
as the default setting, with the size of ensemble equal to
100 trees. Probabilities are estimated by (Laplace-corrected)
relative frequencies in the leaf nodes of a tree.

Fig. E] shows the AR curves for four of the data sets, while
the other plots are moved to the supplement. Even with-
out any further (numerical) analysis, the results convey a
very clear picture: All measures are performing quite well,
except for the derived measures AD and ES, which are sig-
nificantly worse and yield AR curve that remain visibly

Shttp://archive.ics.uci.edu/ml/index.php
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Figure 1: Accuracy-rejection curves for four data sets and different uncertainty measures (epistemic on the left, aleatoric in

the middle, total on the right).

below the others. As a consequence, our newly proposed
measure yields the only decomposition of total into aleatoric
and epistemic uncertainty (TP = EH + AP), such that all
three measures produce meaningful results — for the other
decompositions, either the measure of aleatoric uncertainty
fails or the measure of epistemic uncertainty.

6 CONCLUSION

The distinction between aleatoric and epistemic uncertainty
has received increasing attention in the recent machine learn-
ing literature. In light of this, credal uncertainty representa-
tion and ML methods making use of such representations
are of great interest. In this paper, assuming an ML method
producing predictions in the form of credal sets, we ad-
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dressed the question of uncertainty quantification, i.e., quan-
tifying the amount of uncertainty contained in a prediction.
In this regard, we isolated potential deficiencies of existing
measures and decompositions of total into aleatoric and epis-
temic uncertainty. These deficiencies could be confirmed in
an empirical study, in which the ML algorithm is allowed to
abstain from predictions in cases where uncertainty is high.
To overcome these problems, we proposed a new measure as
well as its decomposition into total, aleatoric, and epistemic
uncertainty. This measure can be justified theoretically and
shows strong empirical performance.

As a next step, we plan to extend our measure from the
dichotomous to the polychotomous case, so as to make it
amenable to multi-class classification, and to apply it in
related machine learning settings.
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