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Abstract
Explainable Artificial Intelligence (XAI) has mainly focused on static learning tasks so far. In this paper, we consider XAI 
in the context of online learning in dynamic environments, such as learning from real-time data streams, where models are 
learned incrementally and continuously adapted over the course of time. More specifically, we motivate the problem of 
explaining model change, i.e. explaining the difference between models before and after adaptation, instead of the models 
themselves. In this regard, we provide the first efficient model-agnostic approach to dynamically detecting, quantifying, 
and explaining significant model changes. Our approach is based on an adaptation of the well-known Permutation Feature 
Importance (PFI) measure. It includes two hyperparameters that control the sensitivity and directly influence explanation 
frequency, so that a human user can adjust the method to individual requirements and application needs. We assess and 
validate our method’s efficacy on illustrative synthetic data streams with three popular model classes.

Keywords Explainable Artificial Intelligence · Explaining Model Change · Concept Drift · Incremental Learning · Data 
Streams

1 Introduction

In many contemporary applications of machine learning 
(ML), predictive models induced from data may no longer 
be viewed as static objects, because the environments for 
which the models were initially conceived may change and 
necessitate adaptations over the course of time [48]. In some 
scenarios, models may be trained and retrained at fixed inter-
vals to keep up with recent trends and changes in the data. In 
other, more extreme cases, specific ML models are needed 
to monitor and incrementally learn from data continuously 
arriving in real-time. In learning scenarios of that kind, 

changes in the data generating processes caused by concept 
drift must be discovered quickly and responded to by model 
adaptation, so as to maintain predictive performance.

Yet, in many domains, predictive performance alone does 
no longer suffice for the applicability and acceptance of an 
ML model. Instead, a certain degree of understanding of the 
model and its predictions is also required. Novel approaches 
from the field of Explainable Artificial Intelligence (XAI) 
provide specific means to explain complex machine learning 
models to humans [1, 3]. However, current XAI methods 
are essentially limited to the explanation of static models. 
If such methods are used to explain models that are learned 
incrementally, a new explanation needs to be started from 
scratch each time the model changes. Needless to say, this 
may become cumbersome over longer time periods and 
when these models are adjusted only slightly.

In such situations, it is arguably more effective and effi-
cient to build on the user’s current understanding and only 
explain the difference between a model before and after an 
adaptation, rather than both versions independently of each 
other. This idea of explaining model change, which is illus-
trated in Fig. 1, comes with a couple of challenging research 
questions.

Contribution. We motivate the field of applying XAI 
in the context of dynamically changing models to explain 
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model change directly. We discuss its applicability and 
important challenges, which arise when applying XAI on 
data streams (Sect. 3). More specifically, we propose a 
time-dependent variant of the well-known Permutation 
Feature Importance (PFI) explanation approach (Sect. 4). 
We illustrate our explanation framework through experi-
ments conducted with synthetic data streams.

Related Work. As already mentioned, quite some meth-
ods have recently been proposed to explain static machine 
learning models, such as LIME [36] or SHAP [30, 31]. 
While these methods provide an appropriate starting point, 
they are limited to the case of static models. Yet, the need 
for continuously updated model explanation appears for 
instance in Explainable Interactive ML [8, 42] as part of 
human-computer interaction. As neither traditional XAI 
methods nor approaches from Explainable Interactive ML 
natively support incremental learning, new methods or 
extensions are needed. Initial ideas of directly explaining 
the changes of a model were recently discussed by Ham-
mer and Hüllermeier [20]. They are related to the field 
of contrast mining and change mining, where changes in 
two or more data sets are determined using learned pat-
terns from each data set [9]. As a model change is typi-
cally caused by a change in the underlying data generat-
ing process, our work is also related to the detection and 
understanding of concept drift in data [44]. For instance, 
Webb et al. [43, 44] identify features that characterize the 

concept drift. Moreover, Hinder et al. [22, 23] analyze 
time-dependent feature dependencies.

2  Explainability and Adaptive Models

In the following, we briefly recall basic concepts of both 
XAI and incremental learning on data streams. Our focus is 
on supervised machine learning, i.e., we consider the task 
of learning a predictive model

mapping from an input or feature space X  to an output or 
target space Y  . In the standard (batch) setting, a model of 
that kind is learned on a dataset D consisting of training 
examples (x, y) ∈ X × Y  . In a streaming scenario (formally 
introduced in Sect. 2.2), the static data D is replaced by a 
continuously evolving stream of data, on which a model is 
learned incrementally.

2.1  Explainability Based on Feature Importance

In general, XAI aims at improving a practitioner’s under-
standing of a model (1). To this end, various explanation 
methods have been proposed that address different explana-
tion needs [1, 3, 26, 33]. One way to support understanding 
of a model h is to quantify the influence of different input 
variables or features X(j) on the target variable Y: To what 
extent does a certain feature determine the predictions by the 
model h? Obviously, a feature-based explanation of that kind 
presumes a representation of instances in the form of feature 
vectors X = (X(1),… ,X(d)) , which is a common representa-
tion in machine learning. Such feature importance measures 
are commonly used for creating post-hoc and, often, model-
agnostic explanations. Feature-based explanations may be 
derived locally with methods such as SHAP [31] and LIME 
[36], or globally for example with SAGE [13].

As a well-known example of a feature-based explanation, we 
make use of PFI, which is a post-hoc, global, model-agnostic 
method. The importance of an individual feature is assessed 
on an explanation dataset D̃ = {(xi, yi)}

N
i=1

 by measuring the 
(presumably negative) impact that a random permutation 
of that feature’s values has on the model performance [11]. 
Thus, given a random permutation � of {1,… ,N} , the PFI 
�(j) for a feature X(j) is computed as

(1)h ∶ X ⟶ Y

(2)𝜙(j) ∶=
1

N

N�

i=1

‖h(x̃i) − yi‖ − ‖h(xi) − yi‖ ,

Fig. 1  Illustration of explaining changes of dynamic models directly: 
Data (rectangles) arriving asynchronously over time lead to models 
changing over time. If an explanation is necessary at a time step t, 
then this explanation can be provided by describing the difference of 
the current model h

t
 compared to the latest reference model h

r



213KI - Künstliche Intelligenz (2022) 36:211–224 

1 3

where x̃i denotes the instance xi with the jth entry x(j)
i

 replaced 
by x(j)

�(i)
 , i.e., the entry originally observed in x�(i) . The data 

D̃ can be taken as part of the training data D but also as extra 
validation data [33]. In a streaming scenario, where each 
data sample is commonly used for both testing (first) and 
training (afterward), this distinction is somewhat blurred.

2.2  Adaptive Models for Data Streams

Data streams are becoming more and more important in 
industrial applications. They are often linked to the so-called 
Internet of Things (IoT) [46]. The IoT describes the rising 
interconnectivity of devices such as industrial machines, 
vehicles, personal devices, and many more [5]. The installed 
sensors are generating vast amounts of valuable data streams 
that can be used to analyze real-time behavior and optimize 
services for customers. However, traditional batch learning 
algorithms are not well suited for these scenarios, since IoT 
devises are often subject to change. Incremental learning 
algorithms offer an alternative to batch processing that can 
handle real-time modeling and model updates requiring 
minimal resources [5]. A data stream may be characterized 
as a possibly infinite sequence of data observed over time. 
More formally, for a countable set of observations identified 
by their time indices T ⊂ [0,∞) , e.g. T = ℕ , the observed 
data until time t can be defined as

In this setting, traditional batch learning algorithms encoun-
ter several obstacles [5]:

– Data capacity: Data streams provide an unbounded set of 
training data.

– High frequency: Observations in data streams may appear 
in short time intervals and efficient updating of the model 
is crucial.

– Concept drift: The data generating process may change 
over time, either smoothly but perhaps even abruptly, 
calling for flexible model structures that can be adapted 
quickly.

Various incremental learning algorithms have been proposed 
to address these challenges. Incremental learning algorithms 
rely on a sequence of models (ht)t∈T ∶ X ⟶ Y  , where data 
up to time point t, Dt , has been observed to infer model ht 
[20]. In general, the learning algorithm updates the current 
model upon observation of a new data point and immediately 
discards the observations afterward. Thus, data capacity 
constraints are mitigated and the incremental update of the 
model allows for efficient computation. The field of online 
or incremental learning has been studied quite intensively 
in recent years [5, 28]. In the following, we briefly review a 

Dt = {(xi, yi)}i∈T∩[0,t] ⊂ X × Y .

few important approaches. Our focus is on (binary) classifi-
cation, which we also consider in the experiments later on.

Decision Tree (DT). DTs are a class of non-linear learning 
algorithms that are widely used because of their inherently 
interpretable structure [21]. A standard DT splits the data 
according to the value of a feature at each inner node of 
the tree, and assigns a class label at each leaf node (associ-
ated with a certain region in the input space). DTs are built 
by starting with a single node and recursively splitting leaf 
nodes by adding informative features, i.e., features increas-
ing the association of subgroups of the data with a unique 
class label. The tree growing stops when no informative 
splits can be found anymore, or too few samples are left for 
splitting. A new split may also be reversed, when new data 
points no longer support the previous decision.

In the incremental setting, a DT algorithm decides 
dynamically which partition shall be split after enough sam-
ples are available within a particular region [15, 16, 25]. The 
notion of optimality of a split is usually relaxed to enable 
more efficient computation. A new split is created when the 
improvement appears to be significant enough. For instance, 
Hoeffding trees [15] rely on the Hoeffding bound [24] to 
determine when to split. Theoretical results are established 
such that given infinite data, the algorithm approaches the 
tree that would have been learned in batch mode. In the lit-
erature, many variations of Hoeffding trees have been pro-
posed [7, 16, 25, 32]. In practice, while single (sufficiently 
small) DTs benefit from an inherently interpretable model 
structure, they lack stability and predictive power. Therefore, 
ensembles of DTs, called random forests [11], are usually 
preferred over single trees and serve as powerful black-box 
models. Random forests can also be applied in the incremen-
tal setting [19, 38].

Linear Model (LM). A linear classifier is a model of the 
form x ↦ I(⟨x,w⟩ > 𝜃) , where w ∈ ℝ

d is a weight vector, 
� ∈ ℝ a threshold, and I(⋅) denotes the indicator function. 
Thus, a linear model bisects the input space through a lin-
ear hyperplane. LMs are theoretically well understood and 
appealing due to their simplicity [21].

In the incremental setting, LMs are often trained by sto-
chastic gradient descent (SGD), which is used to gradually 
update the parameters w based on the training loss and a gra-
dient approximation with the most recent observation [28, 
34, 35]. Applications in large-scale learning have shown that 
linear models trained with SGD perform very efficiently for 
high-dimensional sparse data [10, 28, 37, 47].

Instance-based Learning (IBL). The notion of instance-
based learning refers to a family of machine learning algo-
rithms, which represent a predictive model in an indirect 
way via a set of stored training examples. Thus, in contrast to 
model-based methods, IBL algorithms simply store the data 
itself and defer its processing until a prediction is actually 
requested. Predictions are then derived by combining the 
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information provided by the stored data, typically accom-
plished by means of the nearest neighbor (NN) estimation 
principle [14].

In the data stream scenario, instance-based learning 
essentially reduces to the maintenance of the training data 
[41]: every time a new example arrives, the learner needs 
to decide whether or not this example should be added to 
the current dataset Dt , and if other examples should perhaps 
be removed. Baseline implementations [34, 35] simply rely 
on a window of recent data points, whereas more complex 
extensions have been proposed in [27, 40].

2.3  Concept Drift

A common assumption on the context of data streams is 
a possibly non-stationary data generating distribution [18]. 
For instance, users may change their behavior in online 
shopping due to new trends, technical sensors might be 
replaced by newer technologies, or changes occur due 
to unknown hidden variables not captured by the model. 
This phenomenon is referred to as concept drift [39, 45]. 
More formally, assume (xt, yt) ∈ X × Y  is generated by Pt , 
t ∈ T ⊂ ℝ . Then, concept drift [18] occurs if

Concept drift may be further distinguished into two com-
ponents, as Pt(x, y) = Pt(x) × Pt(y | x) . A change in Pt(y | x) , 
referred to as real drift, is likely to reduce the model’s per-
formance and require a change of the decision boundary.

The underlying distribution can change in different ways 
over time, as shown in Fig. 2. For sudden, gradual, and 
incremental drift, the focus typically lies on the pace of the 
model change and maximizing model performance. Main-
taining historical concepts and quickly adapting to the best-
suited ones can be beneficial for reoccurring concepts, such 
as seasonal changes.

∃ s, t ∈ T , (x, y) ∈ X × Y ∶ Ps(x, y) ≠ Pt(x, y) .

Concept drift detection refers to the identification of a 
point in time where a significant drift takes place. Concept 
drift detection algorithms often rely on comparing a current 
and a historical time window of data points. In a supervised 
learning setting, this comparison can be executed using the 
model’s dynamic performance within the time windows. A 
significant decrease in the model’s performance serves as 
an indicator for concept drift [29]. For instance, ADWIN 
[6] maintains a dynamic time window and compares sub-
windows to detect changes in expected values. ADWIN has 
been used in many variations, as an accuracy-rate based con-
cept drift detector in classification [6, 29] and within incre-
mental learning algorithms [6, 7, 19] to monitor changes in 
the model.

Drift learning methods can adapt models actively after 
drift has been detected, or (passively) adapt models continu-
ously over time. For instance, a DT may grow a separate 
candidate subtree when a change is detected and may finally 
replace the associated existing subtree [25]. In contrast, non-
parametrical IBL relies on careful maintenance of the stored 
data points. For instance, in the Self Adjusted Memory 
(SAM) approach [27], the notion of short- and long-term 
memory [4] is used to maintain current and previous con-
cepts and convey information from one to the other.

3  Explaining Model Change

While XAI and incremental learning on data streams have 
both received much attention in recent years [3, 5, 12, 28], 
the integration of the two, that is, the application of explain-
ability in the setting of incremental learning, remains a sig-
nificantly understudied field. We will focus on explainability 
in the context of adaptive model change, as it appears, for 
example, in incremental learning algorithms. Since adaptive 
model change is commonly realized by updating an exist-
ing model, the question arises whether the model and its 
corresponding explanations can be updated simultaneously. 
Furthermore, a user monitoring an autonomous AI system 
that evolves over time might be primarily interested in an 
explanation of the model change, rather than an explanation 
of the overall AI system as a whole. In the following, we will 
pick up this notion, referred to as explaining model change, 
and elaborate on its properties in the context of data streams. 
As pointed out by Hammer and Hüllermeier [20], explaining 
model change poses challenging questions.

What are suitable representations of models and model 
change? The question of how to explain a model change 
strongly depends on the underlying model class, just like 
the explanation of a model itself. A suitable representation 
of a model change should admit a certain level of interpret-
ability, which itself highly depends on the updating process. 
Depending on the model type, some choices will be better 

Fig. 2  Different types of concept drift as described in [29]: Sudden, 
gradual and incremental drift replace an existing concept over time, 
whereas reoccurring concepts can reflect seasonal trends
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suited for analyzing the change of models than others. For 
instance, neural networks updated by gradient descent will 
likely change ht from one black-box model to another, com-
plicating the analysis of the model change. In contrast, an 
update of an incremental DT, such as [25], can be viewed 
as an addition or removal of a certain subtree that acts on a 
restricted area in the feature space X  . This subtree, given 
that it is sufficiently small, admits an interpretable structure 
and may be directly used to characterize the model change. 
Further, in IBL, the model may be represented as the newly 
available instances, representing the model change in the 
feature space.

As an alternative, a user might want to know which 
features have become less or more important for the pre-
dictions in the new model. This change of feature impor-
tance could be quantified by global methods like PFI or 
local methods like SHAP and serve as an explanation of 
model change in terms of the change of feature relevances. 
While methods for measuring feature relevance exist for 
the batch setting, their adaptation for incremental learning 
is far from obvious, especially because access to training 
data is limited in the incremental setting.
How to quantify model change? In order to detect, compare, 
and appropriately react to changes, we need to establish a 
notion of the magnitude of model change. A natural measure 
is the expected discrepancy [20], defined as

where ht refers to the current model and hr to a suitable refer-
ence model at different points in time. Since the data distri-
bution on X  is usually unknown, the expected discrepancy 
needs to be estimated. One way of finding an estimation is to 
rely on the empirical distribution of p(x) using the observed 
samples. However, this approach may lack stability in cases 
where training data is sparse. Then, it could be more benefi-
cial to assume a specific data distribution on X  and sample 
from this distribution.

Furthermore, when establishing measures for model 
change, one should distinguish between semantic and syn-
tactic model change. Syntactic change refers to a change in 
the representation of a model ht , whereas semantic change 
refers to the actual change of the functional dependency 
X ⟶ Y  , such as measured by the expected discrepancy. 
For instance, a DT may change its tree structure completely 

(3)Δ(hr, ht) = ∫
X

‖ht(x) − hr(x)‖ p(x) dx,

without changing the function it represents. In general, dis-
tinguishing semantic and syntactic model change will highly 
rely on the traceability of the model change and the model’s 
representation. While semantic change appears to be more 
relevant, syntactic change might be more accessible and 
easier to compute in practice.

How to compute model change efficiently?  As efficiency 
is one of the key challenges in modeling data streams, effi-
ciently computing Δ(hr, ht) and other explanatory items is 
crucial. While for incremental learning algorithms the model 
update may be exploited to compute Δ(hr, ht) efficiently, 
explanations are currently mainly computed in the batch 
setting. In this case, new incremental methods are required. 
Ideally, the computation of explanations should be able to 
keep up with the speed of the incremental learning algorithm 
itself. This task is especially challenging for explanation 
methods such as SHAP [31], which have a high complexity 
already in the batch setting.

Again, careful choices of models and representations of 
change can be beneficial. For instance, it has been shown 
that SHAP values for DTs can be computed in polynomial 
time by exploiting the specific tree structure [30]. Hence, 
incremental versions may benefit from the tree structure 
as well.

When and how often should a change be explained? 
An answer to this question depends on the specific objec-
tives of a human user. A detailed and frequent explanation 
of current changes yields the best representation. How-
ever, various limitations must be considered, including 
the cognitive capacity of the user, who might be over-
whelmed by too many updates, as well as computational 
and storage capacity. Furthermore, noisy data may yield 
a model change that would soon be reverted, or optimi-
zation methods like SGD would oscillate around local 
optima resulting in uninformative explanations. Ideally, 
users interacting with the explanation framework should 
be able to control the system’s sensitivity and adapt it to 
their personal needs. Higher sensitivity will yield more 
frequent explanations of more minor changes in the model 
and increase the cognitive load on the side of the user. 
Lower sensitivity will yield less frequent explanations of 
more substantial changes. This could become problematic 
when important intermediate changes are missed.
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4  Agnostic Explanation of Model Change

In the following, we present an efficient and powerful model-
agnostic approach as a starting point for explaining model 
change. Our method relies on the assumption that explana-
tions should be given once a significant change in model per-
formance has been observed. As incremental learning algo-
rithms aim at optimizing model performance, we argue that 
model change most likely appears when a significant change in 
model performance is achieved. Significant changes in model 
performance are commonly used as an indicator of concept 
drift and we will rely on ADWIN as a well-known error-rate 
based drift detector [29]. The model performance, for instance, 
could be measured by the accuracy in the case of classification. 
The sensitivity of our method can be controlled by a single 
hyperparameter linked to ADWIN. Furthermore, we introduce 
another hyperparameter � to prevent uninformative explana-
tions associated with the expected discrepancy.

How to quantify model change? We quantify model change 
in two ways. First, we measure the change of the model 

performance of the incremental learning algorithm. Second, 
we approximate the expected discrepancy Δ(hr, ht) by

where ht is the current model, hr the reference model, 
D ∶= Dr ∪ Dt with Dr ⊂ Dr and Dt ⊂ Dt . The subsets Dr 
and Dt (further described below) are used as a representation 
of the distributions p(x) of the feature space at time r and t to 
approximate the expectation in (3). To lower the cognitive 
burden of users interacting with the system, we will provide 
an explanation only if the expected discrepancy exceeds a 
threshold parameter 𝜏 > 0 , i.e. Δ̂t > 𝜏 . While Δ̂t estimates 
the semantic model change directly, the model performance 
is only indirectly able to quantify it. However, relying on the 
dynamic model performance could be substantially more 
efficient, as it can be computed incrementally and does not 
require an averaging over a large sample. The measurement 
of expected discrepancy can therefore be seen as a safety 
measure to guarantee that only significant semantic model 
changes are explained to the users.

How to compute model change efficiently?  We use 
ADWIN to efficiently monitor significant changes in the 
model performance. To this end, ADWIN maintains two 
dynamic time windows and compares the model perfor-
mance within these. Thereby, only the predictions at each 
time step are used, which are anyway created in the learning 
process and no further model evaluations have to be exe-
cuted. When ADWIN detects a change at time step t − K , we 
begin collecting the next K training samples for Dt , which 
results in K = |Dt| . While collecting data, changes detected 
by ADWIN are ignored. This requires K to be chosen appro-
priately, such that enough samples for robust estimations can 
be collected, while changes can still be monitored reliably. 
After K new samples are observed and collected, we store 
the last model ht and estimate the expected discrepancy Δ̂t 
to quantify the model change with respect to the reference 
model hr and reference data Dr according to Equation (4). 
An explanation (as will be described below) of the change is 
then presented to the user only if additionally Δ̂t > 𝜏 . After 
an explanation has been presented, we replace the reference 
model hr and the reference data Dr by the current model ht 
and the collected data Dt.

When and how often should a change be explained? The 
sensitivity of the method is essentially controlled by the 
ADWIN parameter � ∈ (0, 1) , which describes its confidence 
value controlling the global false positive-rate [6]. Higher 
values of � will yield more frequent explanations increasing 
the cognitive burden of users monitoring the system and the 

(4)Δ̂t = Δ̂(hr, ht) ∶=
1

�D�
�

(x,y)∈D

‖ht(x) − hr(x)‖ ,
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chances of explaining an uninformative change. Small val-
ues of � could result in missing important model adaptations. 
Furthermore, � provides an additional safety measure to pre-
vent uninformative explanations. As already mentioned, � 
and � are hyperparameters that should be set according to 
the needs of the user and properties of the current applica-
tion scenario.

What are suitable representations of models and model 
change? We propose a model-agnostic approach and make 
no further assumptions on the representation of ht . For 
an explanation, we need to provide more details about 
the nature of the semantic change, the size of which is 
estimated by Δ̂t . One way of doing this, is to analyze the 
change in the contribution of each feature in the models 
hr, ht . Using PFI, we compute the feature importance �(j)

t  
at time t for feature j and ht as

As explained in Sect. 2.1, x̃i denotes the instance xi with the 
jth entry x(j)

i
 replaced by x(j)

�(i)
 , where � is a permutation of 

{1,… , |Dt|} . Our method essentially analyzes how the 
model performance changes in Dt , when this feature does 
not contribute any information. We then compute the differ-
ence as

and replace �(j)
r  by �(j)

t  for the next explanation iteration. 
Hence, Δ�t yields a magnitude and a direction of the change 
of the feature importance before and after the model change. 
Negative values indicate that feature relevance has dropped 
and positive values that it has increased after the model 
adaptation.

ADWIN and PFI Change Explanation. One complete 
explanation iteration of our method is described in Algo-
rithm 1 and illustrated in Fig. 3. We observe each data 
point (xi, yi) consecutively and compute the model predic-
tion ŷi , the updated model hi+1 , and the ADWIN update. 
When ADWIN detects a change and no data collection is 
in progress, then Dt is emptied and N = K is set to collect 
the next K samples (including the current one) in Dt . The 
variable t represents the time step for which an explana-
tion is potentially created from now after N samples are 
observed, i.e. t = i + K  . When the algorithm arrives at 
the last observation to collect (i.e. N = 1 and i = t − 1 ), 
the expected discrepancy Δ̂t is computed and compared 
against the threshold parameter � . If the threshold is 
exceeded, then an explanation is created and presented to 
the user. In this case, the PFI for each feature is computed 
using Dt and the model ht . Then, the difference Δ�t is 
calculated using the calculated PFI �t and the previously 

𝜙
(j)
t ∶=

1

�Dt�
�

(xi,yi)∈Dt

‖ht(x̃i) − yi‖ − ‖ht(xi) − yi‖.

Δ�
(j)
t = Δ�(j)(r, t) ∶= �

(j)
t − �(j)

r

calculated PFI �r . Afterwards, the variables Dr, hr and �r 
are replaced by the current variables Dt, ht,�t and will be 
used as the reference model in the next explanation itera-
tion. Finally, the explanation (t, Δ̂t,Δ𝜙t) is presented to 
the user.

For readability, the initialization of hr,Dr and �r are 
neglected. These initial objects are computed in the same 
fashion as their counterparts at time t. The initial data col-
lection iteration is started at the beginning of the training 
phase of the incremental learning algorithm. However, no 
explanation is created at the end of the initial data collection. 
Therefore, r would initially be equal to K. While initializing 
the reference model, ADWIN is not updated. We note that 
this initial training phase may be shifted to an arbitrary point 
in time depending on the application, or the reference can 
simply be provided by the users.

5  Experiments

To illustrate our approach of explaining model change, we 
conduct experiments in the context of binary classification.1 
We let Y = {0, 1} and ‖ ⋅ ‖ be the one-dimensional Euclidean 
norm. Accuracy is used to measure model performance. We 
train three incremental classifiers implemented in the River 
Python package [34] on synthetic data streams. We train an 
adaptive random forest [19] (DTs), a SAM-kNN classifier 
[27] (IBL), and a single-layer perceptron with SGD [34] 
(LM). During training, we artificially induce a rapid gradual 
concept drift by switching the data generating distribution 
of the data streams. Then, the incremental models need to 
adapt to this concept drift and change their classification 
functions. We quantify the model change with the expected 
discrepancy and provide further insights using PFI.

Model Parameters. For the implementation, we rely on 
River’s [34] default parameters. Hence, the adaptive random 
forest defaults to 10 trees in the ensemble model with the 
information gain as a split criterion. The IBL SAM-kNN 
model considers k = 5 nearest neighbors with distance-
weighted estimations using the Euclidean distance as met-
ric. The perceptron is trained with SGD using a learning 
rate of 1.

Gradual Concept Drift. To illustrate how we can explain 
model changes, we expose the incremental models to a grad-
ual concept drift. In both experiments, we create two unique 
data streams and overlay them for the incremental learning 
task. Each observation at time t has a probability of

1 Experiments and implementation can be found at: https:// github. 
com/ MMsch lk/ Agnos tic- Expla nation- of- Model- Change- based- on- 
Featu re- Impor tance.

https://github.com/MMschlk/Agnostic-Explanation-of-Model-Change-based-on-Feature-Importance
https://github.com/MMschlk/Agnostic-Explanation-of-Model-Change-based-on-Feature-Importance
https://github.com/MMschlk/Agnostic-Explanation-of-Model-Change-based-on-Feature-Importance
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to belong to the second data stream. The position and width 
of the concept drift, where the second data stream begins to 
dominate, is defined by td and w respectively [34]. As both 
streams follow distinct classification functions, the concept 
to be learned by the incremental models switches. This con-
stitutes a real drift described in Sect. 2.3.

5.1  Experiment A: STAGGER Concepts

Our first experiment is based on the STAGGER concepts 
[17, 39]. STAGGER data streams consist of three features 
(shape, size, and color) describing an object. Each feature 
can have only three possible values resulting in 27 unique 
combinations. Simple classification functions denote what 
combination of feature values constitute the STAGGER con-
cepts to be learned. We create two data streams with distinct 
classification functions to induce the actual concept drift. 
The first classification function returns 1 if the size feature 
is small and the color feature is red:

Concept A.1:

The function for the second concept returns 1 if the size 
feature is medium or large:

Concept A.2:

Compared to the first concept, the second no longer depends 
on the color feature. However, the size feature is inverted, 

(5)p(t) = 1∕(1 + e−4(t−td)∕w),

Class 1: ((size ∈ {small}) ∧ (color ∈ {red}))

Class 1: (size ∈ {medium, large})

as the values that were previously not describing the con-
cept now define it. An incremental model, thus, has to react 
to this drastic concept drift by significantly changing its 
decision surface. In theory, assuming a uniform distribu-
tion on the instance space, the magnitude of the expected 
discrepancy induced by switching from Concept A.1 to Con-
cept A.2 is 0.7 . The theoretical magnitude of the change can 
be calculated with the symmetric difference of the feature 
combinations belonging to Concept A.1 and Concept A.2 
( C1 △ C2 ). As both concepts are disjunctive, C1 △ C2 can 
be calculated by adding the probability of a sample belong-
ing to Concept A.1 (3∕27) to the probability of a sample 
belonging to Concept A.2 (18∕27) . As illustrated in Fig. 3, 
we train each model on 2,000 samples in total. In the first 
1,250 samples Concept A.1 is dominant, and in the last 750 
samples Concept A.2 is dominant, i.e. td = 1250 in Equa-
tion (5). The width w is set to 50.

One-Hot Encoding and PFI Methodology. Each described 
feature of STAGGER has 3 categories and is implemented 
by default with a label encoding (0,1,2) in River [34]. To 
account for the distinct categorical values, we run the learn-
ing algorithms with a one-hot encoding (resulting in 9 binary 
dummy variables, 3 for each feature).

Detecting and Quantifying Model Change. As discussed 
in Sect. 4, we detect model changes incrementally with 
ADWIN and verify the change by estimating the expected 
discrepancy. We choose � = 0.025 for ADWIN and � = 0.3 
for the expected discrepancy as parameters of our method. 
Furthermore, our explanation window size is set to K = 300 . 
The value of � ensures that the overall false positive rate of 
ADWIN is below 2.5% [6]. Additionally, the value of � is 

Fig. 3  The incremental learning process of a sample adaptive random 
forest classifier on the STAGGER data stream containing a concept 
drift: In the initial training phase phase (colored gray) from t0 to t1 
the first 300 samples are collected ( D

r
 ). The first reference model h

r
 

is stored at t1 . The concept drift (red line) occurs after 1250 samples. 

ADWIN detects the concept drift with a delay at t2 and the first expla-
nation phase starts. Again, the next 300 samples are collected ( D

t
 ) 

and the first explanation is created for a new updated model h
t
 at t3 . 

The accuracy (classification rate) is calculated prequentially by using 
every sample first for testing and then for training
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relatively low compared to the theoretical value of 0.7 . As 
illustrated in Fig. 3, we store the first reference classifier 
hr ∶= ht1 after the initial training phase at t1 = 300 with the 
first 300 observations stored in Dr together with the com-
puted PFI �r ∶= �t1

 . The classifier’s accuracy sharply drops 
after the concept drift at k = 1250 . This change is recog-
nized by ADWIN with some delay at time step t2 . When 
ADWIN detects the change, another 300 samples are start-
ing to be stored for Dt ∶= Dt3

 until time step t3 = t2 + 300 . 
Finally, the updated model ht ∶= ht3 is stored after observing 
all samples at time step t3 . When the expected discrepancy 
exceeds the sensitivity threshold � , the PFI is calculated, and 
the explanation is presented to the user.

Explaining Model Change. The direct explanation of 
change between the current model ht and the most recent 
model hr consists of the estimated expected discrepancy Δ̂t 
and the changes of the PFI Δ�t for each feature. As dis-
cussed in Sect. 4, we calculate �t based on the stored sam-
ples in Dt . Based on this, for each explanation time step t 
and feature j, the change of a model’s PFI Δ�(j)

t  is calculated 
through the difference of the current model’s PFI �(j)

t  and the 
latest reference model’s PFI �(j)

r  . A resulting explanation for 
the SAM-kNN classifier can be seen in Fig. 4.

Results. We evaluated our experimental setting 100 times 
for each classifier. The results are summarized in Table 1. 
For all three reference models, ADWIN reliably detects the 
concept drift and the approximated expected discrepancy 
exceeds the threshold of � = 0.3 . On average, the classifi-
ers change with a magnitude of Δ̂(ht1 , ht3) = 0.779 , which 
is very close to the theoretical magnitude of 0.7 . Fig. 4 
illustrates a possible explanation for the SAM-kNN model 
once a substantial model change is presented at time step t. 
Fig. 4 demonstrates that the classifier adapted to the drift 
from Concept A.1 to Concept A.2. Whereas the latest refer-
ence model hr assigns a small but equal value to both the 
size and the color feature, for the current model ht only the 
size feature is important. This change is directly stated in 
the changes of the PFI Δ�(size)

t  and Δ�(color)
t  . The size feature 

becomes substantially more important, whereas the color 
feature completely loses relevance. We further observe that 
ADWIN in some cases detects changes, when no concept 
drift is present and the model itself seems stable. These 
false positives are successfully filtered by our approach, as 
the estimated discrepancy in this case does not exceed the 
threshold parameter � . In summary, our illustrative experi-
ments demonstrated that our approach can efficiently and 
reliably identify meaningful points of model change. Fur-
thermore, the change of PFI together with the expected dis-
crepancy of the two versions of a time-dependent model give 
further insights into the nature of the change and provide 
convincing reasons to users monitoring the model.

In contrast to the illustrative Experiment A, the second 
experiment considers a substantially more complicated 
learning task.

5.2  Experiment B: Agrawal Generator

The second experiment is based on a data generator intro-
duced by Agrawal et al. in [2]. The generator creates a data 
stream consisting of nine features describing credit loan 
applications. Six features are numeric, one is ordinal, and 
two are nominal. The target variable describes, if the credit 
loan has been granted and is created based on different clas-
sification functions resulting in binary class labels. Similar 
to Experiment A, we overlay two of these classification func-
tions to induce a gradual concept drift. The first classifica-
tion function is given by:

Concept B.1:

The concept depends only on two features (age and salary). 
For the second classification function, the salary feature is 
replaced with the ordinal elevel (education level) feature.

Concept B.2:

As illustrated in Fig. 5, we generate 20,000 samples and 
place the concept drift at time step td = 13, 333 with width 
w = 50 . We omit the linear perceptron due its poor perfor-
mance — the concept obviously requires a nonlinear model. 

Class 1: ((age < 40) ∧ (50K ≤ salary ≤ 100K)) ∨

((40 ≤ age < 60) ∧ (75K ≤ salary ≤ 125K)) ∨

((age ≥ 60) ∧ (25K ≤ salary ≤ 75K))

Class 1: ((age < 40) ∧ (elevel ∈ {0, 1})) ∨

((40 ≤ age < 60) ∧ (elevel ∈ {1, 2, 3})) ∨

((age ≥ 60) ∧ (elevel ∈ {2, 3, 4}))

Fig. 4  The average explanation of Experiment  A for the reference 
SAM-kNN classifier when a model change exceeds the sensitivity 
threshold
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Instead, we rely on the (more powerful) SAM-kNN and 
adaptive random forest model. For all categorical features 
we use label encoding. To account for the different ranges of 
the features, we introduce an incremental standard scaling 
function, that maintains a moving sample mean and sample 
variance for each feature to normalize each observation. We 
set the ADWIN parameter to � = 0.025 and the expected 
discrepancy threshold to � = 0.4 . Our explanation window 
size is set to K = 1000 and the first reference model is stored 
with hr ∶= ht1 after the initial training phase at t1 = 1000.

Results. We evaluated our experimental setting 50 
times for each classifier. The results are summarized in 
Table 2. For both models, ADWIN reliably detects the 
concept drift and the approximated expected discrepancy 
exceeds the threshold. However, the overall accuracy of 
both models is significantly lower compared to Experi-
ment A, accounting for the increased complexity. In Fig. 5 
it can be observed that the accuracy varies over time. This 
variance of the accuracy is also reflected in more frequent 

ADWIN alerts. However, our estimation of the expected 
discrepancy successfully filtered uninformative changes at 
time points, where no concept drift was present. An expla-
nation created by our method using the adaptive random 
forest model is shown in Fig. 6. From the visualization it 
is apparent that the classifier has adapted to the induced 
concept drift. In accordance to Concept B.1, the reference 
model hr strongly relies on the salary and the age feature. 
After the drift, the adapted model ht prioritizes the elevel 
feature over the salary feature.

However, the commission feature is also important for the 
reference model and loses its importance in ht . Furthermore, 
age increased its importance from hr to ht , despite being 
unchanged in the concept definitions. Lastly, several unin-
formative features appear with small yet non-zero impor-
tance values.

Discussion. While the true concepts do not contain 
the feature commission, our results indicate that model hr 
attributes some importance to the feature, whereas model 

Table 1  Results of 
Experiment A for three 
reference models averaged 
over 100 iterations: For each 
reference model and feature the 
PFIs ( �

r
 , �

t
 , and Δ�

t
 ) are given 

for the latest reference model 
( h

r
 ) and a current model ( h

t
 ) 

after a detected change exceeds 
the sensitivity threshold � = 0.3

 The accuracy is averaged over the complete training procedure with 2000 samples
(standard errors in parentheses)

Model ACC Δ(h
r
, h

t
) � Feature

Size Color Shape

IBL 0.955 (0.008) 0.775 (0.026) �
r

0.149 (0.022) 0.148 (0.020) 0.000 (0.000)
�
t

0.439 (0.032) 0.000 (0.000) 0.000 (0.000)
Δ�

t
0.290 (0.033) − 0.148 (0.020) 0.000 (0.000)

DT 0.971 (0.004)  0.775 (0.027) �
r

0.146 (0.022) 0.148 (0.018) 0.000 (0.000)
�
t

0.441 (0.033) 0.000 (0.000) 0.000 (0.000)
Δ�

t
0.295 (0.039) − 0.148 (0.018) 0.000 (0.000)

LM 0.984 (0.002) 0.776 (0.026) �
r

0.146 (0.039) 0.150 (0.039) 0.000 (0.000)
�
t

0.445 (0.029) 0.000 (0.017) 0.000 (0.000)
Δ�

t
0.299 (0.034) − 0.150 (0.017) 0.000 (0.000)

Fig. 5  The learning process of a sample adaptive random forest clas-
sifier on the Agrawal data stream with concept drift: The reference 
phase where D

r
 and h

r
 is stored includes the first 1000 samples. After 

the concept drift at t
d
= 13, 333 , the first explanation phase begins 

when ADWIN detects a change. The phase contains the samples D
t
 

between t2 and t3
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ht did not. This can be explained by the direct dependence 
of the commission feature on the salary feature. In fact, 
in the Agrawal dataset, commission is partly composed by 
the salary feature. It is zero if salary is below 75K and 
else uniformly distributed from 10k to 75k. Since salary is 
used in the Concept B.1, the model hr has used commission 
together with salary to build its classification function. This 
direct dependency also affects the importance of the feature 
salary, as the missingness of salary may be compensated 
by the presence of commission. In general, PFI does not 
account for interactions between features and therefore does 
not consider the impact of both features being marginal-
ized together. This issue may be solved with other feature 
importance techniques, such as SHAP [31], which averages 
the contributions of features over all possible subsets of 
features.

In Experiment B, the model accuracy is substantially 
lower than in Experiment A. The imperfectly trained mod-
els may result in measurable PFI changes for theoretically 
uninformative features (e.g., car, zipcode, hvalue, hyears, 
loan in Fig. 6) that do not contribute any information to the 
classification. The increase in the PFI value of age may also 
be explained in this way, despite being unchanged in the 
concept definition. However, we like to emphasize that a 
feature’s PFI may also change due to changes in the concept 
involving other variables. As seen in Table 2, the calculated 
PFI values also differ among the models, which indicates 
that each model has a different understanding of the learned 
concept. As a consequence, any changes in the PFI should be 
analyzed carefully and taken with a grain of salt unless the 
model accuracy is sufficiently high. To reduce the cognitive 
burden of practitioners, their presentation may exclude small 
importance values that could be caused by noise improving 

Fig. 6  The average explanation of Experiment B for the reference adaptive random forest classifier when a model change exceeds the sensitivity 
threshold

Table 2  Results of Experiment B for two reference models averaged over 50 iterations: For each reference model and feature the PFIs ( �
r
,�

t
,and 

Δ�
t
 ) are given for the latest reference model ( h

r
 ) and a current model ( h

t
 ) after a detected change exceeds the sensitivity threshold � = 0.4

 The accuracy is averaged over the complete training procedure with 20,000 samples
(standard errors in parentheses, features commission (com.) and zipcode (zip.) abbreviated)

Model ACC Δ(h
r
, h

t
) � Feature

Salary com. Age elevel Car Zip. hvalue hyears Loan

IBL 0.812
(0.005)

0.500
(0.018)

�
r

0.231
(0.035)

0.142
(0.027)

0.204
(0.041)

0.077
(0.026)

0.078
(0.026)

0.070
(0.026)

0.073
(0.027)

0.075
(0.026)

0.081
(0.026)

�
t

0.076
(0.016)

0.066
(0.015)

0.338
(0.028)

0.351
(0.027)

0.080
(0.014)

0.074
(0.017)

0.073
(0.015)

0.079
(0.015)

0.080
(0.014)

Δ�
t

− 0.155
(0.037)

− 0.076
(0.030)

0.134
(0.054)

0.275
(0.039)

0.002
(0.030)

0.004
(0.032)

0.000
(0.031)

0.003
(0.030)

− 0.002
(0.032)

DT 0.868
(0.017)

0.469
(0.024)

�
r

0.256
(0.047)

0.096
(0.045)

0.167
(0.044)

0.012
(0.011)

0.013
(0.007)

0.011
(0.009)

0.014
(0.010)

0.012
(0.008)

0.012
(0.008)

�
t

0.034
(0.021)

0.024
(0.014)

0.301
(0.056)

0.316
(0.063)

0.022
(0.014)

0.028
(0.016)

0.028
(0.019)

0.021
(0.014)

0.022
(0.013)

Δ�
t

− 0.221
(0.051)

− 0.071
(0.045)

0.134
(0.068)

0.304
(0.064)

0.009
(0.015)

0.017
(0.019)

0.014
(0.023)

0.008
(0.014)

0.010
(0.015)
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the presentation of Fig 6. However, in presence of multi-
collinearity this approach may remove underestimated fea-
tures from the explanations emphasizing the need for further 
research of suitable XAI methods beyond PFI in the context 
of explaining model change with feature importances.

6  Conclusion and Further Work

We discussed a general framework for explaining model 
change yielding a bridge between XAI and adaptive mod-
els in the context of incremental learning on data streams. 
We proposed an efficient method to detect meaningful 
model changes using well-established techniques of con-
cept drift detection and XAI. Our experimental study, 
in which we illustrated our approach with a concrete 
instantiation of the general framework, suggests that we 
can efficiently detect and describe time-dependent model 
adaptations. To validate the general applicability, further 
research needs to be conducted:

– Complexity. While our experiments illustrate the notion 
of explaining model change, the used synthetic data 
streams and induced concept drifts constitute only lim-
ited learning scenarios. Further experiments in chal-
lenging real-world learning environments are required.

– Efficiency. While ADWIN provides an efficient way of 
detecting model change, it does not directly constitute 
a measure of a semantic model change. Therefore, the 
expected discrepancy is currently used as a second-
ary safety measure to decrease the false positive rate 
of explaining uninformative changes. The expected 
discrepancy, however, can currently not be computed 
incrementally. Data for the computation needs to be 
collected in fixed time frames. Furthermore, while col-
lecting data, no new change can be detected. Synergies 
of expected discrepancy together with ADWIN or other 
incremental approaches could further increase the effi-
ciency of detecting semantic model changes.

– Sensitivity. While we introduced important hyper-
parameters to control the sensitivity of the dynamic 
explanation method, we chose them in an application-
specific scenario. It remains unclear how users work-
ing with adaptive models should choose them in their 
particular situations. Further cognitive science research 
could therefore contribute suitable choices of sensitiv-
ity levels together with new data-driven techniques.

– Explanation. Feature importance is only one among 
many other (generic) approaches to explanation, and 
PFI only one among many other measure to quantify 
importance. In more complex scenarios, a simple pres-
entation of the relative feature importances may not 
satisfy the explanation need of practitioners. For exam-

ple, too many features may unnecessarily clutter the 
explanation, thereby increasing the cognitive burden 
of users. The presentation of our method may further 
benefit from research in human-computer interaction 
and data visualization.

In spite of the limited scope of our study and the wealth of 
open questions, we have shown the importance of explaining 
model change as a subfield of XAI and sketched the prom-
ising research opportunities it offers. While we presented 
a model-agnostic approach, it is clear that model-specific 
variants could substantially improve the efficiency and fidel-
ity of explanations. As change is ubiquitous in real-world 
learning environments, adaptive models will undoubtedly 
become more prevalent. We strongly believe that incremen-
tal explanation methods will significantly contribute towards 
an effective and efficient understanding of model change.
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