
Vol.:(0123456789)1 3

KI - Künstliche Intelligenz (2022) 36:211–224
https://doi.org/10.1007/s13218-022-00766-6

TECHNICAL CONTRIBUTION

Agnostic Explanation of Model Change based on Feature Importance

Maximilian Muschalik1 · Fabian Fumagalli2 · Barbara Hammer2 · Eyke Hüllermeier1

Received: 17 February 2022 / Accepted: 27 May 2022 / Published online: 12 July 2022
© The Author(s) 2022

Abstract
Explainable Artificial Intelligence (XAI) has mainly focused on static learning tasks so far. In this paper, we consider XAI
in the context of online learning in dynamic environments, such as learning from real-time data streams, where models are
learned incrementally and continuously adapted over the course of time. More specifically, we motivate the problem of
explaining model change, i.e. explaining the difference between models before and after adaptation, instead of the models
themselves. In this regard, we provide the first efficient model-agnostic approach to dynamically detecting, quantifying,
and explaining significant model changes. Our approach is based on an adaptation of the well-known Permutation Feature
Importance (PFI) measure. It includes two hyperparameters that control the sensitivity and directly influence explanation
frequency, so that a human user can adjust the method to individual requirements and application needs. We assess and
validate our method’s efficacy on illustrative synthetic data streams with three popular model classes.

Keywords Explainable Artificial Intelligence · Explaining Model Change · Concept Drift · Incremental Learning · Data
Streams

1 Introduction

In many contemporary applications of machine learning
(ML), predictive models induced from data may no longer
be viewed as static objects, because the environments for
which the models were initially conceived may change and
necessitate adaptations over the course of time [48]. In some
scenarios, models may be trained and retrained at fixed inter-
vals to keep up with recent trends and changes in the data. In
other, more extreme cases, specific ML models are needed
to monitor and incrementally learn from data continuously
arriving in real-time. In learning scenarios of that kind,

changes in the data generating processes caused by concept
drift must be discovered quickly and responded to by model
adaptation, so as to maintain predictive performance.

Yet, in many domains, predictive performance alone does
no longer suffice for the applicability and acceptance of an
ML model. Instead, a certain degree of understanding of the
model and its predictions is also required. Novel approaches
from the field of Explainable Artificial Intelligence (XAI)
provide specific means to explain complex machine learning
models to humans [1, 3]. However, current XAI methods
are essentially limited to the explanation of static models.
If such methods are used to explain models that are learned
incrementally, a new explanation needs to be started from
scratch each time the model changes. Needless to say, this
may become cumbersome over longer time periods and
when these models are adjusted only slightly.

In such situations, it is arguably more effective and effi-
cient to build on the user’s current understanding and only
explain the difference between a model before and after an
adaptation, rather than both versions independently of each
other. This idea of explaining model change, which is illus-
trated in Fig. 1, comes with a couple of challenging research
questions.

Contribution. We motivate the field of applying XAI
in the context of dynamically changing models to explain

Maximilian Muschalik and Fabian Fumagalli are equal contribution.

 * Maximilian Muschalik
 Maximilian.Muschalik@ifi.lmu.de

 Fabian Fumagalli
 ffumagalli@techfak.uni-bielefeld.de

 Barbara Hammer
 bhammer@techfak.uni-bielefeld.de

 Eyke Hüllermeier
 eyke@ifi.lmu.de

1 Ludwig-Maximilians-University Munich, Munich, Germany
2 Bielefeld University, Bielefeld, Germany

http://orcid.org/0000-0002-6921-0204
http://orcid.org/0000-0003-3955-3510
https://orcid.org/0000-0002-0935-5591
http://orcid.org/0000-0002-9944-4108
http://crossmark.crossref.org/dialog/?doi=10.1007/s13218-022-00766-6&domain=pdf

212 KI - Künstliche Intelligenz (2022) 36:211–224

1 3

model change directly. We discuss its applicability and
important challenges, which arise when applying XAI on
data streams (Sect. 3). More specifically, we propose a
time-dependent variant of the well-known Permutation
Feature Importance (PFI) explanation approach (Sect. 4).
We illustrate our explanation framework through experi-
ments conducted with synthetic data streams.

Related Work. As already mentioned, quite some meth-
ods have recently been proposed to explain static machine
learning models, such as LIME [36] or SHAP [30, 31].
While these methods provide an appropriate starting point,
they are limited to the case of static models. Yet, the need
for continuously updated model explanation appears for
instance in Explainable Interactive ML [8, 42] as part of
human-computer interaction. As neither traditional XAI
methods nor approaches from Explainable Interactive ML
natively support incremental learning, new methods or
extensions are needed. Initial ideas of directly explaining
the changes of a model were recently discussed by Ham-
mer and Hüllermeier [20]. They are related to the field
of contrast mining and change mining, where changes in
two or more data sets are determined using learned pat-
terns from each data set [9]. As a model change is typi-
cally caused by a change in the underlying data generat-
ing process, our work is also related to the detection and
understanding of concept drift in data [44]. For instance,
Webb et al. [43, 44] identify features that characterize the

concept drift. Moreover, Hinder et al. [22, 23] analyze
time-dependent feature dependencies.

2 Explainability and Adaptive Models

In the following, we briefly recall basic concepts of both
XAI and incremental learning on data streams. Our focus is
on supervised machine learning, i.e., we consider the task
of learning a predictive model

mapping from an input or feature space X to an output or
target space Y . In the standard (batch) setting, a model of
that kind is learned on a dataset D consisting of training
examples (x, y) ∈ X × Y . In a streaming scenario (formally
introduced in Sect. 2.2), the static data D is replaced by a
continuously evolving stream of data, on which a model is
learned incrementally.

2.1 Explainability Based on Feature Importance

In general, XAI aims at improving a practitioner’s under-
standing of a model (1). To this end, various explanation
methods have been proposed that address different explana-
tion needs [1, 3, 26, 33]. One way to support understanding
of a model h is to quantify the influence of different input
variables or features X(j) on the target variable Y: To what
extent does a certain feature determine the predictions by the
model h? Obviously, a feature-based explanation of that kind
presumes a representation of instances in the form of feature
vectors X = (X(1),… ,X(d)) , which is a common representa-
tion in machine learning. Such feature importance measures
are commonly used for creating post-hoc and, often, model-
agnostic explanations. Feature-based explanations may be
derived locally with methods such as SHAP [31] and LIME
[36], or globally for example with SAGE [13].

As a well-known example of a feature-based explanation, we
make use of PFI, which is a post-hoc, global, model-agnostic
method. The importance of an individual feature is assessed
on an explanation dataset D̃ = {(xi, yi)}

N
i=1

 by measuring the
(presumably negative) impact that a random permutation
of that feature’s values has on the model performance [11].
Thus, given a random permutation � of {1,… ,N} , the PFI
�(j) for a feature X(j) is computed as

(1)h ∶ X ⟶ Y

(2)𝜙(j) ∶=
1

N

N�

i=1

‖h(x̃i) − yi‖ − ‖h(xi) − yi‖ ,

Fig. 1 Illustration of explaining changes of dynamic models directly:
Data (rectangles) arriving asynchronously over time lead to models
changing over time. If an explanation is necessary at a time step t,
then this explanation can be provided by describing the difference of
the current model h

t
 compared to the latest reference model h

r

213KI - Künstliche Intelligenz (2022) 36:211–224

1 3

where x̃i denotes the instance xi with the jth entry x(j)
i

 replaced
by x(j)

�(i)
 , i.e., the entry originally observed in x�(i) . The data

D̃ can be taken as part of the training data D but also as extra
validation data [33]. In a streaming scenario, where each
data sample is commonly used for both testing (first) and
training (afterward), this distinction is somewhat blurred.

2.2 Adaptive Models for Data Streams

Data streams are becoming more and more important in
industrial applications. They are often linked to the so-called
Internet of Things (IoT) [46]. The IoT describes the rising
interconnectivity of devices such as industrial machines,
vehicles, personal devices, and many more [5]. The installed
sensors are generating vast amounts of valuable data streams
that can be used to analyze real-time behavior and optimize
services for customers. However, traditional batch learning
algorithms are not well suited for these scenarios, since IoT
devises are often subject to change. Incremental learning
algorithms offer an alternative to batch processing that can
handle real-time modeling and model updates requiring
minimal resources [5]. A data stream may be characterized
as a possibly infinite sequence of data observed over time.
More formally, for a countable set of observations identified
by their time indices T ⊂ [0,∞) , e.g. T = ℕ , the observed
data until time t can be defined as

In this setting, traditional batch learning algorithms encoun-
ter several obstacles [5]:

– Data capacity: Data streams provide an unbounded set of
training data.

– High frequency: Observations in data streams may appear
in short time intervals and efficient updating of the model
is crucial.

– Concept drift: The data generating process may change
over time, either smoothly but perhaps even abruptly,
calling for flexible model structures that can be adapted
quickly.

Various incremental learning algorithms have been proposed
to address these challenges. Incremental learning algorithms
rely on a sequence of models (ht)t∈T ∶ X ⟶ Y , where data
up to time point t, Dt , has been observed to infer model ht
[20]. In general, the learning algorithm updates the current
model upon observation of a new data point and immediately
discards the observations afterward. Thus, data capacity
constraints are mitigated and the incremental update of the
model allows for efficient computation. The field of online
or incremental learning has been studied quite intensively
in recent years [5, 28]. In the following, we briefly review a

Dt = {(xi, yi)}i∈T∩[0,t] ⊂ X × Y .

few important approaches. Our focus is on (binary) classifi-
cation, which we also consider in the experiments later on.

Decision Tree (DT). DTs are a class of non-linear learning
algorithms that are widely used because of their inherently
interpretable structure [21]. A standard DT splits the data
according to the value of a feature at each inner node of
the tree, and assigns a class label at each leaf node (associ-
ated with a certain region in the input space). DTs are built
by starting with a single node and recursively splitting leaf
nodes by adding informative features, i.e., features increas-
ing the association of subgroups of the data with a unique
class label. The tree growing stops when no informative
splits can be found anymore, or too few samples are left for
splitting. A new split may also be reversed, when new data
points no longer support the previous decision.

In the incremental setting, a DT algorithm decides
dynamically which partition shall be split after enough sam-
ples are available within a particular region [15, 16, 25]. The
notion of optimality of a split is usually relaxed to enable
more efficient computation. A new split is created when the
improvement appears to be significant enough. For instance,
Hoeffding trees [15] rely on the Hoeffding bound [24] to
determine when to split. Theoretical results are established
such that given infinite data, the algorithm approaches the
tree that would have been learned in batch mode. In the lit-
erature, many variations of Hoeffding trees have been pro-
posed [7, 16, 25, 32]. In practice, while single (sufficiently
small) DTs benefit from an inherently interpretable model
structure, they lack stability and predictive power. Therefore,
ensembles of DTs, called random forests [11], are usually
preferred over single trees and serve as powerful black-box
models. Random forests can also be applied in the incremen-
tal setting [19, 38].

Linear Model (LM). A linear classifier is a model of the
form x ↦ I(⟨x,w⟩ > 𝜃) , where w ∈ ℝ

d is a weight vector,
� ∈ ℝ a threshold, and I(⋅) denotes the indicator function.
Thus, a linear model bisects the input space through a lin-
ear hyperplane. LMs are theoretically well understood and
appealing due to their simplicity [21].

In the incremental setting, LMs are often trained by sto-
chastic gradient descent (SGD), which is used to gradually
update the parameters w based on the training loss and a gra-
dient approximation with the most recent observation [28,
34, 35]. Applications in large-scale learning have shown that
linear models trained with SGD perform very efficiently for
high-dimensional sparse data [10, 28, 37, 47].

Instance-based Learning (IBL). The notion of instance-
based learning refers to a family of machine learning algo-
rithms, which represent a predictive model in an indirect
way via a set of stored training examples. Thus, in contrast to
model-based methods, IBL algorithms simply store the data
itself and defer its processing until a prediction is actually
requested. Predictions are then derived by combining the

214 KI - Künstliche Intelligenz (2022) 36:211–224

1 3

information provided by the stored data, typically accom-
plished by means of the nearest neighbor (NN) estimation
principle [14].

In the data stream scenario, instance-based learning
essentially reduces to the maintenance of the training data
[41]: every time a new example arrives, the learner needs
to decide whether or not this example should be added to
the current dataset Dt , and if other examples should perhaps
be removed. Baseline implementations [34, 35] simply rely
on a window of recent data points, whereas more complex
extensions have been proposed in [27, 40].

2.3 Concept Drift

A common assumption on the context of data streams is
a possibly non-stationary data generating distribution [18].
For instance, users may change their behavior in online
shopping due to new trends, technical sensors might be
replaced by newer technologies, or changes occur due
to unknown hidden variables not captured by the model.
This phenomenon is referred to as concept drift [39, 45].
More formally, assume (xt, yt) ∈ X × Y is generated by Pt ,
t ∈ T ⊂ ℝ . Then, concept drift [18] occurs if

Concept drift may be further distinguished into two com-
ponents, as Pt(x, y) = Pt(x) × Pt(y | x) . A change in Pt(y | x) ,
referred to as real drift, is likely to reduce the model’s per-
formance and require a change of the decision boundary.

The underlying distribution can change in different ways
over time, as shown in Fig. 2. For sudden, gradual, and
incremental drift, the focus typically lies on the pace of the
model change and maximizing model performance. Main-
taining historical concepts and quickly adapting to the best-
suited ones can be beneficial for reoccurring concepts, such
as seasonal changes.

∃ s, t ∈ T , (x, y) ∈ X × Y ∶ Ps(x, y) ≠ Pt(x, y) .

Concept drift detection refers to the identification of a
point in time where a significant drift takes place. Concept
drift detection algorithms often rely on comparing a current
and a historical time window of data points. In a supervised
learning setting, this comparison can be executed using the
model’s dynamic performance within the time windows. A
significant decrease in the model’s performance serves as
an indicator for concept drift [29]. For instance, ADWIN
[6] maintains a dynamic time window and compares sub-
windows to detect changes in expected values. ADWIN has
been used in many variations, as an accuracy-rate based con-
cept drift detector in classification [6, 29] and within incre-
mental learning algorithms [6, 7, 19] to monitor changes in
the model.

Drift learning methods can adapt models actively after
drift has been detected, or (passively) adapt models continu-
ously over time. For instance, a DT may grow a separate
candidate subtree when a change is detected and may finally
replace the associated existing subtree [25]. In contrast, non-
parametrical IBL relies on careful maintenance of the stored
data points. For instance, in the Self Adjusted Memory
(SAM) approach [27], the notion of short- and long-term
memory [4] is used to maintain current and previous con-
cepts and convey information from one to the other.

3 Explaining Model Change

While XAI and incremental learning on data streams have
both received much attention in recent years [3, 5, 12, 28],
the integration of the two, that is, the application of explain-
ability in the setting of incremental learning, remains a sig-
nificantly understudied field. We will focus on explainability
in the context of adaptive model change, as it appears, for
example, in incremental learning algorithms. Since adaptive
model change is commonly realized by updating an exist-
ing model, the question arises whether the model and its
corresponding explanations can be updated simultaneously.
Furthermore, a user monitoring an autonomous AI system
that evolves over time might be primarily interested in an
explanation of the model change, rather than an explanation
of the overall AI system as a whole. In the following, we will
pick up this notion, referred to as explaining model change,
and elaborate on its properties in the context of data streams.
As pointed out by Hammer and Hüllermeier [20], explaining
model change poses challenging questions.

What are suitable representations of models and model
change? The question of how to explain a model change
strongly depends on the underlying model class, just like
the explanation of a model itself. A suitable representation
of a model change should admit a certain level of interpret-
ability, which itself highly depends on the updating process.
Depending on the model type, some choices will be better

Fig. 2 Different types of concept drift as described in [29]: Sudden,
gradual and incremental drift replace an existing concept over time,
whereas reoccurring concepts can reflect seasonal trends

215KI - Künstliche Intelligenz (2022) 36:211–224

1 3

suited for analyzing the change of models than others. For
instance, neural networks updated by gradient descent will
likely change ht from one black-box model to another, com-
plicating the analysis of the model change. In contrast, an
update of an incremental DT, such as [25], can be viewed
as an addition or removal of a certain subtree that acts on a
restricted area in the feature space X . This subtree, given
that it is sufficiently small, admits an interpretable structure
and may be directly used to characterize the model change.
Further, in IBL, the model may be represented as the newly
available instances, representing the model change in the
feature space.

As an alternative, a user might want to know which
features have become less or more important for the pre-
dictions in the new model. This change of feature impor-
tance could be quantified by global methods like PFI or
local methods like SHAP and serve as an explanation of
model change in terms of the change of feature relevances.
While methods for measuring feature relevance exist for
the batch setting, their adaptation for incremental learning
is far from obvious, especially because access to training
data is limited in the incremental setting.
How to quantify model change? In order to detect, compare,
and appropriately react to changes, we need to establish a
notion of the magnitude of model change. A natural measure
is the expected discrepancy [20], defined as

where ht refers to the current model and hr to a suitable refer-
ence model at different points in time. Since the data distri-
bution on X is usually unknown, the expected discrepancy
needs to be estimated. One way of finding an estimation is to
rely on the empirical distribution of p(x) using the observed
samples. However, this approach may lack stability in cases
where training data is sparse. Then, it could be more benefi-
cial to assume a specific data distribution on X and sample
from this distribution.

Furthermore, when establishing measures for model
change, one should distinguish between semantic and syn-
tactic model change. Syntactic change refers to a change in
the representation of a model ht , whereas semantic change
refers to the actual change of the functional dependency
X ⟶ Y , such as measured by the expected discrepancy.
For instance, a DT may change its tree structure completely

(3)Δ(hr, ht) = ∫
X

‖ht(x) − hr(x)‖ p(x) dx,

without changing the function it represents. In general, dis-
tinguishing semantic and syntactic model change will highly
rely on the traceability of the model change and the model’s
representation. While semantic change appears to be more
relevant, syntactic change might be more accessible and
easier to compute in practice.

How to compute model change efficiently? As efficiency
is one of the key challenges in modeling data streams, effi-
ciently computing Δ(hr, ht) and other explanatory items is
crucial. While for incremental learning algorithms the model
update may be exploited to compute Δ(hr, ht) efficiently,
explanations are currently mainly computed in the batch
setting. In this case, new incremental methods are required.
Ideally, the computation of explanations should be able to
keep up with the speed of the incremental learning algorithm
itself. This task is especially challenging for explanation
methods such as SHAP [31], which have a high complexity
already in the batch setting.

Again, careful choices of models and representations of
change can be beneficial. For instance, it has been shown
that SHAP values for DTs can be computed in polynomial
time by exploiting the specific tree structure [30]. Hence,
incremental versions may benefit from the tree structure
as well.

When and how often should a change be explained?
An answer to this question depends on the specific objec-
tives of a human user. A detailed and frequent explanation
of current changes yields the best representation. How-
ever, various limitations must be considered, including
the cognitive capacity of the user, who might be over-
whelmed by too many updates, as well as computational
and storage capacity. Furthermore, noisy data may yield
a model change that would soon be reverted, or optimi-
zation methods like SGD would oscillate around local
optima resulting in uninformative explanations. Ideally,
users interacting with the explanation framework should
be able to control the system’s sensitivity and adapt it to
their personal needs. Higher sensitivity will yield more
frequent explanations of more minor changes in the model
and increase the cognitive load on the side of the user.
Lower sensitivity will yield less frequent explanations of
more substantial changes. This could become problematic
when important intermediate changes are missed.

216 KI - Künstliche Intelligenz (2022) 36:211–224

1 3

4 Agnostic Explanation of Model Change

In the following, we present an efficient and powerful model-
agnostic approach as a starting point for explaining model
change. Our method relies on the assumption that explana-
tions should be given once a significant change in model per-
formance has been observed. As incremental learning algo-
rithms aim at optimizing model performance, we argue that
model change most likely appears when a significant change in
model performance is achieved. Significant changes in model
performance are commonly used as an indicator of concept
drift and we will rely on ADWIN as a well-known error-rate
based drift detector [29]. The model performance, for instance,
could be measured by the accuracy in the case of classification.
The sensitivity of our method can be controlled by a single
hyperparameter linked to ADWIN. Furthermore, we introduce
another hyperparameter � to prevent uninformative explana-
tions associated with the expected discrepancy.

How to quantify model change? We quantify model change
in two ways. First, we measure the change of the model

performance of the incremental learning algorithm. Second,
we approximate the expected discrepancy Δ(hr, ht) by

where ht is the current model, hr the reference model,
D ∶= Dr ∪ Dt with Dr ⊂ Dr and Dt ⊂ Dt . The subsets Dr
and Dt (further described below) are used as a representation
of the distributions p(x) of the feature space at time r and t to
approximate the expectation in (3). To lower the cognitive
burden of users interacting with the system, we will provide
an explanation only if the expected discrepancy exceeds a
threshold parameter 𝜏 > 0 , i.e. Δ̂t > 𝜏 . While Δ̂t estimates
the semantic model change directly, the model performance
is only indirectly able to quantify it. However, relying on the
dynamic model performance could be substantially more
efficient, as it can be computed incrementally and does not
require an averaging over a large sample. The measurement
of expected discrepancy can therefore be seen as a safety
measure to guarantee that only significant semantic model
changes are explained to the users.

How to compute model change efficiently? We use
ADWIN to efficiently monitor significant changes in the
model performance. To this end, ADWIN maintains two
dynamic time windows and compares the model perfor-
mance within these. Thereby, only the predictions at each
time step are used, which are anyway created in the learning
process and no further model evaluations have to be exe-
cuted. When ADWIN detects a change at time step t − K , we
begin collecting the next K training samples for Dt , which
results in K = |Dt| . While collecting data, changes detected
by ADWIN are ignored. This requires K to be chosen appro-
priately, such that enough samples for robust estimations can
be collected, while changes can still be monitored reliably.
After K new samples are observed and collected, we store
the last model ht and estimate the expected discrepancy Δ̂t
to quantify the model change with respect to the reference
model hr and reference data Dr according to Equation (4).
An explanation (as will be described below) of the change is
then presented to the user only if additionally Δ̂t > 𝜏 . After
an explanation has been presented, we replace the reference
model hr and the reference data Dr by the current model ht
and the collected data Dt.

When and how often should a change be explained? The
sensitivity of the method is essentially controlled by the
ADWIN parameter � ∈ (0, 1) , which describes its confidence
value controlling the global false positive-rate [6]. Higher
values of � will yield more frequent explanations increasing
the cognitive burden of users monitoring the system and the

(4)Δ̂t = Δ̂(hr, ht) ∶=
1

�D�
�

(x,y)∈D

‖ht(x) − hr(x)‖ ,

217KI - Künstliche Intelligenz (2022) 36:211–224

1 3

chances of explaining an uninformative change. Small val-
ues of � could result in missing important model adaptations.
Furthermore, � provides an additional safety measure to pre-
vent uninformative explanations. As already mentioned, �
and � are hyperparameters that should be set according to
the needs of the user and properties of the current applica-
tion scenario.

What are suitable representations of models and model
change? We propose a model-agnostic approach and make
no further assumptions on the representation of ht . For
an explanation, we need to provide more details about
the nature of the semantic change, the size of which is
estimated by Δ̂t . One way of doing this, is to analyze the
change in the contribution of each feature in the models
hr, ht . Using PFI, we compute the feature importance �(j)

t
at time t for feature j and ht as

As explained in Sect. 2.1, x̃i denotes the instance xi with the
jth entry x(j)

i
 replaced by x(j)

�(i)
 , where � is a permutation of

{1,… , |Dt|} . Our method essentially analyzes how the
model performance changes in Dt , when this feature does
not contribute any information. We then compute the differ-
ence as

and replace �(j)
r by �(j)

t for the next explanation iteration.
Hence, Δ�t yields a magnitude and a direction of the change
of the feature importance before and after the model change.
Negative values indicate that feature relevance has dropped
and positive values that it has increased after the model
adaptation.

ADWIN and PFI Change Explanation. One complete
explanation iteration of our method is described in Algo-
rithm 1 and illustrated in Fig. 3. We observe each data
point (xi, yi) consecutively and compute the model predic-
tion ŷi , the updated model hi+1 , and the ADWIN update.
When ADWIN detects a change and no data collection is
in progress, then Dt is emptied and N = K is set to collect
the next K samples (including the current one) in Dt . The
variable t represents the time step for which an explana-
tion is potentially created from now after N samples are
observed, i.e. t = i + K . When the algorithm arrives at
the last observation to collect (i.e. N = 1 and i = t − 1),
the expected discrepancy Δ̂t is computed and compared
against the threshold parameter � . If the threshold is
exceeded, then an explanation is created and presented to
the user. In this case, the PFI for each feature is computed
using Dt and the model ht . Then, the difference Δ�t is
calculated using the calculated PFI �t and the previously

𝜙
(j)
t ∶=

1

�Dt�
�

(xi,yi)∈Dt

‖ht(x̃i) − yi‖ − ‖ht(xi) − yi‖.

Δ�
(j)
t = Δ�(j)(r, t) ∶= �

(j)
t − �(j)

r

calculated PFI �r . Afterwards, the variables Dr, hr and �r
are replaced by the current variables Dt, ht,�t and will be
used as the reference model in the next explanation itera-
tion. Finally, the explanation (t, Δ̂t,Δ𝜙t) is presented to
the user.

For readability, the initialization of hr,Dr and �r are
neglected. These initial objects are computed in the same
fashion as their counterparts at time t. The initial data col-
lection iteration is started at the beginning of the training
phase of the incremental learning algorithm. However, no
explanation is created at the end of the initial data collection.
Therefore, r would initially be equal to K. While initializing
the reference model, ADWIN is not updated. We note that
this initial training phase may be shifted to an arbitrary point
in time depending on the application, or the reference can
simply be provided by the users.

5 Experiments

To illustrate our approach of explaining model change, we
conduct experiments in the context of binary classification.1
We let Y = {0, 1} and ‖ ⋅ ‖ be the one-dimensional Euclidean
norm. Accuracy is used to measure model performance. We
train three incremental classifiers implemented in the River
Python package [34] on synthetic data streams. We train an
adaptive random forest [19] (DTs), a SAM-kNN classifier
[27] (IBL), and a single-layer perceptron with SGD [34]
(LM). During training, we artificially induce a rapid gradual
concept drift by switching the data generating distribution
of the data streams. Then, the incremental models need to
adapt to this concept drift and change their classification
functions. We quantify the model change with the expected
discrepancy and provide further insights using PFI.

Model Parameters. For the implementation, we rely on
River’s [34] default parameters. Hence, the adaptive random
forest defaults to 10 trees in the ensemble model with the
information gain as a split criterion. The IBL SAM-kNN
model considers k = 5 nearest neighbors with distance-
weighted estimations using the Euclidean distance as met-
ric. The perceptron is trained with SGD using a learning
rate of 1.

Gradual Concept Drift. To illustrate how we can explain
model changes, we expose the incremental models to a grad-
ual concept drift. In both experiments, we create two unique
data streams and overlay them for the incremental learning
task. Each observation at time t has a probability of

1 Experiments and implementation can be found at: https:// github.
com/ MMsch lk/ Agnos tic- Expla nation- of- Model- Change- based- on-
Featu re- Impor tance.

https://github.com/MMschlk/Agnostic-Explanation-of-Model-Change-based-on-Feature-Importance
https://github.com/MMschlk/Agnostic-Explanation-of-Model-Change-based-on-Feature-Importance
https://github.com/MMschlk/Agnostic-Explanation-of-Model-Change-based-on-Feature-Importance

218 KI - Künstliche Intelligenz (2022) 36:211–224

1 3

to belong to the second data stream. The position and width
of the concept drift, where the second data stream begins to
dominate, is defined by td and w respectively [34]. As both
streams follow distinct classification functions, the concept
to be learned by the incremental models switches. This con-
stitutes a real drift described in Sect. 2.3.

5.1 Experiment A: STAGGER Concepts

Our first experiment is based on the STAGGER concepts
[17, 39]. STAGGER data streams consist of three features
(shape, size, and color) describing an object. Each feature
can have only three possible values resulting in 27 unique
combinations. Simple classification functions denote what
combination of feature values constitute the STAGGER con-
cepts to be learned. We create two data streams with distinct
classification functions to induce the actual concept drift.
The first classification function returns 1 if the size feature
is small and the color feature is red:

Concept A.1:

The function for the second concept returns 1 if the size
feature is medium or large:

Concept A.2:

Compared to the first concept, the second no longer depends
on the color feature. However, the size feature is inverted,

(5)p(t) = 1∕(1 + e−4(t−td)∕w),

Class 1: ((size ∈ {small}) ∧ (color ∈ {red}))

Class 1: (size ∈ {medium, large})

as the values that were previously not describing the con-
cept now define it. An incremental model, thus, has to react
to this drastic concept drift by significantly changing its
decision surface. In theory, assuming a uniform distribu-
tion on the instance space, the magnitude of the expected
discrepancy induced by switching from Concept A.1 to Con-
cept A.2 is 0.7 . The theoretical magnitude of the change can
be calculated with the symmetric difference of the feature
combinations belonging to Concept A.1 and Concept A.2
(C1 △ C2). As both concepts are disjunctive, C1 △ C2 can
be calculated by adding the probability of a sample belong-
ing to Concept A.1 (3∕27) to the probability of a sample
belonging to Concept A.2 (18∕27) . As illustrated in Fig. 3,
we train each model on 2,000 samples in total. In the first
1,250 samples Concept A.1 is dominant, and in the last 750
samples Concept A.2 is dominant, i.e. td = 1250 in Equa-
tion (5). The width w is set to 50.

One-Hot Encoding and PFI Methodology. Each described
feature of STAGGER has 3 categories and is implemented
by default with a label encoding (0,1,2) in River [34]. To
account for the distinct categorical values, we run the learn-
ing algorithms with a one-hot encoding (resulting in 9 binary
dummy variables, 3 for each feature).

Detecting and Quantifying Model Change. As discussed
in Sect. 4, we detect model changes incrementally with
ADWIN and verify the change by estimating the expected
discrepancy. We choose � = 0.025 for ADWIN and � = 0.3
for the expected discrepancy as parameters of our method.
Furthermore, our explanation window size is set to K = 300 .
The value of � ensures that the overall false positive rate of
ADWIN is below 2.5% [6]. Additionally, the value of � is

Fig. 3 The incremental learning process of a sample adaptive random
forest classifier on the STAGGER data stream containing a concept
drift: In the initial training phase phase (colored gray) from t0 to t1
the first 300 samples are collected (D

r
). The first reference model h

r

is stored at t1 . The concept drift (red line) occurs after 1250 samples.

ADWIN detects the concept drift with a delay at t2 and the first expla-
nation phase starts. Again, the next 300 samples are collected (D

t
)

and the first explanation is created for a new updated model h
t
 at t3 .

The accuracy (classification rate) is calculated prequentially by using
every sample first for testing and then for training

219KI - Künstliche Intelligenz (2022) 36:211–224

1 3

relatively low compared to the theoretical value of 0.7 . As
illustrated in Fig. 3, we store the first reference classifier
hr ∶= ht1 after the initial training phase at t1 = 300 with the
first 300 observations stored in Dr together with the com-
puted PFI �r ∶= �t1

 . The classifier’s accuracy sharply drops
after the concept drift at k = 1250 . This change is recog-
nized by ADWIN with some delay at time step t2 . When
ADWIN detects the change, another 300 samples are start-
ing to be stored for Dt ∶= Dt3

 until time step t3 = t2 + 300 .
Finally, the updated model ht ∶= ht3 is stored after observing
all samples at time step t3 . When the expected discrepancy
exceeds the sensitivity threshold � , the PFI is calculated, and
the explanation is presented to the user.

Explaining Model Change. The direct explanation of
change between the current model ht and the most recent
model hr consists of the estimated expected discrepancy Δ̂t
and the changes of the PFI Δ�t for each feature. As dis-
cussed in Sect. 4, we calculate �t based on the stored sam-
ples in Dt . Based on this, for each explanation time step t
and feature j, the change of a model’s PFI Δ�(j)

t is calculated
through the difference of the current model’s PFI �(j)

t and the
latest reference model’s PFI �(j)

r . A resulting explanation for
the SAM-kNN classifier can be seen in Fig. 4.

Results. We evaluated our experimental setting 100 times
for each classifier. The results are summarized in Table 1.
For all three reference models, ADWIN reliably detects the
concept drift and the approximated expected discrepancy
exceeds the threshold of � = 0.3 . On average, the classifi-
ers change with a magnitude of Δ̂(ht1 , ht3) = 0.779 , which
is very close to the theoretical magnitude of 0.7 . Fig. 4
illustrates a possible explanation for the SAM-kNN model
once a substantial model change is presented at time step t.
Fig. 4 demonstrates that the classifier adapted to the drift
from Concept A.1 to Concept A.2. Whereas the latest refer-
ence model hr assigns a small but equal value to both the
size and the color feature, for the current model ht only the
size feature is important. This change is directly stated in
the changes of the PFI Δ�(size)

t and Δ�(color)
t . The size feature

becomes substantially more important, whereas the color
feature completely loses relevance. We further observe that
ADWIN in some cases detects changes, when no concept
drift is present and the model itself seems stable. These
false positives are successfully filtered by our approach, as
the estimated discrepancy in this case does not exceed the
threshold parameter � . In summary, our illustrative experi-
ments demonstrated that our approach can efficiently and
reliably identify meaningful points of model change. Fur-
thermore, the change of PFI together with the expected dis-
crepancy of the two versions of a time-dependent model give
further insights into the nature of the change and provide
convincing reasons to users monitoring the model.

In contrast to the illustrative Experiment A, the second
experiment considers a substantially more complicated
learning task.

5.2 Experiment B: Agrawal Generator

The second experiment is based on a data generator intro-
duced by Agrawal et al. in [2]. The generator creates a data
stream consisting of nine features describing credit loan
applications. Six features are numeric, one is ordinal, and
two are nominal. The target variable describes, if the credit
loan has been granted and is created based on different clas-
sification functions resulting in binary class labels. Similar
to Experiment A, we overlay two of these classification func-
tions to induce a gradual concept drift. The first classifica-
tion function is given by:

Concept B.1:

The concept depends only on two features (age and salary).
For the second classification function, the salary feature is
replaced with the ordinal elevel (education level) feature.

Concept B.2:

As illustrated in Fig. 5, we generate 20,000 samples and
place the concept drift at time step td = 13, 333 with width
w = 50 . We omit the linear perceptron due its poor perfor-
mance — the concept obviously requires a nonlinear model.

Class 1: ((age < 40) ∧ (50K ≤ salary ≤ 100K)) ∨

((40 ≤ age < 60) ∧ (75K ≤ salary ≤ 125K)) ∨

((age ≥ 60) ∧ (25K ≤ salary ≤ 75K))

Class 1: ((age < 40) ∧ (elevel ∈ {0, 1})) ∨

((40 ≤ age < 60) ∧ (elevel ∈ {1, 2, 3})) ∨

((age ≥ 60) ∧ (elevel ∈ {2, 3, 4}))

Fig. 4 The average explanation of Experiment A for the reference
SAM-kNN classifier when a model change exceeds the sensitivity
threshold

220 KI - Künstliche Intelligenz (2022) 36:211–224

1 3

Instead, we rely on the (more powerful) SAM-kNN and
adaptive random forest model. For all categorical features
we use label encoding. To account for the different ranges of
the features, we introduce an incremental standard scaling
function, that maintains a moving sample mean and sample
variance for each feature to normalize each observation. We
set the ADWIN parameter to � = 0.025 and the expected
discrepancy threshold to � = 0.4 . Our explanation window
size is set to K = 1000 and the first reference model is stored
with hr ∶= ht1 after the initial training phase at t1 = 1000.

Results. We evaluated our experimental setting 50
times for each classifier. The results are summarized in
Table 2. For both models, ADWIN reliably detects the
concept drift and the approximated expected discrepancy
exceeds the threshold. However, the overall accuracy of
both models is significantly lower compared to Experi-
ment A, accounting for the increased complexity. In Fig. 5
it can be observed that the accuracy varies over time. This
variance of the accuracy is also reflected in more frequent

ADWIN alerts. However, our estimation of the expected
discrepancy successfully filtered uninformative changes at
time points, where no concept drift was present. An expla-
nation created by our method using the adaptive random
forest model is shown in Fig. 6. From the visualization it
is apparent that the classifier has adapted to the induced
concept drift. In accordance to Concept B.1, the reference
model hr strongly relies on the salary and the age feature.
After the drift, the adapted model ht prioritizes the elevel
feature over the salary feature.

However, the commission feature is also important for the
reference model and loses its importance in ht . Furthermore,
age increased its importance from hr to ht , despite being
unchanged in the concept definitions. Lastly, several unin-
formative features appear with small yet non-zero impor-
tance values.

Discussion. While the true concepts do not contain
the feature commission, our results indicate that model hr
attributes some importance to the feature, whereas model

Table 1 Results of
Experiment A for three
reference models averaged
over 100 iterations: For each
reference model and feature the
PFIs (�

r
 , �

t
 , and Δ�

t
) are given

for the latest reference model
(h

r
) and a current model (h

t
)

after a detected change exceeds
the sensitivity threshold � = 0.3

 The accuracy is averaged over the complete training procedure with 2000 samples
(standard errors in parentheses)

Model ACC Δ(h
r
, h

t
) � Feature

Size Color Shape

IBL 0.955 (0.008) 0.775 (0.026) �
r

0.149 (0.022) 0.148 (0.020) 0.000 (0.000)
�
t

0.439 (0.032) 0.000 (0.000) 0.000 (0.000)
Δ�

t
0.290 (0.033) − 0.148 (0.020) 0.000 (0.000)

DT 0.971 (0.004) 0.775 (0.027) �
r

0.146 (0.022) 0.148 (0.018) 0.000 (0.000)
�
t

0.441 (0.033) 0.000 (0.000) 0.000 (0.000)
Δ�

t
0.295 (0.039) − 0.148 (0.018) 0.000 (0.000)

LM 0.984 (0.002) 0.776 (0.026) �
r

0.146 (0.039) 0.150 (0.039) 0.000 (0.000)
�
t

0.445 (0.029) 0.000 (0.017) 0.000 (0.000)
Δ�

t
0.299 (0.034) − 0.150 (0.017) 0.000 (0.000)

Fig. 5 The learning process of a sample adaptive random forest clas-
sifier on the Agrawal data stream with concept drift: The reference
phase where D

r
 and h

r
 is stored includes the first 1000 samples. After

the concept drift at t
d
= 13, 333 , the first explanation phase begins

when ADWIN detects a change. The phase contains the samples D
t

between t2 and t3

221KI - Künstliche Intelligenz (2022) 36:211–224

1 3

ht did not. This can be explained by the direct dependence
of the commission feature on the salary feature. In fact,
in the Agrawal dataset, commission is partly composed by
the salary feature. It is zero if salary is below 75K and
else uniformly distributed from 10k to 75k. Since salary is
used in the Concept B.1, the model hr has used commission
together with salary to build its classification function. This
direct dependency also affects the importance of the feature
salary, as the missingness of salary may be compensated
by the presence of commission. In general, PFI does not
account for interactions between features and therefore does
not consider the impact of both features being marginal-
ized together. This issue may be solved with other feature
importance techniques, such as SHAP [31], which averages
the contributions of features over all possible subsets of
features.

In Experiment B, the model accuracy is substantially
lower than in Experiment A. The imperfectly trained mod-
els may result in measurable PFI changes for theoretically
uninformative features (e.g., car, zipcode, hvalue, hyears,
loan in Fig. 6) that do not contribute any information to the
classification. The increase in the PFI value of age may also
be explained in this way, despite being unchanged in the
concept definition. However, we like to emphasize that a
feature’s PFI may also change due to changes in the concept
involving other variables. As seen in Table 2, the calculated
PFI values also differ among the models, which indicates
that each model has a different understanding of the learned
concept. As a consequence, any changes in the PFI should be
analyzed carefully and taken with a grain of salt unless the
model accuracy is sufficiently high. To reduce the cognitive
burden of practitioners, their presentation may exclude small
importance values that could be caused by noise improving

Fig. 6 The average explanation of Experiment B for the reference adaptive random forest classifier when a model change exceeds the sensitivity
threshold

Table 2 Results of Experiment B for two reference models averaged over 50 iterations: For each reference model and feature the PFIs (�
r
,�

t
,and

Δ�
t
) are given for the latest reference model (h

r
) and a current model (h

t
) after a detected change exceeds the sensitivity threshold � = 0.4

 The accuracy is averaged over the complete training procedure with 20,000 samples
(standard errors in parentheses, features commission (com.) and zipcode (zip.) abbreviated)

Model ACC Δ(h
r
, h

t
) � Feature

Salary com. Age elevel Car Zip. hvalue hyears Loan

IBL 0.812
(0.005)

0.500
(0.018)

�
r

0.231
(0.035)

0.142
(0.027)

0.204
(0.041)

0.077
(0.026)

0.078
(0.026)

0.070
(0.026)

0.073
(0.027)

0.075
(0.026)

0.081
(0.026)

�
t

0.076
(0.016)

0.066
(0.015)

0.338
(0.028)

0.351
(0.027)

0.080
(0.014)

0.074
(0.017)

0.073
(0.015)

0.079
(0.015)

0.080
(0.014)

Δ�
t

− 0.155
(0.037)

− 0.076
(0.030)

0.134
(0.054)

0.275
(0.039)

0.002
(0.030)

0.004
(0.032)

0.000
(0.031)

0.003
(0.030)

− 0.002
(0.032)

DT 0.868
(0.017)

0.469
(0.024)

�
r

0.256
(0.047)

0.096
(0.045)

0.167
(0.044)

0.012
(0.011)

0.013
(0.007)

0.011
(0.009)

0.014
(0.010)

0.012
(0.008)

0.012
(0.008)

�
t

0.034
(0.021)

0.024
(0.014)

0.301
(0.056)

0.316
(0.063)

0.022
(0.014)

0.028
(0.016)

0.028
(0.019)

0.021
(0.014)

0.022
(0.013)

Δ�
t

− 0.221
(0.051)

− 0.071
(0.045)

0.134
(0.068)

0.304
(0.064)

0.009
(0.015)

0.017
(0.019)

0.014
(0.023)

0.008
(0.014)

0.010
(0.015)

222 KI - Künstliche Intelligenz (2022) 36:211–224

1 3

the presentation of Fig 6. However, in presence of multi-
collinearity this approach may remove underestimated fea-
tures from the explanations emphasizing the need for further
research of suitable XAI methods beyond PFI in the context
of explaining model change with feature importances.

6 Conclusion and Further Work

We discussed a general framework for explaining model
change yielding a bridge between XAI and adaptive mod-
els in the context of incremental learning on data streams.
We proposed an efficient method to detect meaningful
model changes using well-established techniques of con-
cept drift detection and XAI. Our experimental study,
in which we illustrated our approach with a concrete
instantiation of the general framework, suggests that we
can efficiently detect and describe time-dependent model
adaptations. To validate the general applicability, further
research needs to be conducted:

– Complexity. While our experiments illustrate the notion
of explaining model change, the used synthetic data
streams and induced concept drifts constitute only lim-
ited learning scenarios. Further experiments in chal-
lenging real-world learning environments are required.

– Efficiency. While ADWIN provides an efficient way of
detecting model change, it does not directly constitute
a measure of a semantic model change. Therefore, the
expected discrepancy is currently used as a second-
ary safety measure to decrease the false positive rate
of explaining uninformative changes. The expected
discrepancy, however, can currently not be computed
incrementally. Data for the computation needs to be
collected in fixed time frames. Furthermore, while col-
lecting data, no new change can be detected. Synergies
of expected discrepancy together with ADWIN or other
incremental approaches could further increase the effi-
ciency of detecting semantic model changes.

– Sensitivity. While we introduced important hyper-
parameters to control the sensitivity of the dynamic
explanation method, we chose them in an application-
specific scenario. It remains unclear how users work-
ing with adaptive models should choose them in their
particular situations. Further cognitive science research
could therefore contribute suitable choices of sensitiv-
ity levels together with new data-driven techniques.

– Explanation. Feature importance is only one among
many other (generic) approaches to explanation, and
PFI only one among many other measure to quantify
importance. In more complex scenarios, a simple pres-
entation of the relative feature importances may not
satisfy the explanation need of practitioners. For exam-

ple, too many features may unnecessarily clutter the
explanation, thereby increasing the cognitive burden
of users. The presentation of our method may further
benefit from research in human-computer interaction
and data visualization.

In spite of the limited scope of our study and the wealth of
open questions, we have shown the importance of explaining
model change as a subfield of XAI and sketched the prom-
ising research opportunities it offers. While we presented
a model-agnostic approach, it is clear that model-specific
variants could substantially improve the efficiency and fidel-
ity of explanations. As change is ubiquitous in real-world
learning environments, adaptive models will undoubtedly
become more prevalent. We strongly believe that incremen-
tal explanation methods will significantly contribute towards
an effective and efficient understanding of model change.

Acknowledgement We gratefully acknowledge funding by the
Deutsche Forschungsgemeinschaft (DFG, German Research Founda-
tion): TRR 318/12021-438445824.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Adadi A, Berrada M (2018) Peeking inside the black-box: a sur-
vey on explainable artificial intelligence (XAI). IEEE Access
6:52138–52160. https:// doi. org/ 10. 1109/ ACCESS. 2018. 28700 52

 2. Agrawal R, Imielinski T, Swami A (1993) Database mining: a per-
formance perspective. IEEE Trans Knowl Data Eng 5(6):914–925.
https:// doi. org/ 10. 1109/ 69. 250074

 3. Arrieta AB, Díaz-Rodríguez N, Del Ser J, Bennetot A, Tabik S,
Barbado A, Garcia S, Gil-Lopez S, Molina D, Benjamins R, Cha-
tila R, Herrera F (2020) Explainable artificial intelligence (XAI):
Concepts, taxonomies, opportunities and challenges toward
responsible ai. inform fusion 58(3):82–115. https:// doi. org/ 10.
1016/j. inffus. 2019. 12. 012

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/ACCESS.2018.2870052
https://doi.org/10.1109/69.250074
https://doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/10.1016/j.inffus.2019.12.012

223KI - Künstliche Intelligenz (2022) 36:211–224

1 3

 4. Atkinson R, Shiffrin R (1968) Human memory: a proposed sys-
tem and its control processes. In: Psychology of Learning and
Motivation, 2, 89–195. Academic Press. https:// doi. org/ 10. 1016/
S0079- 7421(08) 60422-3

 5. Bahri M, Bifet A, Gama J, Gomes HM, Maniu S (2021) Data
stream analysis: Foundations, major tasks and tools. Wiley Inter-
disciplin Rev Data Mining Knowl Discovery 11(3):e1405. https://
doi. org/ 10. 1002/ widm. 1405

 6. Bifet A, Gavaldà R (2007) Learning from time-changing data with
adaptive windowing. In: Proceedings of International Conference
on Data Mining (SIAM), pp. 443–448. https:// doi. org/ 10. 1137/1.
97816 11972 771. 42

 7. Bifet A, Gavaldà R (2009) Adaptive learning from evolving data
sreams. In: Proceedings of International Symposium on Intelligent
Data Analysis (IDA), pp. 249–260 . https:// doi. org/ 10. 1007/ 978-
3- 642- 03915-7_ 22

 8. Biswas R, Barz M, Sonntag D (2020) Towards explanatory
interactive image captioning using top-down and bottom-up fea-
tures, beam search and re-ranking. KI - Künstliche Intelligenz
34(4):571–584. https:// doi. org/ 10. 1007/ s13218- 020- 00679-2

 9. Boettcher M (2011) Contrast and change mining. WIREs data
mining knowl discovery 1(3):215–230, e1405. https:// doi. org/ 10.
1002/ widm. 27

 10. Bottou L (2010) Large-scale machine learning with stochastic
gradient descent. In: Proceedings of international conference on
computational statistics (COMPSTAT), pp. 177–186 . https:// doi.
org/ 10. 1007/ 978-3- 7908- 2604-3_ 16

 11. Breiman L (2001) Random Forests. Mach Learn 45(1):5–32,
e1405 https:// doi. org/ 10. 1023/A: 10109 33404 324

 12. Burkart N, Huber MF (2021) A larning. J Artif Intellig Res
70:245–317, e1405 https:// doi. org/ 10. 1613/ jair.1. 12228

 13. Covert I, Lundberg SM, Lee SI (2020) Understanding global
feature contributions with additive importance measures. In:
Proceedings of international conference on neural information
processing systems (NeurIPS), pp. 17212–17223

 14. Dasarathy BV (1991) Nearest neighbor (NN) Norms: Nn pattern
classification techniques. IEEE Computer Society Press

 15. Domingos P, Hulten G (2000) Mining high-speed data streams.
In: Proceedings of International conference on knowledge discov-
ery and data mining (KDD), pp. 71–80 . https:// doi. org/ 10. 1145/
347090. 347107

 16. Gama J, Fernandes R, Rocha R (2006) Decision trees for mining
data streams. Intellig Data Anal 10(1):23–45, e1405. https:// doi.
org/ 10. 3233/ IDA- 2006- 10103

 17. Gama J, Medas P, Castillo G, Rodrigues P (2004) Learning with
drift detection. In: Proceedings of Brazilian ligence (SBIA), pp.
286–295 . https:// doi. org/ 10. 1007/ 978-3- 540- 28645-5_ 29

 18. Gama J, Žliobaitė I, Bifet A, Pechenizkiy M, Bouchachia A
(2014) A survey on concept drift adaptation. ACM Comput Surv
46(4):1–37, e1405. https:// doi. org/ 10. 1145/ 25238 13

 19. Gomes HM, Bifet A, Read J, Barddal JP, Enembreck F, Pfharinger
B, Holmes G, Abdessalem T (2017) Adaptive random forests for
evolving data stream classification. Mach Learn 106(9):1469–
1495, e1405. https:// doi. org/ 10. 1007/ s10994- 017- 5642-8

 20. Hammer B, Hüllermeier E (2021) Interpretable machine learning:
On the problem of explaining model change. In: Proceedings of
workshop computation intelligence (CI), pp. 1–10

 21. Hastie T, Tibshirani R, Friedman JH (2009) The elements of sta-
tistical learning: Data Mining, Inference, and Prediction, 2 edn.
Springer

 22. Hinder F, Hammer B (2020) Counterfactual explanations of con-
cept drift. CoRR. arXiv: 2006. 12822

 23. Hinder F, Jakob J, Hammer B (2020) Analysis of drifting features.
CoRR. arXiv: 2012. 00499

 24. Hoeffding W (1994) Probability inequalities for sums of bounded
random variables. In: The Collected Works of Wassily Hoeffding,

pp. 409–426. Springer. https:// doi. org/ 10. 1007/ 978-1- 4612- 0865-
5_ 26

 25. Hulten G, Spencer L, Domingos P (2001) Mining time-chang-
ing data streams. In: Proceedings of International conference
on knowledge discovery and data mining (KDD), pp. 97–106 .
https:// doi. org/ 10. 1145/ 502512. 502529

 26. Linardatos P, Papastefanopoulos V, Kotsiantis S (2020) Explain-
able AI: A review of machine learning interpretability methods.
Entropy. https:// doi. org/ 10. 3390/ e2301 0018

 27. Losing V, Hammer B, Wersing H (2016) KNN classifier with
self adjusting memory for heterogeneous concept drift. In: Pro-
ceedings of international conference on data mining (ICDM), pp.
291–300 . https:// doi. org/ 10. 1109/ ICDM. 2016. 0040

 28. Losing V, Hammer B, Wersing H (2018) Incremental on-line
learning: a review and comparison of state of the art algorithms.
Neurocomputing 275:1261–1274, e1405. https:// doi. org/ 10.
1016/j. neucom. 2017. 06. 084

 29. Lu J, Liu A, Dong F, Gu F, Gama J, Zhang G (2018) Learning
under concept drift: A Review. IEEE transactions on knowledge
and data engineering pp. 2346–2363. https:// doi. org/ 10. 1109/
TKDE. 2018. 28768 57

 30. Lundberg SM, Erion G, Chen H, DeGrave A, Prutkin JM, Nair
B, Katz R, Himmelfarb J, Bansal N, Lee SI (2020) From local
explanations to global understanding with explainable AI for
Trees. Nat Mach Intellig 2(1):56–67, e1405. https:// doi. org/ 10.
1038/ s42256- 019- 0138-9

 31. Lundberg SM, Lee SI (2017) A unified approach to interpreting
model predictions. In: Proceedings of international conference on
neural information processing systems (NeurIPS), pp. 4768–4777

 32. Manapragada C, Webb GI, Salehi M (2018) Extremely fast deci-
sion tree. In: Proceedings of international conference on knowl-
edge discovery and data mining (KDD), pp. 1953–1962 . https://
doi. org/ 10. 1145/ 32198 19. 32200 05

 33. Molnar C (2019) Interpretable machine learning: A Guide for
Making Black Box Models Explainable. Lulu.com

 34. Montiel J, Halford M, Mastelini SM, Bolmier G, Sourty R, Vaysse
R, Zouitine A, Gomes HM, Read J, Abdessalem T, Bifet A (2020)
River: machine learning for streaming data in Python. CoRR.
arXiv: 2012. 04740

 35. Montiel J, Read J, Bifet A, Abdessalem T (2018) Scikit-Multi-
flow: A multi-output streaming framework. J Mach Learn Res
19(72):1–5

 36. Ribeiro MT, Singh S, Guestrin C (2016) Why Should I Trust You?
Explaining the Predictions of Any Classifier. In: Proceedings of
international conference on knowledge discovery and data mining
(KDD), pp. 1135–1144 . https:// doi. org/ 10. 1145/ 29396 72. 29397
78

 37. Richtárik P, Takáč M (2016) Parallel coordinate descent methods
for big data optimization. Math Program 156(1):433–484. https://
doi. org/ 10. 1007/ s10107- 015- 0901-6

 38. Saffari A, Leistner C, Santner J, Godec M, Bischof H (2009)
On-line Random Forests. In: Proceedings of International con-
ference on computer vision workshops (ICCV Workshops), pp.
1393–1400. IEEE . https:// doi. org/ 10. 1109/ ICCVW. 2009. 54574
47

 39. Schlimmer JC, Granger RH (1986) Incremental learning from
noisy data. Mach Learn 1(3):317–354. https:// doi. org/ 10. 1007/
BF001 16895

 40. Shaker A, Hüllermeier E (2012) IBLStreams: a system for
instance-based classification and regression on data streams. Evolv
Syst 3(4):235–249. https:// doi. org/ 10. 1007/ s12530- 012- 9059-0

 41. Smyth B, McKenna E (2001) Competence models and the main-
tenance problem. Comput Intellig 17(2):235–249. https:// doi. org/
10. 1111/ 0824- 7935. 00142

 42. Teso S, Kersting K (2019) Explanatory interactive machine learn-
ing. In: Proceedings of AAAI/ACM Conference on AI, Ethics,

https://doi.org/10.1016/S0079-7421(08)60422-3
https://doi.org/10.1016/S0079-7421(08)60422-3
https://doi.org/10.1002/widm.1405
https://doi.org/10.1002/widm.1405
https://doi.org/10.1137/1.9781611972771.42
https://doi.org/10.1137/1.9781611972771.42
https://doi.org/10.1007/978-3-642-03915-7_22
https://doi.org/10.1007/978-3-642-03915-7_22
https://doi.org/10.1007/s13218-020-00679-2
https://doi.org/10.1002/widm.27
https://doi.org/10.1002/widm.27
https://doi.org/10.1007/978-3-7908-2604-3_16
https://doi.org/10.1007/978-3-7908-2604-3_16
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1613/jair.1.12228
https://doi.org/10.1145/347090.347107
https://doi.org/10.1145/347090.347107
https://doi.org/10.3233/IDA-2006-10103
https://doi.org/10.3233/IDA-2006-10103
https://doi.org/10.1007/978-3-540-28645-5_29
https://doi.org/10.1145/2523813
https://doi.org/10.1007/s10994-017-5642-8
http://arxiv.org/abs/2006.12822
http://arxiv.org/abs/2012.00499
https://doi.org/10.1007/978-1-4612-0865-5_26
https://doi.org/10.1007/978-1-4612-0865-5_26
https://doi.org/10.1145/502512.502529
https://doi.org/10.3390/e23010018
https://doi.org/10.1109/ICDM.2016.0040
https://doi.org/10.1016/j.neucom.2017.06.084
https://doi.org/10.1016/j.neucom.2017.06.084
https://doi.org/10.1109/TKDE.2018.2876857
https://doi.org/10.1109/TKDE.2018.2876857
https://doi.org/10.1038/s42256-019-0138-9
https://doi.org/10.1038/s42256-019-0138-9
https://doi.org/10.1145/3219819.3220005
https://doi.org/10.1145/3219819.3220005
http://arxiv.org/abs/2012.04740
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1007/s10107-015-0901-6
https://doi.org/10.1007/s10107-015-0901-6
https://doi.org/10.1109/ICCVW.2009.5457447
https://doi.org/10.1109/ICCVW.2009.5457447
https://doi.org/10.1007/BF00116895
https://doi.org/10.1007/BF00116895
https://doi.org/10.1007/s12530-012-9059-0
https://doi.org/10.1111/0824-7935.00142
https://doi.org/10.1111/0824-7935.00142

224 KI - Künstliche Intelligenz (2022) 36:211–224

1 3

and Society (AIES), pp. 239–245. https:// doi. org/ 10. 1145/ 33066
18. 33142 93

 43. Webb GI, Lee LK, Goethals B, Petitjean F (2018) Analyzing con-
cept drift and shift from sample data. Data Min Knowl Discov
32(5):1179–1199. https:// doi. org/ 10. 1007/ s10618- 018- 0554-1

 44. Webb GI, Lee LK, Petitjean F, Goethals B (2017) Understanding
concept drift. CoRR. arXiv: 1704. 00362

 45. Widmer G, Kubat M (1996) Learning in the presence of concept
drift and hidden contexts. Mach Learn 23(1):69–101. https:// doi.
org/ 10. 1007/ BF001 16900

 46. Xu LD, He W, Li S (2014) Internet of things in industries: a sur-
vey. IEEE Transact Indust Inform 10(4):2233–2243. https:// doi.
org/ 10. 1109/ TII. 2014. 23007 53

 47. Zhang T (2004) Solving large scale linear prediction problems
using stochastic gradient descent algorithms. In: Proceedings of
international conference on machine learning (ICML), pp. 116–
124 . https:// doi. org/ 10. 1145/ 10153 30. 10153 32

 48. Žliobaitė I, Pechenizkiy M, Gama J (2016) An overview of
concept drift applications, pp. 91–114. Springer International
Publishing.https:// doi. org/ 10. 1007/ 978-3- 319- 26989-4_4

https://doi.org/10.1145/3306618.3314293
https://doi.org/10.1145/3306618.3314293
https://doi.org/10.1007/s10618-018-0554-1
http://arxiv.org/abs/1704.00362
https://doi.org/10.1007/BF00116900
https://doi.org/10.1007/BF00116900
https://doi.org/10.1109/TII.2014.2300753
https://doi.org/10.1109/TII.2014.2300753
https://doi.org/10.1145/1015330.1015332
https://doi.org/10.1007/978-3-319-26989-4_4

	Agnostic Explanation of Model Change based on Feature Importance
	Abstract
	1 Introduction
	2 Explainability and Adaptive Models
	2.1 Explainability Based on Feature Importance
	2.2 Adaptive Models for Data Streams
	2.3 Concept Drift

	3 Explaining Model Change
	4 Agnostic Explanation of Model Change
	5 Experiments
	5.1 Experiment A: STAGGER Concepts
	5.2 Experiment B: Agrawal Generator

	6 Conclusion and Further Work
	Acknowledgement
	References

