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Abstract

The reliable identification of the “best” arm while keeping the sample complexity
as low as possible is a common task in the field of multi-armed bandits. In the
multi-dueling variant of multi-armed bandits, where feedback is provided in the
form of a winning arm among a set of k chosen ones, a reasonable notion of best
arm is the generalized Condorcet winner (GCW). The latter is an arm that has
the greatest probability of being the winner in each subset containing it. In this
paper, we derive lower bounds on the sample complexity for the task of identifying
the GCW under various assumptions. As a by-product, our lower bound results
provide new insights for the special case of dueling bandits (k = 2). We propose
the Dvoretzky–Kiefer–Wolfowitz tournament (DKWT) algorithm, which we prove
to be nearly optimal. In a numerical study, we show that DKWT empirically
outperforms current state-of-the-art algorithms, even in the special case of dueling
bandits or under a Plackett-Luce assumption on the feedback mechanism.

1 Introduction

The standard multi-armed bandit (MAB) problem describes a sequential decision scenario, in which
one of finitely many choice alternatives must be selected in each time step, resulting in the observation
of a numerical reward of stochastic nature. One important and extensively studied variant of the
MAB setting is the dueling bandits problem, where a duel consisting of two arms is chosen in each
time step and one of the duelling arms is observed as the winner [4]. Recently, the multi-dueling
bandits setting has been introduced [7, 40, 31] as a generalization with multiple practically relevant
applications, such as algorithm configuration [13] or online retrieval evaluation [36]. Instead of
pairs of arms, in this generalization a set consisting of k ≥ 2 arms can be chosen in each time
step. These arms compete against each other and determine a single winner, which is observed as
feedback by the learner. The outcomes of the (multi-)duels in the (multi-)dueling bandit scenario
are typically assumed to be of time-stationary stochastic nature in the sense that whenever arms
a1, . . . , ak compete against each other, then ai wins with some underlying (unknown) ground-truth
probability P(ai|{a1, . . . , ak}).

One often targeted learning task in the context of multi-armed bandits and its variants is the problem
of identifying the best among all arms. While for standard MABs, the canonical definition of the
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“best arm” is the arm with highest expected reward, the picture is less clear for its variants. In the
realm of dueling bandits, any arm that is likely to win (i.e., with probability > 1/2) in each duel
against another arm is called the Condorcet winner (CW). This notion dates back to the 18th century
[8] and also appears in the social choice literature [16, 17], where the data is typically assumed to be
available in the form of a list containing total rankings over all alternatives from different voters. In
practice, the Condorcet winner does not necessarily exist due to the presence of preferential cycles in
the probabilistic model in the sense that ai is likely to win against aj , aj against ak, and ak against
ai. For the theoretical analysis of the best-arm-identification problem, this issue is overcome in
the literature either by the consideration of alternative optimality concepts such as Borda winner or
Copeland winner, which are guaranteed to exist, or by simply assuming the existence of the CW.

In this paper, we focus on finding a generalized variant of the CW in the multi-dueling bandits setting
under the assumption that it exists. There have been several suggestions for generalizations of the
CW in social choice. For example, a weighted variant is introduced in [30], where the weights control
the relevance given to the ranking positions of the alternatives, while in [25] the notion of a k-winner
is defined as an alternative that (in some appropriate sense) outperforms all other arms among any k
alternatives. In contrast to our work, these papers focus on offline learning tasks and suppose full
rankings over all alternatives to be given. In this paper, we adapt the notion of generalized Condorcet
winner (GCW) as in [1], i.e., a GCW is an arm ai that outperforms each arm aj in every query set S
containing both ai and aj , in the sense that P(ai|S) ≥ P(aj |S).

Regarding the dueling bandits setting as the multi-dueling setting where the allowed multi-duels S
are exactly those with |S| = 2, the GCW is indeed a generalization of the Condorcet winner. We
analyze the sample complexity of (probabilistic) algorithms that are able to identify the GCW with
high probability under the assumption of mere existence as well as more restrictive assumptions.
We provide upper and lower bounds for this task, which depend on the desired confidence, the
total number m of alternatives, the size k of allowed query sets as well as the underlying unknown
preference probabilities P(ai|S).

We start in Section 2 with a brief literature overview on the multi-dueling bandits scenario. Section 3
introduces the basic formalism and a precise definition of the considered GCW identification problem.
It also gives a rough, simplified overview of the sample complexity bounds obtained in this paper. In
Section 4, we discuss the special case m = k, in which the GCW identification problem essentially
boils down to the task of finding the mode of a categorical distribution. We provide solutions to this
problem and prove their sample complexity to be optimal up to logarithmic factors in the worst-case
sense. Section 5 focuses on lower bounds for the general case m ≥ k, and in Section 6, we discuss
several upper bounds. In Section 7, we empirically compare the algorithms discussed before, prior
to concluding in Section 8. For the sake of convenience, detailed proofs of all theoretical results
presented in the paper are deferred to the supplemental material.

2 Related Work

Initially, the multi-dueling bandit problem was studied intensively in the case of pairs as actions of the
learner, which is also better known as dueling bandits [42]. The extension to the scenario considered
in this paper, where more general sets as pairs of arms are selectable as an action, has been the focus
of recent work. Part of these works model the feedback process by essentially tracing it back to the
dueling bandit case [7, 40, 31]. The majority of papers, however, assume latent utility values for the
arms and model the feedback process using a random utility model (RUM) [3] based on these utility
values. Thanks to the latent utility values, an ordering of the arms is obtained quite naturally, which
in turn makes it easy to define an objective such as the optimal arm or the top-k arms. Under these
assumptions, the PB-MAB problem was investigated with respect to various performance metrics
such as the regret [32, 5, 1] or the sampling complexity in an (ε, δ)-PAC setting [33, 34, 35].

In [1] a different approach is taken by generalizing the concept for the naturally optimal arm in the
dueling bandit case, namely the Condorcet winner (CW), under the term generalized Condorcet
winner (GCW). The optimal arm defined in this way coincides with the optimal arm if latent utility
values for the arms and a RUM for the feedback process are assumed. While in [1] the problem for
finding this GCW is investigated in a regret minimization scenario, we are interested in the minimum
sampling complexity. In light of this, the work by [35] is the most related to ours, although the
authors assume a PL model (a special case of a RUM).
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If we restrict the learner’s actions to pairs of arms in our more general setting, i.e., the dueling bandits
case, the GCW and the CW coincide. This special case of our problem setting has been dealt with by
[26], [20] and [29].

Finally, it remains to mention that there are a number of similar problem scenarios, namely the
Stochastic click model (SCM) [43], the dynamic assortment problem (DAS) [9] and the best-of-k-
bandits [39]. However, all these scenarios take into account other specific aspects in the modelling
such as the order of the arms in the action subset (SCM), known revenues associated with the
arms (DAS) or a so-called “no-choice option" (all three). Accordingly, these problem scenarios
are fundamentally different from our learning scenario (see also Sec. 6.6 in [4] for a more detailed
discussion). The same is true for combinatorial bandits [10], which also allow subsets of arms as
actions, but differ fundamentally in the nature of feedback (quantitative vs. qualitative feedback).

3 The GCW Identification Problem

For adequately stating our results, we introduce in the following some basic terminology and notations
used throghout this paper. For the sake of convenience, Table 1 summarizes the most frequently used
notations.

3.1 The Notion of a GCW

If not explicitly stated otherwise, we suppose throughout the paper the total number of arms m, the
query set size k ∈ {2, . . . ,m}, a desired confidence 1 − γ ∈ (0, 1) and a complexity parameter
h ∈ (0, 1) to be arbitrary but fixed. We write [m] := {1, . . . ,m} and [m]k := {S ⊆ [m] | |S| = k}.

Parameter spaces of categorical distributions. For any subset of size k, i.e., S ∈ [m]k, define
∆S := {p = (pj)j∈S ∈ [0, 1]|S| |

∑
j∈S pj = 1} as the set of all possible parameters for a

categorical random variable X ∼ Cat((pj)j∈S), i.e., P(X = j) = pj for any j ∈ S. For p ∈ ∆S ,
we write mode(p) := arg maxj∈S pj and in case |mode(p)| = 1 we denote by mode(p) — with a
slight abuse of notation — also the unique element in mode(p). Let us define for h ∈ (0, 1] the sets

∆h
S :=

{
p ∈ ∆S | ∃i ∈ S s.t. pi ≥ maxj∈S\{i} pj + h

}
,

and with this ∆0
S :=

⋃
h∈(0,1) ∆h

S . These sets are nested in the sense that ∆h
S ⊆ ∆h′

S ⇔ h ≥ h′. If
p ∈ ∆S is fixed, the value h(p) := max{h ∈ [0, 1] |p ∈ ∆h

S} is well-defined and we have p ∈ ∆h
S

iff h ≤ h(p). Obviously, the equivalence |mode(p)| = 1⇔ p ∈ ∆0
S holds for all p ∈ ∆S .

Probability models on [m]k. A family P = {P(· |S)}S∈[m]k of parameters P(· |S) ∈ ∆S ,
S ∈ [m]k, is called a probability model (short: PM) on [m]k. We write PMm

k for the set of all
probability models on [m]k and define the following subsets of PMm

k :

PMm
k (∆0) := {P = {P(· |S)}S∈[m]k

∣∣ ∀S ∈ [m]k : P(· |S) ∈ ∆0
S},

PMm
k (∆h) := {P = {P(· |S)}S∈[m]k

∣∣ ∀S ∈ [m]k : P(· |S) ∈ ∆h
S },

PMm
k (PL) := {{P(· |S)}S∈[m]k

∣∣ ∃θ ∈ (0,∞)m ∀S ∈ [m]k : P(i |S) = θi/(
∑
j∈S θj)}.

Note that PMm
k (PL) denotes the set of all probability models P consistent with a Plackett-Luce

(PL) model [27, 23]. Let h(P) := maxh∈[0,1]{P ∈ PMm
k (∆h)} = minS∈[m]k h(P(· |S)), then it

is easy to see that P ∈ PMm
k (∆h) iff h ≤ h(P).

An element i ∈ [m] is called a generalized Condorcet Winner (short: GCW) of P if

∀S ∈ [m]k with i ∈ S, ∀j ∈ S : P(i |S)−P(j |S) ≥ 0

and we write GCW(P) for the set of all GCWs of P. With this, we define the following subsets of
PMm

k related to the concept of the GCW:

PMm
k (∃GCW) := {P = {P(· |S)}S∈[m]k

∣∣GCW(P) 6= ∅},
PMm

k (∃GCW∗) := {P = {P(· |S)}S∈[m]k

∣∣ |GCW(P)| = 1},
PMm

k (∃hGCW) := {{P(· |S)}S∈[m]k

∣∣ ∃i : ∀S ∈ [m]k, j ∈ S \ {i} : P(i |S)−P(j |S) ≥ h}.
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Table 1: A list of frequently used notation

m the total number of arms
k the query set size
γ the desired error rate bound
[m] the set {1, . . . ,m}
[m]k the set of all subsets of [m] of size k
1A indicator function, which is 1 if A is a true statement and 0 otherwise; also denoted by 1{A}
S an element from [m]k

PMm
k set of all parameters {P(·|S)}S∈[m]k ⊆ [0, 1](

m
k ) with

∑
j∈S P(j|S) = 1 ∀S ∈ [m]k

PMm
k (X) the set of all P, which fulfill the condition(s) X

PMm
k (X ∧ Y ) the set PMm

k (X) ∩ PMm
k (Y)

P an element from PMm
k

GCW(P) set of all GCWs of P; if |GCW(P)| = 1 it denotes the only element in GCW(P)
∆h,∆0,PL,∃GCW,∃hGCW and ∃GCW∗, cf. Section 3.1

∆S set of all w = (wi)i∈S ∈ [0, 1]|S| with
∑
i∈[m] wi = 1; here, S is a finite set

∆h
S set of all w ∈ ∆S , for which i ∈ S exists with ∀j ∈ S \ {i} : wi ≥ wj + h

∆k,∆h
k ∆[k] resp. ∆h

[k]

p an element from ∆k or an element from ∆S for some S ∈ [m]k
mode(p) arg maxi∈[k] pi for p = (p1, . . . , pk); the term mode(P(·|S)) is defined accordingly
h(p) max{h ∈ [0, 1] |p ∈ ∆h

k} for p ∈ ∆k

h(P) max{h ∈ [0, 1] |P ∈ PMm
k (∆h)}

A an algorithm
D(A) the return value of A
TA the sample complexity of A, i.e., the number of samples observed by A before termination
A(x1, . . . , xl) An algorithm A called with the parameters x1, . . . , xl
Pm,γk (X) Problem of finding for any P ∈ PMm

k (X) with error prob. ≤ γ the GCW, cf. Def. 3.1

Clearly, it holds that PMm
k (∃GCW∗) =

⋃
h>0 PM

m
k (∃hGCW) and every probability model

P ∈ PMm
k (∃GCW) has at least one GCW, while for a probability model P ∈ PMm

k (∃GCW∗) the
GCW is unique.

(∃GCW)

(∃GCW∗)

(∃hGCW)

(PL)

(∆0)

(∆h)

The figure on the right illustrates the relationships
between the introduced subsets of PMm

k . For the
sake of convenience, we write simply (X) instead
of PMm

k (X), where

X ∈ {∃GCW,∃GCW∗,∃hGCW,∆0,∆h,PL}.
This convention will be used several times in the
course of the paper.

3.2 Problem Formulation

We are interested in algorithms A able to find the GCW of some P = {P(· |S)}S∈[m]k ∈ PMm
k ,

which is unknown and only observable via sampling from P. More precisely, we suppose that at each
time step t ∈ N, such an algorithm A is allowed to choose one query set St ∈ [m]k, for which it
then observes a sample St 3 Xt ∼ Cat(P(· |St)). At some time, A may decide to make no more
queries and output a prediction D(A) ∈ [m] for the GCW. We write TA ∈ N ∪ {∞} for the sample
complexity of A, i.e., the total number of queries made by A before termination. Note that both
D(A) and TA are random variables w.r.t. the sigma-algebra generated by the stochastic feedback
mechanism. We write PP for the probability measure corresponding to the stochastic feedback
mechanism if the unknown ground-truth PM is given by P.
Definition 3.1 (The GCW Identification Problem). Let (X) be any of the assumptions from above
with PMm

k (X) ⊆ PMm
k (∃GCW), and let γ ∈ (0, 1) be fixed. An algorithm A solves the problem

Pm,γk (X) if PP

(
D(A) ∈ GCW(P)

)
≥ 1− γ holds for any P ∈ PMm

k (X).

3.3 Overview of Results

In this paper, we provide several upper and lower sample complexity bounds for solutions to the
GCW identification problem Pm,γk (X) under different assumptions (X). We start in Section 4 with
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the discussion of the special case m = k, in which Pk,γk (X) can simply be thought of as finding the
mode of a categorical distribution on [k]. In Sections 5 and 6, we discuss lower and upper bounds for
the general case m ≥ k, respectively.

Table 2 summarizes the obtained worst-case sample complexity bounds1 of solutions to Pm,γk (X),
where the worst-case is meant w.r.t. PMm

k (X ∧ Y), for different choices of X and Y, and the
Bachmann-Landau notations Ω(·) and O(·) are to be understood w.r.t. m, k, h−1 and γ−1. In
addition, we also provide instance-wise bounds in Theorems 5.2 and E.1.

Table 2: Sample complexity bounds of solutions to Pm,γk (X)

(X) (Y) Type Asymptotic bounds References

(PL) (∃hGCW) in exp. Ω( m
h2k

( 1
k + h) ln 1

γ ) Thm. 5.1
(∆h ∧ ∃GCW) (∆h) in exp. Ω( m

h2k
ln 1
γ ) Thm. 5.2

(PL ∧ ∃GCW∗) (∃hGCW) w.h.p. O( m
h2k

( 1
k + h) ln( kγ ln 1

h )) Thm. 6.1
(∃GCW ∧∆0) (∆h) w.h.p. O( m

h2k
ln(mk )(ln ln 1

h + ln 1
γ )) Thm. 6.2

(∃hGCW ∧∆0) (∃hGCW) a.s. O( m
h2k

ln( mkγ )) Thm. E.2

Due to PMm
k (∆h∧∃GCW) ( PMm

k (∃hGCW) ( PMm
k (∃GCW), Thm. 5.2 implies in particular

that any solution A to Pm,γk (∃GCW) fulfills supP∈PMm
k (∃hGCW) EP[TA] ∈ Ω( m

kh2 ln(γ−1)). As
Thm. 6.1 and Thm. 6.2 indicate that the bounds in Thm. 5.1 and Thm. 5.2 are asymptotically sharp up
to logarithmic factors, the GCW identification problem seems to be easier under the PL assumption
by a factor 1/k + h.

4 The Single Bandit Case m = k

In this section, we address the problem Pm,γk (X) for the special case k = m. For sake of convenience,
we abbreviate ∆k := ∆[k] and similarly ∆h

k := ∆h
[k] for any h ∈ [0, 1]. Due to [k]k = {[k]}, any

probability model P ∈ PMk
k is completely characterized by P(·|[k]) and the GCW of P is simply

mode(P(·|[k])). Since the latter one always exists, we have PMk
k ⊆ PMk

k (∃GCW). Note that
Pk,γk (∆0) = Pk,γk (∃GCW∗) as well as Pk,γk (∆h) = Pk,γk (∃hGCW) are fulfilled trivially – i.e.,
we do not have to distinguish between the assumptions ∆0 and ∃GCW∗ resp. ∆h and ∃hGCW
throughout this section. For the sake of convenience we will identify P = {P(·|[k])} ∈ PMk

k with
p := (p1, . . . , pk) := (P(1|[k]), . . . ,P(k|[k])) ∈ ∆k. Due to h(P) = h(p), the set PMk

k (∆h)

is identified with ∆h
k this way for any h ∈ [0, 1], and thus an algorithm A solves Pk,γk (∆h) for

h ∈ [0, 1] iff it fulfills Pp(D(A) = mode(p)) ≥ 1− γ for any p ∈ ∆h
k .

4.1 Lower Bounds

Based on Wald’s identity, the optimality of the sequential probability ratio test and a result by [14] we
are able to prove the following two results, each of which are proven in Section C. In the appendix,
we state with Prop. C.1 a more explicit but technical version of Prop. 4.1.

Proposition 4.1. For any γ0 ∈ (0, 1/2) and h0 ∈ (0, 1) there exists a constant c(h0, γ0) > 0 with
the following property: Whenever h ∈ (0, h0), γ ∈ (0, γ0) and A is a solution to Pk,γk (∆h), then

∀p ∈ ∆h
k : Ep[TA] ≥ 2c(h0, γ0)(h(p))−2 ln(γ−1) (1/k + h) .

In particular, supp∈∆h
k
Ep[TA] ≥ 4c(h0, γ0)h−2 ln(γ−1).

Proposition 4.2. Let γ ∈ (0, 1/2) be fixed and suppose A is a solution to Pk,γk (∆0). Let p ∈ ∆0
k be

arbitrary, i := mode(p) and j := arg maxj∈[k]\{i} pj . Then, the family {p(h)}h∈(0,pi−pj) ⊆ ∆0
k

defined via (p(h))i := (pi+pj+h)/2, (p(h))j := (pi+pj−h)/2 and (p(h))l := pl for l ∈ [k] \ {i, j}
fulfills p(h) ∈ ∆h

k as well as

lim suph→ 0
Ep(h)[T

A]/(h−2 ln lnh−1) ≥ (1− 2γ)(pi + pj) > 0.

1Here, “in exp.” means in expectation, “w.h.p.” means with prob. ≥ 1− γ and “a.s.” with prob. 1.
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[37] have recently proven a result similar to Proposition 4.1. In contrast to theirs, our bound provides
as additional information also the asymptotical behavior as k → ∞. Moreover, our proof is based
on the optimality of the Sequential Probability Ratio Test [41, 38] instead of a measure-changing
argument [21].

4.2 Upper Bounds and Further Prerequisites

To construct a solution A to Pk,γk (∆h), we have to decide in a sequential manner at each time t,
whether we want to make a further query St ∈ [k]k resulting in a sample Xt or to output an answer
D(A) ∈ [k]. As [k]k = {[k]}, we can only choose St = [k] in each time step t, upon which
we observe as feedback Xt ∼ Cat(p), i.e., Pp(Xt = i) = pi for any i ∈ [k]. Having observed
X1, . . . , Xt, a straightforward idea for a prediction D(A) would be to use the mode of the empirical
distribution p̂t := (p̂t1, . . . , p̂

t
k) given by p̂ti := 1

t

∑
t′≤t 1{Xt=i}. As the Dvoretzky-Kiefer-Wolfowitz

(DKW) inequality assures us that

Pp

(∣∣∣∣p̂t − p
∣∣∣∣
∞ > ε

)
≤ 4e−tε

2/2 (1)

holds for any ε > 0 (Lem. D.1), we can infer that p̂t is close to p with high confidence for large
values of t. Hence, if t is large enough, predicting the mode of p̂t would be the correct prediction for
mode(p) with high probability. In the following we show which choice of t is sufficient to assure a
confidence ≥ 1− γ.

Let us first consider the case p ∈ ∆h
k . It can be shown that

(∃i : p̃i −maxj 6=i p̃j ≥ ε and pi 6= maxj pj) ⇒ ||p̃− p||∞ ≥ (h+ ε)/2

holds for any h ∈ [0, 1], ε ∈ (−h, 1],p ∈ ∆h
k and p̃ ∈ ∆k (Lemma D.2). This result is optimal in the

sense that the term (h+ ε)/2 therein cannot be improved (Remark D.3). Choosing ε = 0 and p̃ = p̂t

shows us that ||p̂t − p||∞ > h/2 is necessary for mode(p̂t) 6= mode(p). Combining this with (1)
based on the DKW inequality, we could simply query St = [k] for T = d8 ln(4/γ)h−2e many times
and return the mode of p̂T as the decision. This (non-sequential) strategy solves Pk,γk (∆h) and
terminates after exactly d8 ln(4/γ)h−2e time steps (Proposition D.4). Note that according to Prop.
4.1, this strategy is asymptotically optimal.

Next, we intend to solve the more challenging problem Pk,γk (∆0). Note that any solution to Pk,γk (∆0)

is also a solution to Pk,γk (∆h) for any h > 0, whence Prop. 4.1 shows that Pk,γk (∆0) cannot be
solved by any non-sequential algorithm, i.e., one which decides a priori the number of samples it
observes. To construct a solution, we make use of Alg. 1, which also tackles the problem of finding
the mode of p in a non-sequential manner but is allowed to return UNSURE as an indicator that it
is not confident enough for its prediction. In other words, the algorithm is allowed to abstain from
making a decision. Since

∀i : p̃i ≤ maxj 6=i p̃j + h ⇒ ||p− p̃||∞ ≥ h.

holds for any h > 0, p ∈ ∆3h
k and p̃ ∈ ∆k (Lem. D.5), Alg. 1 can be shown to return with probability

at least 1− γ the correct mode in case p ∈ ∆3h
k is fulfilled. The constraint p ∈ ∆3h

k in the statement
above is sharp in the sense that we show in Lem. D.6 for any h ∈ (0, 1/8) that

inf
{
s > 0

∣∣∣ ∀p ∈ ∆sh
k ∀p̃ ∈ ∆k : (∀i : p̃i ≤ maxj 6=i p̃j + h ⇒ ||p− p̃||∞ ≥ h)

}
= 3.

Algorithm 1 DKW mode-identification with abstention
Input: γ ∈ (0, 1), h ∈ (0, 1), access to iid samples Xt ∼ Cat(p)

1: T ← d8 ln(4/γ)/h2e
2: Observe samples X1, . . . , XT

3: Calculate p̂T = (p̂T1 , . . . , p̂
T
k ) as p̂Ti := 1

T

∑T
t=1 1{Xt=i}, i ∈ [k]

4: Choose i∗ ∈ mode(p̂T )
5: if p̂Ti∗ > maxj 6=i∗ p̂

T
j + h then return i∗

6: else return UNSURE
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Lemma 4.3. A := Alg. 1 initialized with parameters γ, h ∈ (0, 1) fulfills TA = d8 ln(4/γ)/h2e,
∀p ∈ ∆k : Pp(D(A) ∈ [k] and pD(A) < maxj∈[k] pj) ≤ γ, (2)

∀p ∈ ∆0
k : Pp(D(A) ∈ {mode(p),UNSURE}) ≥ 1− γ, (3)

∀p ∈ ∆3h
k : Pp(D(A) = mode(p)) ≥ 1− γ. (4)

Lemma 4.3 (proven in Section D) reveals that Alg. 1 has a low failure rate (2) by appropriate choice
of γ, while in turn by an appropriate choice of h, namely h ≤ 1

3h(p), the correct decision will be
returned (4) with high probability. However, there are two problems arising: Alg. 1 can also abstain
from making a decision (3) and more importantly, the value of h(p) is unknown. As a remedy, we
could run Alg. 1 successively with appropriately decreasing choices for γ and h until a (real) decision
is returned. This approach is followed by Alg. 2 and the following proposition shows that it is indeed
a solution to Pk,γk (∆0); its proof is an adaptation of Lem. 11 in [28] and given in Section D.

Algorithm 2 DKW mode-identification – Solution to Pk,γk (∆0)

Input: γ ∈ (0, 1), sample access to Cat(p)

Initialization: Ã := Alg. 1, s← 1, ∀r ∈ N : γr := 6γ
π2r2 , hr := 2−r−1

1: feedback← UNSURE
2: while feedback is UNSURE do
3: feedback← Ã(γs, hs, sample access to Cat(p))
4: s← s+ 1
5: return feedback

Proposition 4.4. A := Alg. 2 initialized with the parameter γ ∈ (0, 1) solves Pk,γk (∆0) s.t.

Pp(TA <∞) = 1 and Pp

(
D(A) = mode(p) and TA ≤ t0(γ, h(p))

)
≥ 1− γ

for any p ∈ ∆0
k, where t0(γ, h) is mon. decr. w.r.t. h with t0(γ, h) ∈ O

(
h−2

(
ln lnh−1 + ln γ−1

))
.

The sample complexity of A in Proposition 4.4 improves upon the existing alternative solution for
Pk,γk (∆0) in Theorem 2 in [37] with respect to two essential aspects: First, its sample complexity
bound is constant instead of increasing in k and second, the dependence on the hardness parameter
h(p) is h(p)−2 ln lnh(p)−1 instead of h(p)−2 lnh(p)−1.

5 Lower Bounds on the General GCW Identification Problem

In this section we provide lower sample complexity bounds for solutions to the GCW identification
problem for arbitrary 2 ≤ k ≤ m. The following theorem is based on a result by [35], which we state
as Thm. B.1 in the appendix.
Theorem 5.1. Any solution A to Pm,γk (PL) fulfills

supP∈PMm
k (PL∧∃hGCW) EP

[
TA
]
∈ Ω (m(1/k+h) ln(1/γ)/(kh2)) . (5)

One of the key ingredients for proving Thm. B.1 and thus for Thm. 5.1 is a change-of-measure
argument by [21]. By means of the latter technique, we are also able to show the following instance-
based as well as worst-case lower bounds for any solution to Pm,γk (∆h ∧ ∃GCW), which is proven
in Section F.
Theorem 5.2. Suppose A solves Pm,γk (∆h ∧ ∃GCW) and let P ∈ PMm

k (∆h ∧ ∃GCW) be
arbitrary with minS∈[m]k minj∈S P(j|S) > 0. For S ∈ [m]k write mS := mode(P(·|S)) and for
any l ∈ S \ {mS} define P[l](·|S) ∈ ∆S via

P[l](l|S) := P(mS |S), P[l](mS |S) := P(l|S), ∀j ∈ S \ {l,mS} : P[l](j|S) := P(j|S).

Then,

EP

[
TA
]
≥ ln((2.4γ)−1)/(k−1)

∑
l∈[m]\{GCW(P)}

minS∈[m]k:l∈S\{mS}
1/KL(P(·|S),P[l](·|S)),

where KL(P(·|S),P[l](·|S)) denotes the Kullback-Leibler divergence between two categorical dis-
tributions X ∼ Cat(P(·|S)) and Y ∼ Cat(P[l](·|S)). Moreover, we have

supP∈PMm
k (∆h∧∃GCW) EP

[
TA
]
≥ m(1−h2) ln((2.4γ)−1)/(4kh2).
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In the special case of dueling bandits (k = 2), the instance-dependent lower bound is a novel result,2
it actually leads to a slightly larger worst-case lower bound than the worst-case bound in Theorem
5.2 for the dueling bandit case (Cor. F.4). For k ≥ 3, the worst-case bound in Theorem 5.2 is not a
consequence of the instance-wise version (Rem. F.3), instead it requires a more involved proof than
the latter. For m = k, the instance-wise lower bound underlying Prop. 4.1 is apparently larger than
that of Thm. 5.2 (Rem. F.5). The reason is that the proof for the instance-wise bound in Theorem 5.2
is tailored to the problem class PMm

k (∆h∧∃GCW) and consequently has to deal with combinatorial
issues arising in case k < m.

6 Upper Bounds on the General GCW Identification Problem

In [35] the PAC-WRAPPER algorithm is introduced, which is an algorithm able to identify the GCW
under the Plackett-Luce assumption with (up to logarithmic terms) optimal instance-wise sample
complexity, see Section B. By translating the sample complexity result of PAC-WRAPPER into
our setting, we obtain the following result (see Section B for its proof), which is also by Thm. 5.1
suggested to be optimal up to logarithmic factors.
Theorem 6.1. There exists a solution A to Pm,γk (PL ∧ ∃GCW∗) s.t.

infP∈PMm
k (PL∧∃hGCW) PP

(
D(A) ∈ GCW(P) and TA ≤ t′(m,h, k, γ)

)
≥ 1− γ

holds with t′(h,m, k, γ) ∈ O (m(1/k+h) ln(k/γ ln(1/h))/(kh2)).

Algorithm 3 DVORETZKY–KIEFER–WOLFOWITZ TOURNAMENT – Solution toPm,γk (∃GCW∧∆0)

Input: k,m ∈ N, γ ∈ (0, 1), sample access to P = {P(·|S)}S∈[m]k

Initialization: Ã := Alg. 2, choose S1 ∈ [m]k arbitrary, F1 ← [m], γ′ ← γ
dm/(k−1)e , s← 1

. Ss : candidates in round s, Fs : remaining elements in round s, is : output of Ã in round s
1: while s ≤ d m

k−1e − 1 do
2: is ← Ã(γ′, sample access to P(·|Ss))
3: Fs+1 ← Fs \ Ss
4: Write Fs+1 = {j1, . . . , j|Fs+1|}.
5: if |Fs+1| < k then
6: Fix distinct j|Fs+1|+1, . . . , jk−1 ∈ [m] \ Fs+1.
7: Ss+1 ← {is, j1, . . . , jk−1}
8: s← s+ 1
9: is ← Ã(γ′, sample access to P(·|Ss))

10: return is

Next, we consider the problem class Pm,γk (∃GCW ∧ ∆0), for which we propose the DVORET-
ZKY–KIEFER–WOLFOWITZ TOURNAMENT (DKWT) algorithm (see Alg. 3). DKWT is a simple
round-based procedure eliminating in each round those arms from a candidate set of possible GCWs
that have been discarded by Alg. 2 with high confidence as being the GCW. In the following theorem
we derive theoretical guarantees for DKWT, while a more sophisticated sample complexity bound is
provided in Thm. E.1.
Theorem 6.2. A := DKWT initialized with the parameter γ ∈ (0, 1) solves Pm,γk (∃GCW ∧∆0)
s.t.

PP

(
D(A) ∈ GCW(P) and TA ≤ T ′(h(P),m, k, γ)

)
≥ 1− γ

holds for all P ∈ PMm
k (∃GCW ∧∆0) with T ′(h,m, k, γ) ∈ O

(
m
kh2 ln

(
m
k

) (
ln ln 1

h + ln 1
γ

))
.

The result stated in Table 2 for (X) = (∃GCW ∧∆0) and (Y) = (∆h) follows from this by noting
that h(P) ≥ h holds for any P ∈ PMm

k (∃hGCW ∧∆h). Regarding Prop. 4.2, the additional factor

2So far, existing lower sample complexity bounds for solutions to Pm,γ2 (∆h ∧ ∃GCW) are either restricted
to worst-case scenarios [6] or to the special case where P belongs to a Thurstone model [29] or a Plackett-Luce
model [35].
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Table 3: Comparison of DKWT with PAC-WRAPPER (PW) on θ = (1, 0.8, 0.6, 0.4, 0.2)

TA Accuracy

k DKWT PW DKWT PW

3 44293 (3695.6) 1631668498 (1453661392.0) 1.0 1.0
4 32427 (2516.2) 263543687 (127401593.7) 1.0 1.0

ln lnh−1 in the upper bounds from Thm. 6.1 and Thm. 6.2 appears indispensable. Since PMm
k (PL∧

∃GCW∗) 6⊆ PMm
k (∃GCW ∧ ∆0) and PMm

k (PL ∧ ∃GCW∗) 6⊆ PMm
k (∃GCW ∧ ∆0) hold, a

solution to Pm,γk (PL∧∃GCW∗) is in general not comparable with a solution to Pm,γk (∃GCW∧∆0),
i.e., neither Thm. 6.1 nor Thm. 6.2 implies the other one.

Replacing ∃GCW ∧ ∆0 with the more restrictive assumption ∃hGCW ∧ ∆0 (as an assumption
on P) makes the GCW identification task much easier. This is similar to the case of Pk,γk (∆h)

and Pk,γk (∆0) discussed in Section 4.2. For Pm,γk (∃hGCW ∧∆0) we can modify Alg. 3 in order
to incorporate the knowledge of h as follows: choose in round s a query set Ss ⊆ Fs (filled up
with |Fs| − k further elements from [m] \ Fs if |Fs| < k) and execute Alg. 1 with parameters h

3 ,
γ

dm/(k−1)e and sample access to P(·|Ss). In case Alg. 1 returns as decision an element i ∈ Ss,
we let Fs+1 = Fs \ (Ss \ {i}), and otherwise Fs+1 = Fs. Then we proceed with the next round
s+ 1. We repeat this procedure until |Fs| = 1, and return the unique element in Fs as the prediction
for the GCW. In Sec. E we provide detailed a pseudocode for this algorithm (Alg. 5) and show
that it indeed solves Pm,γk (∃hGCW ∧∆0) with the guarantee that it terminates almost surely for
any P ∈ PMm

k (∃hGCW ∧∆0) before some time t′(m, k, h, γ) ∈ O (m ln(m/(kγ))/(kh2)) (see Thm.
E.2). A look at Thm. 5.2 reveals that this solution to Pmk (∃hGCW ∧∆0) is asymptotically optimal
up to logarithmic factors in a worst-case sense w.r.t. PMm

k (∃hGCW ∧∆0).

7 Empirical Evaluation

In the following, we present experimental results on the performance of our GCW identification
solution.3 We restrict ourselves in the main paper to DKWT, which is our solution of the most
general problem Pm,γk (∃hGCW∧∆0). Throughout all experiments, if not specified differently in the
pseudocode, every choice of an element within a specific set made by DKWT is performed uniformly
at random. All experiments were conducted on a machine with an Intel® Core™ i7-4700MQ
Processor, executing all experiments (including those in the supplemental material) with only one
CPU core in use took less than 72 hours.

At first, we compare DKWT with PAC-WRAPPER (PW), which is the solution to Pm,γk (PL) in [35]
underlying Thm. 6.1 and so far the only solution in the literature to the best of our knowledge for
identifying the GCW in multi-dueling bandits with an error probability at most γ. Table 3 shows the
results of both algorithms when started on an instance P ∈ PM5

k (PL) with underlying PL-parameter
θ = (1, 0.8, 0.6, 0.4, 0.2) and γ = 0.05, for different values of k. The observed termination time
TA, the corresponding standard error (in brackets) and the accuracy are averaged over 10 repetitions.

Both algorithms achieve the desired accuracy ≥ 95% in every case, but DKWT requires far less
samples than PW to find the GCW. Further experiments in the appendix (cf. Section G) demonstrate
the superiority of DKWT over PW also for other values of m, θ and γ, including the problem
instances considered in [35]. Note that the observed extremely large sample complexity of PW
appears to be consistent with the experimental results in [35] and is supposedly caused by multiple
runs of a costly procedure PAC-BEST-ITEM, which does not exploit the DKW inequality but is rather
based on applications of Chernoff’s bound.

In the case k = 2, the GCW identification problem coincides with the Condorcet winner (CW)
identification problem in dueling bandits. Thus, we can compare DKWT to state-of-the art solutions
for finding the CW if it exists: SELECT [26], SEEBS4 [29] and EXPLORE-THEN-VERIFY (EtV)
[20]. Formally, SELECT requires h ∈ (0, 1) as a parameter as it solves Pm,γ2 (∃GCW ∧ ∆h),

3Our implementation is provided at https://github.com/bjoernhad/GCWidentification.
4We include SEEBS even though it techniqually requires P to fulfill strong stochastic transitivity and the

stochastic triangle inequality, cf. Sec. G.2.
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Table 4: Comparison of DKWT, SEEBS and EXPLORE-THEN-VERIFY (EtV)

TA

m h DKWT SEEBS EtV

5 0.20 6010 (293.2) 7305 (432.1) 8601 (589.2)
5 0.15 8874 (460.0) 13393 (904.5) 11899 (986.9)
5 0.10 15769 (1457.1) 19802 (1543.2) 260171 (210678.1)
5 0.05 31454 (4127.4) 36855 (3533.2) 156534 (115903.1)

10 0.20 14334 (492.8) 16956 (617.9) 26115 (969.2)
10 0.15 18563 (734.5) 27527 (1126.7) 32548 (2514.6)
10 0.10 33040 (1625.1) 47330 (2138.2) 68858 (11304.5)
10 0.05 78660 (6517.2) 83877 (5842.6) 220098 (92484.9)

while DKWT, SEEBS and EtV solve the more challenging problem Pm,γ2 (∃GCW ∧ ∆0). As a
consequence, we compare here only the latter three algorithms on probability models P sampled
uniformly at random from PMm

k (∃GCW ∧ ∆h) for various values of h without providing these
algorithms with the explicit value of h. We also compare SELECT with the three considered
algorithms in Section G. Without great surprise, it turns out that SELECT has a much smaller sample
complexity due to its advantage of knowing the explicit value of h.

Table 4 reports the observed sample complexities, together with the standard errors in brackets,
obtained for γ = 0.05 and different choices of m and h, the numbers are averaged over 100
repetitions. Every algorithm achieves an accuracy of 1 in each case. DKWT clearly outperforms
SEEBS and EtV in any case, which is consistent with similar results for larger values of m in the
appendix. Overall, these results show that DKWT is also well suited for the dueling bandit case.

We complement our empirical study in Section G.3 with a comparison of DKWT with Alg. 5 showing
that the latter outperforms the former in the case where h(P) is small and P ∈ PMm,γ

k (∃h′GCW ∧
∆0) for some a priori known h′ > h(P).

8 Conclusion

We investigated the sample complexity required for identifying the generalized Condorcet winner
(GCW) in multi-dueling bandits within a fixed confidence setting. We provided lower bound
results, which as a special case yield a novel instance-wise lower sample complexity bound for
identifying the Condorcet winner in the realm of dueling bandits. We introduced DVORETZKY-
KIEFER-WOLFOWITZ TOURNAMENT (DKWT), an algorithmic solution to the GCW identification
task with asymptotically nearly optimal worst-case sample complexity. In our experiments, DKWT
outperformed competing state-of-the art algorithms, even in the special case of dueling bandits. Last
but not least, we pointed out that and to which extent incorporating a Plackett-Luce assumption
on the feedback mechanism makes the GCW identification problem asymptotically easier w.r.t. the
worst-case required sample complexity.

There are several directions in which this work could be extended. First, one could investigate the
GCW identification problem in the so-called probably approximately correct (PAC) setting and search
not for the GCW but instead for an arm that outperforms any other arm only with some margin ε > 0.
Secondly, one may generalize this problem to the identification of the GCW without assuming its
existence, where one has to check on-the-fly whether a GCW exists, i.e., a testification (test and
identify) problem as in [19] in the dueling bandit case for the Condorcet Winner. Moreover, one may
also extend our problem to the case where query sets up to size k are allowed at each time step. This
variant has already been discussed in a regret minimization scenario [32, 1] or a PAC setting [33].
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