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Abstract

Learning accurate models for monocular depth estimation requires precise depth annotation
as e.g. gathered through LiDAR scanners. Because the data acquisition with sensors of
this kind is costly and does not scale well in general, less advanced depth sources, such as
time-of-flight cameras, are often used instead. However, these sensors provide less reliable
signals, resulting in imprecise depth data for training regression models. As shown in
idealized environments, the noise produced by commonly used RGB-D sensors violates
standard statistical assumptions of regression methods, such as least squares estimation.
In this paper, we investigate whether robust regression methods, which are more tolerant
toward violations of statistical assumptions, can mitigate the effects of low-quality data. As
a viable alternative to established approaches of that kind, we propose the use of so-called
superset learning, where the original data is replaced by (less precise but more reliable)
set-valued data. To evaluate and compare the methods, we provide an extensive empirical
study on common benchmark data for monocular depth estimation. Our results clearly
show the superiority of robust variants over conventional regression.

Keywords: Robust regression, monocular depth estimation, superset learning, data im-
precisiation

1. Introduction

In many computer vision applications, such as 3D scene understanding or autonomous
driving, the estimation of depth in visual perception is of crucial importance. Often, signals
are only observed in the form of monocular images used as input to predict pixel-wise depth.
Due to its ill-posed nature, the estimation of depth based on single images is a complex
task, which has recently been tackled by machine learning methods, more specifically by
deep neural networks trained on large amounts of data samples.

Various data sets provide single images in different scenes along with depth maps gath-
ered from sensors, which are made available as supervision for training monocular depth
estimation models. As the acquisition of data with highly accurate depth sensors, e.g.,
through laser-based LiDAR systems, is costly, most high-volume metric depth data sets
were constructed based on less accurate RGB-D sensors, such as infrared (IR) or time-of-
flight (TOF) cameras. As a prominent sensor of this kind, Kinect V1 has been employed to
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Lienen Nommensen Ewerth Hüllermeier

construct the widely used NYUD-v2 data set (Silberman et al., 2012), especially for depth
in indoor scenes.

Despite their popularity and applicability, data sets constructed with such sensors incor-
porate a considerable degree of noise. As studied in idealized environments, the distortion
of commonly used sensors increases with higher spatial depth (Khoshelham and Elberink,
2012; Wasenmüller and Stricker, 2016; Ahn et al., 2019). While this can also be observed
for laser-based sensors (Rosenberger et al., 2018), the problem is especially severe for less
sophisticated IR or TOF sensors. As a prominent example, studies analyzing Kinect V1
sensors yield an exponentially increasing standard deviation for higher depth values to be
measured, while an increasing offset of the sensed value to the underlying true depth value
can be observed (Nguyen et al., 2012; Wasenmüller and Stricker, 2016). Moreover, due to
physical properties of the sensors, e.g., interference of emitted rays, the error terms for each
individual data term can not be assumed to be independent of other observed signals.

These properties are in conflict with standard statistical model assumptions of con-
ventional regression methods, such as least squares that has also been considered as an
optimization criterion in the domain of depth estimation (Carvalho et al., 2018). For in-
stance, it is often assumed to observe noise with constant variance (homoscedasticity), and
that errors are independent between samples (no autocorrelation). Provided such assump-
tions, traditional methods deliver efficient estimators with several appealing asymptotic
guarantees (Dougherty, 2011).

Obviously, these assumptions are violated for most non-synthetic depth estimation data
sets. Although several alternatives were suggested to address the aforementioned issues by
weaker model assumptions (e.g., as in (Barron, 2019; Irie et al., 2019; Ranftl et al., 2020)),
the explicit consideration of robustness in the modeling of monocular depth estimation
has received rather little attention so far. This work aims to fill this gap by providing an
overview of existing robust regression methods and investigating their effectiveness in the
context of depth estimation.

In addition to established methods for robust regression, we also propose to realize
the recent idea of “data imprecisiation” to achieve robustness in depth estimation. Here,
precise but possibly distorted (biased or noisy) data is turned into imprecise (set-valued)
but probably more correct and reliable data, and a model is then trained on the modified
data using so-called superset learning (Hüllermeier, 2014).

An exhaustive empirical evaluation demonstrates the effectiveness of robust variants
over conventional regression methods on popular depth estimation benchmarks, and espe-
cially confirms the adequacy of the superset modelling approach in cases of erroneous and
misleading training information.

2. Robust Regression

In this section, we survey related work on robust regression, specifically focusing on losses
that have been used in the domain of depth estimation.

2.1. Standard Regression Methods

In the setting of regression, one commonly assumes a stochastic dependency of the form
y = f(x) + ε, i.e., samples y ∈ Y = R of the target (output) variable are functions of the
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input (instance) x ∈ X afflicted with (additive) random errors ε ∈ R. In the context of
depth estimation, instances x could be descriptions of the pixels of an image, and outputs
y the corresponding depth values. Given training data in the form of a set of input/output
pairs (xi, yi), i = 1, . . . , n, the task is to learn a function f̂ : X → Y that allows for predicting
the target value for any query instance given as an input. Typically, this is accomplished
by finding a function that minimizes a certain loss L : Y ×Y → R on the training data, i.e.,
that minimizes the training error

∑n
i=1 L(yi, f̂(xi)) (or a regularized version of this error).

If such assumptions are violated in practice, and outcomes are observed with a high
degree of noise, one may want to weaken the assumptions, leading to more robust estimators.
Long-standing research has been conducted on achieving robustness in classical statistics,
leading to several approaches that improve estimation performance on data that does not
comply with strong model assumptions. For instance, generalized versions of least squares
regression have been suggested to cope with heteroscedasticity (Kariya and Kurata, 2004),
e.g., by weighting the residuals according to the inverse of the variance of the error. Likewise,
alternative loss functions, for example the absolute (L1) instead of the squared (L2) error,
have been considered to alleviate sensitivity to outliers. Often, however, the minimization
of such losses comes with other issues of practical relevance, such as unstable or ambiguous
solutions (Dodge, 1987).

A famous class of extremum estimation methods are the so-called M-estimators (Huber,
1981), which generalize the idea of maximum likelihood estimation by providing an interface
to inject more robust cost functions as optimization criterion. As one of such functions,
Huber (Huber, 1981) introduced a robust loss that combines the squared and the absolute
loss to diminish the sensitivity to outliers.

2.2. Robustness in Depth Estimation

In the domain of (supervised) monocular depth estimation, a plethora of different loss func-
tions has been suggested to induce regression models, ranging from L1- (Ma and Karaman,
2018; Ranftl et al., 2020) and L2-based (Carvalho et al., 2018; Ranftl et al., 2020) losses to
model-specific measures (Kendall and Gal, 2017; Wu et al., 2019; Bhat et al., 2021). Also,
several loss augmentations have been proposed, e.g., to consider smoothness in the predic-
tion (Li and Snavely, 2018) or to treat targets in a different representation (Fu et al., 2018;
Li and Snavely, 2018). Although ablation studies often compare loss functions and their
effects (e.g., as in (Carvalho et al., 2018; Ranftl et al., 2020)), to the best of our knowledge,
an explicit investigation of the robustness of losses in the context of depth estimation is still
missing.

As one of the earlier approaches to achieve robustness, the previously mentioned Huber-
loss has been applied in the domain of depth estimation, although in a reversed form (Laina
et al., 2016; Carvalho et al., 2018). Its original (robust) form as used for depth estimation
is given by

LHuber(y, ŷ) :=

{
(y−ŷ)2+c2

2c if |y − ŷ| ≤ c
|y − ŷ| otherwise

, (1)

where y is the observed value, ŷ the model prediction, and the parameter c is typically
defined as 20% of the maximum residual in each batch calculation. The Huber loss inherits
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Figure 1: Variants of the Huber loss as used in the domain of monocular depth estimation.
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Figure 2: Special cases of LBarron as presented in (Barron, 2019).

the advantage of L1 to deemphasize the influence of outliers while overcoming the non-
differentiability of this loss at zero. As the more popular method in the depth estimation
domain, let us denote the BerHu loss as the reversed version of LHuber by LBerHu.

The loss formulation has also been adopted by smoothening the L1 part for further
robustness, leading to the so-called Ruber loss (Irie et al., 2019), which is defined as

LRuber(y, ŷ) :=

{
|y − ŷ| if |y − ŷ| ≤ c√

2c|y − ŷ| − c2 otherwise
. (2)

In their work, the authors show improved robustness, along with the optimization of the
parameter c in a data-driven manner. Fig. 1 illustrates the Huber-like losses as used within
the domain of depth estimation.

As one loss coming from a related field, namely flow prediction, the so-called “generalized
Charbonnier” loss (Sun et al., 2010) with a smoothed L1 loss term as special case showed
promising robustness properties for the problem of depth estimation (Chen and Koltun,
2014). Closely related to this, Barron (2019) suggests a more expressive robust loss variant,
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which even extends the Charbonnier loss. It is given by

LBarron(y, ŷ) :=
|α− 2|
α

((
((y − ŷ)/c)2

|α− 2| + 1

)α/2
− 1

)
, (3)

where α ∈ R and c ∈ R+ are hyperparameters to control the robustness and scale respec-
tively. Special cases of the loss are depicted in Fig. 2. Interestingly, this loss delivers the
generalized Charbonnier loss, as well as L2 and a smoothed version of L1 as special cases.

Current state-of-the-art methods often employ a scale-invariant version of the L2 loss
in log-space (Eigen et al., 2014), which, for a set of n observations y1, . . . , yn, is given by

LSIError(y, ŷ) :=
1

n

n∑
i=1

g2i −
λ

n2

(
n∑
i=1

gi

)2

, (4)

where gi is the residual of the ith instance in log space, i.e., gi = log yi− log y∗i and λ ∈ [0, 1]
is a hyperparameter. This variant has further been augmented by an additional scaling
parameter α (Lee et al., 2019; Bhat et al., 2021). We refer to the scaled variant of this
loss as LScaledSIError. Although not specifically designed to cope with outliers, its depth
interpretation in log space diminishes the severity of heteroscedasticity in least squares
optimization, and it has been shown to yield state-of-the-art generalization performance
(Bhat et al., 2021).

As another robust loss formulation, this time applied in the disparity space, Ranftl et al.
(2020) propose a loss variant that trims an L1 loss by disregarding the 20% largest residuals
in each image, which we refer to as Ltrim. This is in contrast to M-estimators as the weighted
least squares method, where residuals with a high variance are down-weighted.

3. Superset Learning

As an alternative to cope with low-quality data, we advocate the idea of “data imprecisia-
tion”, which in turn is grounded in the framework of superset learning. In the following, we
give a brief introduction to superset learning in general, followed by two concrete proposals
for robust depth estimation.

3.1. Background on Superset Learning

Recall that, in learning a depth estimator given images with their corresponding depth
maps, one typically considers pixels as individual training instances attached with single
values from a target space Y, in the case of depth regression usually with Y = R+. Given
this ground truth data, the task is to learn a model (hypothesis) predicting values ŷ ∈ Y
that fit the training data as much as possible (but not too much to avoid overfitting). To
measure the optimality of the prediction, losses of the form L : Y × Y → R are employed,
like those presented before.

In superset learning, we consider the case where data is not necessarily observed pre-
cisely. Instead of precise outcomes y ∈ Y provided as supervision, we only assume that
subsets Y ⊆ Y of the output space are given as training information. Thus, a single ob-
servation is of the form (x, Y ) ∈ X × 2Y . The set-valued data is supposed to cover the
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underlying precise but unobserved data in the sense that y ∈ Y (hence the name “superset
learning”).1

Provided data of that kind, Hüllermeier (2014) proposed an approach to superset learn-
ing motivated by the idea of performing model identification and “data disambiguation” at
the same time. To this end, the underlying loss function L : Y2 → R+ is extended to the
optimistic superset loss (OSL) L∗ : 2Y × Y −→ R+ defined by the map

(Y, ŷ) 7→ min
{
L(y, ŷ) | y ∈ Y

}
. (5)

More recently, the same loss has also been introduced under the notion of infimum loss (Ca-
bannes et al., 2020). Superset learning then seeks to perform generalized risk minimization,
i.e., to minimize the OLS loss (or a regularized version thereof) instead of the original loss
L on the training data.

3.2. From Set-valued to Fuzzy Data

The OSL (5) can be generalized further to the case where data is characterized in terms
of fuzzy sets (Klir and Folger, 1988). The latter generalize conventional sets in the sense
of allowing gradual membership of elements, where the degree of membership is typically
specified in terms of a real number in the unit interval. Thus, a fuzzy subset Ỹ of Y can
be identified with a membership function of the form Ỹ : Y −→ [0, 1], where Ỹ (y) = 1
indicates full membership of y, Ỹ (y) = 0 no membership, and 0 < Ỹ (y) < 1 that y belongs
to the fuzzy set to a certain degree (Klir and Folger, 1988). The fuzzy-version of the OSL
loss (which we refer to as FOSL) is obtained as a generalization of L∗, using a reduction
scheme based on a standard level-cut representation of fuzzy sets:

L∗∗ : F(Y)× Y −→ R+ ,(
Ỹ , ŷ

)
7→
∫ 1

0
L∗
(

[Ỹ ]α, ŷ
)
dα , (6)

where F(Y) denotes the set of all fuzzy subsets of Y and [Ỹ ]α ..= {y | Ỹ (y) ≥ α} is the α-cut
of Ỹ .

3.3. Data Imprecisiation

In addition to learning from genuinely imprecise data, the framework of superset learning
can also be used for learning from standard (precise) data, which — via a process of “impre-
cisiation” — is deliberately turned into imprecise data (Hüllermeier, 2014). Different effects
can be achieved in this way. In particular, data imprecisiation offers a means to control the
influence of individual observations on the overall result of the learning process: the more
imprecise an observation is made, the less it will influence the model induced from the data
(Lienen and Hüllermeier, 2021).

Indeed, the optimistic superset loss (5), and likewise the fuzzy version (6), is a relax-
ation of the original loss L in the sense that L∗ ≤ L. More specifically, the larger the set
Y , the smaller the loss: Y ⊇ Y ′ implies L∗(Y, ŷ) ≤ L∗(Y ′, ŷ) for all ŷ ∈ Y. Thus, the loss

1. Note that the precise data y may already be corrupted with noise.
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Figure 3: ε-insensitive OSL variants for interval data.

L(y, ŷ) incurred for a prediction ŷ can be weakened by replacing the original observation
y with a (fuzzy) subset around y, and the larger the subset, the smaller the loss. There-
fore, “imprecisiating” a data point by replacing the original (precise) observation y with a
(fuzzy) set-valued outcome Y can be seen as a means for reducing the influence of possibly
noisy or unreliable data, and hence for making learning more robust. In the following, we
shall discuss two concrete approaches of that kind in the context of regression for depth
estimation.

3.4. Interval Data

As already said, the values produced by depth sensors are often quite noisy, and the as-
sumptions of a precise noise model do normally not apply. A somewhat crude but robust
alternative is to model the information about the underlying true depth in terms of a tol-
erance interval around the precise measurement y. Thus, the learning algorithm is merely
provided with the information that the sought depth is most likely an element of this inter-
val. Depending on the length of the interval, this information might be relatively weak.

More importantly, however, it is also most likely correct. Therefore, compared to more
precise but presumably wrong information, it is less likely to bias the learner in a wrong
direction. In fact, because the loss is 0 as long as the learner predicts any value inside
the interval, it is completely free to choose the value that appears most plausible (in light
of the other observations and its underlying model assumptions), without incurring any
penalty. As confirmed by empirical studies (Cabannes et al., 2020), this provides the learner
with an opportunity to disambiguate the data and increases robustness toward misleading
observations.

More specifically, we model the data in terms of ε-intervals Y = [y−ε, y+ε]. Interestingly,
we thus establish a close connection to the well-known method of support vector regression
(SVR) (Schölkopf and Smola, 2001). In fact, the OSL extension of the L1 loss obtained for
data of that kind exactly coincides with the ε-insensitive loss used in SVR. Fig. 3 depicts
this loss as well as the OSL extension of the L2 loss.

In the approach realized in this paper, all intervals are centered around the original
observations and share the same length 2ε. We consider ε as a hyperparameter that is
tuned on a validation set. Let us note, however, that intervals could in principle also be
customized for each observation individually. This way, different types of domain knowledge
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Figure 4: The FOSL variant based on L1 for a trapezoidal fuzzy superset Ỹy,ε,δ.

could be incorporated, for example that measurements in a certain region of an image are
more reliable than in another region, or that some measurement have a stronger tendency
to over- than to underestimate the true depth.

3.5. Fuzzy data

Going beyond a distinction between plausible and implausible values, as purported by an
interval, fuzzy sets allow for modeling data in a more elaborate way. As an interesting special
case, the Huber loss is reproduced as the OSL-extension of the L1 loss when replacing precise
measurements y by triangular fuzzy sets Ỹy,δ(z) = max{0, 1− |y − z|/δ}.

Even more appropriate for the case of robust depth estimation is the FOSL loss obtained
for trapezoidal fuzzy sets of the form

Ỹy,ε,δ(z) =


z−y+δ
δ−ε if y − δ ≤ z ≤ y − ε

1 if y − ε ≤ z ≤ y + ε
y+δ−z
δ−ε if y + ε ≤ z ≤ y + δ

0 otherwise

, (7)

which combine attenuation properties of the Huber-loss with the relaxation effects produced
by the ε-insensitivity of the SVR loss. More specifically, by incorporating Ỹy,ε,δ in (5) we
obtain

L∗∗
(
Ỹy,ε,δ, ŷ

)
:=


0 if ŷ ∈ [y−ε, y+ε]
(y±ε−ŷ)2
2(δ−ε) if ŷ ∈ (y±δ, y±ε)
|y ± ε−ŷ|− δ−ε

2 otherwise

, (8)

where ε, δ ∈ R+ with ε ≥ δ are hyperparameters. Similar to the interval-based loss, ε and δ
can be optimized on validation data. Fig. 4 shows the resulting loss function.

4. Evaluation

To demonstrate the effectiveness of robust methods for depth estimation, we conduct an ex-
tensive empirical evaluation on common indoor benchmark data. First, we give an overview
over the data, baselines, metrics, and implementation details, followed by the presentation
of the results.
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4.1. Experimental Settings

4.1.1. Datasets

In our studies, we consider two sources for training a depth predictor. First, we use NYUD-
v2 (Silberman et al., 2012) as a homogeneous indoor2 data set based on the Kinect V1
sensor, which has been studied broadly and for which approximations of the sensor noise
are provided (e.g., as in (Nguyen et al., 2012; Wasenmüller and Stricker, 2016)). Second, as
a data set that unifies multiple sources with individual error terms, we consider SunRGBD
(Song et al., 2015) as an additional heterogeneous source to learn from. This data set uses
four different sensors, namely Kinect V1, Kinect V2, RealSense, and Xtion (cf. (Song et al.,
2015) for more detailed descriptions).

For NYUD-v2, we use a subset of 10k preprocessed instances as also used in (Bhat et al.,
2021). For training, we rescale each input image and depth map to the size of 224×224, while
we evaluate on the Eigen split of 654 test samples using the commonly applied cropping in
the original resolution (480× 640).

To train models on SunRGBD, we use the original training and test splits as provided by
the authors of the data set. While the training set consists of 10, 355 indoor RGB-D images,
the test split comprises 2860 images. The resolutions are kept the same as for NYUD-v2.

Since both data sets involve noisy depth sensors, models reconstructing the sensor noise
observed in the training data benefit from the evaluation on the corresponding test sets
when constructed on the same base. Rather, we aim to measure the model performances
on the basis of highly accurate signals. To this end, we evaluate the induced models on the
LiDAR-based dataset iBims-1 (Koch et al., 2018) and DIODE (Vasiljevic et al., 2019).

iBims-1 makes use of a digital single-lens reflex camera attached with a high-precision
laser scanner to acquire images along with their pixel-wise depth, approximately matching
the depth value distribution of NYUD-v2. The data set consists of 100 indoor RGB-D
image of resolution 480× 640. Within our studies, we use this data set as validation set to
optimize model hyperparameters.

For the final model assessment, we use the provided indoor validation set of DIODE,
consisting of 335 high-quality RGB-D images of resolution 768 × 1024, which provides a
diverse set of indoor scenes used to measure the generalization performance of the assessed
models. To compute metrics on the test data, we upscaled all model predictions to the
original size.

4.1.2. Baselines

As baselines, we consider the loss functions discussed before. That is, we depart from L1
and L2 as the most obvious choices to train regression models. Beyond that, as used within
the domain of depth estimation, we consider the Huber-loss variants LHuber, LBerHu, and
LRuber. Moreover, LBarron and Ltrim as losses explicitly approaching robustness are also
included. As a loss used to train current SOTA models, we further evaluate models learned
with LScaledSIError.
2. Here, we focus on indoor data sets as the test data in such scenes is usually more precise compared to

outdoor scenery.
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Apart from that, in order to seek to improve conventional L2 optimization, we apply
the weighted least squares criterion, which we refer to as LWeightedL2. Here, we use an
approximation of the standard deviation of the Kinect V1 sensors as provided in (Nguyen
et al., 2012), namely σ(x) = 0.0012 + 0.0012(x− 0.4)2 for weighting.

To demonstrate the effectiveness of the superset modelling approaches, we provide re-
sults for both the interval- and fuzzy set-based modelling approach. For the former, we
investigate variants based on L1 and L2, denoted by OSLL1 and OSLL2 , respectively. For
the latter, we consider the FOSL variant on the basis of L1 as FOSLL1 .

4.1.3. Metrics

In order to measure the performance of the individual models, we present the results for
6 regression methods as commonly reported in the field of depth estimation. The error
metrics are defined for ground truth depth values y ∈ R+ and model predictions ŷ ∈ R+

for an image as follows:

• Absolute relative error (REL): 1
n

∑n
i=1

|yi−ŷi|
yi

• Average log10 error: 1
n

∑n
i=1 | log10(yi)− log10(ŷi)|

• Root mean squared error (RMS):
√

1
n

∑n
i=1(yi − ŷi)2

• Threshold accuracies δi: percentage of ŷ s.t. max
(
y
ŷ ,

ŷ
y

)
= δ < 1.25i

The final results are averaged over all test images. We provide results for more metrics
in the supplement.

4.1.4. Implementation Details

For our experiments, we use a simple U-Net architecture employing an EfficientNetB0 en-
coder pretrained on ImageNet. For the decoder part, we use a stack of repeating convo-
lutional, BatchNormalization, ReLU, and bilinear upsampling layers. In total, the model
comprises approximately 15 million parameters and is kept the same across all experiments.

To provide a fair comparison of all losses incorporating several hyperparameters, we
optimized hyperparameters for both the optimizer (Adam in our case) and the individual
losses within a random search with 20 trials. Each model is trained for 25 epochs with a
batch size of 16. As mentioned before, iBims-1 was used to calculate the validation scores.
The model providing the lowest validation score throughout the runs was considered for the
final testing. For statistical significance of the results, we conducted each experiment three
times with different seeds.

To allow for reproducing our results, a more comprehensive overview about implemen-
tation details and a detailed model description is provided in the supplement.

4.2. Homogeneous Depth Sensor: NYUD-v2

In the first experiment, we assess models trained on subsets of NYUD-v2. As discussed
before, this data set annotated by Kinect V1 depths incorporates a relatively high degree of
noise and violates classical statistical assumptions. To assess the robustness of the different
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Table 1: Averaged results and standard deviations on models trained on subsets of various
sizes of NYUD-v2 on DIODE and NYUD-v2. The best results indicated in bold
per number of instances and metric.

# Insts. Loss
DIODE NYUD-v2

REL (↓) log10 (↓) RMS (↓) δ1 (↑) δ2 (↑) δ3 (↑) REL (↓) RMS (↓) δ1 (↑)

2k

L2 0.492 ± 0.030 0.223 ± 0.001 1.839 ± 0.015 0.316 ± 0.007 0.547 ± 0.006 0.703 ± 0.007 0.375 ± 0.045 1.015 ± 0.091 0.463 ± 0.039

L1 0.463 ± 0.025 0.228 ± 0.001 1.891 ± 0.035 0.306 ± 0.005 0.534 ± 0.001 0.694 ± 0.002 0.327 ± 0.024 0.934 ± 0.043 0.512 ± 0.014

LHuber 0.433 ± 0.021 0.230 ± 0.016 1.873 ± 0.084 0.293 ± 0.031 0.542 ± 0.030 0.703 ± 0.031 0.281 ± 0.004 0.826 ± 0.005 0.554 ± 0.003

LBerHu 0.440 ± 0.016 0.225 ± 0.003 1.854 ± 0.012 0.304 ± 0.008 0.548 ± 0.009 0.713 ± 0.003 0.284 ± 0.017 0.851 ± 0.021 0.553 ± 0.019

LRuber 0.434 ± 0.008 0.232 ± 0.008 1.878 ± 0.034 0.297 ± 0.016 0.536 ± 0.022 0.700 ± 0.022 0.285 ± 0.024 0.835 ± 0.044 0.571 ± 0.021

LBarron 0.450 ± 0.010 0.224 ± 0.002 1.850 ± 0.018 0.313 ± 0.010 0.553 ± 0.005 0.719 ± 0.006 0.310 ± 0.024 0.883 ± 0.057 0.531 ± 0.038

Ltrim 0.451 ± 0.026 0.229 ± 0.006 1.878 ± 0.026 0.328 ± 0.004 0.553 ± 0.001 0.702 ± 0.008 0.362 ± 0.034 1.045 ± 0.151 0.481 ± 0.015

LScaledSIError 0.427 ± 0.001 0.225 ± 0.007 1.825 ± 0.024 0.300 ± 0.020 0.554 ± 0.019 0.721 ± 0.009 0.258 ± 0.024 0.763 ± 0.046 0.613 ± 0.031

LWeightedL2 0.486 ± 0.026 0.221 ± 0.001 1.837 ± 0.007 0.320 ± 0.007 0.551 ± 0.003 0.708 ± 0.003 0.371 ± 0.035 1.007 ± 0.068 0.465 ± 0.025

OSLL1 0.454 ± 0.028 0.216 ± 0.005 1.803 ± 0.028 0.332 ± 0.017 0.562 ± 0.014 0.712 ± 0.006 0.325 ± 0.035 0.867 ± 0.062 0.532 ± 0.031

OSLL2 0.472 ± 0.057 0.219 ± 0.007 1.815 ± 0.032 0.317 ± 0.020 0.548 ± 0.016 0.703 ± 0.012 0.361 ± 0.057 0.981 ± 0.093 0.495 ± 0.037

FOSLL1 0.448 ± 0.005 0.229 ± 0.008 1.875 ± 0.045 0.302 ± 0.018 0.535 ± 0.016 0.701 ± 0.005 0.282 ± 0.012 0.832 ± 0.025 0.561 ± 0.016

10k

L2 0.446 ± 0.007 0.227 ± 0.004 1.859 ± 0.011 0.307 ± 0.008 0.545 ± 0.006 0.706 ± 0.006 0.301 ± 0.015 0.876 ± 0.025 0.525 ± 0.003

L1 0.432 ± 0.004 0.228 ± 0.012 1.851 ± 0.052 0.308 ± 0.019 0.548 ± 0.023 0.709 ± 0.020 0.252 ± 0.019 0.741 ± 0.035 0.625 ± 0.018

LHuber 0.441 ± 0.008 0.231 ± 0.012 1.868 ± 0.041 0.313 ± 0.017 0.554 ± 0.018 0.713 ± 0.012 0.260 ± 0.004 0.754 ± 0.026 0.628 ± 0.011

LBerHu 0.431 ± 0.002 0.229 ± 0.003 1.857 ± 0.010 0.314 ± 0.005 0.554 ± 0.004 0.714 ± 0.004 0.222 ± 0.005 0.688 ± 0.012 0.672 ± 0.010

LRuber 0.427 ± 0.013 0.226 ± 0.002 1.843 ± 0.004 0.311 ± 0.005 0.553 ± 0.005 0.721 ± 0.006 0.231 ± 0.015 0.690 ± 0.024 0.664 ± 0.025

LBarron 0.458 ± 0.012 0.226 ± 0.009 1.857 ± 0.040 0.304 ± 0.020 0.545 ± 0.019 0.708 ± 0.016 0.289 ± 0.032 0.815 ± 0.060 0.569 ± 0.043

Ltrim 0.430 ± 0.011 0.234 ± 0.005 1.880 ± 0.020 0.290 ± 0.014 0.537 ± 0.015 0.701 ± 0.012 0.247 ± 0.026 0.747 ± 0.069 0.615 ± 0.043

LScaledSIError 0.411 ± 0.010 0.237 ± 0.011 1.875 ± 0.045 0.301 ± 0.027 0.546 ± 0.029 0.713 ± 0.019 0.196 ± 0.003 0.649 ± 0.018 0.702 ± 0.011

LWeightedL2 0.433 ± 0.013 0.225 ± 0.002 1.846 ± 0.016 0.314 ± 0.005 0.550 ± 0.009 0.711 ± 0.009 0.278 ± 0.016 0.811 ± 0.033 0.564 ± 0.022

OSLL1 0.417 ± 0.009 0.211 ± 0.002 1.771 ± 0.012 0.334 ± 0.011 0.579 ± 0.008 0.735 ± 0.001 0.279 ± 0.010 0.784 ± 0.017 0.618 ± 0.007

OSLL2 0.423 ± 0.007 0.208 ± 0.003 1.757 ± 0.021 0.339 ± 0.009 0.582 ± 0.006 0.736 ± 0.006 0.305 ± 0.020 0.841 ± 0.024 0.558 ± 0.010

FOSLL1 0.413 ± 0.008 0.233 ± 0.013 1.876 ± 0.058 0.331 ± 0.021 0.557 ± 0.027 0.716 ± 0.030 0.229 ± 0.021 0.718 ± 0.032 0.662 ± 0.014

losses, we perform a cross-data set generalization study: While training on the noisy NYUD-
v2 data, we measure the performance of the models on the high-quality DIODE data set
with the help of iBims-1 as validation data in the hyperparameter optimization. Thereby,
we consider varying amounts of training data being used to investigate the effect of more
instances that might provide more stable estimates. Along with that, we further report the
results on the Eigen test split for comparison. However, one notes that these test examples
are gathered in the same way as the training data and thus incorporate the same noise that
we approach to dump.

As can be seen in Table 1, the scaled SI error outperforms the other losses with regard
to the NYUD-v2 test data. However, when considering the cleaner DIODE benchmark
data, the scaled SI loss shows less robust behavior, often not even improving baselines such
as L2 itself. This demonstrates the inappropriateness to assess depth models on such noisy
benchmark data.

On the contrary, most of the more robust loss variants improve over the conventional
L2 loss, especially, when there is more training data provided. Notably, with only few
exceptions, the superset loss variants outperform the baselines L2 and L1 in almost all cases,
often even significantly. OSLL1 turns out to work reasonably well when a small number of
instances is provided, whereas OSLL2 improves over the other methods for higher numbers
of instances. Interestingly, albeit comprising it as a special case, FOSLL1 often provides
slightly inferior performance compared to OSLL1 . As the latter involves two loss-specific
hyperparameters, this is most likely because of misleading draws in the hyperparameter
optimization due to the larger hyperparameter space. While this shows the appealing
property of OSLL1 only having a single parameter to tune, spending more computational
budget could leverage the increasing expressiveness of FOSLL1 further.
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Table 2: Averaged results and standard deviations of models trained on 2k instances from
NYUD-v2 on DIODE for varying noise levels. As before, best results per noise
level and metric are indicated in bold.

Noise ε̂ Loss REL (↓) log10 (↓) RMS (↓) δ1 (↑) δ2 (↑) δ3 (↑)

0.5

L2 0.851 ± 0.071 0.258 ± 0.013 2.090 ± 0.107 0.180 ± 0.022 0.398 ± 0.036 0.622 ± 0.033

L1 0.477 ± 0.022 0.226 ± 0.003 1.859 ± 0.011 0.314 ± 0.010 0.541 ± 0.011 0.695 ± 0.011

LHuber 0.576 ± 0.079 0.221 ± 0.008 1.847 ± 0.057 0.294 ± 0.038 0.540 ± 0.036 0.698 ± 0.016

LBerHu 0.448 ± 0.003 0.220 ± 0.006 1.832 ± 0.041 0.325 ± 0.006 0.558 ± 0.005 0.716 ± 0.008

LRuber 0.440 ± 0.009 0.225 ± 0.004 1.854 ± 0.014 0.315 ± 0.014 0.544 ± 0.008 0.706 ± 0.004

LBarron 0.707 ± 0.045 0.234 ± 0.007 1.913 ± 0.050 0.233 ± 0.019 0.474 ± 0.030 0.671 ± 0.015

Ltrim 0.461 ± 0.006 0.271 ± 0.004 1.874 ± 0.012 0.273 ± 0.003 0.503 ± 0.003 0.680 ± 0.002

LScaledSIError 0.606 ± 0.147 0.471 ± 0.221 2.512 ± 0.426 0.127 ± 0.101 0.252 ± 0.193 0.370 ± 0.259

LWeightedL2 0.731 ± 0.009 0.241 ± 0.002 1.955 ± 0.013 0.225 ± 0.007 0.453 ± 0.007 0.661 ± 0.004

OSLL1 0.438 ± 0.037 0.217 ± 0.004 1.806 ± 0.025 0.323 ± 0.004 0.561 ± 0.007 0.719 ± 0.008

OSLL2 0.782 ± 0.072 0.243 ± 0.012 1.999 ± 0.083 0.201 ± 0.026 0.428 ± 0.038 0.649 ± 0.029

FOSLL1 0.425 ± 0.015 0.224 ± 0.006 1.848 ± 0.043 0.310 ± 0.014 0.551 ± 0.012 0.709 ± 0.006

1.0

L2 1.466 ± 0.216 0.344 ± 0.039 3.167 ± 0.106 0.136 ± 0.042 0.279 ± 0.079 0.457 ± 0.089

L1 0.482 ± 0.012 0.217 ± 0.002 1.814 ± 0.010 0.337 ± 0.006 0.565 ± 0.005 0.707 ± 0.006

LHuber 1.036 ± 0.039 0.282 ± 0.005 2.300 ± 0.021 0.142 ± 0.013 0.333 ± 0.017 0.566 ± 0.008

LBerHu 0.484 ± 0.029 0.216 ± 0.003 1.833 ± 0.020 0.322 ± 0.005 0.554 ± 0.006 0.712 ± 0.003

LRuber 0.453 ± 0.014 0.222 ± 0.000 1.847 ± 0.011 0.313 ± 0.010 0.554 ± 0.001 0.717 ± 0.005

LBarron 1.063 ± 0.127 0.289 ± 0.018 2.367 ± 0.157 0.135 ± 0.024 0.320 ± 0.041 0.549 ± 0.040

Ltrim 0.547 ± 0.018 0.366 ± 0.002 1.955 ± 0.008 0.213 ± 0.008 0.315 ± 0.010 0.489 ± 0.001

LScaledSIError 0.654 ± 0.066 0.460 ± 0.184 2.546 ± 0.387 0.128 ± 0.119 0.240 ± 0.204 0.341 ± 0.253

LWeightedL2 0.785 ± 0.093 0.253 ± 0.007 2.029 ± 0.066 0.203 ± 0.036 0.422 ± 0.040 0.639 ± 0.022

OSLL1 0.457 ± 0.027 0.216 ± 0.003 1.812 ± 0.033 0.327 ± 0.009 0.560 ± 0.011 0.715 ± 0.007

OSLL2 1.113 ± 0.156 0.286 ± 0.020 2.375 ± 0.178 0.168 ± 0.015 0.345 ± 0.036 0.567 ± 0.043

FOSLL1 0.449 ± 0.013 0.216 ± 0.003 1.822 ± 0.022 0.338 ± 0.013 0.562 ± 0.008 0.718 ± 0.004

Nevertheless, the improvements in robustness can only be observed with relatively small
margins. To highlight the effects of noisy data in a more exposing way, we show the results
of an additional experiment injecting artificial noise into the original training data. To
do so, we sample each observed training depth z from a normal distribution N (z, σ̂) with
σ̂(x) := 0.01x2 + ε̂, where ε̂ ∈ {0.5, 1.0} is a parameter controlling the noise level. Note that
we incorporate a heteroscedastic noise that increases with higher depth values.

The results in Table 2 demonstrate the incapability of conventional least squares opti-
mization to provide reliable estimators under high noise. Accordingly, LScaledSIError does
not lead to models learned in a robust manner either. As opposed to that, most of the con-
ventional robust methods, especially the superset losses, turn out to be appropriate choices.
Noteworthy, OSLL1 provides the best performance for ε̂ = 0.5, whereas FOSLL1 proves its
robustness capabilities for a higher noise of ε̂ = 1.0.

4.3. Heterogeneous Depth Sensors: SunRGBD

While a single sensor was used to construct NYUD-v2, one may be interested in the case
where multiple data sources are combined. In fact, this aggravates the problem of heteroge-
neous errors violating classical statistical assumptions as discussed before. In the following,
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Table 3: Averaged results and standard deviations on models trained on 2k instances and
the complete data set of SunRGBD on DIODE. The best model is indicated in
bold per number of instances and metric.

# Insts. Loss
DIODE SunRGBD

REL (↓) log10 (↓) RMS (↓) δ1 (↑) δ2 (↑) δ3 (↑) REL (↓) RMS (↓) δ1 (↑)

2k

L2 0.512 ± 0.062 0.264 ± 0.043 1.922 ± 0.061 0.292 ± 0.033 0.515 ± 0.044 0.671 ± 0.039 0.432 ± 0.026 1.135 ± 0.021 0.423 ± 0.010

L1 0.432 ± 0.013 0.222 ± 0.006 1.837 ± 0.041 0.323 ± 0.006 0.554 ± 0.010 0.717 ± 0.011 0.423 ± 0.029 1.196 ± 0.052 0.415 ± 0.021

LHuber 0.440 ± 0.016 0.218 ± 0.004 1.812 ± 0.028 0.328 ± 0.011 0.571 ± 0.011 0.726 ± 0.009 0.448 ± 0.028 1.175 ± 0.052 0.416 ± 0.019

LBerHu 0.429 ± 0.017 0.220 ± 0.010 1.810 ± 0.051 0.316 ± 0.025 0.561 ± 0.022 0.726 ± 0.019 0.445 ± 0.014 1.222 ± 0.031 0.404 ± 0.009

LRuber 0.421 ± 0.011 0.218 ± 0.006 1.796 ± 0.035 0.321 ± 0.013 0.570 ± 0.008 0.729 ± 0.010 0.449 ± 0.011 1.218 ± 0.024 0.402 ± 0.008

LBarron 0.463 ± 0.005 0.219 ± 0.005 1.823 ± 0.030 0.325 ± 0.012 0.560 ± 0.009 0.718 ± 0.011 0.480 ± 0.029 1.239 ± 0.059 0.403 ± 0.015

Ltrim 0.500 ± 0.026 0.223 ± 0.003 1.863 ± 0.055 0.334 ± 0.014 0.565 ± 0.006 0.703 ± 0.009 0.419 ± 0.044 1.150 ± 0.032 0.429 ± 0.017

LScaledSIError 0.419 ± 0.004 0.228 ± 0.004 1.836 ± 0.019 0.309 ± 0.014 0.550 ± 0.011 0.714 ± 0.009 0.446 ± 0.009 1.224 ± 0.024 0.399 ± 0.006

LWeightedL2 0.462 ± 0.018 0.223 ± 0.006 1.839 ± 0.038 0.328 ± 0.008 0.551 ± 0.008 0.708 ± 0.012 0.422 ± 0.026 1.159 ± 0.035 0.425 ± 0.013

OSLL1 0.424 ± 0.014 0.206 ± 0.003 1.730 ± 0.019 0.346 ± 0.008 0.591 ± 0.006 0.734 ± 0.008 0.468 ± 0.011 1.192 ± 0.035 0.403 ± 0.008

OSLL2 0.471 ± 0.039 0.209 ± 0.004 1.756 ± 0.022 0.327 ± 0.010 0.577 ± 0.005 0.731 ± 0.013 0.464 ± 0.033 1.194 ± 0.059 0.408 ± 0.020

FOSLL1 0.413 ± 0.009 0.219 ± 0.002 1.801 ± 0.008 0.318 ± 0.009 0.562 ± 0.078 0.728 ± 0.001 0.435 ± 0.013 1.220 ± 0.024 0.402 ± 0.009

Full

L2 0.418 ± 0.014 0.207 ± 0.003 1.733 ± 0.023 0.342 ± 0.003 0.585 ± 0.009 0.750 ± 0.011 0.470 ± 0.002 1.238 ± 0.007 0.398 ± 0.003

L1 0.408 ± 0.008 0.219 ± 0.004 1.787 ± 0.026 0.304 ± 0.010 0.574 ± 0.008 0.746 ± 0.006 0.462 ± 0.014 1.250 ± 0.015 0.394 ± 0.006

LHuber 0.394 ± 0.010 0.208 ± 0.009 1.715 ± 0.050 0.345 ± 0.030 0.604 ± 0.023 0.766 ± 0.014 0.483 ± 0.007 1.260 ± 0.021 0.388 ± 0.008

LBerHu 0.391 ± 0.008 0.210 ± 0.009 1.720 ± 0.048 0.332 ± 0.026 0.603 ± 0.016 0.767 ± 0.014 0.485 ± 0.015 1.283 ± 0.014 0.386 ± 0.002

LRuber 0.376 ± 0.003 0.203 ± 0.002 1.679 ± 0.011 0.338 ± 0.011 0.617 ± 0.009 0.788 ± 0.001 0.489 ± 0.012 1.278 ± 0.017 0.388 ± 0.002

LBarron 0.415 ± 0.009 0.208 ± 0.002 1.727 ± 0.017 0.335 ± 0.005 0.590 ± 0.002 0.762 ± 0.004 0.480 ± 0.010 1.263 ± 0.016 0.393 ± 0.003

Ltrim 0.426 ± 0.011 0.218 ± 0.009 1.803 ± 0.049 0.325 ± 0.019 0.565 ± 0.015 0.734 ± 0.013 0.483 ± 0.023 1.316 ± 0.072 0.391 ± 0.010

LScaledSIError 0.377 ± 0.006 0.204 ± 0.007 1.690 ± 0.037 0.345 ± 0.014 0.609 ± 0.011 0.768 ± 0.008 0.471 ± 0.012 1.269 ± 0.017 0.387 ± 0.005

LWeightedL2 0.418 ± 0.012 0.208 ± 0.007 1.748 ± 0.045 0.345 ± 0.013 0.581 ± 0.014 0.745 ± 0.015 0.463 ± 0.005 1.226 ± 0.011 0.401 ± 0.004

OSLL1 0.372 ± 0.019 0.187 ± 0.007 1.598 ± 0.050 0.364 ± 0.003 0.632 ± 0.011 0.796 ± 0.012 0.475 ± 0.011 1.229 ± 0.014 0.401 ± 0.006

OSLL2 0.425 ± 0.054 0.195 ± 0.006 1.659 ± 0.037 0.354 ± 0.019 0.607 ± 0.015 0.765 ± 0.020 0.480 ± 0.016 1.199 ± 0.016 0.403 ± 0.006

FOSLL1 0.381 ± 0.004 0.210 ± 0.003 1.706 ± 0.018 0.324 ± 0.024 0.599 ± 0.014 0.769 ± 0.008 0.483 ± 0.016 1.242 ± 0.018 0.392 ± 0.003

we study the performance of models trained on SunRGBD for a varying number of training
instances. In the appendix, we present further results on the test split of SunRGBD.

With less conformant error terms, the optimization with weaker model assumptions
turns out to be reasonable. Table 3 shows the results for models trained on a subset of 2k
instances and the full data set. As expected, the optimization based on L2 turns out to be
misleading, especially for a small number of instances. Here, all robust variants turn out to
work significantly better, most notably the OSL-based methods. OSLL1 delivers the best
performance with regard to the presented metrics. All superset losses improve over their
respective baselines L1 and L2.

For a larger number of training examples, this trend continues, with OSLL1 also pro-
viding the best performance for all reported metrics. Although less drastically, OSLL2 and
FOSLL1 still outperform L2 and L1 respectively, further confirming the adequacy of an
imprecisiation-based modeling. All in all, these results are in accordance with the initial
motivation: By weakening the assumptions about the given data, we can leverage more
robust loss alternatives for more accurate depth estimators.

5. Conclusion

We motivated the use of robust regression in depth estimation and revisited related loss
functions, either applied in classical regression or specifically tailored to the domain of
monocular depth estimation. Moreover, as an alternative to established approaches, we
proposed the idea of “data imprecisiation” combined with superset learning. Instead of
assuming precise but unreliable depth sensor signals as ground truth, the idea is to replace
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these targets by (fuzzy) intervals, leading to an imprecise but more reliable representation
of the ground truth.

In an extensive empirical evaluation, we could demonstrate the effectiveness of robust
losses compared to conventional approaches such as OLS. Especially in the regime of little
data with high noise, the superset learning approach turns out to achieve state-of-the-art
performance.

Motivated by these results, we plan to further elaborate on the modeling of data to
further improve robustness. In particular, going beyond a global (homogeneous) imprecisi-
ation, we plan to investigate modeling on a per-instance basis, e.g., by distinguishing the
reliability of instances based on the depth value itself or the position in the image.
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