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Abstract
The efficiency of state-of-the-art algorithms for the dueling bandits problem is essentially 
due to a clever exploitation of (stochastic) transitivity properties of pairwise comparisons: 
If one arm is likely to beat a second one, which in turn is likely to beat a third one, then the 
first is also likely to beat the third one. By now, however, there is no way to test the validity 
of corresponding assumptions, although this would be a key prerequisite to guarantee the 
meaningfulness of the results produced by an algorithm. In this paper, we investigate the 
problem of testing different forms of stochastic transitivity in an online manner. We derive 
lower bounds on the expected sample complexity of any sequential hypothesis testing algo-
rithm for various forms of stochastic transitivity, thereby providing additional motivation 
to focus on weak stochastic transitivity. To this end, we introduce an algorithmic frame-
work for the dueling bandits problem, in which the statistical validity of weak stochastic 
transitivity can be tested, either actively or passively, based on a multiple binomial hypoth-
esis test. Moreover, by exploiting a connection between weak stochastic transitivity and 
graph theory, we suggest an enhancement to further improve the efficiency of the testing 
algorithm. In the active setting, both variants achieve an expected sample complexity that 
is optimal up to a logarithmic factor.

Keywords Dueling bandits · Online learning · Pairwise preferences · Stochastic 
transitivity · Sequential testing
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1 Introduction

The setting of dueling bandits (Yue and Joachims 2009; Sui et  al. 2018; Bengs et  al. 
2021) is a variant of the standard multi-armed bandit (MAB) problem, in which the 
learner is allowed to compare pairs of choice alternatives (arms) in a sequential man-
ner. Thus, instead of repeatedly pulling an arm and observing a numerical reward, the 
learner pulls two arms and observes the winner of the corresponding duel. Like in the 
standard MAB problem, this feedback is assumed to be stochastic. A typical task of the 
learner is to find the “best” arm as quickly as possible, or, more generally, to identify a 
complete ranking of all arms. There is a variety of practically relevant applications for 
this learning scenario, such as ranking XBox gamers according to duel outcomes (Guo 
et al. 2012) or rating different objects based on pairwise preferences of users, which can 
nowadays be gathered quite conveniently by means of crowdsourcing services such as 
Amazon Mechanical Turk (Chen et al. 2013).

Relaxed assumptions of transitivity, especially different types of stochastic transitiv-
ity (Fishburn 1973), play an important role in this regard: If arm a is likely to be pre-
ferred over arm b, and b is likely to be preferred over arm c, then a is also likely to be 
preferred over c. Assumptions of that kind are important for several reasons. First, they 
assure that the learning task itself is actually well defined, for example that a naturally 
“best” arm actually exists. Second, they are on the basis of the design of efficient learn-
ing algorithms, which exploit generalized transitivity to reduce sample complexity (Yue 
and Joachims 2011; Mohajer et al. 2017; Falahatgar et al. 2018). This is comparable to 
how standard sorting algorithms avoid the comparison of all pairs of items and achieve 
an O(n log n) (instead of an O(n2) ) complexity.

Somewhat surprisingly, the problem of testing the validity of transitivity assump-
tions underlying various algorithms has not been considered so far. Needless to say, this 
would be important to guarantee the meaningfulness of the results produced by such 
algorithms. In fact, if the assumptions made by an algorithm are violated by the data-
generating process in a concrete application, then neither its prediction nor any of its 
guarantees can be trusted anymore. In this paper, we therefore propose a method for 
testing an important form of transitivity, namely weak stochastic transitivity (WST), in 
an online manner. Being the weakest type of stochastic transitivity, WST is quite natu-
ral to start with. Moreover, weak stochastic transitivity of pairwise preferences (win-
ning probabilities) is a necessary and sufficient condition for the existence of a complete 
ranking (strict total ordering) of all arms that is consistent with all pairwise preferences.

More specifically, we introduce an algorithmic framework consisting of two main 
components, namely an active sampling strategy � and a sequential test. In this way, the 
algorithmic framework covers two conceivable scenarios to online hypothesis testing:

– The passive online testing scenario, where the sampling strategy � is any dueling 
bandits algorithm based on a transitivity assumption, and the test component is (pas-
sively) monitoring the statistical validity of the transitivity assumption made by the 
dueling bandits algorithm — in other words, the learning and testing component are 
working in parallel, independently of each other.

– The active online testing scenario, in which the sampling strategy � is specifically 
constructed to support the test component, i.e., to make a test decision as quickly as 
possible.
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In this paper, we introduce the problem of testing different types of stochastic transitivity 
within a dueling bandits problem (Sect. 4), both with and without the so-called low noise 
assumption (Korba et al. 2017). We prove that the expected sample complexity for testing 
different types of stochastic transitivity stronger than WST in an online manner is infinite 
in the worst case. These results provide an additional theoretical motivation for focusing 
on WST, as it is the only type of stochastic transitivity that admits finite expected sample 
complexity for online testing, which can be inferred by an appropriate reduction to the set-
ting of pure exploration bandits with multiple correct answers introduced by Degenne and 
Koolen (2019) (Sect. 5).

We improve upon the corresponding asymptotic lower bounds on the expected sample 
complexity for testing WST from the latter reduction by providing instance-wise lower 
bounds for fixed confidence levels (Sect.  6). For the passive online testing scenario, we 
construct a test component based on multiple binomial hypothesis tests, for which we show 
consistency in terms of almost sure termination time and reliability in terms of maintained 
error bounds under mild assumptions on � . For the active online testing variant, we provide 
a sampling strategy �, such that the expected sample complexity of the latter test is optimal 
up to a logarithmic term (Sect.  7). Moreover, by exploiting a connection between WST 
and graph theory, we suggest an enhancement to further improve the efficiency of the test-
ing algorithm (Sect. 8). The superiority of this variant in the passive setting is illustrated 
by an empirical evaluation (Sect. 9). The paper starts with a brief account of related work 
(Sect. 2), followed by a refresher of the dueling bandits problem as well as different types 
of stochastic transitivity (Sect. 3). Detailed proofs of theoretical results are provided in the 
supplementary material.

2  Related work

The dueling bandits problem was studied under strong stochastic transitivity in (Yue et al. 
2012) and relaxed stochastic transitivity in (Yue and Joachims 2011), in both cases with 
the goal of regret minimization. In these works, the transitivity assumption is explicitly 
required for the theoretical guarantees. In other approaches, transitivity properties are 
assumed in a more indirect way, for example through probabilistic models of the feedback 
process. This includes the Plackett-Luce model (Luce 1959; Plackett 1975) resp. Bradley-
Terry model (Bradley and Terry 1952) considered in (Szörényi et al. 2015) resp. (Maystre 
and Grossglauser 2017), as well as the Mallows model (Mallows 1957) studied in (Busa-
Fekete et al. 2014). Mohajer et al. (2017) consider the goals of finding the best arm as well 
as the (top-k-)ranking of arms under WST, while Falahatgar et al. (2017a, 2017b, 2018) 
investigate the impact of various transitivity assumptions on these goals in an online PAC-
framework. Finally, transitivity assumptions were also analyzed in batch learning scenar-
ios, for example to estimate the underlying pairwise preference relation (Shah et al. 2016), 
or for the purpose of rank aggregation (Korba et al. 2017).

The literature on testing transitivity conditions is primarily rooted in the social sciences, 
psychology, and economics, with a special focus on experimental studies for real data. The 
only mathematical treatment we found is (Iverson and Falmagne 1985), where the authors 
provide an asymptotic likelihood-ratio test for WST. The use of Bayes factors for testing 
stochastic transitivity is proposed in (Cavagnaro and Davis-Stober 2014) . In (McNamara 
and Diwadkar 1997) and (Waite 2001), multiple binomial tests are conducted to test WST 
of preferences in different field studies. From a methodological point of view, this is closest 
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to the sequential testing approach put forward in this paper. Yet, all these works are settled 
in classical hypothesis testing, assuming all the data to be available beforehand. In contrast 
to this, the focus of this paper is on hypothesis testing in an online setting, where data 
arrives sequentially, and test decisions should be taken as quickly as possible while main-
taining a predefined level of confidence.

As already mentioned in the introduction the problem of testing stochastic transitivity 
in an online manner can be tackled by a suitable reduction to the pure exploration bandits 
with multiple correct answers introduced by Degenne and Koolen (2019), which will be 
discussed more thoroughly in Sect. 5.

3  Theoretical background

In this section, we concisely recall the main theoretical foundations needed throughout the 
paper. In the supplementary material, we provide a list of symbols used in the paper for the 
sake of convenience.

3.1  Dueling bandits

Consider a finite set of m arms identified by the index set [m] ∶= {1,… ,m} . In the setting 
of the dueling bandits problem, two distinct arms i, j ∈ [m] can be compared with each 
other at each time step t ∈ ℕ . Querying a pairwise preference, the learner is provided with 
binary feedback about the winner of the duel, which is assumed to be generated by a time-
stationary iid probabilistic process. The probability ℙ(i ≻ j) that arm i wins against arm j is 
given by some underlying (unknown) ground truth parameter qi,j ∈ [0, 1]. We suppose that 
ties are not possible. Thus (assuming w.l.o.g. qi,i =

1

2
 for every i ∈ [m] ), we can infer that 

� = (qi,j)1≤i,j≤m is a reciprocal relation on [m], i.e., � is an element of

To assimilate the information available at time t ∈ ℕ , let us write (nt)i,j for the number of 
comparisons between i and j until time t, and (wt)i,j for the number of times i has won 
against j until time t. This obviously implies (wt)i,j + (wt)j,i = (nt)i,j and (nt)i,j = (nt)j,i . 
Then, nt = ((nt)i,j)1≤i,j≤m is a symmetric integer-valued matrix with zeros on its diagonal. If 
w ∈ ℕ

m×m
0

 and n ∈ ℕ
m×m
0

 , we denote the matrix (wi,j

ni,j
)1≤i,j≤m ∈ [0, 1]m×m by w

n
 , where we 

define for convenience x
0
∶=

1

2
 for any x ∈ ℕ0 . Moreover, we write [m]2 for the set contain-

ing all subsets of size 2 of [m] and (m)2 for the set of all (i, j) ∈ [m] × [m] with i < j . A spe-
cific learning algorithm in the realm of dueling bandits can be identified by a sampling 
strategy as defined in the following.

Definition 3.1 A sampling strategy � is a family of random mappings, which, depending 
on the time t and the observations n0,w0,… , nt−1,wt−1 available before time t, determines 
the two distinct arms i(t), j(t) ∈ [m] that are to be compared at time t ∈ ℕ . Let � denote the 
set of all sampling strategies, while �∞ denotes the family of sampling strategies � that 
sample every pair {i, j} almost surely (a.s.) infinitely often, which means that (nt)i,j → ∞ 
a.s. as t → ∞.

Qm ∶=
{
Q = (qi,j)1≤i,j≤m ∈ [0, 1]m×m | qj,i = 1 − qi,j for every i, j ∈ [m]

}
.
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Note that if � ∈ � ⧵�∞ , then a sampling strategy �̂� ∈ 𝛱 that chooses the same pair as 
� in each time step with probability 1 − 1∕t , and otherwise (i.e., with probability 1/t) picks 
a pair {i, j} uniformly at random from [m]2, fulfills �̂� ∈ 𝛱∞ and

Thus, �̂� and � behave similarly in the limit. This shows that the assumption � ∈ �∞ , which 
is required for theoretical results in our framework, is rather mild.

3.2  Stochastic transitivity

Different types of stochastic transitivity have been used in the realm of dueling bandits 
problems (Bengs et al. 2021), mainly because they provide a certain degree of regularity 
of the reciprocal relations in Qm , and thereby facilitate learning. In particular, the following 
transitivities are commonly considered in the literature.

Definition 3.2 A reciprocal relation Q = (qi,j)1≤i,j≤m ∈ Qm is said to satisfy 

 (i) weak stochastic transitivity (WST) iff 

 (ii) moderate stochastic transitivity (MST) iff 

 (iii) �-relaxed stochastic transitivity (� − RST) for some � ∈ (0, 1) iff 

 (iv) strong stochastic transitivity (SST) iff 

where all previous conditions must hold for all distinct i, j, k ∈ [m].
The set consisting of all stochastic transitive reciprocal relations of a certain type is

and we write Qm(¬XST) ∶= Qm ⧵Qm(XST) . The following relationships hold between the 
different types of stochastic transitivities:

but neither Qm(𝜈 − RST) ⊆ Qm(MST) nor Qm(MST) ⊆ Qm(𝜈 − RST).

3.3  Violations of WST

To illustrate the issues that may arise in case of a violation of the WST assumption, and high-
light the importance of testing such assumptions, consider algorithms that are based on the 
idea of (noisy) sorting (Szörényi et  al. 2015; Mohajer et  al. 2017). Roughly speaking, the 

ℙ
(
𝜋(t, (nt� ,wt� )0≤t�≤t−1) ≠ �̂�(t, (nt� ,wt� )0≤t�≤t−1

)
≤

1

t
→ 0 as t → ∞ .

(
qi,j ≥ 1∕2 ∧ qj,k ≥ 1∕2

)
⇒ qi,k ≥ 1∕2 ,

(
qi,j ≥ 1∕2 ∧ qj,k ≥ 1∕2

)
⇒ qi,k ≥ min(qi,j, qj,k) ,

(
qi,j ≥ 1∕2 ∧ qj,k ≥ 1∕2

)
⇒ qi,k ≥ �max(qi,j, qj,k) + (1 − �)∕2 ,

(
qi,j ≥ 1∕2 ∧ qj,k ≥ 1∕2

)
⇒ qi,k ≥ max(qi,j, qj,k) ,

Qm(XST) ∶= {� ∈ Qm |� is XST}, XST ∈ {WST,MST, � − RST , SST},

Qm(SST) ⊊ Qm(MST) ⊊ Qm(WST), Qm(SST) ⊊ Qm(𝜈 − RST) ⊊ Qm(WST) ,
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active sampling strategies underlying such algorithms mimic the behavior of sorting algo-
rithms, such as merge sort or quicksort — with the main difference that, due to the assumed 
stochasticity, deciding the order between two arms may require repeated comparisons.

Obviously, weak stochastic transitivity is the least assumption required by such algorithms. 
On the other side, it is easy to see that a sorting-based algorithm will always return a complete 
ranking (with high confidence), regardless of whether the underlying relation contains prefer-
ential cycles or not. Yet, this ranking will strongly depend on the order in which the arms are 
compared, and hence be more or less random and therefore meaningless.

4  Online transitivity testing

We focus on the following testing problem in the context of an underlying dueling bandits 
problem:

where XST ∈ {WST,MST, � − RST , SST}. This test shall be conducted for different types 
of transitivity in an online manner.

Thus, it is natural to consider sequential hypothesis tests, in which a test decision can be 
provided at any time during the data generating process. The particular choice of the null 
hypothesis is motivated by the passive scenario, in which a learning algorithm assumes XST 
to be fulfilled and the test shall detect a possible violation thereof. As we focus on tests with 
guarantees on both, its type I and the type II error, it is possible to swap �0 and �1 , and still 
obtain qualitatively the same theoretical results as below.

In the course of the paper, we focus on algorithms A for the testing problem, which might 
be probabilistic and interact with the underlying dueling bandits environment, as stipulated by 
the definition of a sampling strategy � (Definition 3.1). In case an algorithm A terminates, it 
returns a decision denoted by �(A) ∈ {XST,¬XST} with the semantic �(A) = XST resp. 
�(A) = ¬XST indicate that A predicts that XST holds resp. is violated. Moreover, we denote 
by TA the sample complexity of an algorithm A , i.e., the number of pairwise comparisons A 
has made before termination.

For our theoretical analysis of the testing problem, we will consider the following set of 
relations:

where h ∈ [0, 1∕2) . In case h > 0 , the relations in Qh
m
 are said to satisfy the low noise 

assumption (Korba et  al. 2017). Here, the parameter h determines to some extent 
the complexity of the testing problem: For instance, the larger h, the easier it becomes 
to determine the sign of qi,j − 1∕2, which in turn facilitates checking WST . For 
XST ∈ {WST,MST, SST, � − RST} and any h ∈ [0, 1∕2) , we define

Moreover, we may regard Qm as a subset of ℝm(m−1)∕2 and, in this way, equip it with the 
standard Euclidean topology of ℝm(m−1)∕2 . Therefore, for a subset Q′

m
⊆ Qm , we use the 

standard notation �Q′
m
 for the boundary of Q′

m
 as a subset of this topological space Qm . The 

notion of a solution to the XST-testing problem is stated in the following.

(1)�0 ∶ � satisfies XST �1 ∶ � does not satisfy XST,

Qh
m
∶=

{
� = (qi,j)1≤i,j≤m ∈ Qm | |qi,j − 1∕2| > h for all distinct i, j ∈ [m]

}
,

Qh
m
(XST) ∶= Qh

m
∩Qm(XST) and Qh

m
(¬XST) ∶= Qh

m
∩Qm(¬XST) .
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Definition 4.1 For given h ∈ [0, 1∕2) and error probabilities �, � ∈ (0, 1), we say that 
an algorithm1 A solves the XST-testing problem on Qh

m
 for � and � (in short: A solves 

P
m,h,�,�

XST
 ) if TA is almost surely finite on any instance � ∈ Q0

m
 and the following holds:

Interestingly, as the following theorem reveals, the testing problem (1) for a stochastic 
type of transitivity stronger than WST turns out be too difficult. Hence, we will focus on 
the case XST = WST in the rest of the paper.

Theorem 4.2 Let h, �, � ∈ (0, 1∕2) , m ∈ ℕ≥3 and XST ∈ {MST, SST, � − RST} be fixed. If 
an algorithm A solves Pm,h,�,�

XST
 , then �Q[T

A] = ∞ for any � ∈ Qh
m
(XST) ∩ �Qh

m
(¬XST) ≠ � . 

In particular, we have supQ∈Qh
m
�Q[T

A] = ∞.

To prove this theorem, we show that any solution A to Pm,h,�,�

XST
 may be used to test, for 

some p0 ∈ [0, 1] , any p1 > p0 , and with an error probability of at most max{�, �} whether 
a coin C ∼ Ber(p) has bias p = p0 or p = p1 . But if p1 converges to p0 , the number of coin 
flips necessary to maintain the error probability tends to infinity in expectation. A detailed 
proof of the theorem is provided in Section B in the supplement.

5  Reduction to Pure Exploration Bandits with Multiple Correct 
Answers

The testing problem at hand may be reduced to the Pure Exploration Bandits scenario with 
multiple correct answers as presented by Degenne and Koolen (2019), the details of which 
can be found in Section F of the supplement. This approach leads to the following results: 
If A(�) solves Pm,h,� ,�

WST
 , then for some (known) constant Dh

m
(�) > 0,

and there exists a solution A(�) to Pm,h,� ,�

WST
 with

If � ∈ Qm(X) (for X ∈ {WST,¬WST} ), the complexity term Dh
m
(�) is given as

where �(m)2
 is the set of all � = (vi,j)1≤i<j≤m with mini<j vi,j ≥ 0 and 

∑
i<j vi,j = 1 , and 

dKL(p, q) = p ln(p∕q) + (1 − p) ln((1 − p)∕(1 − q)) is the KL-divergence between two 

(2)
infQ∈Qh

m
(XST) ℙQ(�(A) = XST) ≥ 1 − �

and infQ∈Qh
m
(¬XST) ℙQ(�(A) = ¬XST) ≥ 1 − �.

(3)lim inf
�→ 0

��[T
A(�)]

ln(�−1)
≥

1

Dh
m
(�)

,

(4)lim
�→ 0

��[T
A(�)]

ln(�−1)
≤

1

Dh
m
(�)

.

sup�∈�(m)2
inf��∈Qh

m
(¬X)

∑
(i,j)∈(m)2

vi,jdKL(qi,j, q
�
i,j
) ,

1 Possibly probabilistic
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Bernoulli distributions with success probability p resp. q. We prove in the supplement2 (cf. 
Lemma F.7) that

and

hold for all h ∈ (0, 1∕2) . This indicates that the case h = 0 is more complex than the case 
h > 0 and shows that any optimal solution A(�) to Pm,h,� ,�

WST
 or Pm,0,� ,�

WST
 fulfills

respectively, as max{m, h−1} → ∞ . Unfortunately, these results do not yield any informa-
tion on the case where � is fixed. Moreover, the algorithmic solution A(�) presented by 
Degenne and Koolen (2019) is very inefficient for the problem of testing WST , if not infea-
sible in practice, which is due to a hard min-max problem that has to be solved at each time 
step (cf. Remark F.1). In the following, we will discuss further lower and upper bounds on 
the worst-case sample complexity of solutions to Pm,h,�,�

WST
 . Our results are to some extent 

stronger than (3) and (4), as they are covering the cases of a fixed confidence level � , which 
in turn corresponds to the typical setting of (online) testing.

6  Lower bounds for online testing of weak stochastic transitivity

In this section, we provide lower bounds on the expected termination time of any algorithm 
solving Pm,h,�,�

WST
 . Similarly to Theorem 4.2, these results are obtained by reducing a testing 

problem for the biases of independent coins to Pm,h,�,�

WST
 . A sample complexity analysis of 

the latter testing problem results in the bounds stated below, the proof of which can again 
be found in Section B.

In order to state an instance-wise lower bound for the case h > 0 , let us introduce 
some more notation: Given � ∈ Q0

m
 , we write �� for a permutation on [m], which ful-

fills q𝜎�(i),𝜎�(i+1) > 1∕2 for every i ∈ [m] . We show in the appendix (Lemma B.1) that 
�� exists for every � ∈ Q0

m
 , even though we only need this for every � ∈ Q0

m
(WST) . In 

case � ∈ Q0
m
(WST) , �� is the underlying ground-truth ranking of � , and permuting rows 

and columns according to �� results in a reciprocal relation with entries > 1∕2 above the 
diagonal.

Theorem  6.1 Let h0, �0 ∈ (0, 1∕2) be fixed, h ∈ (0, h0) , �, � ∈ (0, �0) and m ∈ ℕ≥3. Sup-
pose A is an algorithm that solves Pm,h,�,�

WST
 , and let � ∈ Qh

m
(WST) be arbitrary. Define 

hi,j ∶= |qi,j − 1∕2| for every distinct i, j ∈ [m] , � ∶= min{�, �} , and � = ��. Then, there 
exists a constant c = c(h0, 𝛾0) > 0 such that

1∕4 − h2

192

(
m

2

)
h−2 ≤ sup�∈Qh

m
(WST)

1

Dh
m
(�)

≤ sup�∈Qh
m

1

Dh
m
(�)

≤
1

8

(
m

2

)
h−2

1

192

(
m

2

)
h−2 ≤ sup�∈Qh

m
(WST)

1

D0
m
(�)

≤ sup�∈Qh
m

1

D0
m
(�)

≤
1

2

(
m

2

)
h−2

(5)sup�∈Qh
m
lim�→ 0

��[T
A(�)]

ln(�−1)
∈ �(m2h−2),

2 The bounds presented in Lemma F.6 are stronger but omitted here for the sake of brevity.
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Thus, supQ∈Qh
m
�Q[T

A] is in �(m2h−2 ln �−1) as max{m, �−1, h−1} → ∞.

Note that the right-hand side of (6) is of the order m2h−2 ln(�−1) , which is coherent with 

(5). The fact that the instance-wise bound only depends on 
(
m − 1

2

)
 instead of all 

(
m

2

)
 

entries of � is due to our proof technique, which is nonetheless of the same order with 
respect to m.

Let us now consider the more complex case h = 0 . As any solution to Pm,0,�,�

WST
 is also a 

solution to Pm,h,�,�

WST
 for any h ∈ (0, 1∕2) , Theorem 6.1 is applicable in this case. However, 

we can slightly improve upon this. In the following, for functions f , g ∶ X → (0,∞) , we 
say that f ∈ �sup(g) as x → x0 if lim supx→ x0

g(x)

f (x)
< ∞.

Theorem  6.2 Let �, � ∈ (0, 1∕2) be fixed and suppose A to be an algorithm that solves 
P
m,0,�,�

WST
 . Then, the following holds: 

(a) ��[T
A] = ∞ for any � in a set � ≠ Q†

m
⊊ 𝜕Qm(WST) ∩ 𝜕Qm(¬WST),

(b) sup�∈Qh
m
��[T

A] ∈ �(m2h−2) ∩�sup(h
−2 ln ln h−1) as max{m, h−1} → ∞.

As we point out in the proof of this theorem, the set Q†
m
 in (a) can be chosen as the set of 

all � ∈ Qm , for which some permutation � on [m] exists such that the following conditions 
are fulfilled:

In the proof of the theorem, to make (b) more explicit, we provide several examples for a 
family {�(h)}h∈(0,1∕2) ⊆ Qh

m
(WST) , for which

Regarding the occurrence of the limes superior in Lemma A.2, this is the best we may infer 
from Lemma A.2.

At first sight, part (b) of Theorem  6.2 may appear to contradict (5), which does not 
involve a ln ln h−1-factor. However, note that (5) only yields a bound on the worst-case of 
the asymptotic of ��[T

A(�)]

ln(�−1)
 as � ↘ 0 , whereas our bound holds for any fixed �.3 Thus, there is 

actually no contradiction.

(6)��[T
A] ≥ c ln

(
𝛾−1

)∑
1≤i<j−1<m

h−2
𝜎(i),𝜎(j)

≥ c

(
m − 1

2

)
ln
(
𝛾−1

)
h−2.

∀1 ≤ i < j ≤ m ∶ q𝜎(i),𝜎(j) ≥ 1∕2,

∀i ∈ [m − 1] ∶ q𝜎(i),𝜎(i+1) > 1∕2,

∃1 ≤ i� < j� − 1 ≤ m − 1 ∶ q𝜎(i�),𝜎(j�) = 1∕2.

lim sup
h↘0

��(h)[T
A]∕(h−2 ln ln(h−1)) ≥ (1 − 2�)∕2.

3 To illustrate this difference, note that f ∶ (0, 1)2 → ℝ defined via f (� , h) ∶= h−2 ln ln h−1 if h ≤ � and 
f (� , h) ∶= h−2 if h > 𝛾 fulfills lim�→ 0 f (� , h) = h−2 for all fixed h ∈ (0, 1) , but at the same time we have 
limh→ 0

f (� ,h)

h−2 ln ln h−1
= 1.
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7  Online testing of WST

Guided by our findings in Sect. 6, we now focus on the testing problem (1) for WST in 
the framework developed in Sect. 4. Note that weak stochastic transitivity is in any case 
of particular interest for the ranking problem in dueling bandits, as it is both a sufficient 
and a necessary condition for the existence of a ranking over the arms consistent with the 
preference relation � , in the sense that an arm i is preferred over an arm j if and only if 
qi,j ≥ 1∕2 . 

A first naïve approach for a testing component for the passive scenario (cf. Section 1) is 
Algorithm  1, which does the following: Terminate as soon as we can decide, for every 

(i, j) ∈ (m)2 , each with error probability at most � � = min{�, �}

(
m

2

)−1

 , whether qi,j > 1∕2 

or qi,j < 1∕2 holds, and output WST if an auxiliary relation �′ generated during runtime is 
WST , and ¬WST otherwise. To construct �′ , the value q′

i,j
 is set to 1 resp. 0 whenever we 

are sure enough (for the first time) that qi,j > 1∕2 resp. qi,j < 1∕2 holds. Here, testing the 
sign of qi,j − 1∕2 with confidence level � may be done by stopping as soon as (wt)i,j∕(nt)i,j 
leaves the interval [1∕2 − C((nt)i,j), 1∕2 + C((nt)i,j)], where C(⋅) is an appropriate any-time 
confidence bound for (wt)i,j∕(nt)i,j. The term appropriate is specified in Definition 7.1 
below.

In the initialization step of Anaive , we inform the algorithm about how often every item 
i has already been compared to every other item j before the start, denoted by (n0)i,j , and 
how often i has won against j, denoted by (w0)i,j . Our setting allows us to assume that 
(w0)i,j ∼ Bin((n0)i,j, qi,j) for all 1 ≤ i < j ≤ m . As the theoretical results do not depend on 
the explicit choice of n0 and w0 , we assume w.l.o.g. that (n0)i,j = 1 for all distinct i, j ∈ [m] 
throughout the paper.
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Definition 7.1 For any p ∈ [0, 1] , suppose {X(p)
n }n∈ℕ to be a family of iid random variables 

with distribution Ber(p) . We say that a function C ∶ ℕ → [0,∞] is (h, �)-correct for given 
h ∈ [0, 1∕2) and � ∈ (0, 1∕2) , if the following holds: 

(a) For any p ≠ 1∕2 , the following stopping time is almost surely finite: 

(b) For all p > 1∕2 + h , we have 

 and similarly for all p < 1∕2 − h , 

In case h > 0 , a first example for an (h, �)-correct function Ch,� can be inferred from 
Hoeffding’s inequality, by means of

With this, the decision whether qi,j > 1∕2 or qi,j < 1∕2 is not made in a sequential manner, 
but instead after exactly ⌈h−2 ln(�−1)∕2⌉ duels of i and j have been conducted. At the end of 
this section, we will introduce more sophisticated any-time confidence bounds admitting 
decisions in a sequential manner, and also treat the case h = 0.

Theorem  7.2 Let m ∈ ℕ≥3 , �, � ∈ (0, 1) , and h ∈ (0, 1∕2) be fixed, and define 

� � ∶= min{�, �}

(
m

2

)−1

 . For any � ∈ �∞ and (h, � �)-correct function C, Algorithm  1 

instantiated with parameters m, � , and C is a solution to Pm,h,�,�

WST
.

By construction, the sample complexity of Algorithm  1 is exactly the number of 
iterations that are required for testing the signs of all qi,j − 1∕2 , (i, j) ∈ (m)2 . By choos-
ing C according to (7), testing the sign of qi,j − 1∕2 requires in any case exactly 
N ∶= ⌈h−2 ln(�−1)∕2⌉ iid samples governed by Ber(qi,j) . However, the explicit time at 
which a pair has been sampled at least N times highly depends on the underlying sampling 
strategy �, so that an analysis of the sample complexity of Anaive can only be done w.r.t. the 
corresponding sampling strategy � . As the testing component is working in parallel to � in 
the passive setting, i.e., it has no influence on the behavior of �, the minimum requirement 
for a test component in the passive online test seems to be consistency in terms of an a.s. 
finite termination time and the adherence to predefined error bounds for a general class 
of sampling strategies. Both requirements are met by the test underlying Anaive by Theo-
rem 7.2 for the class �∞ if Anaive is instantiated with an (h, � �)-correct C.

Remark 7.3 In the passive online testing scenario, i.e., the sampling strategy � is instanti-
ated in a black-box fashion by some dueling bandits algorithm based on a transitivity 

N(p) ∶= N(p)(C) ∶= min
{
n ∈ ℕ ∶

1

n

∑n

k=1
X
(p)

k
∉ [1∕2 − C(n), 1∕2 + C(n)]

}
.

ℙ

(
1

N(p)

∑N(p)

k=1
X
(p)

k
< 1∕2 − C

(
N(p)

))
≤ 𝛾 ,

ℙ

(
1

N(p)

∑N(p)

k=1
X
(p)

k
> 1∕2 + C

(
N(p)

))
≤ 𝛾 .

(7)C
Hoeffding

h,�
(n) ∶=

�
1∕2, if n ≤ ⌈h−2 ln(�−1)∕2⌉
0, otherwise

.



 Machine Learning

1 3

assumption (such as those by Falahatgar et al. (2017a, 2018)), it might happen that � termi-
nates before the testing algorithm came to a decision, and in particular that � is not defined 
any more. In this case, if one is still interested in whether transitivity was fulfilled in hind-
sight, one may continue sampling according to the strategy �̂� , which picks each query 

{i, j} ∈ [m]2 with probability 1∕
(
m

2

)
.

The other way around, if the testing algorithm came to a positive decision 
( �(A) = XST ), although the online ranking algorithm has not yet terminated, one can sim-
ply continue the sampling strategy without the testing component.

In case of a negative decision ( �(A) = ¬XST ), the online ranking algorithm should be 
interrupted due to violating the assumptions.

In the active online testing scenario (cf. Section 1), on the other side, we have the pos-
sibility to choose � in a favorable way and consequently analyze the sample complexity of 
Algorithm  1. For this purpose, we consider a sampling strategy � = �(m,C) depending 
on the other parameters of Anaive, which focuses on the time-dependent set consisting of 
all pairs {i, j} , for which it is not yet sure with confidence level � ′ whether qi,j > 1∕2 or 
qi,j < 1∕2 holds. Formally, the following set is considered:

In each time t, the sampling strategy �(m,C) queries {i, j} ∈ [m]2 uniformly at random 
from UC(t), if UC(t) is non-empty, and otherwise queries {i, j} ∈ [m]2 uniformly at random 
from [m]2. Note that the second case (i.e., UC(t) is empty) is only defined in order to ensure 
that � ∈ �∞, which in turn allows for applying Theorem 7.2. In light of this, we obtain the 
following corollary.

Corollary 7.4 Let m ∈ ℕ≥3 , h ∈ (0, 1∕2) , �, � ∈ (0, �0) for some �0 ∈ (0, 1) , and choose 

� � ∶= min{�, �}∕

(
m

2

)
 . Let � = �(m,C

Hoeffding

h,� �
) be the sampling strategy of the above type 

and suppose A to be Algorithm 1 called with parameters m, � , and C = C
Hoeffding

h,� �
 from (7). 

Then, A solves Pm,h,�,�

WST
 and fulfills

In particular, if � ∶= min{�, �} , we have that

as max
{
m, h−1, �−1

}
→ ∞.

With regard to Theorem 6.1, the testing algorithm from Corollary 7.4 is already asymp-
totically optimal up to logarithmic factors for the WST testing problem in (1) for instances 
� ∈ Qh

m
 . Nevertheless, one may ask, firstly, whether termination is only possible as soon as 

being sure about the signs of qi,j − 1∕2 of all the 
(
m

2

)
 many {i, j} ∈ [m]2, and secondly, if 

the rough correction term in the error probability (i.e., 
(
m

2

)
 ) for the sign test of any 

UC(t) ∶=
{
{i, j} ∈ [m]2

||∀t� < t ∶ (wt� )i,j∕(nt� )i,j ∈
[
1∕2 ± C((nt� )i,j)

]}
, t ∈ ℕ .

TA =

(
m

2

)⌈
h−2

2
ln

(
m(m − 1)

2min{�, �}

)⌉
ℙ�-almost surely for all � ∈ Qh

m
.

sup�∈Qh
m
��

[
TA

]
∈ O

(
(m2 lnm)h−2 ln �−1

)
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qi,j − 1∕2 , is optimal. In the following section, we answer both questions negatively, giving 
rise to more sophisticated testing procedures. Moreover, we also present a solution to 
P
m,0,�,�

WST
 and develop instance-wise upper bounds for Pm,h,�,�

WST
.

We conclude this section with a discussion of further suitable anytime confidence 
bounds, the proofs of which are deferred to the supplement for the sake of convenience. In 
the following, if p ∈ [0, 1] and C ∶ ℕ → ℝ are fixed, let us define N(p)(C) as in Definition 
7.1. Inspired by the sequential probability ratio test (Wald and Wolfowitz 1948) for testing 
whether a coin has bias 1∕2 + h or 1∕2 − h , we may define

for any h ∈ (0, 1∕2) and � ∈ (0, 1∕2) . Then, CSPRT
h,�

 is (h, �)-correct and fulfills

This is shown in Lemma A.1 in the supplement. In contrast to CHoeffding

h,�
 , choosing CSPRT

h,�
 

leads to a sequential test, where the runtime depends on the (unknown) ground-truth p, 
which makes the question of instance-dependent bounds actually interesting. But on the 
other side, for any p ∈ (0, 1) , the random variable N(p)(CSPRT

h,�
) is not bounded in the sense 

that N(p)(CSPRT
h,�

) ≤ N a.s. for some N ∈ ℕ . However, as we also point out in Lemma A.1, 
the optimality of the sequential probability ratio test assures us that choosing C = CSPRT

h,�
 is 

optimal w.r.t. �[N(1∕2±h)(C)].
We now turn to the more complex case of preference relations in Q0

m
. In the follow-

ing, we write ln2(⋅) ∶= ln ln(⋅) and ln3(⋅) ∶= ln ln ln(⋅) for the sake of convenience. From a 
result by Farrell (1964) we can infer that, for some appropriate value4 n0 ∈ ℕ , the function

is (0, �)-correct and fulfills

which is shown in Lemma A.3 in the supplement. With the help of CFarrell
0,�

 , we will be able 
to present a solution A to Pm,0,�,�

WST
 , in which the term h−2 ln ln h−1 will naturally appear in 

the sample-complexity bound (cf. in Theorem 8.6). As we have seen in Theorem 6.2, the 
ln ln h−1-factor may not be avoided here.

CSPRT
h,�

(n) ∶=
1

2n

⌈
ln((1 − �)∕�)

ln((1∕2 + h)∕(1∕2 − h))

⌉

supp∶|p−1∕2|≥h �[N
(p)(CSPRT

h,�
)] = (2h)−1

⌈
ln((1 − �)∕�)

ln((1∕2 + h)∕(1∕2 − h))

⌉
(1 − 2�).

CFarrell
0,�

(n) ∶=

�√
ln2(n + e) + c ln3(n + ee)∕

√
8n, if n ≥ n0 + 1

1∕2, otherwise

lim
h→ 0

𝔼

[
N(1∕2±h)(CFarrell

0,𝛾
)
]

h−2 ln ln h−1
=

1

2
ℙ1∕2(N

(0)(CFarrell
0,𝛾

) = ∞) > 0,

4 To define n0 , suppose S′
n
 to be a symmetric random walk on ℤ , i.e., S�

n
=
∑n

i=1
X�
i
 where 

{X�
i
}i∈ℕ is a family of iid random variables X′

i
 with ℙ(X�

i
= 1) = ℙ(X�

i
= −1) = 1∕2 . Then, 

n0 ∶= min
{
n ∈ ℕ ||ℙ

(
∃ñ ≥ n + 1 ∶ |S�

ñ
| ≥ 2

−
1

2 ñ ln2(ñ + e) + c ln3(ñ + ee)
)
≤ 𝛾

}
.
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8  Enhanced online WST testing

In this section, we will exploit the connection between graph theory and WST in order 
to improve the algorithm from Corollary 7.4. The main idea for improvement is the fol-
lowing: Suppose we wanted to test whether � ∈ Q3 is WST. 

If we are sure enough that q2,1, q2,3 > 1∕2 holds (depicted by the edges 2 → 1 , 2 → 3 
in the picture to the right), then we can infer that � is WST, since the definition of weak 
stochastic transitivity is fulfilled in both cases ( q1,3 < 1∕2 and q1,3 > 1∕2 ). Thus, testing 
q1,3 is in some sense superfluous. To generalize this kind of reasoning to the case m > 3 , 
we first introduce a graph-theoretical interpretation of the problem.

8.1  Graph‑theoretical considerations

Throughout this section, we let G = ([m],EG) be some directed graph (digraph) on [m],  
i.e., EG ⊆ [m] × [m] and whenever (i, j) ∈ EG holds then (j, i) ∉ EG . We call G a tour-
nament (or complete digraph), if for all distinct i, j ∈ [m] either (i, j) ∈ EG or (j, i) ∈ EG 
holds. A graph G ∈ Gm is called acyclic if it does not contain any cycle.

Note that, for every � ∈ Q0
m

 and every distinct i, j ∈ [m] , either qi,j > 1∕2 or qj,i > 1∕2 
holds. Hence, each � ∈ Q0

m
 can be identified by a tournament G� ∶= G = ([m],EG) with 

EG ∶=
{
(i, j) ∈ [m] × [m] | i ≠ j and qi,j > 1∕2

}
. It can be shown that � ∈ Q0

m
 is WST iff 

the corresponding identifying tournament G� is acyclic (Proposition D.2).
In the toy example above, note that the identifying tournament of � is acyclic in any 

case, i.e., regardless whether q1,3 <
1

2
 or q1,3 >

1

2
 holds, making one edge of the identi-

fying tournament superfluous for inferring WST of � and allowing a correct decision 
merely on the digraph given by 2 → 1 , 2 → 3. The following two definitions generalize 
the idea of superfluous edges for general digraphs.

Definition 8.1 A digraph G is called transitive in expansion if each of its extensions to a 
tournament is acyclic. In other words, no tournament G̃ on [m] with EG ⊆ EG̃ contains any 
cycle.

Definition 8.2 Let G ∈ Gm . We call a pair {i, j} ∈ [m]2 negligible for G if for every 
k ∈ [m] ⧵ {i, j} either (i, k), (j, k) ∈ EG or (k, i), (k, j) ∈ EG holds.

Regarding Proposition D.2, we may write Gm(WST) for the set of all digraphs G on 
[m], which are transitive in expansion. The following result provides a link between 
transitivity in expansion and the notion of negligibility.

Proposition 8.3 Let G ∈ Gm . If G does not contain a cycle and every {i, j} ∈ [m]2 with 
(i, j), (j, i) ∉ EG is negligible for G,  then G ∈ Gm(WST) holds.
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This result together with the connection of preference relations and tournaments, brings 
us closer to answering the questions raised at the end of Sect. 7, as we show the following: 
If G is transitive in expansion, then there exists some graph G̃ , which is transitive in expan-

sion, satisfying EG̃ ⊆ EG and �EG̃� =
�
m

2

�
− ⌊m+1

3
⌋ (Proposition D.5), i.e., in particular 

we have �EG� ≥ �EG̃� =
�
m

2

�
− ⌊m+1

3
⌋ . Thus, it is possible to infer WST of � by merely 

considering 
�
m

2

�
− ⌊m+1

3
⌋ edges of the identifying tournament, while a violation of WST 

by � can be confirmed if the identifying tournament contains a cycle.

8.2  Exploiting transitivity in expansion

Equipped with these insights, we suggest Algorithm 2 as a testing procedure for Pm,h,�,�

WST
 . In 

the next theorem, we verify that this algorithm has in fact the desired theoretical guaran-
tees; the proof is given in Section D in the supplement. 

Theorem  8.4 Let � ∈ �∞ , �, � ∈ (0, 1) and h ∈ [0, 1∕2) be fixed and define 

� � ∶= min{�∕m, �(

�
m

2

�
− ⌊m+1

3
⌋)−1} . Suppose C ∶ ℕ → [0,∞] is (h, � �)-correct, and let 

A denote Algorithm 2 called with parameters m, � and C. Then, A solves Pm,h,�,�

WST
 . In case 

C = CX
h,� �

 for X ∈ {Hoeffding, SPRT, Farrell} and Ã is Algorithm 1 called with parameters 

m, � and Ch,�̃� with �̃� ∶= min{𝛼, 𝛽}∕

(
m

2

)
 (as suggested by Theorem 7.2), TA ≤ TÃ holds 

almost surely w.r.t. ℙ� for any � ∈ Q0
m
.
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Lemma D.9 indicates that one can not expect to choose a correction term smaller than �
m

2

�
− ⌊m+1

3
⌋ for the desired type II error within the choice of � in Algorithm 2. Further-

more, the fact that the graph G ∈ Gm with edges 1 → 2 → … → m → 1 contains a cycle, 
unlike any of its proper subgraphs, demonstrates optimality of the correction term m for the 
desired type I error within the choice of � . As a direct consequence of Theorem 8.4, we 
obtain a result analogous to the one stated in Corollary 7.4 for Algorithm 2 called with m, 
the sampling strategy � from Corollary 7.4, and C

Hoeffding

h,� ′
 with 

� � = min{�∕m, �(

�
m

2

�
− ⌊m+1

3
⌋)−1} , so that it achieves an optimal worst-case runtime 

(up to a logarithmic term of m) in the active online testing scenario as well.

8.3  Instance‑wise upper bounds and exploiting negligibility of edges

We conclude this section with more sophisticated solutions to Pm,h,�,�

WST
 in the active setting, 

which take into account that those queries {i, j} , which are negligible with high probabil-
ity, are superfluous and should be avoided. To this end, we define the sampling strategy 
�∗(m,C) as the sampling strategy which, similarly to the sampling strategies �(m,C) con-
sidered in Corollary 7.4, keeps track of a specific subset of [m]2 consisting of all {i, j} for 
which qi,j > 1∕2 or qi,j < 1∕2 can be decided with enough confidence (with regard to C) at 
time t. In contrast to the latter, the used subset by �∗(m,C) takes also the negligibility of 
edges into account. Formally, �∗(m,C) considers the following set at time t:

The sampling procedure of �∗(m,C) is just like �(m,C) , but only replacing UC(t) 
by U∗

C
(t) . Note that Êt may be defined in terms of n0,w0,… , nt−1,wt−1 as the set of all 

(i, j) ∈ [m] × [m] for which some t′ < t exists, such that

whence �∗(m,C) is in fact a sampling strategy as stipulated in Definition 3.1.
From Theorem 8.4, we immediately obtain that Algorithm 2 called with parameters m, 

�∗(m,C) and C is a solution to Pm,h,�,�

WST
 . But even if this guarantee holds for any (h, � �)-cor-

rect function C, it is desirable to choose C in such a way that the sample complexity of the 
corresponding algorithm is low. According to Lemma A.1, Lemma A.3, and Lemma A.2, 
the choices C = CSPRT

h,� �
 resp. C = CFarrell

h,� �
 are to some extent optimal in this regard for the 

cases h > 0 resp. h = 0 . With these, we obtain the following instance-wise upper bounds 
on the expected termination time for solutions to Pm,h,�,�

WST
 . They show that the values 

|qi,j − 1∕2| determine the complexity of testing whether � is weakly stochastic transitive or 
not. In comparison to the lower bound stated in Theorem  6.1, our instance-wise upper 

bounds depend on all 
(
m

2

)
 instead of only 

(
m − 1

2

)
 entries of � . Needless to say, in 

terms of the asymptotic behavior as m → ∞ , this difference is negligible.

U∗
C
(t) ∶=

{
{i, j} ∈ [m]2

|| (i, j), (j, i) ∉ Êt and

{i, j} is not negligible for ([m], Êt)
}
.

(wt� ∕nt� )i,j > 1∕2 + C((nt� )i,j) and ∀t�� < t� ∶ (wt��∕nt�� )i,j ∈
[
1∕2 ± C((nt�� )i,j)

]
,
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Theorem  8.5 Suppose m ∈ ℕ≥3 , �, � ∈ (0, 1∕2) , h ∈ (0, 1∕2) , and define 

� � ∶= min{�∕m, �(

�
m

2

�
− ⌊m+1

3
⌋)−1} . Let A be Algorithm 2 called with parameters m, 

the sampling strategy �∗(m,CSPRT
h,� �

) and C = CSPRT
h,� �

 as the function C. Then, A solves 
P
m,h,�,�

WST
 . Suppose � ∈ Qh

m
 is fixed and write hi,j ∶= |qi,j − 1∕2| for all distinct i, j ∈ [m] . 

Then, with e(h, � �) ∶=
⌈

ln((1−� �)∕� �)

ln((1∕2+h)∕(1∕2−h))

⌉
 , we have that ��[T

A] is bounded from above by

By means of Lemma A.1, it immediately follows that algorithm A from Theorem 8.5 
fulfills sup�∈Qh

m
��[T

A] ∈ �(m2 ln(m)h−2 ln(�−1)) as max{m, h−1, �−1} → ∞ , i.e., it 
is asymptotically optimal up to a ln(m)-factor. In order to compare the result of Theo-
rem 8.5 with the instance-wise lower bound from Theorem 6.1 more thoroughly, suppose 
� ∈ Qh

m
(WST) and (i, j) ∈ (m)2 with |𝜎�(i) − 𝜎�(j)| > 1 to be fixed for the moment and let 

� = � = � for simplicity. Due to e(h, � �) ∈ �(h−1) as h ↘ 0 , the dependency of (8) on the 
(i, j)-entry of � is approximately h−1

i,j
h−1 , whereas this dependency in (6) is of the form h−2

i,j
 . 

This suggests, that the two bounds are closest in case h ≈ hi,j . Considering that the choice 
C = CSPRT

h,� �
 assures optimal early detection of sign(qi,j − 1∕2) only in case |qi,j − 1∕2| = h , 

the appearance of h−1 in (8) may not come as a surprise. Moreover, the scaling � � ≈ �∕m2 
leads to an additional factor of 2 ln(m) in (8) compared to (6).

Theorem  8.6 Let m ∈ ℕ≥3, �, � ∈ (0, 1∕2) be fixed and define 

� � ∶= min{�∕m, �(

�
m

2

�
− ⌊m+1

3
⌋)−1} . Suppose A is Algorithm 2 called with parameters 

m, �∗(m,CFarrell
0,� �

) and CFarrell
0,� ′

 . Then A solves Pm,0,� ,�

WST
 , and there exists some h0 ∈ (0, 1∕2) 

with the following property: If � ∈ Q0
m
 is such that hi,j ∶= |qi,j − 1∕2| ≤ h0 for all distinct 

i, j ∈ [m] , then

9  Experiments

In this section, we compare the WST testing procedures from Theorems 7.2 and 8.4. Since 
the solution obtained by Degenne and Koolen (2019) appears infeasible in practice 
(Remark F.1), we do not consider it in our experiments. For the sake of simplicity, we 
focus on the passive testing scenario, with � ∈ �∞ being such that it chooses its queries at 
each time step uniformly at random from [m]2 . We also fix � = � = 0.05 as well as h = 0.01 
in the following. Further, we will write Anaive for Algorithm 1 instantiated with the param-

eters m, � and CSPRT
h,� ′

 with � � ∶= min{�, �}∕

(
m

2

)
 , and Aimproved for Algorithm  2 called 

with parameters m, � and CSPRT
h,� ′′

 with � �� ∶= min{�∕m, �(

�
m

2

�
− ⌊m+1

3
⌋)−1} . Here, we 

have chosen the boundary function C due to its optimal behavior w.r.t. the expected runt-
ime on some instances as stated in Lemma A.1.

(8)
∑

(i,j)∈(m)2

e(h, � �)

2hi,j

|||1 − 2
(
1 + (1∕2 + hi,j)

e(h,� �)(1∕2 − hi,j)
−e(h,� �)

)−1|||.

��[T
A] ≤

1

2

∑
(i,j)∈(m)2

h−2
i,j

ln ln(h−1
i,j
).
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In the first experiment, we investigate the termination time of Anaive and Aimproved for 
preference relations in Q0.05

m
(WST) or Q0.05

m
(¬WST). To this end, we sample � uniformly 

at random from Q0.05
m

(WST) (resp. Q0.05
m

(¬WST) ), run the test algorithms until termination, 
respectively, and repeat this process for 100 times. Here, both Anaive and Aimproved — started 
with some � — observe the same duel chosen by � in each time step, as well as the same 
outcome of the duel. As stated in Theorem 8.4, Aimproved may thus terminate earlier than 
Anaive in any case. In the following table we report the obtained average termination times 
(and the corresponding standard error in brackets) for varying values of m.

WST ¬WST

Anaive Aimproved Anaive Aimproved

m = 4 5540 (329.3) ���� (245.5) 5273 (325.4) ���� (315.6)

m = 5 11, 670 (601.7) ���� (596.3) 12, 041 (581.5) ���� (367.1)

m = 6 20, 420 (789.1) ��, ��� (810.7) 20, 374 (921.3) ���� (235.6)

m = 7 36, 149 (1403.7) ��, ��� (1408.6) 35, 261 (1535.9) ���� (342.1)

m = 8 52, 214 (2050.0) ��, ��� (2009.0) 55, 727 (1910.8) ���� (191.6)

The results reveal that Aimproved needs significantly less samples for checking WST than 
Anaive throughout, and the effect is strongest if � is not WST and m is large. In particular, if 
the underlying preference relation is not WST, the termination time of Aimproved is mostly 
decreasing with the number of available arms, while the termination time of Anaive , on the 
other side, increases rapidly with the number of arms. Moreover, both test algorithms did 
not make any error in deciding whether WST holds or not for the underlying preference 
relation � , i.e., the observed accuracy of both test algorithms was 100% throughout. Last 
but not least, it is worth mentioning that Aimproved (as well as Anaive ) terminates for each 
problem scenario much earlier than the derived worst-case upper bound 

(2h)−1
⌈

ln((1−� ��)∕� ��)

ln((1∕2+h)∕(1∕2−h))

⌉
(1 − 2� ��)

(
m

2

)
 , which is ≥ 4370

(
m

2

)
 for any m ≥ 3 (cf. 

Theorem 8.5).
Next, we analyze the impact of the degree of violation of WST within a preference rela-

tion � — measured by the number of cycles5 in the identifying tournament G� — on the 
sample complexities of Anaive and Aimproved, respectively. For this purpose, we choose �1 , 
�2 , �3 and �4 as

respectively, where x ∶= 0.6 and y ∶= 0.4 . The following table shows the number of 
cycles in G�i

 together with the average runtimes (as well as the empirical standard errors in 

⎛⎜⎜⎜⎜⎜⎝

− x x x x x

− x x x x

− x x x

− x x

− x

−

⎞
⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎝

− x y x x x

− x x x x

− x x x

− x x

− x

−

⎞
⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎝

− x y x y x

− x y x x

− x x x

− x x

− x

−

⎞
⎟⎟⎟⎟⎟⎠

and

⎛
⎜⎜⎜⎜⎜⎝

− x y x y x

− x y x x

− x x y

− x x

− x

−

⎞
⎟⎟⎟⎟⎟⎠

,

5 Recall that, according to our definition above, any cycle is of the form i1 → … → ik → i1 , where 
i1,… , ik are distinct.
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brackets) of Anaive and Aimproved, if started with �i, over 100 runs. We also added the aver-
age elapsed time Telapsed (in seconds) per run as an indicator of the computational costs of 
Anaive and Aimproved . All experiments were run on a single CPU.6

Anaive Aimproved

i # cycles in G�i
TA Telapsed TA Telapsed

1 0 25, 919 (332.3) 0.60 ��, ��� (340.8) 2.16
2 1 25, 170 (296.4) 0.58 ��, ��� (187.4) 0.44
3 9 25, 599 (366.1) 0.60 ���� (110.3) 0.31
4 28 26, 014 (355.7) 0.60 ���� (110.7) 0.31

These results support the following conclusions. Firstly, the larger the number of cycles 
in the identifying tournament G�i

 of the underlying preference relation �i (i.e., the more 
severe the WST property is violated), the lower the sample complexity of Aimproved is on 
average. Secondly, the latter effect reveals an “elbow” dependency in the sense that the 
decrease of the termination time is rapidly declining with the number of cycles, with the 
strongest decline if at least one cycle is present. Thirdly, Anaive does not seem to bene-
fit from stronger violations of WST and in fact does not exploit structural properties of 
the current estimated preference relation for an early termination such as Aimproved does. 
Finally, the results for �1 with regard to the averaged elapsed time demonstrate that check-
ing the transitive in expansion property of the internal graph maintained by Anaive (i.e., 
line 7 in Algorithm 2) increases the computational cost per iteration step by a factor of 
≈

2.16

25639

25919

0.6
≈ 3.64 . However, the superiority of Aimproved over Anaive in terms of sample 

complexity is so strong, that it outperforms Anaive even with regard to computational costs 
on �2,�3 and �4.

In summary, the experiments empirically confirm our theoretical results on the superi-
ority of the enhanced testing algorithm Aimproved compared to Anaive.

10  Conclusion

In this paper, we have analyzed the problem of testing stochastic transitivity assumptions 
within the dueling bandits framework. For various types of stochastic transitivity, we pro-
vided instance-dependent lower bounds on the expected number of samples needed by any 
sequential test to come to a test decision obeying predefined error bounds. These results 
indicate that testing a stochastic transitivity assumption stronger than weak stochastic tran-
sitivity is hopeless in worst case scenarios.

In light of these results, we have introduced a flexible algorithmic framework, which 
allows one to either monitor the validity of the weak stochastic transitivity assumption 
made by a dueling bandit algorithm during its sampling process in a passive way, or to 
actively query pairs of arms in order to confirm or refute this assumption as quickly as 
possible. To this end, we designed a sequential testing method within the algorithmic 
framework and provided theoretical guarantees for its type I and type II error as well as an 
almost surely finite termination time within the passive testing scenario, if it is instantiated 

6 For our experiments, we used a machine with an Intel® Core™ i7-4700MQ Processor.
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with an appropriate function to measure the confidence of pairwise probability estimates. 
In addition, we have provided some examples for appropriate confidence functions and 
have shown optimality of the resulting algorithm up to a logarithmic factor in terms of 
the expected runtime for a suitable sampling strategy, which is actively supporting the test 
component. Finally, we enhanced the testing method by incorporating graph-theoretical 
considerations, resulting in faster decisions on the validity or violation of WST, and pro-
vided instance-dependent upper bounds on the expected runtime of this testing procedure.

Based on our findings, it would be of interest to transfer the ideas for WST testing as 
developed in this paper to weaker yet still practically relevant assumptions in the realm 
of dueling bandits, such as the existence of a Condorcet Winner. Furthermore, a more 
thorough experimental study for the suggested algorithmic framework would be impor-
tant to gain more insights into the actual degree of support provided by the testing com-
ponent to already established sampling strategies for ranking problems.
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