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ABSTRACT Micro- and smart grids (MSG) play an important role both for integrating renewable energy
sources in electricity grids and for providing power supply in remote areas. Modern MSGs are largely
driven by power electronic converters due to their high efficiency and flexibility. Controlling MSGs is a
challenging task due to requirements of power availability, safety and voltage quality within a wide range of
different MSG topologies resulting in a demand for comprehensive testing of new control concepts during
their development phase. This applies, in particular, to data-driven control approaches such as reinforcement
learning, of which the stability and operating behavior can hardly be evaluated on an analytical basis.
Therefore, the OpenModelica Microgrid Gym (OMG) package, an open-source software toolbox for the
simulation and control optimization of MSGs, is proposed. It is capable of modeling and simulating arbitrary
MSG topologies and offers a Python-based interface for plug & play controller testing. In particular, the
standardized OpenAI Gym interface allows for easy data-driven control optimization. The usage and benefits
of OMG for designing and testing data-driven controllers are demonstrated utilizing Bayesian optimization.
Both the current and voltage control loops of a voltage source inverter operating in standalone, grid-forming
mode for a remote MSG are automatically tuned given an uncertain application environment. Finally, the
transfer to real-world laboratory experiments is successfully demonstrated.

INDEX TERMS Control, data-driven optimization, microgrids, open-source software, power electronics,
safety, simulation, testing.

I. INTRODUCTION
The transition of conventional energy supply systems based
on fossil fuels to sustainable energy networks characterized
by renewable energies is a central technical and social chal-
lenge of the 21st century [1]. To achieve this, the inherent
volatility of renewable energy sources requires a shift away
from conventional, centralized top-down energy networks
towards flexible, cross-sectoral and intelligent energy sys-
tems [2]. Therefore, in the course of the energy transition,
micro- and smart grids (MSG) represent an important solu-
tion component to ensure a clean, efficient and cost-effective
energy supply [3], [4]. MSG is the concept of a local network
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consisting of controllable distributed energy resources (e.g.
wind power), energy storage units (e.g. battery) and various
types of loads [5]. The local integration of renewable ener-
gies by means of MSGs, e.g. within industrial companies
or residential areas, relieves energy transmission grids and
thus reduces the need for cost- and resource-intensive grid
expansion. Moreover, MSGs can provide energy supply for
remote areas without connection to a public distribution grid.
In this context, power electronic converters became the cen-
tral component ofmodernMSGs due to their very high energy
conversion efficiency and flexibility in order to directly con-
trol the power flow between different MSG components [6].

MSGs are highly heterogeneous, complex systems coming
with many different topologies depending on their purpose
of application [7], [8]. Moreover, their operation contains

35654 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-9944-4108
https://orcid.org/0000-0001-9362-8777
https://orcid.org/0000-0003-0686-5825


D. Weber et al.: Safe Bayesian Optimization for Data-Driven Power Electronics Control Design in Microgrids

a significant stochastic component, which is caused by the
uncertainty of: the load demand, the regenerative feed-in and
topology changes due to the insertion or removal of compo-
nents during operation. Furthermore, some MSGs may use
hybrid AC/DC sub-grids in order to boost energy efficiency
by reducing the number of required energy conversion stages.
Consequently, controlling MSGs is a demanding task that
comes with several key requirements, which can be summa-
rized as follows:
• Security of supply: the continuous availability of
energy is of prime importance. Outages or component
failures due to control errors (e.g. by overloading) are
unacceptable.

• Adaptivity: due to the wide range of MSG use cases,
a high degree of control flexibility in a plug & play sense
is necessary.

• Resource optimality: minimizing both energy losses
and operation costs utilizing available control degrees
of freedom is desirable.

• Power quality: providing energy supply at high power
quality levels is important for ensuring nominal func-
tionality at load side.

In order to pursue these objectives, MSG control is typically
addressed by hierarchical approaches on different time scales
including [9], [10]:
• Inner level: current (and voltage) control in the micro-
to millisecond range including auxiliaries such as pro-
tective measures or phase-locked loops for each inverter.

• Primary level: (re-)active power balancing between dif-
ferent inverters in the (sub-)second range for voltage
and/or frequency control.

• Secondary level: energy management (including stor-
age scheduling) focusing on mid-term steady-state cor-
rection of key grid parameters (e.g. frequency).

• Tertiary level: long-term economic dispatch routines
for cost-optimal MSG operation (provided one or multi-
ple MSGs contain the appropriate degrees of freedom).

At the various levels, the following control approaches can be
summarized [11]:
• Linear feedback controllers such as PID or droop-based
characteristics (e.g. [12], [13]),

• (Meta-)heuristic rules and optimization (e.g. [14], [15]),
• Model predictive control (e.g. [16], [17]),
• Data-driven reinforcement learning (e.g. [18], [19]).

In most publications, arbitrary test scenarios are used for
the validation of the presented control methods, which are
often reduced to a single experimental or simulated MSG
example. This inhibits the ability to compare different control
procedures on a common test setup. Moreover, there is a lack
of checks whether a method remains functional under differ-
ent operating conditions or within different MSG topologies.
Hence, there is a demand for common and open test and
development platforms to compare MSG control algorithms
with each other and to support the development of novel
control approaches.

A. CONTRIBUTION
We present the OpenModelica Microgrid Gym (OMG) pack-
age, an open-source software toolbox for the simulation and
control optimization of MSGs based on energy conversion
by power electronic converters [20], [21]. The main contri-
butions and features of the OMG toolbox are:

• Flexible and scalable simulations of arbitrary MSG
topologies using OpenModelica [22] back end;

• Python-interface for easy access, configuration and eval-
uation of arbitrary controllers;

• OpenAI Gym [23] interface for training reinforcement
learning agents or similar data-driven approaches;

• Single and three phase configurations with AC or DC
power supply;

• Time domain resolution in the micro- and millisecond
range targeting inner and primary level control;

• Fully open-source and collaborative project under GNU
GPLv3 license.

The toolbox is under active development and currently focus-
ing on component-oriented simulations targeting the inner
and primary control level. Extensions to simplified and
lightweight model frameworks for extended simulation hori-
zons, e.g. single-line swing equation models [24], [25], will
be added. Selected background information on implemen-
tation of the OMG toolbox are presented in the following
and more details can be found in the user guide and API
documents [20].

Additionally, we present an extended use case of apply-
ing safe Bayesian controller optimization [26] to a voltage
source inverter (VSI) operating under uncertain application
conditions in islanded mode. First, the OMG toolbox is used
to deploy the data-driven Bayesian optimization algorithm in
simulation to tune the parameters of the VSI’s inner current
and the outer voltage control loops. Here, the hyperparam-
eters of the optimizer [26] are set appropriately in order to
be able to find the optimal controller parameters quickly but
also safely. The latter is of prime importance in the con-
text of data-driven control optimization, since such adaptive
methods generally explore the unknown search space. In this
process, unsafe controller configurations may occur, which
are, for example, unstable or tend to overshoot to such an
extent that an inverter safety shutdown is triggered. Finally,
we demonstrate the feasibility of the proposed OMG toolbox
and the safe Bayesian optimization approach by transferring
and comparing both to real-world experiments.

B. RELATED WORK
In the domain of power system simulations, the following
software toolboxes are often mentioned:

• MATPOWER [27], an open-source, Matlab-based
project targeting static power flow simulation and opti-
mization on distribution grid level. Since dynamic mod-
elling is completely omitted, the focus is on secondary
and tertiary control level assuming simplified quasi-
stationary operation of all components. An OpenAI
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Gym interface could be easily added, but is not available
yet.

• Pandapower [28], an open-source, Python-based project
targeting static power flow simulation and optimization
on distribution grid level. It has a similar scope and
functionality as MATPOWER.

• PyPSA [29], an open-source, Python-based project tar-
geting static power flow simulation and optimization
on distributed grid level. It has a similar scope and
functionality as the aforementioned packages.

• PSAT [30], an open-source, Matlab-based project for
simplified single line general power system simulation
including optimized scheduling. Public user guide or
code documentation is not available. It comes with
a limited, fixed number of pre-defined primary level
controllers. An external controller interfacing is not
provided.

Due to the lack of both interfaces and dynamic simulation,
the aforementioned packages cannot be considered for the
control engineering treatment of MSGs on inner and pri-
mary control level. Besides the above mentioned open-source
solutions, there is also a range of commercial software with
similar functionalities focusing on static grid simulations,
which is not reported in detail here. Furthermore, there is
a variety of energy market-oriented packages (open-source
and commercial) available (e.g. [31]), but since this work is
focusing on technical control-oriented problems, these are
not discussed here. In the field of dynamic grid and power
electronic simulations, the following software packages have
to be mentioned:
• Simscape [32] is a commercial Matlab/Simulink exten-
sion offered by Mathworks. It enables a wide range
of physics-oriented, dynamic modelling applications
including power systems and in particular power elec-
tronics. Its functionality and scope is similar to the
OMG toolbox, but closed-source and interfacing to non-
Matlab software products comes with significant calcu-
lation overhead (cf. Matlab engine API for Python [33]).

• SPICE-related software such as LTspice, PLECS or
ngspice focus on integrated circuit simulations often
with nanosecond range time steps. Therefore, it is
suitable to accurately simulate single power electronic
converters on small simulation durations, but compu-
tationally not feasible for MSGs with multiple power
units.

Therefore, OMG is currently the only available open-source
toolbox for dynamic power electronics-driven MSG evalu-
ations on small time scales. Due to the offered interfaces,
it is particularly suitable for control development and test-
ing, including training and evaluation of recent data-driven
control techniques.

II. SOFTWARE DESCRIPTION
A. TOOLBOX STRUCTURE
The overall structure of the software package is inspired by
the Tensorforce library [34]. OMG contains wrappers for

FIGURE 1. High level code architecture.

OpenAI Gym environments as well as fully implemented
control agents. One of the main contributions of this toolbox
is an OpenAI Gym instance in which data-driven controllers,
in particular reinforcement learning (RL) agents, can be
trained and tested. For ease of use, predefined agents for
controlling the environment, as well as a service class that
handles the execution of the specified agent on its environ-
ment, are provided. This reduces the boilerplate code and
allows developers and engineers to focus on designing and
testing controllers.

The runner class is responsible for the initialization and
termination of agents and environments, as well as the execu-
tion of multiple episodes. The class also handles information
exchange between agent and environment, as shown in Fig. 1.
This functionality is convenient, as the training of an agent
usually spans multiple training epochs.

The agent class encapsulates all states related to the learn-
ing process. For example, it may contain a base controller
such as a linear feedback controller that will be parame-
terized by external agents during learning and provide the
control actions that the agent plays out on the environment
(cf. Sec. III). This example corresponds to a hybrid approach
mixing expert-driven and data-driven control. Nevertheless,
the definition of the OMG interfaces is completely open,
allowing the toolbox to be connected to a wide range of
solutions, between entirely data-driven and entirely expert-
driven. The agent also provides tools to log debugging data
from the learning process.

The configurable environment class provides an interface
from OpenAI Gym to the internal simulation model. It will
record data formonitoring and visualizing each epoch, as well
as analyzing the control performance in more depth.

B. MODELICA INTEGRATION
For modeling on MSG component level, OpenModelica
(OM) [22] is used in the back end. OM is also based on an
open-source policy and comes with a graphical user inter-
face (GUI) for easy and clear MSG modeling. The overall
integration of OM in the OMG toolbox is shown in Fig. 2.
For the model transfer from OM to the OMG Python front
end, the functional mock-up interface (FMI) [35] is used. FMI
is a tool-independent, open-source standard for the exchange
of dynamic models. According to this standard, the model-
including objects created for the exchange are called func-
tional mock-up units (FMU), which support two flavors of
simulation types: co-simulation (CS) and model exchange
(ME). In CS, the numerical solver is embedded and supplied
by the exporting tool, in this case, OpenModelica. On the
other side, in ME, the importing tool supplies the solver,
while the FMU only provides the ordinary differential equa-
tion (ODE) system.
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FIGURE 2. Overview of the interconnections between the different parts of the OMG toolbox. The OpenModelica and OpenAI Gym logos
are the property of their respective owners.

To avoid unnecessarily small simulation step sizes to
ensure numerical stability, implicit solvers are required. Cur-
rently, OpenModelica only provides explicit solvers in CS,
therefore, ME is used in OMG. Since the Python pack-
age SciPy [36] provides several implicit solvers, it is used
for solving the resulting ODE systems describing power
electronics-driven MSGs modeled in the OM back end.

The FMU containing the model is imported via PyFMI
[37]. This library interfaces between the FMU and Python.
After extracting the initial states and the equation system, the
controller/agent selects the action vector (i.e. control input)
for the following step. Next, the equation system is solved,
and the new states of the model are saved for the next simu-
lation step.

Executing the simulation in such a step-by-step manner
adds computational overhead, in comparison to a continuous
simulation, however, it is crucial to be able to select actions
freely after each simulation step. This allows the integration
of arbitrary discrete-time controllers via the Python front end.
Furthermore, this corresponds to the stepwise interaction of
systemmodel and data-driven controller in the context of RL.

C. MICROGRID MODELICA LIBRARY
Together with the OMG Python package, an OpenModelica
library to create customized MSG topologies is provided
[38]. It mainly consists of freely connectable components like
inverters, filters, and loads. The library is sketched in Fig. 3
together with an example network.

In this example, a DC bus, which can be adjusted via
Python, supplies each inverter. The inverters can be connected
via filters (e.g. LC or LCL). Moreover, a wide range of
different load nodes are pre-defined in the library, which
can be extended by the user. The filters and loads can be
freely parameterized, either directly in the OpenModelica
model or via PyFMI. Besides, the toolbox provides auxiliary

FIGURE 3. OpenModelica microgrid library example.

components (such as phase-locked loops) and pre-defined
voltage and current forming inverters, the latter with direct
and indirect droop controllers.

For each filter design, models with and without losses
are included. Due to their impact on the complexity of the
system and the resulting increase of simulation time, it is
recommended to use the loss models only if the efficiency
and loss behavior is of interest.

A dynamic environment with a variable supply voltage
or load steps can be archived through parameter-variation.
Any parameter can be adjusted freely at any time during the
simulation directly in the Python interface.

III. INVERTER MODEL AND CONTROL FRAMEWORK
The previously introduced OMG toolbox is applied to an
exemplary automatic inverter controller tuning process by
safe Bayesian optimization to highlight its usage in MSG
control scenarios. In particular, the current and voltage con-
trol loops of a single VSI operating in islanded mode are
investigated under uncertain operation conditions. To this
end, we will briefly summarize the fundamentals of the VSI
system model followed by the inner level current and voltage
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control architecture, before linking this with a data-driven
controller optimization. The entire following example can be
found as executable code in the OMG repository [20].

A. BASIC SYSTEM MODEL
For this contribution, we consider a three-phase, two-level
VSI connected to an unknown load as depicted in Fig. 4.
For an arbitrary inverter’s phase p assuming a standard LC
filter configuration (Lf,p,Cf,p), with inductor filter current
if,p, voltage over the filter capacitor vf,p and output load
current io,p, the dynamics can be linearly described as

if,p = Cf,p
dvf,p
dt
+ io,p, (1)

with the switch voltage vi,p

vi,p = vc,p + Lf,p
dif,p
dt
+ Rf,pif,p. (2)

Above, Rf,p is the inductors’ internal resistance, while it
is assumed that the internal resistance of the capacitors is
negligible. Moreover, the model can be described linearly in
the state space

ẋ = Ax+ Bu+ Eio, (3)
y = Cx,

where x contains the states, the inputs are u and io is the load
current (interpreted as a disturbance):

x =
[
if,a if,b if,c vf,a vf,b vf,c

]T
,

(4)
u =

[
vi,a vi,b vi,c

]T
, io =

[
io,a io,b io,c

]T
.

The corresponding state-space matrices are

A =



−
Rf,a
Lf,a

0 0 −
1
Lf,a

0 0

0 −
Rf,b
Lf,b

0 0 −
1
Lf,b

0

0 0 −
Rf,c
Lf,c

0 0 −
1
Lf,c

1
Cf,a

0 0 0 0 0

0 1
Cf,b

0 0 0 0

0 0 1
Cf,c

0 0 0


,

(5)

B =



1
Lf,a

0 0

0 1
Lf,b

0

0 0 1
Lf,c

0 0 0
0 0 0
0 0 0


, E =



0 0 0
0 0 0
0 0 0
1
Cf,a

0 0

0 1
Cf,b

0

0 0 1
Cf,c


,

C = I6.

Above, C = I6 is the 6 × 6 identity matrix assuming that
the filter currents and voltages are measured while the load
currents are not available as a measurement signals.

So far, the relevant currents and voltages (vc,p, io,p) are
represented as vectors in a fixed abc reference frame. Hence,
in steady state they are rotating with the frequency of the
sinusoidal supply voltage. Using the Park transformation, the
system variables can be mapped into a rotating coordinate

FIGURE 4. Three-phase four-wire inverter with a split DC bus and a LC
output filter connected to an unknown load.

systems. Here, the d-axis is aligned with the a-axis of the
rotating three-phase system, the q-axis is orthogonal to the
d-axis and the third is the zero component:
xd

xq

x0

 = 2
3


cos(θ) cos(θ − 2π

3 ) cos(θ − 4π
3 )

−sin(θ ) −sin(θ − 2π
3 ) −sin(θ − 4π

3 )

1
2

1
2

1
2



xa

xb

xc

 .
If the angular speed ω of the rotating frame is set equal to
the grid frequency, the balanced sinusoidal grid voltages and
currents become stationary DC-variables. This simplifies the
control design, allowing for the effective application of linear
feedback controllers. For more information on the basics of
power electronic control we refer to [39] and similar text-
books.

Assuming that all LC filter components are ideal and sym-
metrical, we can neglect the null component (as is common
in AC power systems). In this simplified case, the model can
be reduced to the dq equivalent:

ẋ = Ax+ Bu+ Eio, (6)
y = Cx,

where the transformed quantities are

x =
[
if,d if,q vc,d vc,q

]T
,

(7)
u =

[
vi,d vi,q

]T
, io =

[
io,d io,q

]T
,

and the transformed matrices yield

A =


−
Rf
Lf
−ω − 1

3Lf
0

ω −Rf
Lf

0 −
1
3Lf

1
3Cf

0 0 −ω

0 1
3Cf

ω 0

 ,
(8)

B =


1
3Lf

0
0 1

3Lf
0 0
0 0

 , E =


0 0
0 0
−

1
3Cf

0
0 −

1
3Cf

 ,
C = I4.

For the remaining part of the paper, the simulation of the
physical grid system is executed in the abc frame within
OMG framework allowing to cover realistic operation sce-
narios like asymmetric loads or non-ideal system configura-
tions due to parameter deviations of individual components.
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FIGURE 5. Simplified control diagram highlighting the integration of safe
Bayesian optimization for data-driven control tuning.

In comparison, the simplified dq frame model is utilized
to perform an initial control design as will be discussed
next.

B. CONTROL FRAMEWORK AND PROBLEM STATEMENT
In Fig. 5 a simplified control block diagram of the considered
system is shown. It is assumed that the inverter is operating
in an islanded and grid-forming mode, e.g. setting up a rural
and remote MSG.

The control structure is cascaded with an inner current
and an outer voltage control loop. Knowledge of the sys-
tem parameters is generally required to parametrize the con-
trollers. In real-world applications, however, the problem
arises that these are not exactly known, for example due to
production-related tolerances or uneven aging [40]. Plug &
play component insertion or removal, e.g. during repair or
maintenance work, can also contribute to drastically system
changes [41], [42]. Likewise, the load characteristics can
change drastically and are generally not known in advance,
especially in the case of remote MSGs. In addition, linear
feedback controllers are generally designed without taking
into account non-linearities in the control loop, in particular
constraints on the manipulated variables and anti-reset wind-
up measures. Due to this multitude of issues, an analytical
controller design can lead to significantly different, in partic-
ular worse, behavior in the actual system than predicted based
on its nominal model.

In order to compensate for these issues, a two-fold proce-
dure is suggested:

1) Assuming that the nominal parameters are roughly
known, an initial model-based controller is designed.

2) During operations, the controller design is improved
by Bayesian optimization to compensate for devia-
tions between model assumption and actual system
behavior.

As an important constraint, this data-driven tuning has to be
performed in a safe way, such that unsuitable gain parameters
leading to severe overshoots or other unsafe system behavior
are prohibited at all times. While the optimization algorithm

TABLE 1. Considered system parameters.

is explained in Sec. IV, the uncertainty modeling and the
model-based control design is addressed in Sec. III-C.
Assuming that a rough system model is available, an ana-

lytical, model-based control design method can used to cal-
culate initial controller parameters. For this contribution, the
magnitude optimum method is considered [39], [43]. To lay-
out the current controller a cross-over frequency of fC = 1

6Ts
and a phase margin of 60◦ was used and the open-loop control
plant was considered using the transfer function

GOL,c(s) =
(
Kp,c +

Ki,c

s

)(
1− sTs4
1+ sTs4

)
vdc
Rf

1

1+ s LfRf
. (9)

The second bracket term is the Pade approximation for repre-
senting the delay effect of the inverter modulation scheme,
since this quasi-continuous design approach is transferred
to the discrete-time domain for computerized control [39].
Using the nominal system parameters from Tab. 1, the initial
controller values are

Kp,c = 0.04V/A and Ki,c = 12V/(As) . (10)

Likewise, the same design approach is used to find the
initial voltage controller parameters. The chosen cross-over
frequency was set to 300Hz and the phase margin to 60◦. The
open-loop transfer function for the voltage controller layout
was considered using the transfer function

GOL,v =

(
Kp,v +

Ki,v

s

)
GCL,c

s Cf
, (11)

taking the closed-loop current control plant

GCL,c =
GOL,c

1+ GOL,c
(12)

using (9). Accordingly, the controller parameters

Kp,v = 0.0175A/V and Ki,v = 12A/(Vs) (13)

were taken as initial parameters. All controllers are trans-
ferred to the discrete-time domain using the forward Euler
method.
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C. MODEL UNCERTAINTIES AND MONTE-CARLO
SIMULATIONS
To represent parameter uncertainty in simulations, at the
beginning of an episode the device parameters Pi (resistors’,
indudctors’, capacitors’ and load values) are drawn from a
Gaussian normal distribution N (µ = Pi, σ = 0.1 ·Pi),
using the device nominal parameter as an average value and
assuming a device tolerance of 10%. Balanced or unbalanced
parameters can be chosen by selecting the same parameter for
all three phases or different per phase. For noise and device
parameter samples, clipping is implemented to prevent too
high deviations and limit the device tolerance.

Moreover noise is added to all measurement signals based
on a Gaussian normal distributionN (0; σ ). For the upcoming
real-world investigation in Sec. V, a current and voltage
noise measurement has been performed at a test bench using
setpoints of v∗dq0 = [0, 0, 0]T V and i∗dq0 = [0, 0, 0]T A,
respectively. The measured standard deviation σv and σi are
listed in Tab. 1. Because of the implementation of auto-
matic offset nulling, the average values are chosen to be
zero.

For every episode of the later shown experiments a Monte-
Carlo simulation is applied to take a representative perfor-
mance sample to evaluate the used controller parameters.
Thereby, the simulation is executed several times using the
same controller parameters but different device and noise
parameter samples. At the end of theMonte-Carlo simulation,
the average performance of all nMC Monte-Carlo measure-
ments is used for a simulation-based parameter optimization
of the control design.

The Monte-Carlo approach is an important intermediate
step to address the system uncertainty already when simulat-
ing. Moreover, it is the necessary basis for tuning the abstract
hyperparameters of the safe Bayesian optimization approach
(cf. Sec. IV) to ensure that the algorithm performs only
safe controller updates during real-world investigations when
interacting with an actual, physical system (cf. Sec. V). Thus,
the Monte-Carlo-based simulation is the important middle
layer of the proposed simulation to real-world experiment
pipeline as shown in Fig. 6.

IV. SAFE BAYESIAN OPTIMIZATION FOR CONTROLLER
TUNING
In this section, we first introduce the safe Bayesian opti-
mization approach for data-driven controller tuning. Then,
we apply the methodology using the previously introduced
simulation framework to determine suitable hyperparameter
values, i.e., configure the optimizers degrees of freedom. This
is done for several control scenarios:

1) only current controller optimization,
2) sequential current and voltage controller optimization,
3) parallel current and voltage controller optimization.

Another focus is on the application-specific definition of
reward functions to ensure consistently high controller per-
formance during and after Bayesian optimization.

FIGURE 6. Transfer from simulation to real world using extensive
pre-investigations for hyperparameter configuration.

A. SafeOpt
The algorithm’s task is to find optimal controller parameters
during online operation. To avoid failures during this pro-
cedure, e.g. encountering unsafe control parameters leading
to dangerously high overshoots, an extension of Bayesian
optimization [44], called SafeOpt, has been proposed in [26].

The general concept behind Bayesian optimization is to
learn a model of the optimization landscape that can predict
expected performance along with an uncertainty measure. In
our case the performance landscape is a parameterspace 2.
When evaluating a specific parameter we query the function
J : 2 → R which maps each parameter to a performance
value we aim to maximize.

The functions

um(θ ) = µm−1(θ )+ βmσm−1(θ ), (14)

lm(θ ) = µm−1(θ )− βmσm−1(θ ), (15)

define the upper and lower confidence bound of a parameter
vector θ withm ∈ {1, . . . ,M}.µm−1( · ) predicts the expected
performance value with respect to the m − 1 parameters
evaluated so far. σm−1( · ) predicts the variance of the per-
formance estimate with respect to the currently evaluated
points, hence it is an uncertainty estimate. βm is a scaling
parameter for the variance that can be changed over time to
trade-off exploitation and exploration. The next data point,
i.e., a promising controller parameter set, to be evaluated
by J ( · ) is calculated with respect to the upper confidence
bound [45]

θm+1 = argmax
θ∈2

um(θ ). (16)

Gaussian process (GP) regression is commonly used in
Bayesian optimization as it is comparatively data efficient
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when configured with good prior knowledge. This prior
knowledge is expressed in the selection of the covariance
function k( · , · ), which is a similarity measure defined over
a tuple of data points (parameters). The function expresses
how strongly performance values are correlated depending
on the difference in two parameter vectors. Various functions
can be used which have different hyperparameters, the most
prominent being the lengthscale `, which defines how fast
the correlation decays with respect to distance. As the per-
formance evaluation is subject to noise, the GP is commonly
configured to account for that. Hence, we aim to maximize
Ĵm = Jm + ω with ω ∼ N (0, ξ ). The mean and variance
function used in (14) for GP are defined as follows:

µm(θ ) = km(θ )(Km + Imξ )−1Ĵ
T
m, (17)

σ 2
m(θ ) = k(θ , θ)− km(θ )(Km + Imξ )−1kT

m(θ ), (18)

km(θ ) = [k(θ , θ1), . . . , k(θ , θm)], (19)

[Km](i,j) = k(θ i, θ j); i, j ∈ {1, . . . ,m}, (20)

Ĵm = [Ĵ (θ1), . . . , Ĵ (θm)]. (21)

The matrix K is called covariance matrix and expresses all
pairwise similarities between the recorded data points. The
vector k expresses the similarity of the current point towards
the known data samples. Im is the identity matrix of size m.

For all later experiments the Matérn kernel

kν=3/2(r) =
(
1+

√
3r
`

)
exp

(
−

√
3r
`

)
(22)

where r = θ i− θ j and the lengthscale ` is used as covariance
function for the GP regression. Additionally, boundaries B
for the range of the parameters were set application specific.
For more details refer [46, 16ff.].

The SafeOpt algorithm proposed in [26] defines safety
in a probabilistic manner. The set of parameters considered
safe at episode m is called Sm. This set is also called safe
region. It consists of all parameters whose lower confidence
performance is above our safety threshold Jmin

Sm = {θ ∈ 2 | lm(θ ) ≥ Jmin}, (23)

with 2 being the parameter space and θ a parametrization of
the controller.

From this safe set only parameter are considered for evalu-
ation that eighter extend our safe set and therefore the search
space or have a chance to improve upon the best known
parameter so far. Those two, not necessarily disjoint sets are
called expanders and maximizers and attempt to solve the
well-known exploration-exploitation dilemma.
Expanders are parameters which potentially extend the

safe set:

Em = {θ ∈ Sm | gm(θ ) > 0}, (24)

gm(θ ) =
∣∣{θ ′ ∈ 2 \ Sm | lm,(θ ,um(θ ))(θ ′) ≥ Jmin}∣∣. (25)

However, here we do calculate the lm,(θ ,um(θ ))( · ) only with
the m points know so far, but also included the additional
datapoint θ along with the most optimistic estimate of its

performance um(θ )) (15) Hence, the indicator function gm( · )
predicts the number of points that would be added to the safe
set in case the θ yields the best performance that could be
expected.
Maximizers are points whose upper confidence bound

exceed the currently highest lower bound of the optimal
performance:

Mm = {θ ∈ Sm | um(θ ) ≥ max
θ ′∈2

lm(θ ′)}. (26)

Finally the next parameter selected for evaluation is the
point among expanders and maximizers that with maximum
uncertainty:

θm+1 = argmax
θ∈M∪E

σ (θ ). (27)

The discussed safety concept therefore relies on two
assumptions:

• First, the performance in the learning environment must
be representative of the real applications faced by the
learned agent later on. This is important, as each param-
eterization is only evaluated a predefined number of time
steps in its learning environment.

• Second, the GP must be able to sufficiently fit the
observed performance, otherwise the confidence bounds
are not reliable.

For this reason, the pre-investigation using Monte-Carlo sim-
ulation includes various model uncertainties in order to catch
possible worst-case scenarios (cf. Sec. III-C). Furthermore,
we will show that the abstract hyperparameters of the dis-
cussed algorithm (in particular the lengthscale `) must be
fine tuned in the course of the pre-investigation in order to
prevent unsafe controller parameterization in the real-world
experiments.

B. BASIC SETUP FOR CURRENT CONTROLLER
OPTIMIZATION
Safe Bayesian optimization is now used for tuning the current
controller based on the Monte-Carlo simulation framework
as discussed on Sec. III-C. The load is Zload = 0 � to
model a short circuit, which is a standard approach when
investigating the current control loop. In this exemplary use
case, the inverter should supply a current of

i∗dq0 =

{
[10A, 0, 0]T, t < 20ms,
[5A, 0, 0]T, afterwards,

(28)

while all three-phases operate at a grid frequency of 60Hz.
The inverter is fed by an idealized DC source. Furthermore,
for all subsequent training episodes a blackstart is assumed
(i.e., all voltages and currents are initially zero).

In this work, the term safety is defined as a performance
metric J induced by the environments rewards and normalized
with respect to an empirically derived critical performance.
In the defined reward function (30), used for the current
controller layout, the mean-root-error (MRE) between the
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measured phase currents1 ip and the setpoints i∗p is provided
as the regular performance indicator, for p ∈ {a, b, c}.
However, the MRE is only an exemplary way to evaluate
the control performance. Compared to the classical mean-
squared-error (MSE) metric the MRE is penalizing smaller
control errors around zero stronger and, therefore, focuses on
reducing steady-state control errors. Nevertheless, arbitrary
performance measures can be included in the control agent
definition within the OMG toolbox.

Additional to the MRE, a barrier function is used as a
penalty if the nominal current inom is exceeded to avoid that
the current limit ilimit is reached. It is assumed that exceed-
ing ilimit will either lead to severe component damage (e.g.
by thermal overloading of the power electronic semiconduc-
tors) or to an automatic emergency shutdown of the system.
For this example, the nominal current and its limit are defined
by the physical system like described in Sec. V by

inom = 12A, ilimit = 16A .

The total reward is then given by

rn = −
1
N

∑
p∈{a,b,c}


√√√√∣∣∣i∗p,n − ip,n∣∣∣

ilimit

(29)

− λc · log
(
1−

max(|ip,n| − inom, 0)
ilimit − inom

)
for n ∈ {1, . . . ,N } time steps of the discrete-time controller
running at Ts = 100µs (cf. Tab. 1).Moreover, λc is theweight
of the barrier function penalty which was set to λc = 80. The
performance J is calculated depending on the average reward
per episode over all, N , time steps:

J =

∑N
n=1 rn − Jlim
Jinit − Jlim

. (30)

Here, Jinit is the performance of the initial, safe parameter set
and Jlim defines the minimal allowed performance to ensure
safety. As a result of this normalization Jmin = 0.
To find Jlim for the current controller investigation, (30) is

used for two scenarios. First assuming a maximally allowed
phase shift of 5◦, then assuming an amplitude deviation of
10% between measurement and setpoint. In both scenarios
a blackstart is simulated applying a ramp up to the wanted
setpoint. Beyond that the setpoint is changed once in each
scenario just like in the later experiments. Jlim is set equal
to the maximum return of the two experiment, i.e., using the
stricter of the two constraints.

C. AN UNSAFE DEMONSTRATION
Fig. 7 shows a visualization of the GP model with 15 sam-
ples to highlight the working principle of safe Bayesian

1For simplified notation we refer to the filter inductor current if,p as the
phase current ip (cf. Fig. 4).

FIGURE 7. Resulting performance measurement and GP model after 15
episodes. Only Ki is adjusted using SafeOpt while Kp = 0.005 V/A is kept
constant. The dashed line indicates the safe threshold, the blue curve the
mean function and the blue region the 95 % confidence bounds of the
GP. The red marker represents the last, the magenta the initial and the
green the best measurement.

optimization. For a more intuitive demonstration, only the
control parameter Ki,c of the current controller is considered
for the optimization and initialized with 5V/(As), while
Kp,c = 0.005V/A is fixed. The blue curve line shows the
mean function of the Gaussian process (17). The blue region
surrounding the mean function shows the 95% confidence
bounds and is defines using (18). Jmin is indicated by the
dashed line.

In GP regression, the fitted function is expected to change
equally fast over the whole domain. This assumption is
expressed in the covariance function and its lengthscale (com-
pare Sec. IV-A). Fig. 7, however, shows that such a perfor-
mance function can be fairly constant in some regions and
shows rapid change in others. To allow the GP to predict
confidence bounds in regions of fast change, the lengthscale
of the covariance function has to be chosen extremely small.
This means that parameters that are expected to have strong
correlation in their performance values lay very close to
each other. This parameterization, however, also results in
very conservative exploration in regions with fairly constant
performance. Unfortunately, the GP cannot predict the steep
performance drop (cf. again Fig. 7) if neither the prior expec-
tation nor the observed data indicate such a steep change.
Therefore, selecting a larger lengthscale results in highly
overconfident behavior as the boundaries of the performance
plateau are missed.

Accordingly, a default SafeOpt algorithm configuration
cannot solve the given task satisfactorily and requires addi-
tional hyperparameter tuning, in particular, finding length-
scale values ensuring the fastest possible exploration while
preventing unsafe trials as demonstrated in Fig. 7. If the opti-
mization algorithm with the shown configuration would had
been tested on a real, technical system, this would presumably
have caused an emergency shutdown. This illustrates that
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TABLE 2. Hyperparameters for the current controller opt.

FIGURE 8. Simulated performance landscape (z-axis) for the current
controller optimization with variable Kp,c and Ki,c using parameter
setting depicted in Tab. 1.

a simulative pre-investigation for hyperparameter tuning is
indispensable.

D. CURRENT CONTROLLER OPTIMIZATION
After discussing the optimization setup and a simplified,
single parameter demonstration, the application is extended
to optimize both Kp,c and Ki,c. As explained in before the
lengthscale is a critical parameter. To choose a proper value
for the real-world experiment the simulation is run with
different lengthscales to find a tradeoff between exploration
and accurate performance prediction. The bounds for the
Gaussian process and the chosen lengthscales are listed in
Tab. 2. During the different Monte-Carlo simulation runs the
system parameters are drawn from random distributions as
discussed in Sec. III-C.

The resulting performance landscape using the hyperpa-
rameters listed in Tab. 1 is shown in Fig. 8. The contour lines
visualize the performance landscape. The integral gain Ki,c
and proportional gain Kp,c are shown on the y- and x-axis,
respectively. The safe threshold and the confidence bounds
are not indicated in this plot.

Using the best found controller parameters

Kp,c = 0.024V/A and Ki,c = 24V/(As)

can increase the performance about 17% compared to the
analytical, model-based design from Sec. III-B. The current
waveforms using the optimal controller parameters are shown
in Fig. 9. Presented is the best result using these controller
parameter set out of the nMC samples. As can be seen a fast
control response with appropriate small overshoot is realized.

FIGURE 9. Simulated current waveforms using gain values
Kp,c = 0.024 V/A and Ki,c = 24 V/(As).

All presented results of the performance landscape show
the relative errors with respect to the initial performance point
but using the same Jlim and a safe threshold of zero.

E. VOLTAGE CONTROLLER OPTIMIZATION
Now, the SafeOpt method, depicted in Fig. 5, is applied to
find optimal parameters of the voltage controller. The system
parameters from Tab. 1 are still valid but N = 2000 was
chosen and the exemplary use case differs. An ohmic load
performing two load steps

Zload =

{
15.4�, 73ms<t<123ms,
28�, else,

(31)

is applied to test the controller performance resulting in an
exemplary inductor current as shown in Fig. 10.
To show a common distribution grid-like application the

voltage setpoint is chosen to

v∗dq0 = [120 ·
√
2V, 0, 0]T. (32)

The underlying current controller is not optimized and is fixed
using the default parameters (10), but obviously the previous
result from Sec. IV-B could be used as well. The developed
voltage reward function is

rn = −
1
N

∑
p∈{a,b,c}


√√√√∣∣∣v∗p,n − vp,n∣∣∣

vlimit

(33)

− λv · log
(
1−

max(|vp,n| − vnom, 0)
vlimit − vnom

)
for n ∈ {1, . . . ,N } control steps, using vnom = 190V and
vlimit = 285V.
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FIGURE 10. Simulated current waveforms using controller gain values
Kp,v = 0.022 A/V and Ki,v = 213 A/(Vs).

The performance is calculated according to:

J =

(∑N
n=1 rn + Jdiff

)
− Jlim

Jinit − Jlim
. (34)

Here, Jdiff represents a return add-on depending on the gra-
dient of the voltages in dq-frame to punish controller oscilla-
tion. It is added after each episode to the return given by the
reward function. As can be seen in (35) Jdiff is set to zero if
the voltage differs more than ±20V from the setpoint. That
should avoid to punish planned steps in the setpoint.

Jdiff =

{
−κ ∇ vdq0, |vd| < 0.12 · v∗d
0, else.

(35)

Here, ∇ vdq0 is calculated using finite differences accord-
ing to [47] and κ aweighting factor (similar to λv in the barrier
function). Choosing κ and λv appropriately, the punishment
can be weighted accordingly to put the focus more on avoid-
ing overshoot or controller oscillation.

Similarly to the already mentioned system parameters,
Zload is sampled from a distribution using a standard deviation
of 0.1 ·Zload and applying a clipping at ±10%. This leads to
a punishment for overshoots using lower controller param-
eters and avoiding high controller oscillations using higher
controller values. The minimal allowed performance Jlim was
calculated using (33) for worst-case scenario with a maximal
phase shift of 5◦ and assuming an amplitude deviation of 10%
between measurement and setpoint. Again, Jlim is set equal
to the maximum return of the two experiments. Additionally,
a 1.5 kHz sine wave with 2% · v∗ amplitude to trigger the
gradient based part of the reward was added to the signal
used to calculate Jlim. Then, (35) was taken to add a gradi-
ent depending return. The choice of Jlim strongly influences
exploration, because it defines the safe threshold. Therefore,
a more conservative Jlim suppresses exploration but ensures
safety. Choosing a lower threshold enhances the exploration
but could lead to safety problems (cf. Sec. IV-B).

TABLE 3. Hyperparameters for the voltage controller opt.

FIGURE 11. Simulated performance landscape (z-axis) for the voltage
controller optimization with variable Kp,v and Ki,v.

As discussed in Sec. III-A the load current acts as a distur-
bance in the voltage control loop. The OMG toolbox allows
to add a disturbance observer (e.g. Luenberger observer [48])
enabling to apply feed-forward compensation [20]. However,
since this did not lead to any significant positive effect on
the performance of the voltage control loop in simulative
and real-world pre-investigations, and since the following
considerations should be kept vividly simple, a disturbance
observer is not implemented.

The resulting performance landscape of the Monte-Carlo
simulation is shown in Fig. 11. Here, the controller param-
eters (13) using the analytical layout were taken as initial
parameter set and the chosen GP and reward parameters are
listed in Tab. 3.

The best found controller parameters

Kp,v = 0.022A/V and Ki,v = 213A/(Vs)

result in a performance increase of about 480% compared
to the analytical baseline from Sec. III-B. The best result for
the simulated capacitor voltage waveforms of the nMC runs
using the upper found parameters are shown in Fig. 12. It
can be seen, that the blackstart is performed fast with a small
overshoot. The load steps lead to transient voltage wave form
distortions, but the optimized voltage controller is able to
quickly compensate for this disturbance changes.

F. MUTUAL CURRENT AND VOLTAGE CONTROLLER
OPTIMIZATION
At last, the experiments from Sec. IV-B and Sec. IV-E are
combined and Kp,c, Ki,c, Kp,v and Ki,v are optimized at the
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FIGURE 12. Simulated voltage waveforms using gain values
Kp,v = 0.022 A/V and Ki,v = 213 A/(Vs).

TABLE 4. Hyperparameters for the mutual controller opt.

TABLE 5. Resulting best controller parameters and corresponding
performances from the simulative pre-investigation.

same time. Therefore, the reward functions (30) and (33) are
simply added together for this mutual optimization. Because
of the more complex optimization problem, the number of
episodes is increased toM = 60. Furthermore, the parameters
from Tab. 1 and the application defined in (31) were used. As
initial tune, the analytically calculated controller parameters
were taken. The chosen GP and reward parameters are listed
in Tab. 4. Due to the change in the reward function Jlim, λ and
κ was adjusted as well, while (34) was used to calculate the
performance.

The controller parameters of the best performing tune lead-
ing to a performance of J = 1.26 are listed in Tab. 5 in
the last colon. The resulting voltage waveforms for the upper
mentioned best controller tunes are shown in Fig. 13.

V. TRANSFER FROM SIMULATION TO REAL-WORLD
EXPERIMENT
In this section, we introduce the transfer to a real-world
experiments. Therefore, the OpenModelica part (compare

FIGURE 13. Simulated voltage waveforms using gain values
Kp,c = 0.04 V/A, Ki,c = 27 V/(As),Kp,v = 0.017 A/V and Ki,v = 105,A/(Vs).

FIGURE 14. General dq-based inverter control using cascaded current
and voltage control implemented on an FPGA.

Fig. 5) is replaced by physical laboratory prototype inverter.
As indicated in Fig. 14, the control process is executed on
a FPGA. The SafeOpt algorithm is executed in Python and
optimizes the control parameters of the digital controller.

A. TEST BENCH
The test bench shown in Fig. 15 consists of an Intel
CyclonerV SoC FPGA, coupling the capabilities of the
FPGA with a Dual Core ARM Cortex-A9 processor. This
controls a two-level inverter stack detailed in Tab. 6. The use
of an AD7606 ADC ensures all analog channels are sampled
at the same time and are synchronized to the pulse widthmod-
ulation (PWM). The all low-level control functionalists are
implemented in the FPGA, while SafeOpt is implemented in
the ARM processor. It should also be noted that SafeOpt can
be remotely executed on any network-connected host com-
puter since the communication between the test bench control
platform and SafeOpt can be executed asynchronously using
standard network protocols.

B. CURRENT CONTROLLER INVESTIGATION
First, SafeOpt is applied to the test bench shown in Sec. V-A
to optimize the parameters of the current controller.
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TABLE 6. Test bench hardware.

FIGURE 15. Real-world experiment setting showing power hardware
consisting of IGBTs and DC-link capacitors connected to the DC-source,
LC-filter and measurement going to FPGA.

FIGURE 16. Measured performance landscape (z-axis) for the current
controller optimization with variable Kp,c and Ki,c.

As the initial parameter set (10) is used. The parameters for
the Gaussian process, the reward from Tab. 2 and (30) as
well as the performance function (30) are transferred from
the simulative pre-investigations described in Sec. IV-B. The
real-world device parameters from Tab. 6 correspond to the
simulation model from Sec. III-A. Furthermore, the short
circuit experiment is applied taking the setpoints from (28).
The resulting, measured performance landscape is shown in
Fig. 16 and can be compared to the one in Sec. IV-B.
Using the best controller parameters

Kp,c = 0.042V/A and Ki,c = 24V/(As)

FIGURE 17. Measured current waveforms frame using gain values
Kp,c = 0.042 V/A and Ki,c = 24 V/(As).

increases the performance by about 12%. Compared to Fig. 8,
it can be concluded that the simulation predicts the test bench
behavior quite well by using the adjustments described in
Sec. III-B.

The current waveforms using the optimal controller param-
eters are shown in Fig. 17 and are comparable to the simulated
ones in Fig. 9. During loadsteps the overshoot behavior dif-
fers slightly caused by different controller parameters in the
proportional term of the PI controller. That leads to a slightly
difference in the performance result. The safe threshold was
again chosen to be zero.

C. VOLTAGE CONTROLLER INVESTIGATION
In the following, the optimization is applied to tune the
voltage controller at the test bench to compare the real-
world to the simulation results from Sec. IV-E. The loadsteps
described in (31) are realized using a relay to apply the in
(32) defined voltage setpoint to the load. (33) and (34) are
used as reward and performance function, respectively. The
same lengthscales and boundaries for the Gaussian process
and the same reward parameter from Tab. 3 were taken,
besides the gradient parameter κ has been set to 5 to find a
trade-off in punishing overshoots and controller oscillations.
Jlim calculated earlier was increased to get a good trade-off
between exploration and safety. As initial parameters for the
voltage controller again (13) were taken while the current
controller parameters from (10) were left unchanged.

The resulting performance landscape is shown in Fig. 18.
It can be seen that exploration is reduced in comparison to the
simulation result in Fig. 11 to ensure safety in the real-word
experiment. The best voltage controller parameters are

Kp,v = 0.012A/V and Ki,v = 183A/(Vs)

resulting in a performance increase of about 258%.
The measured voltages using these parameters are shown

in Fig. 19. In comparison to the best simulation result shown
in Fig. 12, a higher voltage overshoot after the blackstart but
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FIGURE 18. Measured performance landscape (z-axis) for the voltage
controller optimization with variable Kp,v and Ki,v.

FIGURE 19. Measured voltage waveforms using gain values
Kp,v = 0.012 A/V and Ki,v = 183 A/(Vs).

less overshoot during the loadsteps can be detected. Neverthe-
less, the control performance increase due to the application
of SafeOpt is significant.

D. MUTUAL CURRENT AND VOLTAGE CONTROLLER
INVESTIGATION
At least the in Sec.IV-F described optimization of the current
and voltage controller parameters at the same time is run on
the test bench using same lengthscales and boundaries for the
Gaussian process and the same reward parameter from Tab. 4.
As initial parameters for the voltage controller (13) and for
the current controller (10) were taken. The same setting as
described in Sec. IV-F was used and the best tune is listed in
Tab. 7 in the left colon, reaching a performance of J = 1.26.
The current controller proportional gain is higher and the

integral gain is lower compared to Sec. V-B. That can be
explained by the modified use case. The controller param-
eters for the voltage controller are in the range of the in

TABLE 7. Resulting best controller parameters and corresponding
performances from real-world optimization.

FIGURE 20. Measured voltage waveforms in abc frame using gain values
Kp,c = 0.039 V/A, Ki,c = 2.3/(As),Kp,v = 0.018 A/V and Ki,v = 92,A/(Vs).

Sec. V-C found plateau. Small differences in the optimal
found parameters can be caused by different used current
controller parameters or less exploration. The resulting volt-
age waveforms for the upper mentioned best controller tunes
are shown in Fig. 20. Especially while comparing Fig. 20
with Fig. 19 – where only the voltage controller parameters
are optimized – it can be seen, that the overshoot during
blackstart was reduced. So, optimizing all used controller
parameters at once can increase performance but is difficult
due to the complex reward and optimization functions.

VI. CONCLUSION AND OUTLOOK
With the OMG toolbox, a fully open-source, scalable and
flexible platform for simulation and testing of intelligent
microgrid control is proposed. The toolbox fills a gap in the
area of dynamic system and control analysis for inverter-
driven microgrids. The core feature is a customizable inter-
face between OpenModelica for plug and play-like system
modeling and Python for the integration of arbitrary control
algorithms. OMG already offers some standard controllers as
well as auxiliary tools (e.g. phase-looked loops) to speed up
the overall simulation and control design process for the user.
In addition, the integrated OpenAI Gym interface offers a
wide range of options for training and evaluating data-driven
controllers from the field of reinforcement learning.

The importance of safety has already been highlighted
by the data-driven optimization case study of a linear feed-
back controller. Although the standard voltage source inverter

VOLUME 9, 2021 35667



D. Weber et al.: Safe Bayesian Optimization for Data-Driven Power Electronics Control Design in Microgrids

control framework is heavily based on expert knowledge,
its data-driven optimization is associated with the risk of
creating unsafe system states, potentially leading to system
malfunctions or damages. Safe Bayesian optimization could
only prevent this to a limited extent, because its abstract
uncertainty evaluation based on Gaussian processes cannot
provide a fully reliable safety prediction. It also comes with
several important but unintuitive hyperparameters which con-
figuration hasmajor impact on the exploration behavior. Only
extensive, simulative pre-investigations using OMG and an
accompanying empirical optimization of the hyperparameters
could enable a safe transfer to real-world experiments.

Safe, data-driven control of microgrids remains an excit-
ing research challenge for future work. The integration of
a priori expert knowledge for the evaluation of safe control
methods appears to be promising, e.g. to monitor and guide
the training of exploring, self-adapting control methods like
from the field of reinforcement learning. In addition, OMG’s
functionality is continuously being extended, with a current
focus on the development of abstracted, dynamic models
(e.g. swing equation approach). This will make it possible
to investigate larger MSG topologies as well as simulate
longer time spans with acceptable numerical effort, which is
necessary for evaluating higher level MSG control strategies.
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