
Towards Meta-Algorithm Selection

Alexander Tornede, Marcel Wever, Eyke Hüllermeier
Heinz Nixdorf Institute and Department of Computer Science

Paderborn University, Germany
{alexander.tornede, marcel.wever, eyke}@uni-paderborn.de

Abstract

Instance-specific algorithm selection (AS) deals with the automatic selection of
an algorithm from a fixed set of candidates most suitable for a specific instance
of an algorithmic problem class, where “suitability” often refers to an algorithm’s
runtime. Over the past years, a plethora of algorithm selectors have been proposed.
As an algorithm selector is again an algorithm solving a specific problem, the idea
of algorithm selection could also be applied to AS algorithms, leading to a meta-AS
approach: Given an instance, the goal is to select an algorithm selector, which
is then used to select the actual algorithm for solving the problem instance. We
elaborate on consequences of applying AS on a meta-level and identify possible
problems. Empirically, we show that meta-algorithm-selection can indeed prove
beneficial in some cases. In general, however, successful AS approaches have
problems with solving the meta-level problem.

1 Introduction

In instance-specific algorithm selection (AS), we are faced with instances of an algorithmic problem
class, such as the Boolean satisfiability problem (SAT), and a set of algorithms to choose for solving
the instance. The goal of AS is to select the algorithm that is most suitable for a given instance, in the
sense that it performs best with respect to a certain criterion. AS is motivated by the observation that
algorithms perform differently well on different instances, so that choosing in a per-instance manner
can improve the overall performance [1] — quite in line with theoretical “no free lunch” results [2].

Several AS approaches have been proposed over the last years, the majority of which makes use
of machine learning techniques in order to exploit properties of the instances for selecting a good
algorithm. As an AS algorithm is again an algorithm solving a specific problem, the idea of algorithm
selection could also be applied to AS algorithms, leading to a meta-AS approach. Indeed, a certain
complementarity among AS algorithms can be observed (e.g. [3]) and the resulting meta-AS problem
was first mentioned by [4] and [1]. Besides, the strategy of selecting among a set of meta-experts,
who in turn select the expert actually solving the problem, appears to be quite common in practice.
Consider, for example, the case of building a house. Very few people select the handicraft companies
actually building their house themselves, but rather choose a general contractor, who in turn picks
craftsmen for building the requested house.

One of the few existing works is AutoFolio [5], suggesting combined selection and configuration
of algorithm selectors. However, it mainly focuses on the configuration of algorithm selection
approaches on a scenario-level, i.e., it tries to find the best configuration of an algorithm selector
for a collection of instances, also called scenario. Extending the idea of AutoFolio to the problem
of automated machine learning, AS approaches optimizing design choices regarding automated
machine learning strategies were proposed recently [6, 7]. In this work, we seek to select among
available algorithm selectors, which in turn select an actual algorithm solving the problem, for every
instance individually, allowing for much more nuanced decisions potentially yielding performance
improvements.

4th Workshop on Meta-Learning at NeurIPS 2020, Vancouver, Canada.

ar
X

iv
:2

01
1.

08
78

4v
1 

 [
cs

.L
G

] 
 1

7 
N

ov
 2

02
0



2 The (Per-Instance) Algorithm Selection Problem

The per-instance algorithm selection problem, first introduced in [8], comprises a problem instance
space I and a set of candidate algorithms A. The goal is to find a mapping s : I −→ A, called
algorithm selector. Given a problem instance i ∈ I, the mapping should ideally return the algorithm
a∗ ∈ A optimizing a performance measure m : I × A −→ R. This performance measure is usually
costly to evaluate, rendering an enumeration over the set of algorithms infeasible. Accordingly, the
virtual best solver (VBS) aka. oracle, i.e., the optimal algorithm selector, is defined as

s∗(i) = argmin
a∈A

E [m(i, a)] (1)

for all problem instances i ∈ I, where the expectation accounts for the potential randomness in the
application of an algorithm. The strategy always selecting the algorithm which is best on average,
i.e., averaged over instances i ∈ I, is called the single best solver (SBS).

2.1 Common Algorithm Selection Solutions

To compensate for the costly to evaluate performance measure m, most AS approaches employ
machine learning techniques for learning surrogate models of the form (or a similar one) m̂ :
I × A −→ R approximating the original performance measure, while being fast to evaluate. Such
surrogates allow one to specify an algorithm selector s : I −→ A as

s(i) ..= argmin
a∈A

m̂(i, a) . (2)

In order to learn such surrogate models, we assume the existence of training data in the form of a
set of instances ID ⊂ I for which the performance m(i, a) is available for some algorithms a ∈ A.
In addition, we assume that instances can be represented as d-dimensional feature vectors using a
feature function f : I −→ Rd. Examples of such features for an instance of the Boolean satisfiability
problem (SAT) are the number of clauses or the number of variables. Note that the computation of
these features costs time, which is important to consider when the measure m to optimize is (related
to) runtime. This means that algorithm selection approaches NOT requiring such features can be
advantageous if the feature computation is time consuming.

A simple example approach inferring such a surrogate model in the form of a regression function was
introduced in [9] (PAReg), where the authors suggest to learn a regression function m̂a : I −→ R
for each algorithm a ∈ A, predicting the performance of algorithm a on a given instance. Hence
a selector (2) can be defined by m̂(i, a) ..= m̂a(i). Another natural idea is to tackle the problem
through multiclass-classification (MCC) methods where each algorithm corresponds to one class
[3]. Other approaches, such as SUNNY [10] or ISAC [11], estimate the unknown performance of
an instance/algorithm pair by falling back to similar instances, for which evaluations are available,
using k-nearest neighbor or clustering techniques. More recently, an effective decision-theoretic
approach based on survival analysis was presented in [3], called Run2Survive (R2SPAR10 / R2SExp),
explicitly modeling censored information present in the training data. A more recent version of [9],
called SATzilla’11 [12], leverages pairwise comparisons of algorithms by training a cost-sensitive
decision forest for each pair of algorithms, predicting which one most likely performs better for
a given instance. The selected algorithm is determined via majority voting. Following the idea
of pairwise comparisons, [13] investigate how combined ranking and regression models perform
for algorithm selection, demonstrating hybrid models to achieve performance superior to models
considering only regression or only ranking information. For a more comprehensive overview of
algorithm selection, we refer to [1].

2.2 Loss Functions

When considering algorithmic satisfaction problems, one is usually interested in optimizing the
runtime as a performance measure m under the condition that a given instance has to be solved.
However, in the case of combinatorial problems, some algorithms need extremely long to solve some
instances [14], resulting in a time-constrained evaluation. For this purpose, one usually considers a
so-called cutoff C, after which an algorithm is terminated and the instance considered unsolved. The
most common loss function in AS, taking this into account, is the penalized average runtime (PAR10)

PAR10(t) =
{
t if t ≤ C

10 · C else
(3)

2



Figure 1: Left: An algorithm selector s : I −→ A and its role as part of a meta-algorithm selector.
Right: A meta-algorithm selector smeta that can choose from a set of algorithm selectors.

where t is the runtime of the algorithm as chosen by the algorithm selector. This score is averaged
over all instances in order to rate a selector’s performance on a set of instances, also called scenario.
As PAR10 scores are incomparable across scenarios, one often considers the normalized PAR10 score
defined as nPAR10(s) = (PAR10s − PAR10oracle)/(PAR10SBS − PAR10oracle), where PAR10s is
the PAR10 score of an algorithm selector s.

3 Per-Instance Meta-Algorithm-Selection

Per-instance meta-algorithm-selection (meta-AS) concerns the problem of selecting an algorithm
selector, for a given instance of an algorithmic problem class. The selected algorithm selector then
in turn selects the actual algorithm solving the problem. Hence, instead of directly choosing an
algorithm to solve a problem instance, we take a detour by selecting an algorithm selector.

Formally, in the meta-AS problem, we seek to find a mapping smeta : I −→ Ameta , called algorithm
selector selector (ASS), optimizing the original performance measure m. While being in principle
identical to the standard AS problem, the set of algorithms Ameta to choose from does no longer
contain algorithms actually solving problem instances, but algorithm selection approaches, which in
turn choose one of the algorithms solving an instance. Hence, the set of meta-algorithms to choose
from, is a subset of all possible algorithm selectors, i.e., Ameta ⊆ {s|s : I −→ A}.
Similarly as in standard AS, we treat the algorithms, i.e., algorithm selectors, from Ameta as
black-boxes and ready to be applied, although one could in principle slot a training phase for the
algorithm selectors in ahead. Hence, in the meta-algorithm selection problem one only has to derive
a meta-algorithm selector. The connection between standard AS and meta-AS is depicted in Fig. 1.

3.1 Meta-Algorithm-Selection Solutions

As the meta-AS problem is essentially a special case of the standard AS problem with a very specific
set of algorithms to choose from, standard AS methods (see Sec. 2.1) can in principle be applied for
solving the problem. It is important to note that algorithm selection approaches that do not rely on
feature representations of instances do no longer necessarily have an advantage in terms of runtime,
if they select an algorithm selector which in turn requires the feature representation. If the feature
computation has to be performed either on the meta or on the base-level, its time has to be considered
as well. However, there is no need to perform the computation twice if both the algorithm selector
selector and the algorithm selector require it, as resulting features can be shared.

3.2 Implications for the Oracle and the Single-Best-Solver

It is important to note that the oracle on the meta-level, i.e., the algorithm-selector-oracle (AS-oracle),
is in general not identical to the oracle on the base-level, as the set of algorithms to choose from
changes. In fact, the AS-oracle, is defined as

s∗meta(i) = arg min
s∈Ameta

E [m(i, s(i))] . (4)

For a better understanding, consider the following example with two algorithms A1 and A2 and two
algorithm selectors s1 and s2, where both always select algorithm A1. Furthermore, assume that
there exists an instance, for which A2 performs better than A1, and hence the oracle would select A2.
However, the AS-oracle can only select s1 or s2, which in turn both select A1.

3



Generally speaking, in order to preserve the original oracle, there has to be, for each instance, at least
one algorithm selector which selects the best algorithm. By the time this is not the case for at least
one instance, the AS-oracle performance will degrade compared to the oracle. In practice, there will
be at least one such instance most of the time, and hence an important question is how much the
oracle performance degrades. As we show in our experimental evaluation, the degradation strongly
depends on the scenario at hand, and ranges from less than 1% to over 85%.

Similarly to the oracle, the SBS changes as well, since the single best algorithm selector (SBAS), i.e.,
the SBS on the meta-level, is selecting from algorithm selectors, making it a lot stronger baseline.
Hence, while the original oracle selects the actual problem solving algorithm best on average and
accordingly does not depend on instance features, the SBAS does in fact depend on such features as
long as it is not identical to the original SBS. Observe that this results in a significant disadvantage
for the SBAS in terms of achievable PAR10 scores.

Obviously, these implications also influence the gains in performance, which can be achieved by
algorithm selector selectors in comparison to algorithm selectors. As the oracle performance most
likely degrades, while the SBS performance most likely improves, the gap between the two also
decreases, offering less potential for algorithm selection approaches to close this gap.

4 Experimental Evaluation

In this section, we present the results of an experimental evaluation built around the meta-algorithm
selection problem based on the ASlib v4.0 benchmark suite [15]. The study is organized into three
parts: First, we relate the performances of the SBS and the oracle for both levels to each other.
Thereby, we discuss the fact that the gaps between SBS and oracle become smaller indeed, as already
noted in Sec. 3.2. Second, we evaluate if and to what extent the application of algorithm selector
selectors does yield an improvement in algorithm selection performance. Third, we investigate
whether algorithm selector selectors are able to improve over the SBAS.

We evaluate each approach for every ASlib scenario by performing a 10-fold cross-validation over
the instances of a scenario and report cropped means for all measures we compute. For these cropped
means, we remove the two best and two worst splits. Often algorithm selection systems consist of
more elements than just a surrogate, such as pre-solvers or feature selectors. For our experimental
study, we consider pure algorithm selection models. All experiments were run on machines featuring
Intel Xeon E5-2695v4@2.1GHz CPUs with 16 cores and 64GB RAM. In order to allow for full
reproducibility of our results, the code for all experiments and the generation of plots including
detailed documentation can be found on Github1.

4.1 Results

Fig. 2 shows the PAR10 scores of the oracle, AS-oracle, SBS and SBAS on a subset of the ASlib
v4.0 benchmark scenarios. As one can see, several of the implications we noted in Sec. 3.2 can be
validated empirically: Firstly and most importantly, although the SBS/oracle gap is a lot larger than
the SBAS/AS-oracle gap, the SBAS/AS-oracle gaps are non-negligible, and hence meta-algorithm
selection does in principle make sense. For example, consider scenarios SAT12-ALL, or QBF-2016
with large SBAS/AS-oracle gaps.

As we noted earlier, the reason why these gaps become smaller is that oracle performance degrades
when moving to the meta-level for all scenarios whereas the SBS performance improves when
moving to the meta-level in general, since the SBAS is essentially an algorithm selector. While the
degradation in oracle performance is moderate for the majority of scenarios (less than 10%), the
SBS improvement is non-negligible, as the more successful the algorithm selectors considered by the
algorithm selector selectors are, the larger this performance gain is.

Table 1 shows the normalized PAR10 scores of all algorithm selectors and the corresponding algorithm
selector selectors, both normalized with respect to the standard oracle and SBS. The result of the best
approach is marked in bold for each scenario. A value of 0 corresponds to oracle performance, a value
of 1 to SBS performance, and values in-between indicate an improvement over the SBS, whereas
values above 1 indicate degradation compared to the SBS. Unsurprisingly, most algorithm selector

1https://github.com/alexandertornede/meta_as

4

https://github.com/alexandertornede/meta_as


AS
P-

PO
TA

SS
CO

BN
SL

-2
01

6

CP
M

P-
20

15

CS
P-

20
10

CS
P-

M
in

izi
nc

-T
im

e-
20

16

M
AX

SA
T-

PM
S-

20
16

M
AX

SA
T-

W
PM

S-
20

16

M
AX

SA
T1

2-
PM

S

M
AX

SA
T1

5-
PM

S-
IN

DU

M
IP

-2
01

6

QB
F-

20
14

QB
F-

20
16

SA
T1

2-
AL

L

SA
T1

2-
HA

ND

SA
T1

2-
IN

DU

SA
T1

2-
RA

ND

SA
T1

5-
IN

DU

TS
P-

LI
ON

20
15

Scenario

0

2000

4000

6000

8000

10000

PA
R1

0

oracle
AS-oracle
SBS
SBAS

Figure 2: This figures shows the PAR10 scores of the oracle, AS-oracle, SBS and SBAS on a subset
of the ASlib v4.0 benchmark scenarios as bar charts.

Table 1: Normalized PAR10 scores of all base- and meta-algorithm selectors normalized wrt. the
standard oracle and SBS. The result of the best approach is marked in bold for each scenario.
Moreover, for the meta-algorithm selectors the values in brackets (a/b) indicate that that the approach
achieves a performance better or equal to a base-approaches and is worse than b base-approaches.

Level Algorithm Selectors Algorithm Selector Selectors (Meta)

A
pp

ro
ac

h

R
2S

E
xp

R
2S

PA
R

10

IS
A

C

M
C

C

PA
R

eg

SA
T

zi
lla

’1
1

SU
N

N
Y

R
2S

E
xp

R
2S

PA
R

10

IS
A

C

M
C

C

PA
R

eg

SA
T

zi
lla

’1
1

SU
N

N
Y

Scenario

ASP-POTASSCO 0.30 0.32 0.60 0.64 0.34 0.47 0.17 0.23 (6/1) 0.22 (6/1) 0.23 (6/1) 0.37 (3/4) 0.30 (6/1) 0.30 (6/1) 0.26 (6/1)
BNSL-2016 0.18 0.21 0.84 0.31 0.18 0.18 0.25 0.22 (3/4) 0.21 (4/3) 0.19 (4/3) 0.28 (2/5) 0.22 (3/4) 0.28 (2/5) 0.27 (2/5)
CPMP-2015 0.76 0.69 0.90 0.85 0.78 0.70 0.94 0.78 (4/3) 0.78 (4/3) 0.89 (2/5) 0.81 (3/4) 0.77 (4/3) 0.81 (3/4) 0.89 (2/5)
CSP-2010 0.13 0.15 0.31 0.80 0.25 0.13 0.34 0.04 (7/0) 0.04 (7/0) 0.19 (4/3) 0.13 (7/0) 0.46 (1/6) 0.21 (4/3) 0.09 (7/0)
CSP-Minizinc-Time-2016 0.43 0.27 0.83 0.36 0.67 0.34 0.37 0.51 (2/5) 0.51 (2/5) 0.76 (1/6) 0.60 (2/5) 0.67 (2/5) 0.35 (5/2) 0.51 (2/5)
GRAPHS-2015 0.76 0.71 0.88 1.37 0.80 1.02 0.45 0.76 (5/2) 0.73 (5/2) 1.06 (1/6) 1.05 (1/6) 0.87 (3/4) 1.22 (1/6) 1.00 (2/5)
MAXSAT-PMS-2016 0.60 0.36 0.82 1.06 0.77 0.62 0.41 0.64 (3/4) 0.65 (3/4) 0.60 (5/2) 0.71 (3/4) 0.82 (2/5) 0.98 (1/6) 0.75 (3/4)
MAXSAT-WPMS-2016 0.44 0.37 0.76 0.85 0.52 0.31 0.16 0.37 (5/2) 0.39 (4/3) 0.60 (2/5) 0.60 (2/5) 0.54 (2/5) 0.43 (4/3) 0.44 (4/3)
MAXSAT12-PMS 0.22 0.23 0.47 0.40 0.28 0.24 0.29 0.25 (4/3) 0.25 (4/3) 0.20 (7/0) 0.19 (7/0) 0.32 (2/5) 0.20 (7/0) 0.21 (7/0)
MAXSAT15-PMS-INDU 0.34 0.44 0.89 1.06 0.55 0.39 0.24 0.36 (5/2) 0.57 (2/5) 0.33 (6/1) 0.39 (5/2) 0.40 (4/3) 0.51 (3/4) 0.26 (6/1)
MIP-2016 1.07 0.96 0.76 1.13 1.58 1.05 0.68 1.00 (4/3) 0.98 (4/3) 1.07 (3/4) 1.25 (1/6) 1.48 (1/6) 1.29 (1/6) 0.77 (5/2)
PROTEUS-2014 0.41 0.41 0.64 0.84 0.45 0.58 0.47 0.46 (4/3) 0.46 (4/3) 0.48 (3/4) 0.49 (3/4) 0.53 (3/4) 0.62 (2/5) 0.53 (3/4)
QBF-2011 0.21 0.20 0.36 0.35 0.18 0.15 0.22 0.21 (4/3) 0.21 (4/3) 0.21 (4/3) 0.21 (4/3) 0.29 (2/5) 0.25 (2/5) 0.25 (2/5)
QBF-2014 0.26 0.28 0.52 0.59 0.32 0.31 0.31 0.30 (5/2) 0.32 (3/4) 0.32 (3/4) 0.35 (2/5) 0.41 (2/5) 0.39 (2/5) 0.35 (2/5)
QBF-2016 0.52 0.51 0.65 0.69 0.61 0.61 0.49 0.55 (4/3) 0.55 (4/3) 0.52 (5/2) 0.53 (4/3) 0.62 (2/5) 0.57 (4/3) 0.58 (4/3)
SAT03-16_INDU 0.71 0.76 0.98 0.99 0.77 0.82 0.82 0.92 (2/5) 0.90 (2/5) 0.78 (4/3) 0.79 (4/3) 0.81 (4/3) 0.84 (2/5) 0.86 (2/5)
SAT11-HAND 0.34 0.34 0.65 0.57 0.46 0.44 0.60 0.42 (5/2) 0.47 (3/4) 0.42 (5/2) 0.44 (5/2) 0.50 (3/4) 0.45 (4/3) 0.56 (3/4)
SAT11-INDU 0.69 0.69 1.08 0.71 0.63 0.79 0.76 0.78 (2/5) 0.89 (1/6) 0.84 (1/6) 0.61 (7/0) 0.79 (2/5) 0.73 (3/4) 0.85 (1/6)
SAT11-RAND 0.13 0.06 0.58 0.17 0.09 0.39 0.12 0.13 (4/3) 0.13 (4/3) 0.19 (2/5) 0.17 (3/4) 0.19 (2/5) 0.32 (2/5) 0.20 (2/5)
SAT12-ALL 0.36 0.36 0.67 0.38 0.37 0.44 0.38 0.37 (5/2) 0.39 (2/5) 0.39 (2/5) 0.37 (5/2) 0.40 (2/5) 0.40 (2/5) 0.43 (2/5)
SAT12-HAND 0.34 0.34 0.65 0.41 0.37 0.27 0.43 0.34 (6/1) 0.33 (6/1) 0.31 (6/1) 0.40 (3/4) 0.40 (3/4) 0.39 (3/4) 0.38 (3/4)
SAT12-INDU 0.70 0.73 1.02 0.94 0.79 0.59 0.78 0.62 (6/1) 0.63 (6/1) 0.75 (4/3) 0.73 (5/2) 0.65 (6/1) 0.65 (6/1) 0.66 (6/1)
SAT12-RAND 0.96 0.86 0.84 5.20 1.17 0.93 1.14 1.03 (3/4) 1.05 (3/4) 0.95 (4/3) 0.96 (4/3) 1.19 (1/6) 1.13 (3/4) 1.05 (3/4)
SAT15-INDU 0.95 0.83 0.76 0.91 0.74 0.75 1.00 0.68 (7/0) 0.88 (3/4) 1.00 (1/6) 0.96 (1/6) 0.65 (7/0) 0.85 (3/4) 0.81 (4/3)
TSP-LION2015 1.73 1.77 16.69 56.55 2.60 40.08 10.27 1.74 (6/1) 1.73 (7/0) 17.79 (2/5) 36.21 (2/5) 3.03 (4/3) 44.3 (1/6) 12.35 (3/4)

selectors are able to consistently improve over the SBS. However, moving to the meta-level proves to
be beneficial for only 3 scenarios, which is disappointing. A possible cause of this observation might
be that the considered AS approaches are not able to unleash their full potential on the meta-level,
although considerable SBAS/AS-oracle gaps exist, as we have seen previously. In order to further
investigate this, we evaluate the different meta-AS approaches w.r.t. their meta-algorithm selection
performance in the following.

Moreover, for the algorithm selector selectors, the values in brackets (a/b) indicate that the approach
achieves a performance better or equal to a base approaches and is worse than b base approaches.
These results indicate that moving to the meta-level is beneficial in the sense that a more robust
performance across several scenarios can be achieved.

Table 2 shows a pairwise win/tie/loss between algorithm selectors and algorithm selector selectors
aggregated across scenarios, giving a fairer idea of whether deciding for an algorithm selector selector

5



Table 2: Win/Tie/Loss statistics, comparing ASS to algorithm selectors across scenarios.
Algorithm Selector Selectors (Meta)

R2SExp R2SPAR10 ISAC MCC PAReg Satzilla Sunny

A
lg

.S
el

ec
to

rs

R2SExp 6/4/15 8/3/14 5/4/16 2/3/20 2/1/22 5/1/19 7/1/17
R2SPAR10 6/2/17 5/1/19 5/0/20 4/1/20 4/0/21 3/0/22 7/0/18
ISAC 23/0/2 22/0/3 20/0/5 20/0/5 21/1/3 19/0/6 21/0/4
MCC 23/0/2 22/0/3 19/0/6 21/1/3 20/0/5 21/0/4 20/0/5
PAReg 17/2/6 13/2/10 11/1/13 11/1/13 6/1/18 11/0/14 11/0/14
Satzilla 14/0/11 9/0/16 11/0/14 9/3/13 8/1/16 6/0/19 11/0/14
Sunny 14/0/11 12/0/13 10/1/14 12/0/13 8/0/17 10/0/15 8/0/17

Table 3: PAR10 scores normalized wrt. to the SBAS and AS-oracle of all considered meta-AS
approaches. Values below 1, i.e., an improvement over the SBAS, are marked in bold.

Approach R2SExp R2SPAR10 ISAC MCC PAReg SATzilla’11 SUNNY
Scenario

ASP-POTASSCO 3.15 2.03 1.46 5.46 2.77 2.80 1.71
BNSL-2016 0.87 0.74 0.86 1.41 0.97 1.17 1.20
CPMP-2015 1.05 1.05 1.17 1.33 1.12 1.01 1.22
CSP-2010 1.07 0.87 2.69 0.91 272.51 1.13 0.79
CSP-Minizinc-Time-2016 1.64 1.64 2.04 14.69 3.11 1.03 0.94
GRAPHS-2015 0.95 0.93 1.64 1.31 1.31 1.74 1.50
MAXSAT-PMS-2016 2.72 1.27 1.05 3.18 5.09 8.18 3.05
MAXSAT-WPMS-2016 1.20 5.44 3.84 11.1 7.83 4.44 3.37
MAXSAT12-PMS 0.70 0.77 0.74 0.82 1.09 0.70 0.66
MAXSAT15-PMS-INDU 1.48 3.76 1.01 2.93 3.00 4.37 1.41
MIP-2016 1.01 1.00 1.13 0.99 1.00 0.95 0.76
PROTEUS-2014 1.18 1.20 1.30 1.34 1.49 1.76 1.50
QBF-2011 1.34 1.49 1.67 1.22 1.85 1.75 2.04
QBF-2014 1.16 1.22 1.51 1.53 1.55 1.66 1.54
QBF-2016 0.91 0.96 1.00 0.88 1.09 1.20 1.09
SAT03-16_INDU 1.48 1.46 1.23 1.30 1.29 1.45 1.49
SAT11-HAND 1.50 1.92 1.47 1.51 1.91 1.92 2.62
SAT11-INDU 1.33 1.38 1.31 0.89 1.48 1.00 1.43
SAT11-RAND 1.76 1.52 6.06 4.54 2.74 11.21 6.48
SAT12-ALL 1.08 1.21 1.21 1.19 1.33 1.29 1.36
SAT12-HAND 1.38 1.27 1.28 1.83 1.89 1.64 1.56
SAT12-INDU 1.24 1.25 1.38 1.41 1.27 1.21 1.15
SAT12-RAND 1.01 1.15 1.08 1.12 1.60 1.49 1.30
SAT15-INDU 0.73 0.83 1.19 1.14 0.67 0.68 0.89
TSP-LION2015 1.14 1.05 10.86 22.55 2.00 27.62 8.00

is more beneficial than deciding for an algorithm selector. Although some ASS are able to beat many
algorithm selectors on a majority of instances, ASS do not seem to be advantageous.

Table 3 shows the PAR10 scores normalized w.r.t. to the SBAS and AS-oracle of all considered
algorithm selector selectors, where improvements over the SBAS, i.e., values below 1, are marked
in bold. A first observation to be made is that none of the meta-AS approaches is able to achieve
an improvement over the SBAS on the majority of instances, indicating weaknesses in performing
successful algorithm selection on the meta-level. This observation suggests that very successful AS
approaches seem to have trouble to perform well on a meta-level. Note that these results have to be
treated with care. Although the SBAS is essentially an algorithm selector, a score below 1 does not
necessarily indicate that the corresponding ASS performs better than all algorithm selectors. The
SBAS is determined on the training data, and hence an improvement over the SBAS on the test data
is not equivalent to being better than all algorithm selectors on the test data.

5 Conclusion

We proposed the problem of meta-algorithm selection, where the task is to select the right algorithm
selector, and investigated how standard AS approaches perform on the meta-level. Our analysis
reveals interesting insights about the meta-AS problem concerning changes of the oracle and the SBS.
As suggested by a considerable gap between the SBAS and the AS-oracle, a potential improvement
through meta-AS definitely exists. This is confirmed by several cases, in which moving to the meta-
level proves beneficial in terms of algorithm selection performance. In general, however, standard AS
methods, when applied on the meta-level, do not seem to fully exploit this potential.

One may wonder, therefore, how AS on the meta-level could be improved. One idea is to consider
features of the algorithm selectors that would allow the application of methods from extreme algorithm
selection [16, 17]. Another idea worth investigation is to move to even higher meta-levels. Moreover,
the problem of oracle degradation could be tackled by including the original algorithms (which one
can think of as static algorithm selectors always choosing the same algorithm) in the set of algorithm
selectors to choose from.

6



Acknowledgments and Disclosure of Funding

This work was partially supported by the German Research Foundation (DFG) within the Collabora-
tive Research Center “On-The-Fly Computing” (SFB 901/3 project no. 160364472). The authors
gratefully acknowledge support of this project through computing time provided by the Paderborn
Center for Parallel Computing (PC2).

References
[1] P. Kerschke, H. H. Hoos, F. Neumann, and H. Trautmann. Automated algorithm selection:

Survey and perspectives. Evol. Comput., 27(1), 2019.

[2] D. H. Wolpert, W. G. Macready, et al. No free lunch theorems for optimization. Evol. Comput.,
1(1), 1997.

[3] A. Tornede, M. Wever, S. Werner, F. Mohr, and E. Hüllermeier. Run2survive: A decision-
theoretic approach to algorithm selection based on survival analysis. In ACML, 2020.

[4] M. Lindauer, J.N. van Rijn, and L. Kotthoff. The algorithm selection competitions 2015 and
2017. Artificial Intelligence, 272:86–100, 2019.

[5] M. Lindauer, H. H. Hoos, F. Hutter, and T. Schaub. Autofolio: An automatically configured
algorithm selector. J. Artif. Intell. Res., 53, 2015.

[6] M. Feurer and F. Hutter. Towards further automation in AutoML. In AutoML workshop @
ICML, 2018.

[7] M. Feurer, K. Eggensperger, S. Falkner, M. Lindauer, and F. Hutter. Auto-sklearn 2.0: The next
generation. arXiv preprint arXiv:2007.04074, 2020.

[8] J. R. Rice. The algorithm selection problem. Advances in Computers, 15, 1976.

[9] L. Xu, F. Hutter, H. H Hoos, and K. Leyton-Brown. Satzilla-07: the design and analysis of an
algorithm portfolio for sat. In CP. Springer, 2007.

[10] R. Amadini, M. Gabbrielli, and J. Mauro. SUNNY: a lazy portfolio approach for constraint
solving. Theory Pract. Log. Program., 14(4-5), 2014.

[11] S. Kadioglu, Y. Malitsky, M. Sellmann, and K. Tierney. ISAC - instance-specific algorithm
configuration. In ECAI, 2010.

[12] L. Xu, F. Hutter, H. Hoos, and K. Leyton-Brown. Hydra-mip: Automated algorithm configura-
tion and selection for mixed integer programming. In RCRA workshop @ IJCAI, 2011.

[13] J. Hanselle, A. Tornede, M. Wever, and E. Hüllermeier. Hybrid ranking and regression for
algorithm selection. In German Conference on Artificial Intelligence (Künstliche Intelligenz).
Springer, 2020.

[14] C. P. Gomes, B. Selman, and N. Crato. Heavy-tailed distributions in combinatorial search. In
International Conference on Principles and Practice of Constraint Programming. Springer,
1997.

[15] B. Bischl, P. Kerschke, L. Kotthoff, M. Lindauer, Y. Malitsky, A. Fréchette, H. H. Hoos,
F. Hutter, K. Leyton-Brown, K. Tierney, and J. Vanschoren. Aslib: A benchmark library for
algorithm selection. Artif. Intell., 237, 2016.

[16] A. Tornede, M. Wever, and E. Hüllermeier. Extreme algorithm selection with dyadic feature
representation. In Discovery Science, 2020.

[17] A. Tornede, M. Wever, and E. Hüllermeier. Algorithm selection as recommendation: From
collaborative filtering to dyad ranking. In CI Workshop, Dortmund, 2019.

7


	1 Introduction
	2 The (Per-Instance) Algorithm Selection Problem
	2.1 Common Algorithm Selection Solutions
	2.2 Loss Functions

	3 Per-Instance Meta-Algorithm-Selection
	3.1 Meta-Algorithm-Selection Solutions
	3.2 Implications for the Oracle and the Single-Best-Solver

	4 Experimental Evaluation
	4.1 Results

	5 Conclusion

