
Proceedings of Machine Learning Research 129:49–64, 2020 ACML 2020

A Novel Higher-order Weisfeiler-Lehman Graph Convolution

Clemens Damke cdamke@mail.upb.de
Vitalik Melnikov melnikov@mail.upb.de
Eyke Hüllermeier eyke@upb.de
Paderborn University
Heinz Nixdorf Institute and Department of Computer Science
Intelligent Systems and Machine Learning Group

Editors: Sinno Jialin Pan and Masashi Sugiyama

Abstract
Current graph neural network (GNN) architectures use a vertex neighborhood aggregation
scheme, which limits their discriminative power to that of the 1-dimensional Weisfeiler-
Lehman (WL) graph isomorphism test. Here, we propose a novel graph convolution op-
erator that is based on the 2-dimensional WL test. We formally show that the resulting
2-WL-GNN architecture is more discriminative than existing GNN approaches. This the-
oretical result is complemented by experimental studies using synthetic and real data.
On multiple common graph classification benchmarks, we demonstrate that the proposed
model is competitive with state-of-the-art graph kernels and GNNs.
Keywords: graph neural networks, Weisfeiler-Lehman, cycle detection

1. Introduction

Graph-structured data has recently received increasing attention in machine learning, with
applications ranging from the prediction of chemical properties, e.g., whether a molecule is
toxic (Luechtefeld et al., 2018), to the analysis of social network structures (Fan et al., 2019)
and source code (Richter et al., 2020). This paper focuses on the prediction of (global) graph
properties, i.e., graph classification and regression. In order to predict a certain property of
interest, for example to discriminate between graphs in a classification task, a learner must
be able to detect, either explicitly or implicitly, characteristic features of a graph that are
indicative of the sought property. To this end, suitable approaches have been developed in
the fields of kernel-based machine learning and (deep) neural networks.

Graph kernels (GKs) implicitly embed graphs in a kernel-induced feature space, thereby
making the data—via the kernel trick—amenable to kernel-based learning methods such as
support vector machines (SVMs). The features correspond to different (local) properties of
a graph. Examples of graph kernels include the multiscale Laplacian graph kernel (Kondor
and Pan, 2016), the Weisfeiler-Lehman subtree kernel (WLST) (Shervashidze et al., 2011),
and the Weisfeiler-Lehman shortest-path kernel (WLSP). A comprehensive and up-to-date
overview is provided by Kriege et al. (2020).

Unlike GKs, graph neural networks (GNNs) produce a prediction directly by applying
so-called graph convolution layers, which iteratively aggregate vertex features. Neverthe-
less, they resemble GKs in so far as those graph convolutions typically use similar graph

© 2020 C. Damke, V. Melnikov & E. Hüllermeier.

Damke Melnikov Hüllermeier

features, e.g., the Laplacian spectrum (Bruna et al., 2013) or the breadth-first-search (BFS)
subtrees that are also used by the WLST kernel. Two examples of approaches that utilize a
BFS subtree characterization are the so-called GCN (Kipf and Welling, 2017) and Graph-
SAGE (Hamilton et al., 2017) architectures. Recently, Xu et al. (2019) have shown that
both approaches and, more generally, all GNNs that are expressible in terms of a vertex
neighborhood aggregation scheme, cannot produce different predictions for graphs that are
indistinguishable via the 1-dimensional Weisfeiler-Lehman (WL) graph isomorphism test.

Even though the 1-WL test is able to distinguish almost all pairs of non-isomorphic
graphs (Babai et al., 1980), it fails at distinguishing any pair of d-regular graphs of the same
size (Immerman and Lander, 1990, Cor. 1.8.5). This restriction alone is not necessarily
an issue in the context of graph classification and regression problems, since in real-world
domains such as social networks, graphs are rarely perfectly regular. A more relevant re-
striction of 1-WL, and therefore GNNs, is the fact that it is unable to detect cycles of length
m ≥ 3. In practice, this means that a 1-WL-bounded GNN is unable to make predictions
based on important domain-specific graph properties, such as the clustering coefficient of a
social network or the presence of aromatic rings in molecules.

Fürer (2017) shows that the cycle detection restriction of 1-WL does however not ap-
ply to higher dimensional generalizations of 1-WL. More specifically, he shows that the
2-dimensional WL test is already sufficient to count the number of m-cycles in any graph
for all m ≤ 6. Recently, Arvind et al. (2019) extended this proof to a maximum cycle length
of m ≤ 7. This advantage of 2-WL over 1-WL motivates the idea to define a 2-WL inspired
graph convolution operator, which is able to utilize graph characteristics that are not de-
tectable by existing GNNs. Such an operator will be proposed and formally analyzed in
Section 4, which is the core of this paper. As a preparation, we start with a brief description
of the WL test and the current 1-WL-bounded graph convolution operators in Section 2,
and prove limitations of a related GNN extension in Section 3. In Section 5, our novel
operator is evaluated on synthetic as well as real-world graph classification datasets, prior
to concluding the paper with an outlook on future research in Section 6.

2. Preliminaries

In this section, we introduce some important definitions as well as terminology and notation
that will be used throughout the paper.

Definition 2.1. A graph G := (VG, EG) consists of a finite set of vertices vi ∈ VG and a set
of edges eij = (vi, vj) ∈ EG ⊆ V2

G. Continuous feature vectors xG[vi] ∈ XV , xG[eij] ∈ XE may
be associated with all vertices vi ∈ VG and edges eij ∈ EG, respectively. In this paper, all
graphs G are assumed to be undirected, i.e., eij ∈ EG ↔ eji ∈ EG and xG[eij] = xG[eji]. We
denote the set of all undirected graphs as G and the graph isomorphism relation as G ' H.

Definition 2.2. Let φ : A → B be a function with arbitrary domain A and codomain B.
We say that φ distinguishes a, a′ ∈ A (a 6'φ a′) iff. φ(a) 6= φ(a′).

Definition 2.3. A function φ : G → B is at least as discriminative as ψ : G → C (denoted
as φ � ψ) iff. ∀G,H ∈ G : G 6'ψ H → G 6'φ H. We say that φ has the same discriminative
power (DP) as ψ (denoted as φ ≡ ψ) iff. φ � ψ ∧ ψ � φ. Lastly, we say that φ is more
discriminative than ψ (denoted as φ � ψ) iff. φ � ψ ∧ φ 6≡ ψ.

50

A Novel Higher-order Weisfeiler-Lehman Graph Convolution

2.1. The Weisfeiler-Lehman Graph Isomorphism Test

The Weisfeiler-Lehman test (Cai et al., 1992) is a popular method to distinguish graphs.
There are multiple variations of this test in the literature; we will focus on the so-called
Folklore WL test. For a given graph G ∈ G, it assigns discrete labels c ∈ C, called colors, to
vertex k-tuples (v1, . . . , vk) ∈ VkG, where k ∈ N is the so-called WL-dimension that can be
chosen freely. A mapping χG,k : VkG → C is called a k-coloring of G.

Definition 2.4. A coloring χ′ refines χ (χ′ � χ) iff. ∀a, b ∈ VkG : a 6'χ b → a 6'χ′ b, i.e. χ′
distinguishes all tuples distinguished by χ. They are equivalent (χ ≡ χ′) iff. χ � χ′∧χ � χ′.

The k-dimensional WL test (k-WL) is computed by iteratively refining k-colorings χ(0)
G,k �

χ
(1)
G,k � . . . of a given graph G until the convergence criterion χ(t)

G,k ≡ χ
(t+1)
G,k is satisfied. We

denote the final, maximally refined k-WL coloring by χ̂G,k.
In the 1-dimensional case this means that an initial color is assigned to each vertex

of a graph G, e.g., the constant coloring ∀v ∈ VG : χ
(0)
G,1(v) = A for some initial color

A ∈ C. In each iteration of the 1-WL color refinement algorithm, the following neighborhood
aggregation scheme is then used to compute a new color for each vertex.

Definition 2.5. χ(t+1)
G,1 (v) := h

(
χ

(t)
G,1(v), {{χ(t)

G,1(u) |u ∈ ΓG(v)}}
)
, with ΓG(v) the neighbor-

ing vertices of v ∈ VG, {{ · }} denoting a multiset, and h : C∗ → C some freely-choosable
injective hash function that assigns a unique color to each finite combination of colors.

Analogous to the 1-dimensional refinement step from Def. 2.5, the k-dimensional color
refinement step is defined as follows.

Definition 2.6. χ(t+1)
G,k (s) := h

(
χ

(t)
G,k(s), {{(χ

(t)
G,k(s[u/1]), . . . , χ

(t)
G,k(s[u/k])) |u ∈ VG}}

)
with s = (v1, . . . , vk) ∈ VkG, s[u/j] := (v1, . . . , vj−1, u, vj+1, . . . , vk).

In 1-WL, a vertex color is refined by combining the colors of neighboring vertices. In
k-WL, the color of a k-tuple s ∈ VkG is refined by combining the colors of its neighborhood,
which is defined as the set of all k-tuples in which at most one vertex differs from s. Note
that each vertex k-tuple has one neighbor for each u ∈ VG, each of which is a k-tuple of
vertex k-tuples. For k = 2, this means that each potential edge (v, w) ∈ V2

G has all possible
walks of length 2 from v to w as its neighbors. Even though k-WL refines k-tuple colors,
lower-dimensional structures still get their own colors, since a tuple does not have to consist
of distinct vertices: In k-WL, the color of a single vertex v ∈ VG is described by χ̂G,k(s) for
s = (v, . . . , v) ∈ VkG; similarly, every possible edge eij ∈ V2

G has at least one color that can
encode the adjacency information, i.e., whether eij ∈ EG.

Definition 2.7. The color distribution distχG,k
: C → N0 of a k-coloring χG,k counts each

color c ∈ C in the coloring, i.e., distχG,k
(c) :=

∣∣{v ∈ VkG |χG,k(v) = c
}∣∣.

The output of the k-WL algorithm is the color distribution dist χ̂G,k
. Since the way in

which WL colorings are refined is vertex order invariant, any difference in the final color
distribution of two graphs always implies the non-isomorphism (6') of the colored graphs,
i.e., G 6'k-WL H =⇒ G 6' H. Figure 1 shows that the opposite does however not necessarily
hold. Additionally, it highlights the inability of 1-WL to detect cycles of varying lengths in
graphs.

51

Damke Melnikov Hüllermeier

A

A

A

A

AA

A

A

A

A

AA

A, AA
A, AA

A, AA
A, AA

A, AA A, AA

A, AA A, AA

A, AA
A, AA

A, AA
A, AA

B

B

B

B

BB

B

B

B

B

BB

t = 0 t = 0t = 1 t = 1

Figure 1: Two simple non-isomorphic graphs that are indistinguishable by 1-WL.

Definition 2.8. We say that k-WL detects m-cycles iff. k-WL � dm, where dm : G → {0, 1}
is an indicator function, that determines whether a given graph contains at least onem-cycle.

Intuitively, Def. 2.8 describes cycle detection as the ability to solve the corresponding
decision problem given only the color distributions dist χ̂G,k

for all G ∈ G. As already
mentioned in the introduction, to detect cycles of length m ≤ 7, a WL dimension of k ≥ 2
is required (Fürer, 2017; Arvind et al., 2019).

2.2. Graph Neural Networks

In this paper, we will focus on so-called spatial GNNs, which are expressible in terms of
repeated vertex neighborhood aggregations. Such a GNN takes a graph G ∈ G with vertex
feature vectors xG[v] ∈ Rd(0) as input; those features are typically represented as a matrix

Z
(0)
G :=

xG[v1]
...

xG[vn]

 ∈ Rn×d(0) , where n := |VG|. A GNN convolves this vertex feature matrix

via a stack of graph convolution operators S(t) : Rn×d(t−1) → Rn×d(t) s.t. Z(t)
G := S(t)(Z

(t−1)
G).

We use Z(t)
G [v] ∈ Rd(t) to denote the row vector of Z(t)

G , which represents the convolved vertex
features of v ∈ VG. After applying T convolutional layers, the convolved vertex features
Z

(T)
G [v] can be used directly for node classification problems, or they can be combined via

a pooling layer, e.g., an element-wise mean, to obtain a global graph feature vector which
in turn can be used to solve graph classification and regression (GC/GR) problems. In the
rest of this paper, GNNs will be discussed in the context of GC/GR.

To get an intuition for how GNNs relate to the WL algorithm, one should think of the
vertex feature vectors Z(t)

G as a continuous generalization of WL colors χ(t)
G,1. The graph

convolution operators S(t) then directly correspond to WL color refinement steps. This
intuition was recently formalized by Xu et al. (2019), who showed the following upper bound
on the discriminative power of GNNs.

Proposition 2.9. Any GNN that convolves vertex feature vectors via a convolution operator
of the form Z

(t)
G [v] = h(t)

(
Z

(t−1)
G [v], {{Z(t−1)

G [u] |u ∈ ΓG(v)}}
)
is at most as discriminative as

1-WL, where h(t) :
(
Rd(t−1)

)∗
→ Rd(t) is an arbitrary vertex neighborhood hashing function.

Moreover, iff. h(t) is injective, the GNN has the same DP as 1-WL.

52

A Novel Higher-order Weisfeiler-Lehman Graph Convolution

Among others, this bound applies to the GCN (Kipf and Welling, 2017) and Graph-
SAGE (Hamilton et al., 2017) architectures. Since those approaches use a non-injective
hashing function h(t), their DP turns out to be strictly lower than that of 1-WL. On the
other hand, the graph isomorphism network (GIN) (Xu et al., 2019) convolution operator
achieves injectivity through the use of a multilayer perceptron (MLP), and therefore has the
same DP as 1-WL (cf. Def. 2.5):

Z
(t)
G [v] := MLP(t)

(1 + ε)Z
(t−1)
G [v] +

∑
u∈ΓG(v)

Z
(t−1)
G [u]

 with some irrational ε > 0. (1)

3. Limitations of an Existing 2-GNN

The idea to extend GNNs along the lines of the higher-order WL algorithm, which we shall
elaborate on in Section 4 below, is not entirely new. Morris et al. (2019) recently proposed
the so-called k-GNN, which adapts the discrete k-WL refinement step (see Def. 2.6) to the
continuous convolution setting. However, it turns out that k-GNNs do not preserve some of
the desirable properties of k-WL. In particular, unlike 2-WL, 2-GNNs cannot count or even
detect m-cycles in graphs. In this section, we give a proof of this statement.

Similar to k-WL, a k-GNN iteratively refines/convolves the colors/features of combina-
tions of k vertices. To reduce runtime complexity, k-GNNs assign feature vectors to vertex
k-multisets instead of k-tuples. Additionally, only a “local” neighborhood of each multiset is
considered in k-GNN convolutions, whereas in k-WL each tuple has a “global” neighborhood
of size n = |VG|, one neighbor for each vertex u ∈ VG (cf. Def. 2.6). As we will see next,
the main difference between k-GNNs and k-WL lies in their respective notion of “neighbor-
hood”. More specifically, since 2-WL already has a significantly higher DP than 1-WL, we
will analyze how the DP of 2-GNNs compares to that of 1-WL and 2-WL.

2-GNNs define the neighbors of an edge eij = (vi, vj) to be the edges that are incident
to either vi or vj . In 2-WL, on the other hand, the neighbors of eij are the edge pairs
{(eil, elj)}vl∈VG , i.e., all possible walks of length two that start at vi and end at vj . This
difference becomes clear when comparing the definition of convolution in 2-GNNs with that
of color refinement in 2-WL:

2-GNN1: Z
(t)
G [eij] = σ

(
Z

(t−1)
G [eij]W

(t)+

 ∑
vl∈ΓG(vj)

Z
(t−1)
G [eil] +

∑
i 6=j ∧ vl∈ΓG(vi)

Z
(t−1)
G [elj]

W
(t)
Γ

)
(2)

2-WL: χ(t)
G,2(eij) = h

(
χ

(t−1)
G,2 (eij), {{(χ(t−1)

G,2 (eil), χ
(t−1)
G,2 (elj)) | vl ∈ VG}}

)
In order to analyze what those different notions of neighborhood imply for the DP of 2-
GNNs in comparison to 2-WL, we first show that the DP of 2-GNNs on all graphs G ∈ G is
less than or equal to that of 1-WL on the so-called edge neighborhood graphs GE ∈ GE .

1. Here, σ denotes some nonlinear activation function and W (t),W
(t)
Γ ∈ Rd(t−1)×d(t) the weight matrices of

the convolution operator. To highlight the relationship between 2-GNNs and 2-WL, a 2-GNN definition
that uses two sums over vl ∈ ΓG(vj) resp. vl ∈ ΓG(vi) is shown; this is equivalent to a single sum over
the features of the edges {(u,w) ∈ EG |u = vi ∨ w = vj} (see Morris et al., 2019).

53

Damke Melnikov Hüllermeier

BB

CB

AA

BC

CC

2-GNN 2-GNN

2-WL 2-WL

D A B B C CD A B C B C

F A B B C CE A B C B C

Figure 2: Two edge colorings on which 2-GNNs and 2-WL behave differently. A 2-GNN
will refine the “color vector” of eij to D for both initial colorings. 2-WL on the other hand
differentiates both colorings by preserving the color tuple information.

Definition 3.1. The edge neighborhood graph of a given graph G = (VG, EG) is defined as
GE := (VGE , EGE) with the vertices VGE := {{{v, u}} | (v, u) ∈ EG ∨ v = u} and the edges
EGE :=

{
(e, e′) ∈ V2

GE
| |e ∩ e′| = 1

}
.

Proposition 3.2. The DP of all 2-GNNs h2 : G → Y is less than or equal to that of 1-WL
on edge neighborhood graphs, i.e., ∀G,H ∈ G : GE '1-WL H

E → h2(G) = h2(H).

Proof. By Def. 3.1, ΓGE (eij) = {(u,w) ∈ EG |u = vi ∨ w = vj} for all eij ∈ EG. Therefore,
the 2-GNN convolution in Eq. (2) can be rewritten as a vertex neighborhood convolution

Z
(t)
G [e] = σ

Z(t−1)
G [e]W (t) +

∑
e′∈Γ

GE (e)

Z
(t−1)
G [e′]W

(t)
Γ

. Prop. 3.2 then follows from Prop. 2.9.

Lemma 3.3. 1-WL cannot distinguish the edge neighborhood graphs GE and HE of any pair
of d-regular graphs G and H with n vertices.

Proof. Let G and H be two d-regular graphs of size n. Their corresponding edge neigh-
borhood graphs GE and HE both have nE = n + nd

2 vertices, n of which correspond to
the vertices of G and H respectively; we will refer to them as loop vertices LG/LH . The
remaining nd

2 edge neighborhood vertices correspond to the edges of G and H; we will refer
to them as edge vertices EG/EH .

W.l.o.g. we define the initial colors of the loop vertices as χ(0)(v) = A for all v ∈ LG ∪ LH .
The initial colors of the edge vertices are defined as χ(0)(e) = B for all e ∈ EG ∪ EH . Note
that each loop vertex {{vi, vi}} with vi ∈ VG ∪ VH has d neighbors, the edges incident to
vi. Similarly, each edge vertex {{vi, vj}} has 2d neighbors, two of which are the loop vertices
{{vi, vi}} and {{vj , vj}} with the remaining 2d− 2 neighbors corresponding to the edges that
are incident to eij .

After one color refinement step, we get χ(1)(v) = h(A, {{B, . . . ,B︸ ︷︷ ︸
d times

}}) =: C for all loop

vertices v ∈ LG ∪ LH and χ(1)(e) = h(B, {{A,A,B, . . . ,B︸ ︷︷ ︸
2d−2 times

}}) =: D. This means that χ(0) and

χ(1) are identical up to the color substitutions A → C and B → D, i.e. χ(0) ≡ χ(1), which
in turn implies that 1-WL terminates after one iteration. Lemma 3.3 then directly follows,
since both GE and HE have n vertices with the final color C and nd

2 vertices with the final
color D, i.e. GE '1-WL H

E .

54

A Novel Higher-order Weisfeiler-Lehman Graph Convolution

Proposition 3.4. A 2-GNN cannot distinguish regular graphs of the same size and therefore
has a lower DP than 2-WL.

Proof. The proposition directly follows from Prop. 3.2, Lem. 3.3 and the fact that 2-WL is
able to distinguish most regular graphs (Immerman and Lander, 1990, Cor. 1.8.6).

As previously mentioned, the DP of a model by itself is not necessarily relevant for real-
world GC/GR problems. However, 2-WL is not only more discriminative than 1-WL, but
is also able to detect and count the number of m-cycles in a given graph for all m ≤ 7. We
now show that 2-GNNs not only have a lower DP than 2-WL, but are also unable to detect
cycles.

Proposition 3.5. 2-GNNs cannot detect m-cycles for m ≥ 3.

Proof. Let n be the lowest common multiple of 3 and some m > 3. We define c3 := n
3

and cm := n
m . Based on that, we define the following two graphs: Let G3 be a graph

consisting of c3 disconnected cycles of length 3, analogously let Gm be a graph consisting of
cm disconnected cycles of length m. Since both G3 and Gm are 2-regular and have the size
n, any 2-GNN h2 : G → Y must map both of them to the same y ∈ Y by Prop. 3.4, i.e.,
G3 'h2 Gm.

Let us assume that h2 is able to detect cycles of length 3, i.e. triangles. Following Def. 2.8,
this would imply that h2 is at least as discriminative as the triangle detection function
d3 : G → {0, 1}. It follows that d3(G3) = 1∧d3(Gm) = 0⇒ G3 6'd3 Gm

h2 � d3
=====⇒ G3 6'h2 Gm,

which is a contradiction. Conversely, assuming that h2 is able to detect cycles of length
m > 3, the m-cycle detection function dm also distinguishes G3 and Gm, which again results
in the contradiction G3 'h2 Gm ∧G3 6'h2 Gm.

4. The 2-WL Graph Convolution Operator

In the previous section, we compared 2-GNNs with the 2-WL algorithm and found that the
former have a significantly lower DP than the latter. Motivated by this limitation, we devote
this section to a novel, more discriminative convolution operator, which is inspired by the
higher-order WL algorithm and meant to overcome the limitations of 1-WL. Our operator
is inspired by 2-WL but uses the following simplifications to reduce its computational cost.

Similar to k-GNNs, or more specifically, 2-GNNs, our novel operator refines/convolves
the feature vectors of 2-multisets {{vi, vj}} instead of refining/convolving the feature vectors
of 2-tuples (vi, vj). This simplification halves the number of feature vectors without affecting
the DP because we assume that graphs are undirected, i.e. eij and eji have identical feature
vectors x[eij] = x[eji] ∈ XE and the same 2-WL neighborhood. To simplify the notation, we
assume that eij = eji = {{vi, vj}} in the rest of the paper.

After applying the 2-multiset simplification, the 2-WL algorithm refines the color of all
multisets eij ∈ V2

G by hashing its current color and the colors of all neighbors {{{eil, elj}}}vl∈VG .
This means that the time complexity of a single refinement step is O(n3) for n := |VG|, which
quickly becomes infeasible for large graphs. To address this issue, we reduce both the num-
ber of colored edges as well as the number of neighbors of each edge. This is achieved by
only considering the edges that are part of the so-called r-th power of a graph G, where
r ∈ N is the freely choosable neighborhood radius.

55

Damke Melnikov Hüllermeier

Definition 4.1. The r-th power of a graph G is defined as

Gr :=
(
VG,

{
eij ∈ V2

G | dSP,G(vi, vj) ≤ r
})

,

where dSP,G(vi, vj) is the length of the shortest path between vi and vj in G. The distance
of a vertex vi ∈ VG to itself is defined as dSP,G(vi, vi) := 0. Note that G1 does not generally
equal G because G1 has self-loop edges eii ∈ EG1 at all vertices.

For the neighborhood radius r = 1, only the self-loop edges {eii}vi∈VG and the edges EG
are considered; for r > 1, edges between indirectly connected vertices are considered as well.
Through the reduction of the considered edges, the neighbors of each eij ∈ EGr are in turn
reduced to the common r-neighbors of vi and vj , i.e. {{{eil, elj}} | vl ∈ ΓGr(vi) ∩ ΓGr(vj)}.

Let us now consider what the reduced number of used edges and the reduced number of
edge neighbors implies for the runtime of a refinement step. If G is a sparse graph with the
maximum vertex degree d := maxv∈VG |ΓG(v)|, the number of considered edges is bounded
byO(ndr), where each edge has at mostO(dr) neighbors. Consequently, the time complexity
of a refinement step becomes O(nd2r), which is a significant improvement over the O(n3)
bound of a full 2-WL refinement step (assuming d� n).

Based on the 2-multiset and the neighborhood localization simplifications, we now define
the 2-WL convolution operator and the corresponding 2-WL-GNN.

Definition 4.2. The initial feature matrix Z(0)
G of the 2-WL convolution operator with the

neighborhood radius r ∈ N contains both the vertex features x[vi] ∈ XV = RdV as well as the
edge features x[eij] ∈ XE = RdE of a given graph G. More specifically, Z(0)

G ∈ R|EGr |×(dV+dE)

assigns a row vector Z(0)
G [eij] to all edges eij ∈ EGr . Those initial edge feature vectors are

defined by the following vector concatenation (⊕):

Z
(0)
G [eij] :=

({
x[vi] if i = j

0 else

)
⊕

({
x[eij] if eij ∈ EG
0 else

)
Definition 4.3. We define the 2-WL graph convolution operator as

Z
(t)
G [eij] := σ

Z(t−1)
G [eij]W

(t)
L +

∑
vl∈ΓGr (vi)∩ΓGr (vj)

κ(t)
(
Z

(t−1)
G [eij], {{Z(t−1)

G [eil], Z
(t−1)
G [elj]}}

) ,

with κ(t)(zij , {{zil, zlj}}) :=
(
zijW

(t)
F

)
� σΓ

(
(zil + zlj)W

(t)
Γ

)
.

This operator is parameterized by the three matrices W (t)
L ,W

(t)
F ,W

(t)
Γ ∈ Rd(t−1)×d(t) and

uses two freely choosable activation functions σ and σΓ. We use � to denote element-wise
multiplication. In the following, we will analyze the DP of GNNs using the 2-WL convolution
operator. Our goal is to show that such 2-WL-GNNs have a strictly higher DP than 1-WL.
We begin by proving that 2-WL-GNNs are at least as discriminative as 1-WL.

Definition 4.4. A GNN h1 : G → Y uses weighted vertex neighborhood sums if its convolu-
tional layers can be described by

Z
(t)
G [vi] = MLP(t)

wiiZ(t−1)
G [vi] +

∑
vj∈ΓG(vi)

wijZ
(t−1)
G [vl]

 .

56

A Novel Higher-order Weisfeiler-Lehman Graph Convolution

Definition 4.4 includes GCNs (Kipf and Welling, 2017), where the MLP only consists of a
single layer with weights wij = (|ΓG(vi)|+ 1)−

1
2 (|ΓG(vj)|+ 1)−

1
2 . GINs also trivially satisfy

the definition (see Eq. (1)).

Theorem 4.5. For each GNN h1 using weighted vertex neighborhood sums, there is a 2-
WL-GNN h2 that simulates h1, i.e., such that ∀G ∈ G : h1(G) = h2(G).

Proof. We prove by construction. Let G ∈ G be an arbitrary input graph with n := |VG| and
m := n+ |EG|. By definition, h1 is a GNN of the form Pool1(Conv1(G)), where Conv1 is a

stack of T weighted vertex neighborhood sum convolutions
{
S(t) : Rn×d(t−1) → Rn×d(t)

}T
t=1

with each corresponding MLP(t) having K layers. Pool1 combines the vertex feature vectors
produced by Conv1. Let h2 be a GNN of the form Pool2(Conv2(G)), where Conv2 is a
stack of (2 + K)T 2-WL convolution layers

{
S(t,k) : Rm×d(t,k−1) → Rm×d(t,k)

}
(t,k)∈[T]×[2+K]

(see Fig. 3) with the neighborhood radius r := 1. The layers
{
S(t,2+K)

}T
t=1

produce the
feature matrices Z(t,2+K) = Z(t+1,0) which are fed as input into the successor layer S(t+1,1).

weighted
neighbor sum MLP layers weighted

neighbor sum MLP layers

Figure 3: Illustration of the correspondence between Conv1 and Conv2.

Let ϕ : Rd(T,2+K) → Rd(T)∪{nil} be a function that maps the final 2-WL feature vectors pro-
duced by Conv2 to the output space of Conv1 or the constant nil. Let Pool2

(
Z

(T,2+K)
G

)
:=

Pool1({{zij | zij = ϕ
(
Z

(T,2+K)
G [eij]

)
∧ eij ∈ EG1 ∧ zij 6= nil}}). Theorem 4.5 then follows

if there is a function ϕ s.t. ∀vi ∈ VG : Conv1(G)[vi] = ϕ(Conv2(G)[eii]) and ∀eij ∈ EG :
ϕ(Conv2(G)[eij]) = nil. To guarantee that there is such a function ϕ, we now inductively
prove the following three invariants, which have to hold for all t ∈ {0, . . . , T}:

(P1) Z(t,2+K)
G [eij]1 = 1[i = j], i.e., the first component of each 2-WL feature vector allows

ϕ to decide whether that vector should be mapped to nil.

(P2) Z(t,2+K)
G [eii]2,...,(d(t)+1) = Z

(t)
G [vi], i.e., the second to (1 + d(t))-th components of each

self-loop feature vector in h2 contain the corresponding convolved vertex feature vector
at layer t in h1.

(P3) Z(t,2+K)
G [eij]d(t)+2 = wij , i.e., the weights for the vertex neighborhood sums are encoded

in the edge and self-loop feature vectors.

57

Damke Melnikov Hüllermeier

For t = 0, all invariants apply to the initial feature matrix Z(0,2+K)
G = Z

(1,0)
G by Def. 4.2:

∀vi ∈ VG : Z
(1,0)
G [eii] := (1)⊕ x[vi]⊕ (wii) and ∀eij ∈ EG : Z

(1,0)
G [eij] := (0)⊕ 0⊕ (wij).

Assuming the invariants hold for t − 1, we now show that they also hold for t. The layers
S(t,1) and S(t,2) are used to compute the weighted vertex neighborhood sums

Z(t,2)[eii]2,...,(1+d(t−1)) = wiiZ
(t,0)[eii]2,...,(1+d(t−1)) +

∑
vj∈ΓG(vi)

wijZ
(t,0)[ejj]2,...,(1+d(t−1)).

We now explicitly define parameter matrices for S(t,1) and S(t,2) s.t. this weighted sum is
produced. Note that the weighted vertex neighborhood sum only requires scalar multipli-
cation and vector addition, i.e., the d(t−1) vertex feature dimensions are mutually indepen-
dent. W.l.o.g. this allows us to simplify notation by treating the vertex feature vectors
as if they were scalars in the following definitions, i.e., we can assume d(t−1) = 1 and
Z(t,0)[eii] = (1, Z(t−1)[vi], wii) ∈ R3. Using this simplification, the layer S(t,1) is defined by

Z(t,1)[eij] = Z(t,0)[eij]W
(t,1)
L +

∑
vl∈ΓG1 (vi)∩ΓG1 (vj)

(
Z(t,0)[eij]W

(t,1)
F

)
�
((
Z(t,0)[eil] + Z(t,0)[elj]

)
W

(t,1)
Γ

)

=

(1, 0, wii, 0) +

(
0, 0, 0, 2wiiZ

(t−1)[vi]
)

+
∑

vl∈ΓG1 (vi)

(
0, 2

2Z
(t−1)[vi]wil, 0, 0

)
if i = j

(0, 0, wij , 0) +
(
0, 0, 0, wij(Z

(t−1)[vi] + 0)
)

+
(
0, 0, 0, wij(0 + Z(t−1)[vj])

)
else

=

1,

∑
vl∈ΓG1 (vi)

wilZ
(t−1)[vi], wii, 2wiiZ

(t−1)[vi]

 if i = j(
0, 0, wij , wij(Z

(t−1)[vi] + Z(t−1)[vj])
)

else

,

with W (t,1)
L :=

1 0 0 0
0 0 0 0
0 0 1 0

 ,W
(t,1)
F :=

0 0 0 0
0 1

2 0 0
0 0 0 1

 ,W
(t,1)
Γ :=

0 0 0 0
0 0 0 1
0 1 0 0

 .

The vertex neighborhood summation is completed via S(t,2), which is defined by

Z(t,2)[eij] =

1,−

∑
vl∈ΓG1 (vi)

wilZ
(t−1)[vi], wii

+
∑

vl∈ΓG1 (vi)

(
0, wil

(
Z(t−1)[vi] + Z(t−1)[vl]

)
, 0
)

if i = j

(0, 0, wij) else

=

1, wiiZ

(t−1)[vi] +
∑

vl∈ΓG(vi)

wilZ
(t−1)[vl], wii

 if i = j

(0, 0, wij) else

,

with W (t,2)
L :=

1 0 0
0 −1 0
0 0 1
0 0 0

 , W
(t,2)
F :=

0 1

2 0
0 0 0
0 0 0
0 0 0

 , W
(t,2)
Γ :=

0 0 0
0 0 0
0 0 0
0 1 0

 .

58

A Novel Higher-order Weisfeiler-Lehman Graph Convolution

C

A B

0

0

C, C2

A, A3

C
C

B

B

A A A
A
A

 A

- 3 + (+)

+ (+)

+ (+)

= + +
A

 A

B

B B

B
B

- 2
+ (+)

+ (+)

= +

A
 A

C

C C

C
C

- 2
+ (+)

+ (+)

= +

B, B2

 B+A 0

0 C+
A

Figure 4: Intuition for how S(t,1) and S(t,2) compute vertex neighborhood sums in two steps.
For simplicity, weights are ignored, i.e. all wij = 1. For each self-loop/edge eij ∈ EG1 , the
set of localized 2-WL neighbors ΓG1(vi)∩ΓG1(vj) is shown in the middle, after the first step.
The colors in this illustration are unrelated to the colored parts in the previous equations.

Using the two layers S(t,1) and S(t,2) that we just defined, the weighted vertex neighborhood
sum for all vi ∈ VG is contained in Z(t,2)[eii]. Additionally, for all eij ∈ EG1 , the indicators
Z(t,2)[eij]1 = 1[i = j] and the weights Z(t,2)[eij]d(t)+2 = wij are preserved. This means that
invariants (P1) and (P3) are satisfied after S(t,2).

To complete the induction step, it now remains to show that all three invariants hold after
applying the layers S(t,2+1), . . . , S(t,2+K). Note that a 2-WL convolution layer is reduced
to a fully connected layer if W (t)

F = 0. Via the universal approximation theorem (Hornik,
1991), we can therefore use S(t,2+1), . . . , S(t,2+K) to simulate the K layers of MLP(t) without
changing the first and last dimension of each feature vector to preserve invariants (P1)
and (P3). The resulting feature matrix Z(t,2+K) then satisfies all three invariants, which
completes the induction.

Using invariants (P1) and (P2) for t = T , we can therefore set

ϕ
(
Z

(T,2+K)
G [eij]

)
:=

{
Z

(T,2+K)
G [eij]2,...,(dT +1) if Z(T,2+K)

G [eij]1 = 1

nil else
.

By our previous definition of Pool2, this in turn implies that Pool2(Z
(T,2+K)
G) = Pool1(Z

(T)
G)

⇐⇒ h2(G) = h1(G), which concludes the proof.

Corollary 4.6. 2-WL-GNNs have at least the same DP as 1-WL.

Proof. The corollary directly follows from the fact that 2-WL-GNNs can simulate GINs by
Thm. 4.5 and the fact that GINs have the same DP as 1-WL by Prop. 2.9, because they use
injective vertex neighborhood hashing functions.

To complete our analysis of the DP of the 2-WL-GNN, we now show that it is not just
as discriminative as 1-WL but is in fact more discriminative than 1-WL.

Proposition 4.7. There are d-regular graphs G and H of size n, which can be distinguished
by 2-WL-GNNs.

59

Damke Melnikov Hüllermeier

Proof. The proposition follows if we choose the six-cycle graph for G and the two three-
cycles graph for H (see Fig. 1). Let h2 = Pool ◦ S be a 2-WL-GNN with the neighborhood
radius r = 1, which consists of a single 2-WL convolution layer S : R∗×2 → R∗×1 and the
pooling layer Pool = min. In accordance with Def. 4.2, we set the initial feature vectors of
the vertices vi of G and H to Z(0)[eii] := (1, 0) and the initial feature vectors of their edges

eij to Z(0)[eij] := (0, 1). Let the weight matrices of S be WL := 0 and WF = WΓ :=

(
1
1

)
.

For simplicity, we choose the identity activation functions σ = σΓ = id. By Def. 4.3,
all self-loops eii of G1 and H1 have the three neighbors {{{eii, eii}}, {{eij , eji}}, {{eil, eli}}},
i.e., the length-two walk along eii itself and the length-two walks to and from the two
neighboring vertices Γ(vi) = {vj , vl}. Therefore, the convolved feature vector of all self-
loops are Z(1)[eii] = (1)� ((1 + 1) + (1 + 1) + (1 + 1)) = 6. However, for the non-self-loops
of G1 and H1, i.e., the edges of G and H, we get differing convolved feature vectors. The
2-WL neighbors of eij ∈ EG are {{{eii, eij}}, {{eij , ejj}}}. The 2-WL neighbors of e′ij ∈ EH are
{{{e′ii, e′ij}}, {{e′ij , e′jj}}, {{e′il, e′lj}}}, where v′l ∈ VH is the common neighbor of v′i and v

′
j . The

different neighborhood sizes of the edges of G and H imply that ∀eij ∈ EG : Z(1)[eij] = 4,
while ∀e′ij ∈ EH : Z(1)[eij] = 6. Thus h2(G) = min{4, 6} 6= min{6, 6} = h2(H), which
concludes the proof.

Corollary 4.8. The DP of 2-WL-GNNs is strictly higher than that of the 1-WL algorithm.

Proof. The corollary directly follows from Cor. 4.6 and Prop. 4.7, since 1-WL cannot dis-
tinguish regular graphs (Immerman and Lander, 1990, Cor. 1.8.5).

This concludes our analysis of the discriminative power of 2-WL-GNNs. The key insight
in this section is that 2-WL-GNNs are more discriminative than all vertex neighborhood
aggregation GNNs, because the DP of the latter is at most that of 1-WL. Additionally, we
can conclude that 2-WL-GNNs are able to distinguish graphs that are indistinguishable by
2-GNNs due to Prop. 3.4 and 4.7.

Note that no statement regarding the DP of 2-WL-GNNs compared to 2-WL was made.
It is easy to see that 2-WL-GNNs generally cannot have the same power as 2-WL due to
the neighborhood localization simplification: For a small neighborhood radius of r = 1,
nonexistent edges eij /∈ EG do not have a feature vector; those missing feature vectors are
however required by the proof of 2-WL’s m-cycle counting ability for m ≥ 4 (see the proof
by Fürer, 2017, Lem. 1 and Thm. 2). We leave a thorough discussion of the relation between
2-WL-GNNs and 2-WL for future work.

5. Evaluation

In our experimental evaluation, we compare the proposed 2-WL convolution layer with other
state-of-the-art approaches. We focus on two types of learners: SVMs using graph kernels
and GNNs. We evaluate those learners by comparing their test accuracies on multiple
binary classification problems. To obtain those accuracies, we use the graph classification
benchmarking framework recently proposed by Errica et al. (2020): We use 10-fold stratified
training/test splits; for each split the hyperparameters are tuned via a second 90%/10%
validation holdout split of the training data. Experiments were run three times to smooth

60

A Novel Higher-order Weisfeiler-Lehman Graph Convolution

out differences caused by random weight initialization. To train models that require gradient-
based optimization, we use the well-known Adam optimizer and the standard binary cross-
entropy loss.

Using this assessment strategy, we evaluate SVMs with the following graph kernels:
WLST, WLSP, and the so-called 2-LWL and 2-GWL kernels (Morris et al., 2017); the last
two are essentially 2-WL variants of the WLST kernel. We additionally evaluate the following
GNNs: 2-WL-GNN (our method), GIN, 2-GNN, and a structure-unaware baseline that
applies an MLP to each vertex feature vector xG[v], sums up the resulting vectors and
applies another MLP to the sum (see Errica et al., 2020).

5.1. Synthetic Data

We begin with an evaluation on a synthetic binary classification dataset, which demonstrates
the potential advantages of a higher dimensional WL method. To determine the classes of
the graphs in this dataset, a learner has to solve the following unicolored triangle detection
problem: Given a graph G with vertices that are colored as either lG[v] = A or as lG[v] = B,
the learner has to find the unique triangle (vi, vj , vk) in G for which lG[vi] = lG[vj] = lG[vk].
The class of G is then determined by the color of the vertices (vi, vj , vk).

Based on this problem, we generated a synthetic triangle detection dataset. It contains
randomly generated graphs with varying vertex counts and vertex color proportions. We
use this dataset to evaluate whether a learner is able to ignore varying amounts of noisy
random structure and focus on relevant local substructures, in this case unicolored triangles.
For the evaluation of 2-WL-GNNs the neighborhood radius r = 2 is used.

Table 1: Mean accuracies and standard deviations on the triangle detection dataset.

Model (Iterations/Pooling) Train Test

K
er

n
el

WLST (T = 1) 88.3± 6.9 64.8± 13.2
WLST (T = 3) 98.0± 1.7 56.9± 11.1
WLST (T = 5) 100.0± 0.0 62.6± 11.2
WLSP (T = 3) 96.9± 8.4 68.0± 10.7
2-LWL (T = 3) 97.3± 3.3 56.5± 6.2
2-GWL (T = 3) 99.9± 0.2 61.8± 8.8

G
N

N

Baseline (sum) 48.8± 1.6 44.6± 8.1
GIN (sum) 84.2± 10.6 70.0± 7.4
2-GNN (mean) 93.2± 3.1 76.8± 10.7
2-GNN (weighted mean) 97.1± 2.9 81.8± 7.6
2-WL-GNN (mean) 98.3± 2.6 92.9± 8.4
2-WL-GNN (weighted mean) 99.8± 0.4 99.4± 1.3

AClass

BClass

Looking at the results in Tbl. 1, it can be seen that the structure-unaware baseline method
is completely unable to detect triangles, as expected. The structure-aware learners on the
other hand all perform better than random guessing and are in fact mostly able to fit the
training data perfectly. This shows that all generated graphs are 1-WL distinguishable; the
WL subtree kernel SVM, for example, can simply “memorize” the training graphs via their
unique 1-WL color distribution after T = 5 refinement steps.

61

Damke Melnikov Hüllermeier

However, the ability to distinguish training graphs is not sufficient to also classify pre-
viously unseen graphs correctly. Since 1-WL cannot detect triangles, all 1-WL bounded
approaches (WLST, WLSP, Baseline, GIN) are therefore unable to generalize, as suggested
by their test accuracies. Performance better than random guessing can be explained by avail-
ability of the following proxy indicator: The presence of an A-colored triangle in a graph
G implies that there is a local region with a slightly higher density of A-colored vertices
than in a B-colored graph H with the same vertex color proportions. This local difference in
color density is already detectable in the depth-1 BFS subtrees used by 1-WL after a single
refinement step, which explains why WLST performs similarly for T = 1 and T = 5.

As for the 2-WL inspired kernels, 2-LWL and 2-GWL, it is interesting to see that both
kernels do not appear to generalize better than the 1-WL bounded methods. We explain
this by the fairly small size of the triangle detection dataset (228 graphs); even though both
kernels embed graphs into a space which contains dimensions that indicate the presence of a
unicolored triangle, i.e., their DP is sufficiently high to solve the problem, there are so many
of those triangle-indicating embedding dimensions that the relevant indicator dimensions
found in a given training split might not overlap with those in the test split.

Looking at the 2-WL inspired GNNs (2-GNN, 2-WL-GNN), we find that the 2-WL-GNN
significantly outperforms all other methods, which is in line with our results from Sections 3
and 4.

5.2. Evaluation on Real-World Data

We evaluate the approaches on five common binary graph classification benchmark datasets,
namely the NCI1 (Shervashidze et al., 2011), PROTEINS (Borgwardt et al., 2005), and
D&D (Dobson and Doig, 2003) datasets from the domain of bioinformatics, and the REDDIT-
B and IMDB-B datasets (Yanardag and Vishwanathan, 2015) from social network analysis.
Tbl. 2 shows our evaluation results. For the evaluation of 2-WL-GNNs, different neighbor-
hood radii were used for each dataset. In the order of the columns in the table, the results
were obtained with the radii r = 8, 5, 2, 1 and 4, respectively.

Table 2: Mean test accuracies and standard deviations on real-world data.

Model (Iter./Pooling) NCI1 PROTEINS D&D REDDIT-B IMDB-B

K
er

n
el

WLST (T = 1) 73.9± 2.6 72.8± 3.3 78.9± 4.2 76.3± 2.5 71.0± 2.2
WLST (T = 3) 84.8± 1.6 73.0± 2.4 78.8± 4.3 78.0± 2.7 72.9± 2.5
WLSP (T = 3) OOM 73.1± 3.5 OOM OOM 74.4± 3.5
2-LWL (T = 3) 76.7± 2.2 69.4± 4.6 76.6± 3.5 75.8± 2.9 72.2± 3.3
2-GWL (T = 3) 71.6± 2.1 73.1± 3.6 76.3± 3.9 75.4± 3.2 70.4± 3.2

G
N

N

Baseline (sum) 67.7± 3.1 74.0± 4.9 75.7± 2.5 72.1± 7.8 50.7± 2.4
GIN (sum) 77.4± 2.9 71.8± 3.1 75.2± 3.4 87.0± 4.4 66.8± 3.9
2-GNN (mean) 75.9± 2.0 74.8± 3.4 72.9± 4.1 OOM 71.4± 3.6
2-GNN (w. mean) 78.3± 1.8 73.8± 3.5 69.6± 3.9 OOM 70.9± 3.2
2-WL-GNN (mean) 72.4± 2.9 76.5± 2.7 75.4± 3.3 83.7± 5.2 71.2± 4.0
2-WL-GNN (w. mean) 73.5± 2.9 76.2± 3.3 74.7± 3.1 89.4± 2.6 72.2± 3.1

Compared with the triangle detection dataset, the advantage of 2-WL-GNNs over the other
approaches is clearly less pronounced. This indicates that the theoretical advantages of 2-WL
over 1-WL are not as relevant for the five real-world domains as they are for the synthetic

62

A Novel Higher-order Weisfeiler-Lehman Graph Convolution

problem. Nonetheless, the test performance of 2-WL-GNNs is generally comparable to that
of the other state-of-the-art learners, in the sense that the performance of the evaluated
2-WL-GNN models is within the 2σ confidence interval of the best evaluated model.

If we look at the enzyme detection problem (PROTEINS and D&D), we observe that all
evaluated approaches appear to be unable to leverage structural information for a significant
improvement over the baseline learner. On the social network datasets (REDDIT-B and
IMDB-B), on the other hand, the structure aware methods clearly outperform the baseline.
This confirms similar results by Errica et al. (2020).

6. Conclusion

We proposed the novel 2-WL-GNN and showed it to be strictly more discriminative than
1-WL bounded GNNs. This theoretical advantage was clearly confirmed experimentally
on synthetic data, while results competitive to state-of-the-art graph kernels and GNNs
could be achieved on real-world data. We envision two main directions for future research:
First, a more thorough theoretical analysis of the relation between 2-WL-GNNs and 2-
WL is required to answer questions such as how the neighborhood radius r relates to the
discriminative power of a 2-WL-GNN. Second, evaluations on a broader range of domains
and other problem types, such as vertex labeling, link prediction, or graph regression, will
help to determine in which contexts the theoretical advantages of 2-WL-GNNs also lead to
practical improvements.

Acknowledgments

This work was supported by German Research Foundation (DFG) within the Collaborative
Research Center “On-The-Fly Computing” (SFB 901/3 project no. 160364472).

References

V. Arvind, F. Fuhlbrück, J. Köbler, and O. Verbitsky. On Weisfeiler-Leman Invariance: Sub-
graph Counts and Related Graph Properties. In Fundamentals of Computation Theory,
pages 111–125. Springer International Publishing, 2019.

L. Babai, P. Erdős, and S. M. Selkow. Random graph isomorphism. SIaM Journal on
computing, 9(3):628–635, 1980.

K. M. Borgwardt, C. S. Ong, S. Schonauer, S. V. N. Vishwanathan, A. J. Smola, and H.-P.
Kriegel. Protein function prediction via graph kernels. Bioinformatics, 21:i47–i56, 2005.

J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. Spectral Networks and Locally Connected
Networks on Graphs, 2013.

J. Cai, M. Fürer, and N. Immerman. An optimal lower bound on the number of variables
for graph identification. Combinatorica, 12(4):389–410, 1992.

P. D. Dobson and A. J. Doig. Distinguishing enzyme structures from non-enzymes without
alignments. Journal of Molecular Biology, 330(4):771–783, 2003.

63

Damke Melnikov Hüllermeier

F. Errica, M. Podda, D. Bacciu, and A. Micheli. A fair comparison of graph neural networks
for graph classification. In Int. Conf. on Learn. Rep., ICLR, 2020.

W. Fan, Y. Ma, Q. Li, Y. He, E. Zhao, J. Tang, and D. Yin. Graph Neural Networks for
Social Recommendation. In The Web Conf., WWW’19, 2019.

M. Fürer. On the Combinatorial Power of the Weisfeiler-Lehman Algorithm. In Lecture
Notes in Computer Science, pages 260–271. Springer International Publishing, 2017.

W. L. Hamilton, R. Ying, and J. Leskovec. Inductive Representation Learning on Large
Graphs. In Proceedings of the 31st Int. Conf. on Neural Inf. Proc. Sys., NIPS’17, page
1025–1035, 2017.

K. Hornik. Approximation capabilities of multilayer feedforward networks. Neural Networks,
4(2):251–257, 1991.

N. Immerman and E. Lander. Describing graphs: A first-order approach to graph canoniza-
tion. In Complexity theory retrospective, pages 59–81. Springer, 1990.

T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks.
International Conference on Learning Representations, 2017.

R. Kondor and H. Pan. The Multiscale Laplacian Graph Kernel. In Proceedings of the 30th
Int. Conf. on Neural Inf. Proc. Sys., NIPS’16, page 2990–2998, 2016.

N. M. Kriege, F. D. Johansson, and C. Morris. A survey on graph kernels. Applied Network
Science, 5(1), 2020.

T. Luechtefeld, D. Marsh, C. Rowlands, and T. Hartung. Machine learning of toxicologi-
cal big data enables read-across structure activity relationships (RASAR) outperforming
animal test reproducibility. Toxicological Sciences, 165(1):198–212, 2018.

C. Morris, K. Kersting, and P. Mutzel. Glocalized Weisfeiler-Lehman Graph Kernels:
Global-Local Feature Maps of Graphs. In 2017 IEEE International Conference on Data
Mining (ICDM). IEEE, 2017.

C. Morris, M. Ritzert, M. Fey, W. L. Hamilton, J. E. Lenssen, G. Rattan, and M. Grohe.
Weisfeiler and leman go neural: Higher-order graph neural networks. Proceedings of the
AAAI Conference on AI, 33:4602–4609, 2019.

C. Richter, E. Hüllermeier, M. Jakobs, and H. Wehrheim. Algorithm selection for software
validation based on graph kernels. Automated Software Engineering, 27:153–186, 2020.

N. Shervashidze, P. Schweitzer, E. J. van Leeuwen, K. Mehlhorn, and K. M. Borgwardt.
Weisfeiler-Lehman Graph Kernels. JMLR, 12:2539–2561, 2011.

K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How Powerful are Graph Neural Networks? In
International Conference on Learning Representations, ICLR, 2019.

P. Yanardag and S.V.N. Vishwanathan. Deep graph kernels. In Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, 2015.

64

	Introduction
	Preliminaries
	The Weisfeiler-Lehman Graph Isomorphism Test
	Graph Neural Networks

	Limitations of an Existing 2-GNN
	The 2-WL Graph Convolution Operator
	Evaluation
	Synthetic Data
	Evaluation on Real-World Data

	Conclusion

