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1 Introduction

Machine learning is increasingly used in practical applications that can be
categorized as safety-critical, such as AI-assisted driving. In this context, we
recently considered the problem of driver monitoring, which plays an essential
part in avoiding accidents by warning the driver in time and shifting the driver’s
attention to the traffic scenery in critical situations [1]. This may apply for
the different levels of automated driving, for take-over requests as well as
for driving in manual mode. More specifically, we tackled the problem of
predicting the driver’s gazing direction. Distinguishing eight different regions,
this problem can be formalized as a classification task, in which each region
corresponds to a class (cf. Figure 1). We proposed a deep learning approach to
predict gaze regions, which is based on informative features such as eye land-
marks and head pose angles of the driver. Moreover, we introduced different
post-processing techniques that improve the accuracy by exploiting temporal
information from videos and the availability of other vehicle signals. Our main
interest is to leverage accurate gaze prediction for improved human-computer-
interaction. In this regard, it is arguably important to guarantee a certain level
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Gaze regions: left shoulder, left mirror, front, speedometer, center
stack, rearview mirror, right mirror, right shoulder.

Figure 1: Spatial zones distinguished in the driver gaze classification task.

of awareness of the computer (AI system) of its own certainty or uncertainty in
a prediction [3].

In this work, we therefore leverage so-called conformal prediction (CP) to
increase the reliability of such predictions [10, 12]. Instead of predicting a
single class, CP produces a set-valued prediction, i.e., a subset of all candidate
classes that comprises the true class with high probability. This way, the system
is able to express ambiguities (several regions appear plausible, because the
driver’s gaze cannot be determined precisely) as well as a partial or complete
lack of knowledge — for example, the driver may look in a completely different
direction, which does not correspond to any of the eight pre-specified regions
(thereby producing so-called out-of-distribution data).

Conformal prediction can be seen as a meta-learning technique, which can be
put on top of any base learner, i.e., any standard classifier producing “point
predictions.” It merely requires a measure of (non-)conformity of a (hypotheti-
cal) data point, i.e., a measure of how well a combination of feature values and
gaze directions fits with the training data seen so far. While the required level
of confidence — the predicted set contains the true class with a pre-specified
probability (such as 95%) — is guaranteed regardless of the conformity mea-
sure, the latter has a strong influence on the precision of predictions, i.e., the
(average) size of the predicted sets.

In this work, we evaluate different types of conformity scores to construct con-
formal predictors for driver gaze classification, including scores derived from
kernel density estimation as proposed in [2, 5], and compare them with regard
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to the quality of set-valued predictions as well as time efficiency. Moreover,
we elaborate on a specific characteristic of our problem, namely the fact that
our output space exhibits a natural (topological) structure induced by the spa-
tial relationship between the classes — unlike standard classification problems,
where the classes constitute a simple set with no relationships between its
elements. As a consequence, there are more meaningful (viz. topologically
connected) and less meaningful (unconnected) set-valued predictions. To as-
sure semantically meaningful set-valued predictions, we propose an extension
of standard CP.

The work is structured as follows. In Section 2, we shortly review the gaze
classification system with its results. Section 3 explains the conformal pre-
diction method more closely. In Section 4, we apply the method to the gaze
dataset. Section 5 discusses the results while Section 6 concludes with some
final remarks.

2 Gaze Classification

The problem of driver monitoring was recently studied in [1]. This section
briefly summarizes the method used and the key results obtained. For detailed
information, the interested reader is referred to [1].

2.1 Problem Statement and Dataset

The goal of the gaze classifier is to reliably classify the region the driver is
looking at, based on an image of the driver. Certain regions are of special
interest and are displayed in Figure 1. The underlying dataset was extracted
from a naturalistic driving study in which participants were driving a car for
several months while being recorded with an RGB camera installed at the A-
pillar. Sample images are provided in Figure 2. The examined dataset consists
of 75 video snippets from 20 subjects (5 female, 15 males). Driver videos were
recorded in size 980 × 540 at 15 frames per second. The important regions of
interest (also classes, labels) with the number of images available are given in
table 1.

Proc. 30. Workshop Computational Intelligence, Berlin, 26.-27.11.2020 3



Table 1: Number of classes

Class Abbr. Number

left shoulder ls 98
left mirror lm 967
speedometer sp 228
front f 2,296
inner mirror inm 713
center console cc 332
right shoulder rs 72
right mirror rm 356

Figure 2: Example images from the dataset.

2.2 Method

The pipeline of the gaze classification system is depicted in Figure 3. In a
pre-processing step, meaningful features on the driver’s head pose and the eyes
are generated from existing image-based methods and then fed into a fully
connected neural net. For an inserted image, the driver’s face is detected [4]
and the three head pose angles are computed [8]. The angles describe the
orientation of the head, where the rotation around the x-axis is called pitch (i.e.
from up to down), around the y-axis yaw (i.e. from left to right), and around
the z-axis roll (i.e. from left to right shoulder). For the eyes, the eye landmark
detector by Park et al. [7] is employed. We make use of 15 landmarks per
eye that describe the eyelid and the iris. The generated features are fed as
input to a neural network architecture. The output of this network is scaled by
the softmax-activation function, which produces a vector with probabilities for
each class.
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Figure 3: Pipeline of the Gaze classification system.
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Figure 4: Results after Cross-validation [1].

2.3 Results

As there might be driver-dependent characteristics in the features, we propose
training with a leave one-driver out cross-validation, training on 19 drivers,
while testing on the remaining driver. The results from the test set after every
iteration are aggregated into the confusion matrix given in Figure 4. In total,
the model achieves an accuracy of 87.1%. After aggregating the classes from
the left and the right side, as well as the speedometer with the front class,
accuracy increases to 91.4%. Misclassification occurs for the classes front and
inner mirror, as well as for inner mirror, front and the right side.

2.4 Discussion

In general, the error rate of 12.9% can be narrowed down to three types of
misclassifications: (i) misclassifications between similar classes that can be
aggregated together without a higher loss of information (e.g., right shoulder
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and right mirror) (4.3%), (ii) misclassifications between classes far apart (e.g.,
left mirror and right mirror) which make up 1.4% and (iii) misclassificati-
ons among classes close to one another. Indeed, there is a high number of
misclassifications for the classes front, inner mirror, right mirror and center
console. One can possibly assume that classes away from the camera are harder
to perceive. If the driver is looking through the front windshield and directly
beneath the inner mirror, e.g., while focusing on a vehicle far ahead on the right
side, it becomes difficult from the camera point of view to correctly annotate
this situation, for both, the human annotator and apparently also the system.

3 Conformal Prediction

In cases of uncertainty, set-valued predictions are supposed to produce reliable
predictions, i.e., subsets of classes comprising the true one with high probabi-
lity, very much like confidence intervals as known from classical statistics. One
way of obtaining such sets is through conformal prediction [10, 12], which is
based on the idea of reducing prediction to hypothesis testing: Given a query
instance, a class label is included as a candidate in the set-valued prediction
unless the hypothesis that this label corresponds to the ground truth can be
rejected at a pre-specified level of confidence. The test itself relies on assig-
ning each instance/label combination a measure of non-conformity, reflecting
how “strange” this combination appears in light of the data seen so far. Its
counterpart is the conformity measure, reflecting the similarity to the data seen
so far.

The original idea of CP was introduced for the setting of online learning [12].
Here, we present a version adapted to the standard setting of supervised lear-
ning, called Inductive Conformal Prediction (ICP) [6]. We only focus on the
case of classification, for which we have seen n examples in the training data
and seek to predict the label of a new query instance.

Formally, for previous observations (x1,y1),(x2,y2), . . . ,(xn,yn) with
(xi,yi) ∈Z = X ×Y , a set-valued predictor Γε : X → 2Y is constructed on
the basis of a permutation-invariant non-conformity measure φ : Z ×Z n→R
that indicates how strange a hypothetical example z = (x,y) ∈Z is compared
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to previous examples in a set A ∈ Z n. The outputs of the non-conformity
measure are called non-conformity scores and are formally described as

φi = φ(zi,Ai) = φ((xi,yi),{z1, . . . ,zn+1}\{zi}) (1)

:= φ(yi, f̂Ai(xi)) , (2)

where f̂Ai : X →Y is the point prediction rule learned on Ai. Then, for a new
instance xn+1, all possible candidate values y ∈ Y are considered for yn+1 by
testing the hypothesis H0 : yn+1 = y (against H1 : yn+1 6= y) and computing the
p-values

py =
∑1{φi ≥ φn+1}

n+1
. (3)

The set-valued prediction is then given by

Γ
ε(xn+1) = {y : py > ε} . (4)

Under some technical assumptions1, it can be shown that this prediction fulfills

P(yn+1 ∈ Γ
ε(xn+1))≥ 1− ε . (5)

In ICP, the dataset is split into three parts: the training set, the calibration
set and the testing set. The training set is used to train the point predictor f̂ .
The calibration set {z1, . . . ,zn} is used to compute the non-conformity scores
{φ1, . . . ,φn} only once. For a new instance zn+1 from the test dataset, the non-
conformity score φn+1 is computed as usual:

φi = φ(zi,A\{zi,zn+1}) ∀i ∈ {1, . . . ,n} (6)

φn+1 = φ(zn+1,A\ zn+1) . (7)

Then, the non-conformity score φn+1 is compared to the scores from the cali-
bration set to eventually compute its p-value according to (3).

The guarantee (5) holds “on average”, that is, when assuming new samples
(xn+1,yn+1) to be drawn according to the underlying probability measure on

1 A key assumption is the condition of exchangeability [12].
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Table 2: Non-Conformity Measures

A) Kernel Density (KDE) φ((x, ỹ),A) = (1+ p̂A(x|y = ỹ)−1

B) Distance to mean (DTM) φ((x, ỹ),A) = |x̄A,ỹ− x|
C) 1 Nearest Neighbour (1NN) φ((x, ỹ),A) = min{|xA,y−x|,y=ỹ}

min{|xA,y−x|,y6=ỹ}

Z . It does not hold, however, conditional to a specific class ỹ ∈ Y , i.e., under
the condition that yn+1 = ỹ. In other words, predictions might be more valid for
some (ground truth) classes and less for others. Therefore, in cases of strong
class imbalance, where the set sizes vary too strongly among the classes for the
same choice of confidence level 1− ε , it appears meaningful to choose εỹ for
each class ỹ separately. This is also known as Mondrian Conformal Prediction
[11].
In the following, we consider several measures for yn+1 = ỹ which are given in
table 2. There, x̄A,ỹ is the mean over all x-vectors in A labeled with class ỹ, and
xA,y the instance in A with smallest (Euclidean) distance to x among those with
label y. Moreover, p̂A denotes the class-conditional density, estimated on the
set A by means of kernel density estimation with Gaussian kernel learned.

4 Results

In this section, the results for the different non-conformity measures are repor-
ted for the gaze dataset introduced earlier. For every new instance in the test
set, the p-value py for each class y ∈ Y is returned. The latter can be used in
two different ways: (i) The class with the highest p-value is chosen as a point
prediction (the p-value itself is then called the credibility of the prediction).
(ii) For a given confidence level 1− ε , the set of labels Γε is returned as a
set-valued prediction. For (i) the error of this predictor is reported, while for
(ii), the average size of the predicted sets (at different confidence levels) is of
specific interest.
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4.1 The Gaze Dataset

Similar to [6, 2], we apply the method of conformal prediction by extracting
the output of the neural network before applying the softmax function and use
it as the input feature for ICP (cf. Figure 3). In this way, we circumvent the
disadvantages of the softmax transformation [2]. For calibration, 300 instances
per class (100 instances for the classes left shoulder and right shoulder) are
sampled. The test set is a newly annotated dataset that consists of 5 videos
with 3,138 frames.

We report the results for the three conformity measures KDE, DTM, and 1NN.
A stacked bar plot is employed to visualize the set sizes for each conformity
measure. It is provided in Figure 5. The set sizes at confidence level 1− ε
are displayed in different colors. The black graph corresponds to the accuracy
of the single predictions while the red graph represents the accuracy of all
predicted sets (including non-empty sets as well). More information is pro-
vided in Table 3 with the average credibility of the class with the highest p-
value. Furthermore, the table contains information on the average size of the
non-empty sets and the accuracies for all sets at different confidence levels
1− ε ∈ {0.85,0.90,0.95,0.98}.

From Table 3, it can be observed that the error of the point predictor is lowest at
10.6% for the KDE measure. The other measures produce error rates between
16.1% and 18.3%, while the error rate for the baseline gaze classifier with the
softmax-generated output is at 15.2%. The favorable, i.e., the highest average
credibility is reached by KDE and 1NN at 32.19% and 34.14%. From the
plots in Figure 5, it can be noticed that there are only slight differences in the
number of empty set predictions (colored in green) and single set predictions
(in purple). The number of sets with more than one label is highest for all
confidence levels for the measure 1NN. Table 3 shows that the average size
of non-empty sets is always lowest for KDE. Also, the average set size for
non-empty sets is for all three measures similar at lower confidence levels,
e.g., 1− ε = 0.85. With increasing confidence levels, the sizes vary more
strongly, e.g., 4.81 for DTM and 1.69 for KDE at confidence level 1−ε = 0.98.
The (statistical) guarantee (5) is met for both, 1NN and KDE. DTM misses
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Figure 5: Stacked bar graph that visualizes the set sizes.

the required confidence level by a few percentage points at higher confidence
levels.

The average computational time per method, i.e., computing the conformity
scores for the calibration set and the testing set, is shortest for DTM with 64
seconds. For the KDE method and 1NN, 379 resp. 723 seconds are needed on
average.

4.2 Structure of Prediction Sets

As the label space Y consists of eight regions in our application, there are
28 = 256 possible prediction sets that might be produced by CP. Even if all
these sets are valid in a statistical sense, not all of them appear to be seman-
tically meaningful. In fact, Y is not just a set of distinct classes. Instead,
the classes are spatially related to each other. Intuitively, one would therefore
expect that prediction sets correspond to spatially neighbored regions. Or,
stated differently, prediction sets that include certain regions while omitting
regions “in-between” may appear less meaningful. For example, if right mirror
and inner mirror are included, one would expect front to be included, too.

To check for the semantic meaningfulness of CP predictions, we examine the
test data further. For the confidence level 1− ε = 0.96, the predicted sets and
their number are displayed in Table 4. The sets {right mirror, inner mirror}
and {inner mirror,center console} are examples of arguably less meaningful
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Table 3: Results Gaze Dataset

Conf-Meas. KDE DTM 1NN

Error* 0.106 0.161 0.17
Time (s) 379 64 723

Avg. Cred. 32.19 39.68 34.14

85 Size 1.2 1.28 1.4
Acc. 0.853 0.849 0.895

90 Size 1.34 1.73 1.44
Acc. 0.932 0.878 0.931

95 Size 1.56 2.38 1.59
Acc. 0.947 0.897 0.962

98 Size 1.69 4.81 2.06
Acc. 0.953 0.965 0.988

*Error of the Baseline model: 0.152.

predictions, as they omit the in-between class front. These sets are marked
with (*). Only once, the predicted set contains classes which are evidently not
meaningful {right mirror, left mirror, front} marked with (**). This combina-
tion was produced by 1NN. In total, 48 of the 256 theoretically possible sets
are predicted.

5 Discussion

While the statistical guarantee of correctness holds with an increasing number
of instances, regardless of the non-conformity measure chosen, this measure
has an important influence on the efficiency of CP, that is, the size of prediction
sets: The more suitably the non-conformity measure is chosen, the smaller
these sets will be. In our case, non-conformity scores derived from KDE and
1NN provide significantly smaller sets than DTM, which is in line with the
theory presented in [9]. Indeed, one should note that the distance to the mean
is a rather crude measure, which ignores a lot of information about the class
distributions.
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As for the semantic meaningfulness of the CP predictions, we observed that CP
seems to capture the spatial structure of the classes quite well, with only a few
exceptions. In total, 48 of the 256 possible sets were returned as predictions,
only 13 of which displayed minor gaps and a single one severe “gaps” in
the associated spatial region, i.e., the union of the regions associated with the
classes in the set.

CP can also be used as a point predictor. In that sense, regarding solely the error
made when choosing the class with the highest p-value, CP with the KDE mea-
sure as non-conformity score even outperforms the original gaze classification
system, while also providing additional information. This indicates that the
relations among the neural net’s outputs cannot solely be disclosed with the
softmax function, and that the highest value in the output layer does not always
correspond to the best prediction.

6 Conclusion

In safety-relevant applications of machine learning, such as AI-assisted dri-
ving, a predictive model should produce reliable predictions and be aware of
its own uncertainty. In this paper, we considered the problem of predicting the
driver’s gazing direction and elaborate on the use of conformal prediction to re-
present uncertainty. Instead of guessing a single class label (gazing direction),
even in cases of uncertainty, conformal prediction yields set-valued predictions
that are guaranteed to cover the true class with high probability. Our first
experimental results with different variants of conformal prediction are rather
promising. In particular, we have seen that the extension of our original gaze
classification system by means of CP can indeed decrease the error rate of
the model while still providing important information on the confidence of
the estimates. Especially promising is the non-conformity measure based on
kernel density estimation, as it yields the smallest set sizes at high confidence
levels.

A possible application of this method, which we seek to investigate in future
work, is the handling of out-of-distribution data for classes not covered by the
gaze classification system (e.g. blinks). Moreover, we plan to elaborate on
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Mondrian Conformal Prediction with class-specific confidence levels, where
the confidence levels are determined by the Pareto optimum between different
criteria (e.g. average set size and accuracy of single predictions).
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