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Abstract

Syntactic annotation of corpora in the form of part-of-speech (pos) tags is a key requirement for both
linguistic research and subsequent automated natural language processing (NLP) tasks. This problem is
commonly tackled using machine learning methods, i.e., by training a pos tagger on a sufficiently large
corpus of labeled data. While the problem of pos tagging can essentially be considered as solved for
modern languages, historical corpora turn out to be much more difficult, especially due to the lack of native
speakers and sparsity of training data. Moreover, most texts have no sentences as we know them today,
nor a common orthography. These irregularities render the task of automated ros tagging more difficult
and error-prone. Under these circumstances, instead of forcing the pos tagger to predict and commit to a
single tag, it should be enabled to express its uncertainty. In this paper, we consider pos tagging within the
framework of set-valued prediction, which allows the pos tagger to express its uncertainty via predicting
a set of candidate pos tags instead of guessing a single one. The goal is to guarantee a high confidence
that the correct pos tag is included while keeping the number of candidates small. In our experimental
study, we find that extending state-of-the-art pos taggers to set-valued prediction yields more precise and
robust taggings, especially for unknown words, i.e., words not occurring in the training data.
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I INTRODUCTION

In part-of-speech (pos) tagging, words of a corpus are assigned word classes, also referred to as
pos tags. These tags form the basis for both automated natural language processing (NLP) proce-
dures and for human experts who want to analyze texts or text passages more closely. Especially
in studies devoted to the development of languages as a whole, its grammar and lexic, for which
mainly historical texts are considered, pos tagging constitutes an elementary technique that is
commonly applied as a first step, providing the basis for any subsequent analysis.

For modern languages such as English, state-of-the-art pos tagging algorithms based on machine
learning methodology reach an accuracy as high as 97.96% [1], so that the task can essentially
be considered as solved. Historic languages, on the other side, still impose challenges for pos
tagging algorithms as well as human experts. The reasons for this are manifold:

* For such languages, the amount of data is very limited, and even the data available is com-
paratively noisy, because the labels are provided by humans who are not native speakers
of that language.

* In addition to noisy data, a pos tagger needs to deal with further characteristics, such
as missing regulations for orthography, and a multitude of word classes [8], i.e., distinct
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labels.

* The right pos tag not only depends on the considered word but also on its role within a
syntactical construction, and thus on the context in which it is used. However, in the inves-
tigated corpus, the context often cannot be easily differentiated due to a lack of syntactic
markers, denoting the end of a main clause or a subordinated clause.

* Last but not least, there is a risk of projecting the understanding of contemporary speech
onto the language under consideration, which is referred to as “comparative fallacy”. This
can lead to more systematic errors.

As a consequence, even experts are not entirely certain about many decisions. In [14], the inter-
annotator agreement for a historic corpus of Middle Lower German (MLG) was reported at 92%,
suggesting that there is significant room for different interpretations. Even though such numbers
vary largely among datasets agreements as high as 98.6% have been reported for contemporary
corpora[2]. Nevertheless, words are commonly labeled with single ros tags to keep the annota-
tions consistent, in spite of a high risk to introduce mistakes. As the predicted pos tags are used
in many up-stream NLP tasks, the reliability of the tagging is crucial to avoid error propagation.
By requiring pos taggers to commit only to a specific tag, errors are deliberately enforced.

In this paper, we generalize the standard approach to pos tagging so as to enable a tagger to
express its uncertainty, thereby making pos tagging more reliable. To this end, we build on the
framework of set-valued prediction, which has attracted increasing attention in machine learning
research in recent years [19], and integrate this framework with existing state-of-the-art pos
taggers. More precisely, for a given word and its context, we allow a pos tagger to predict a set
of candidate tags, for which it is sufficiently confident that the ground truth tag is contained in
that set. Figure 1 presents a comparison of an exemplary tagging with classical and set-valued
predictions.

Dat  is vredebrake Dat is vredebrake.
DDS VAFIN  NA {pps} {varIN,VKFIN} {NA}

Figure 1: Example sentence taken from the MLG corpus (translation: this is breach of peace) tagged
classically on the left-hand side and with set-valued prediction on the right. In this case it is uncertain,
whether the verb is represents a finite auxiliary verb (VAFIN), as it is frequently the case, or a finite copular
verb (VKFIN).

Set-valued tagging does not only increase reliability, but also comes with practical advantages.
For example, the explicit handling of tagger uncertainty can help reduce a possible propagation
of errors through a pipeline of NLP tasks, thereby increasing the reliability of down-stream tasks
as well. Furthermore, it reduces the workload of a human annotator in charge of correcting the
automatic annotations of a text, because it immediately points to those cases that are unclear
and offers a reasonable number of candidates as options. This could be specifically useful for
historic languages such as MLG, where pos-taggers are often used to speed up the annotation
process. Yet, due to the limited amount of training data, the automatic annotation quality is
relatively low in early stages.

In an empirical study, we demonstrate set-valued predictions to prove beneficial at the example
of a historic corpus of legal texts written in MLG and a historical tag set comprising more than 90
word classes [8]. Furthermore, we find that the approach increases robustness of the pos-taggers
in general and specifically for unknown words, i.e., words that did not occur in the training data.

The remainder of the paper is structured as follows. In the next section, we start with a brief

overview of related work and the state of the art in pos-tagging, prior to introducing the problem
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more formally in Section III. Our approach of set-valued prediction for part-of-speech tagging
is then presented in Section IV and evaluated empirically in Section V. We conclude the paper
with a summary and an outlook on future work in Section VI.

I RELATED WORK

Pos-tagging is generally done with a maximum entropy Markov model (MEmMm) to exploit the
sequential nature of the data. A MEmM is a generative model, where a base classifier predicts
the tag probability given the word and its context. The choice of such a base classifier and the
specific data representation and provided context information vary across different approaches.
One of the earlier algorithms related to historic languages is the TreeTagger [24], which employs
a decision tree as base classifier. It was first introduced with English language models and later
on adapted to German [23] and it is still used in current research.

Ratnaparkhi [21] suggest a similar method but rely on logistic regression as a base learner. Their
work has been further refined by McCallum, Freitag, and Pereira [17], who model the state
transitions in a different manner. Lafferty, McCallum, and Pereira [15] extend the latter, solving
an issue they refer to as label bias problem. The proposed algorithm is called conditional random
fields (crF).

Building on the work by Ratnaparkhi [21], Toutanova and Manning [29] refine MEMM models
with a focus on unknown words. Toutanova et al. [30] extend this work further by incorporating
the findings of Lafferty, McCallum, and Pereira [15]. However, their suggestion to solve the
label bias problem is computationally less expensive. Instead of calculating a global model for
state transitions, they build a MEmMm which conditions on both previous and succeeding tags,
resulting in the corenLp tagger algorithm. For a more detailed discussion of the algorithm, we
refer the interested reader to [11, ch. 5.4].

Deviating from the previously outlined approaches, Brants [3] shows that plain hidden Markov
model (HMMm)s are similarly powerful when used with trigrams and suitable statistical smooth-
ing. Shen, Satta, and Joshi [28] propose an entirely different approach using perceptrons. Their
algorithm slightly outperforms corenrp. Collobert et al. [5] investigate recent neural network
approaches for pos-tagging and other nLp-tasks. Huang, Xu, and Yu [12] incorporate the bidi-
rectional nature of crr with long short-term memory (LsT™), a specific type of recurrent neural
networks, to cope with the sequential nature of the data.

The problem of pos-tagging is generally well-studied for contemporary English. However, it is
often challenging if the data is noisy. For example, extensions to coreNLP have been proposed
to enhance its performance when applied to short messages on twitter [7]. The noise in this data
is mainly caused by large amount of unknown words, as new words emerge rapidly in the daily
use of languages.

The similar temporal drift can be observed in historic corpora as they often span multiple cen-
turies. This is often worsened by the sparsity of the data, particularly for historic German. De-
spite the fact that more potent taggers have been proposed in the recent past, TreeTagger is still
used in linguistic research of historic German [10]. Also, crr-based taggers have been used
on MLG texts [14]. Recently [16] have employed deep learning techniques to historic datasets.
Their work is, however, focused on lemmatization, which is often considered a prerequisite of
POS-tagging.
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III' PROBLEM DEFINITION

In pos-tagging, the task is to assign each word (aka. token) w; of a document, i.e., a sequence of
words D = (wy, ..., w,), a part-of-speech tag ¢;. Finally, the whole document is thus assigned
a sequence of pos-tags t = ({1,...,t,). To put it formally, we are interested in predicting the
probability of a tag ¢; under the condition that we see word w;:

P(t: | w). (1)

However, the part-of-speech tag depends not only on the word w; itself, but also on the context
in which it is used. In modern languages, the scope of the context is quite obvious, as it usually
only encompasses the sentence in which the word occurs. While these sentences in modern
language can be clearly distinguished by punctuation, historic languages typically lack such clear
indications and the concept of (complex) sentences as we know them today. Still, the context is
crucial for determining the role of a word within a construction, and therewith its part-of-speech
tag. With context(w;) a function referring to the context of the word w;, we actually seek
to estimate the probability of a tag ¢; under the condition of the word w; occurring within the
context context(w;):

P(ti | w; A context(w,-)). (2)

Let W be a vocabulary, 7 a tag set of size s := |7, and a context function, mapping the
context of a word to a real-valued vector R”. We aim to learn a function f : W x R" — T,
where R™ denotes the context description of the respective word. As we are also interested in the
(un)certainty in the prediction of tag ¢; for word w;, we adapt the image of the function f to be
avector p = (pi1,...,ps) € [0,1]°, where p; correspond to the probability of tag ;. Obviously,
the entries should sumto 1, i.e., Zle p; = 1.

The function is induced from training data of the form (W x T)! representing a document D for
which each element w; is labeled with a tag ¢;. Here, [ is the number of words of the particular
document. An important property is the sequential order of the training data, where for £ > 1
the elements w;_, k > 1 denote the preceding and w;.; the subsequent words of w;. The
context function represents the context of a given word w; as provided by these preceding
and subsequent words and tags. The concrete instantiation of this function highly depends on
the respective method and has no common signature. However, one simple example of such
an instance is a binary encoding indicating whether a specific word is present or absent in the
context.

IV SET-VALUED PREDICTION FOR PART-OF-SPEECH TAGGING

In standard supervised learning, the goal is to induce a predictive model h : X — ), where
X is the so-called instance space. To this end, the learner is given access to a set of training
data {(x;, y;)}_, C (X x V)’ In multi-class classification, the output space Y = {y1, ..., 95}
consists of a finite number of class labels (which correspond to the tags ¢; in pos-tagging, where
Y = T). Thus, a model & (hypothetically) assigns a class label § = h(x) € ) to each query in-
stance € X. The quality of a predictor is measured in terms of its expected loss E[{(y, h(x))],
where ¢ : J* — [0, 1] is a loss function that compares a prediction § = h(x) with a true outcome
y, and the expectation is taken with respect to an underlying (though unknown) joint probability
distribution on X x ).

4.1 Set-valued Prediction
Set-valued prediction is a generalization of the above setting, in which predictions h(x) are
subsets of ), i.e., predictors are now functions of the form X — 2Y. The basic idea is to
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make “reliable” predictions Y = h(x) that cover the true class label y with high probability. At
the same time, Y should of course not be too large, as a prediction would otherwise loose its
value (Y = Y is not very useful, despite being correct with probability 1). These two criteria,
correctness and precision, are obviously in conflict with each other. Thus, in one way or the
other, a predictor needs to find a reasonable compromise. Theoretically, there are different ways
to learn such set-valued predictions. Mortier et al. [19] introduce algorithms that can calculate
set-valued predictions for any probabilistic classifier, based on the predicted class distribution
for a given data sample. To this end, they propose to generalize the notion of a loss function (or,
equivalently, utility function). More specifically, they propose a class of utility functions of the
following form:

uy,Y)=[ye Y] q(|Y]), 3)

correctness precision

where [-] denotes the indicator function. A utility function of that kind compares a ground truth
class label y with a predicted set of candidates Y. The utility is O in the case where y ¢ Y,ie.,if
the true label is not covered by the prediction. Otherwise, the utility depends on the cardinality
of the predicted set: ¢ is a monotone decreasing function such that g(1) = 1, which means that
the highest utility of 1 is reached if Y = {y} is a singleton set with the true label as its only
element, and the utility decreases by adding further candidates. An example of a utility measure,
which will be used in our experimental study later on, is the following function:

. 0 ify ¢y,

ug(y,Y) = S B .
#, Y) 1—('@':}) ifyey,

“)

This function, if parameterized by /5 €]0, oo], defines how quickly the utility decreases when the
size of the predicted set becomes larger.

Given a utility function (3) and a (conditional) probability P(- | «), or at least a prediction of
that probability, a rationale prediction is a set Y* that maximizes the expected utility

Elu(-Y)] =) Ply| ) uly.Y)

yey

=S Py le)-ye V] g(¥])
yey

=g(IY])->_ Py | ).

yEf’

In machine learning, a prediction of that kind is referred to as a Bayes-optimal prediction. To find
this prediction efficiently, Mortier et al. [19] propose the Unrestricted Bayes-Optimal Prediction
(uBop) algorithm. Roughly speaking, this algorithms sorts the class labels y; in decreasing order
of their posterior probability P(y; | ) and successively computes the expected utilities of the
top-k sets, i.e., the sets consisting of the £ labels with highest probability. Starting with & = 1,
the algorithms stops as soon as the expected utility decreases when adding another label. Under
certain technical (though not very restrictive) assumptions on the function g, it can be shown
that the set found in this way is indeed a Bayes-optimal prediction.

The approach by Mortier et al. [19] generalizes several other approaches to set-valued prediction,

which are recovered as special cases for a suitable choice of the utility function. For example,
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Figure 2: Visualization of uBop. The posterior distribution over tags is converted into a set-valued pre-
diction.

Del Coz, Diez, and Bahamonde [6] evaluate set-valued predictions in terms of utility scores
from the information retrieval community, such as precision, recall, and the F;-measure. Other
researchers call the same setting credal or cautious classification. In a series of papers, they
analyze several set-based utility scores that reward abstention in cases of uncertainty [32, 31].
The framework of conformal prediction also produces set-valued predictions, albeit with a focus
on confidence (the predicted set covers the true class with a predefined probability) and less on
utility [27]. As the use of the utility function framework results in Bayes-optimal predictions
it allows to resolve the trade-off between large prediction sets and high confidence predictions
in a more flexible way. Furthermore, set-valued prediction can be seen as a generalization of
multi-class classification with a reject option [4, 20], where one either predicts a single class or
the complete set of classes.

4.2 POS-Tagging

The above framework of set-valued prediction can also be applied to pos-tagging. In this case,
the set of class labels ) is given by the tag set 7, and an instance is a word w; together with its
context. Moreover, the utility function is of the form

u(t,T) = [t € T]- (1), (5)
and the expected utility of a subset of tags Tis given by

Elu(-,T)] = Z P(t | w; A context(w;)) - g(|T]) .

teT

Figure 2 illustrates the application of the uBop algorithm, i.e., the conversion from posterior
probabilities to the set-valued predictions.

Recall that usor requires the posterior probability distribution (2) as input, and that the quality
of this distribution will clearly have a strong impact on the quality of the set-valued prediction.
In principle, probability estimates can be obtained by any probabilistic tagger whose context
only depends on surrounding words but not on tags. The TreeTagger, for example, estimates
probabilities in terms of relative frequencies of observations, which leads to relatively coarse
predictions.

As corenLP uses logistic regression, its probability estimates are better suited for set-valued
prediction. However, since the performance of pos-taggers strongly relies on the contextual
information harnessed, corenLp also includes tags in the context. During prediction, this creates
circular dependencies, as predicting a tag for a specific word expects the contextual tags to be
set already. corenLp introduces a strategy to circumvent these circular dependencies, which is
based on a brute-force search stepping over (a subset of) all possible contexts. When applying
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this approach to set-valued targets, the contexts blow up exponentially, making the problem
intractable. Therefore, an approximation via post-processing is used in this work. To this end, the
document is first tagged in a standard way to initialize the context information of each word, and
then the tagging of every word is revised by a set-valued prediction using the context information
obtained from the first pass. The pre-calculated context together with the word in consideration
is used to build a feature vector allowing to cast the original sequential problem as a standard
multi-class classification problem. In this way, we enable the application of the usor algorithm.

V EXPERIMENTAL EVALUATION

We evaluate the proposed set-valued prediction approach to part-of-speech tagging, comparing
two different types of pos-taggers, and relate their performance to a baseline, which is introduced
in Section 5.3. To this end, we compare the performances obtained by the vanilla versions with
the respective extensions producing set-valued predictions. Furthermore, we assess the general-
ization behavior of the approaches as well as their robustness for different amounts of training
data.

5.1 Experimental Setup

In our experimental evaluation, we distinguish 3 scenarios for which we assess the generaliza-
tion performance of the pos-taggers. To this end, we consider a set of N documents DU) =
{(xf ,yf )}i(:]i, 1 < j < N. First, we split each document D) once into 80% training and
20% test data, by cutting out a 20% fraction of the document. More precisely, we choose a
point ¢, 1 < ¢ < |0.81(j)] and to obtain test data Dt(e;)t = {(«],y] )}EHO'QIU ) and training data

Dt(rja)m = DU\ Dt(gg)t Note that, independent of the scenario, the test data portion is never used

for training, even if the approaches are not evaluated on that specific portion of the data.

The three scenarios are defined as follows!.

Scenario 1 We evaluate the approaches for each document D) individually. To this end each
method is trained on Dt(il)m and evaluated on D). We refer to this scenario as in-domain
performance.

Scenario 2 We evaluate the approaches on a leave-one-document-out fashion in order to assess
the ability of the models being transferred to unseen texts, using the training data of all
but one documents. More specifically, when assessing the performance for document £,
we use Dfél)m Vj € [N]\ {k} and apply the methods on Dt(e]zz

Scenario 3 In the last and third scenario, we train the approaches on the entire training data
Dt(f;)in Vj € [N] and subsequently apply the models to all test data portions Dﬁgsl Vj € [N].

Our evaluation is then carried out in two parts. In the first part we report the accuracy of the

vanilla versions of the pos-taggers and the utility and the mean size of the predicted ros-tag sets

of the set-valued prediction pos-taggers. The parameter [ of the utility function (4) is set to 1.

The second part of our evaluation concerns the sensitivity of the approaches with respect to the

parameter choice of 3. Varying the value of this parameter, which penalizes the prediction of

larger sets, we investigate the influence on the size of the predicted sets.

All the experiments were run on a single machine equipped with 6 cores (i7-8700k for hyper-
parameter optimization runs and i7-9750H for the evaluation of the pos-taggers) and 32GB of
rRAM. The machine operates with a Manjaro Linux 5.4.39, Python 3.8 and Java 10.

'We use [N] as a more convenient notation for referring to the set {1,2,..., N}.
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5.2 Corpus Description

The corpus considered in this study mainly stems from the InterGramm project’ [18, 25, 26]
and consists of dateable and localizable legal documents and records of judgements ranging
from the 13th to the 17th century comprising 23 documents in total. Some texts of dataset
originally stem from the ReN project [22], which have been partially adapted to be consistent
to the tagging guidelines of the InterGramm project. The majority of the documents originate
from the Central Low German region written in a historic German dialect called Middle Low
German. The remaining corpus contains the first Early New High German texts that were written
in Low German after the change of writing language. In the course of the InterGramm project,
these texts have been annotated with pos-tags which are considered as ground truth labels.

Since an established, commonly accepted orthography did not exist at that time, we unified
different spellings of the same words to condense the number of different words in a reasonable
way. To this end, we first applied a clustering algorithm using the Levenshtein distance as the
distance metric and let an expert double-check the correctness of the discovered clusters. As an
example we would substitute denen, denet, and dhenet by denen. The data used in this study are
provided (together with the code to read and process the documents) on GitHub?.

For the sake of clarity, the evaluation presented in Section 5.4 focuses on four selected documents
from the Corpus, which are representatives of different challenges when dealing with historic
corpora. The results for the remaining corpus are provided together with the code via the GitHub
repository. The Duisburger Stadtrecht (1500) can be seen as an outlier document, as the dialectin
this text is quite different from the rest of the corpus. Bremer Urkunden (1351—1400) on the other
hand can be seen as the medoid of the data set, as the corpus contains many other deeds from the
same time, some of which are even from Bremen as well. Bambergische Halsgerichtsordnung
(1510) is one of the most recent documents in the corpus. Finally, we consider the Kolberger
Kodex (1297), which in turn is a rather old one. In the following, the four documents will be
referred to as Duisburg, Bremen, Bamberg, and Kotobrzeg.

5.3 Baseline

To compare the different algorithms on a common ground, a baseline is used to estimate the
difficulty of the data set itself. The baseline predicts the tag with the highest probability and
solely depends on the word itself. In case the word w; is known, the predictor is as follows:

t; = argmax P(t | w;)
teT

This posterior probability is estimated by the relative word frequency:
#(t, w)
##(w)

If the word is unknown, the baseline predicts the globally most frequent tag via the prior:

Pt w) =

t; = argmax P(t)
teT

In our corpus, this is the NA tag, which represents a common noun. Aligning to the other algo-
rithms, this tagger can only predict tags that are known from the training data.

Within the set-valued prediction framework, the conditional probability distributions, or the
prior in case of an unknown word, are used directly.

*https://www.uni-paderborn.de/forschungsprojekte/intergramm
Shttps://github.com/stheid/SetP0OS
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Figure 3: Performance numbers of the different taggers when trained and evaluated on one document.

5.4 Results

Across all experiments, the TreeTagger and corenLp showed competitive results. Generally
speaking, the TreeTagger predicts smaller sets with slightly inferior accuracy and utility com-
pared to coreNLP. The weaker performance was generally more consistent for the utility measure.
The baseline was outperformed by both taggers in nearly every scenario and measure. The mar-
gin was generally larger when assessing the accuracy, while performances with respect to utility
were more similar.

The results of the in-domain scenario, where the tagger was trained and evaluated on one doc-
ument, is shown in Figure 3. In this scenario, the data is as homogeneous as possible, while
providing much less training data than in the other scenarios. The accuracy on the smaller docu-
ments such as Bremen (7.5 k tokens) and Kotobrzeg (13.2 k tokens) indicates that the TreeTagger
is more data efficient than corenLp. With the Bremen document being particularly small, all tag-
gers including the baseline make more than one tagging error in five words. For the larger texts
Duisburg (15.5 k tokens) and Bamberg (19.7 k tokens), coreNLpP provides the best accuracy.

When comparing the accuracy with the utility, all taggers recover a lot of their errors, as they are
allowed to provide more tags on the small Bremen document. Simultaneously, the set sizes for
the Bremen document are the largest, regardless of the tagger. However, they are only slightly
larger than for the other documents. Specifically the TreeTagger has only a slightly increased set
size, but also performs poorer than the baseline in terms of utility.

Accuracy Utility Set Size

1.0

0.9

0.8

0.7

0.6 4 B Baseline

[ TreeTagger
057 BN CoreNLP
0.4 -

o e 0T e o0t o oot ot e et o

Figure 4: Performance numbers of the different taggers when trained and evaluated in a leave-one-
document-out fashion.

Figure 4 shows the performance on the transferability scenario. Since Duisburg has a different
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dialect than the other documents, none of the classifiers is able to predict more than half of the
tags correctly. The Bamberg and Kotobrzeg texts show similar performance drops, though less
severely. For the Bremen document, the classifiers present superior accuracy as compared to the
in-domain scenario. The larger data set allows thus for a higher performance than when training
only on the homogeneous document itself.

Regardless of the text or approach, the utility measures are significantly higher. For a difficult text
such as Duisburg, the performance increase over the accuracy comes at the cost of an increased
set size. However, in a real-world scenario, i.e., in interaction with a human annotator, such a
suggestion might still be more useful than predicting a wrong tag half of the time.

Accuracy Utility Set Size
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Figure 5: Performance numbers of the different taggers when trained on the whole corpus.

Finally, Figure 5 shows the results when using the training section of the entire corpus. Providing
the classifier with additional training data as compared to the in-domain scenario can also result
in detrimental effects. For example, the prediction performance for the Bremen document can be
negatively affected by adding portions of the Duisburg text to the training data. The performance
on the Kotobrzeg document suffers significantly in accuracy as compared to the first scenario.

However, it is a non-trivial task to decide which data to exclude from the training data by looking
only at unlabeled evaluation data. The results of the in-domain scenario and training on the
whole corpus are comparable, however, meaning that the classifiers are not severely affected by
confusing data. Again, the utility proves to be more robust in terms of performance. Even though
the accuracy on the Kotobrzeg text dropped when considering the whole corpus, the utility is
not affected negatively at all. For TreeTagger and corenLP, the set size across all data sets is on
average around 2, clearly outperforming the baseline.

In this scenario, corenLp outperforms the TreeTagger in accuracy and utility, whereas the set
sizes of the TreeTagger are typically smaller. However, if it is desirable to have smaller set sizes,
this can also be enforced in the parameterization of the uor algorithm to force corenLP to return
smaller sets as well. Both taggers use the optimal set size for a specific posterior and penalty
function.

5.5 Detailed Analysis

In this section, we analyze the sensitivity of the results with respect to the parameter 3 of the
utility function (Equation 4). Recall that this parameter defines the amount of risk aversion, as it
modifies the penalty incurred by larger set sizes. As 5 — 0, the classifier predicts only singleton
sets. For § — oo, the classifier behaves more risk averse, preferring larger sets to ensure the
correct tag to be covered with a higher probability.
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The results shown in Figure 6 are obtained by averaging all evaluations of the third scenario,
where the classifier is trained on the whole corpus. Notably, the utility increases with larger
values of . However, values larger than one barely increases the utility score. This is mainly
because the utility can only increase if either the penalty for a large set size is decreased, or the
recall is increased due to the increased coverage of the posterior distribution. When investigating
the average set size, we see that the baseline always results in the largest sets and the TreeTagger
provides the smallest sets.

For the baseline, this is in agreement with the confidence of the tagger, as it also performs the
worst. However, the TreeTagger yields smaller set sizes while showing smaller confidence as
compared to coreNLp. This indicates that the probability distributions obtained through the de-
cision tree, which are estimated as fractions of observed frequencies of features in the training
data, are less well calibrated. This is made especially apparent by the fact that even the baseline
can outperform the TreeTagger when selecting § > 2. In contrast to this, the logistic regres-
sion model as employed by corenLP tends to produce a more fine grained and better calibrated
posterior.

Predictive Performance Set Size
1.0
Il Baseline
0.9 = 8 4 W TreeTagger
I coreNLP
0.8 - 6
0.7 1 - 4 -
0.6 - 2 4
0.5 - L

acc 0.2 05 1 2 5 =02 B=05 B=1 pf=2 f=5
util / B

Figure 6: The average utility and average set size with respect to the parameter 5. Larger values of (3
result in a more risk averse behaviour. The performance is aggregated first within each document and
then averaged again. The error bars show the standard deviation of the values.

Finally, the distribution over the predicted set sizes is analyzed in Figure 7. For this experiment,
coreNLP was trained on the training data of the whole corpus and evaluated on the complete test
section with # = 1. For known words, the large majority of predictions are basically singletons.
The distribution of the set sizes is decreasing almost exponentially. The histogram over unknown
words decays much slower. Still, the majority of unknown word predictions results in a singleton
prediction. Predictions of sets containing more than 8 elements are extremely seldom in any case.

VI CONCLUSION

We proposed an extension of pos-tagging, in which a tagger is allowed to provide set-valued
annotations in cases of uncertainty. To this end, we leveraged methods for set-valued prediction
as recently developed in the field of machine learning and combined them with state-of-the-
art pos taggers. In our empirical study, in which we analyzed the specifically relevant case of
annotating texts from a historic language, we observed an improved utility as compared to the
standard pos-tagging. Another observation is that set-valued predictions seem to be more robust
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Figure 7: Distribution of the set sizes. The histogram is calculated from the predictions on the whole
corpus with corenLp fitted on the train portion of the whole data set

with regard to the employed base learner, while the set sizes (number of candidate tags) are still
moderate on average.

In future work, we plan to elaborate on promising extensions of the approach to reliable tagging
as presented in this paper. One idea, for example, is to take multiple potential contexts into
account, i.e., different (structurally ambiguous) readings of a text passage. For example, the
current extension of the corenLp tagger is limited to the most likely context extracted via a
first pass of the algorithm, thus completely ignoring less likely contexts. Another interesting
idea is to combine set-valued prediction with set-valued supervision. Thus, instead of assuming
deterministic annotations in the training data, the human expert would be allowed to provide
set-valued annotations in cases where he or she feels uncertain and considers several tags as
plausible options — just like the tagger at prediction time. Learning from “weak” supervision
of that kind can be accomplished by means of techniques for so-called superset learning [13, 9].
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