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Abstract advertising, where advertisements recommended to users 

In this paper, we introduce the Preselection Bandit 
problem, in which the learner preselects a subset 
of arms (choice alternatives) for a user, which 
then chooses the final arm from this subset. The 
learner is not aware of the user’s preferences, but 
can learn them from observed choices. In our con­
crete setting, we allow these choices to be stochas­
tic and model the user’s actions by means of the 
Plackett-Luce model. The learner’s main task is 
to preselect subsets that eventually lead to highly 
preferred choices. To formalize this goal, we in­
troduce a reasonable notion of regret and derive 
lower bounds on the expected regret. Moreover, 
we propose algorithms for which the upper bound 
on expected regret matches the lower bound up to 
a logarithmic term of the time horizon. 

1. Introduction 
The setting of preference-based multi-armed bandits or du­
eling bandits (Busa-Fekete et al., 2018) is a generalization 
of the standard stochastic multi-armed bandit (MAB) prob­
lem (Lattimore & Szepesvári, 2020). Instead of assuming 
numerical rewards of individual arms (choice alternatives), 
the former is based on pairwise preferences between arms. 
In this paper, we introduce the Preselection Bandit (or sim­
ply Pre-Bandit) problem, which is closely related to the 
preference-based setting, especially to the recent variant of 
battling bandits (Saha & Gopalan, 2018). 

Our setting involves an agent (learner), which preselects a 
subset of arms, and a selector (a human user or another al­
gorithm), which then chooses the final arm from this subset. 
This setting is motivated by various practical applications. 
In information retrieval, for example, the role of the agent 
is played by a search engine, and the selector is the user 
who seeks a certain information. Another example is online 
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can be seen as a preselection. As a concrete application, we 
are currently working on the problem of algorithm (pre-) 
selection (Kerschke et al., 2019), where the (presumably) 
best-performing algorithm needs to be chosen from a pool 
of candidates. 

In the beginning, the agent is not aware of the selector’s 
preferences. However, the choices made by the latter reveal 
information about these preferences, from which the agent 
can learn. Due to time constraints, information asymme­
try, or other reasons, we do not assume the selector to act 
perfectly, which means that it may miss the actually best 
among the preselected arms. In web search, for example, 
a user clicks on links based on limited information such 
as snippets, but without knowing the full content behind. 
Likewise, in algorithm selection, the final choice might be 
made on the basis of a cross-validation study, i.e., estimated 
performances that not guarantee the identification of the 
truly best algorithm. By modeling the selector’s actions 
by means of the Plackett-Luce (PL) model (Luce, 1959; 
Plackett, 1975), we allow some randomness in the process 
of decision making. The agent’s main task is to preselect 
subsets that eventually lead to highly preferred choices. To 
formalize this goal, we introduce a reasonable notion of re­
gret based on utilities of preselected subsets, where an arm’s 
(latent) utility is weighted with the probability of choosing 
this arm from the subset. In particular, this allows for captur­
ing decision-making biases of users as studied intensively 
in behavioral economics or psychology. 

We study two variants of the problem. In the first variant, 
which we call restricted Pre-Bandit problem, the size of 
the preselection is predefined and fixed throughout. In the 
second variant, the flexible Pre-Bandit problem, the agent 
is allowed to adjust the size of the preselection in every 
round. For these settings, we derive lower bounds on the 
expected regret. Moreover, for both scenarios, we propose 
active learning algorithms for which the upper bound on 
expected regret matches the lower bound (possibly) up to a 
logarithmic term of the time horizon. 

We discuss related work in Section 2. In Section 3, we intro­
duce the notation used throughout the paper, and also give a 
concise review of the PL model and some of its properties. Proceedings of the 37 th International Conference on Machine 
In Section 4, the Pre-Bandit problem is formally introduced, Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
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bounds with respect to the time horizon are verified. Near-
optimal algorithms for the two variants of the Pre-Bandit 
problem are provided in Section 5. We devote Section 6 to 
a simulation study demonstrating the usefulness and effi­
ciency of our algorithms. Finally, Section 7 summarizes our 
results and discusses directions for future work. All proofs 
of the theoretical results are deferred to the supplements. 

2. Related Work 
Bandit problems with the possibility of using more than one 
arm at a time have been considered in various ways in the 
literature. However, as will be detailed in the following, 
none of the previous works encompasses the problem con­
sidered in this paper. Due to the specific meaning of the 
subset choice as a preselection in practical applications, this 
also justifies a new name for the setting. 

A variant of the MAB problem is the combinatorial ban­
dit problem (Cesa-Bianchi & Lugosi, 2012; Kveton et al., 
2015), in which the learner chooses a subset of arms in each 
time step, and then observes quantitative feedback, either in 
the form of rewards of each single arm (semi-bandit feed­
back) or the total sum of the rewards (bandit feedback) for 
the arms in the chosen subset. This differs fundamentally 
from our setting, in which no quantitative feedback is ever 
observed; instead, only qualitative feedback is provided, i.e., 
which arm is picked in a subset. 

Qualitative forms of feedback for multiple arm choices at 
a time is considered in the realm of dueling, multi-dueling 
(Sui et al., 2017; Busa-Fekete et al., 2018) or battling ban­
dits (Saha & Gopalan, 2018). The flexible Pre-Bandit prob­
lem has obvious connections to the latter settings, with the 
freedom of adjusting the size of comparison for each time 
instance and can be interpreted as a combinatorial bandit 
problem with qualitative feedback. Saha & Gopalan (2019a) 
investigate the effect of this flexibility in an active PAC-
framework for finding the best arm under the PL model, 
while the active top-k-arm identification problem in this 
model is studied by Chen et al. (2018a). Recently, this 
scenario was considered in terms of a regret minimization 
problem with top-m-ranking feedback by Saha & Gopalan 
(2019b) for a straightforward extension of the dueling bandit 
notion of regret and not regarding the “value” of a subset in 
its entirety as we do (cf. Section 4.1). 

Moreover, the algorithms suggested in Saha & Gopalan 
(2018) are not applicable within our scenario for the re­
stricted Pre-Bandit problem, as either the algorithms are 
focusing on the linear-subset choice model, which is fun­
damentally different from our choice model (cf. Section 3) 
or the algorithms allow replicates of the same arm within 
a chosen subset, which is inadmissible within our scenario 
(and in many practical applications as well). 

The Pre-Bandit problem also reveals parallels to the Dy­
namic Assortment Selection (DAS) problem (Caro & Gal-
lien, 2007), where a retailer seeks to find an optimal subset 
of his/her available items (or products) in an online manner, 
so as to maximize the expected revenue (or equivalently 
minimize the expected regret). The DAS problem under the 
multinomial logit model, which is also known as the MNL-
Bandits problem (Rusmevichientong et al., 2010; Sauré & 
Zeevi, 2013; Agrawal et al., 2016; 2017; Wang et al., 2018; 
Chen et al., 2018b) is especially close to our framework, as 
the corresponding concept of regret shares similarities with 
our definition of regret. 

However, our problem can rather be seen as complementary, 
since we do not assume a priori known revenues for each 
item or any revenues at all. While this might be natural 
for the retail management problem, it is arguably less so 
for applications we have in mind, such as recommendation 
systems or algorithm (pre-)selection. In addition, we in­
troduce a parameter in our setting that allows the learner 
to adjust its preselections with respect to the preciseness 
of the user’s selections. This might also be an interesting 
direction for future work for the DAS problem. Finally, to 
demonstrate the inappropriateness of the DAS algorithms 
for the restricted Pre-Bandit problem, we employ some of 
the algorithms in our experimental study. 

Another quite related branch of research is the so-called 
stochastic click model (Zoghi et al., 2017; Lattimore et al., 
2018), where a list of l items is presented to the selector in 
each iteration. Scanning the list from the top to the bottom, 
there is a certain probability that the selector chooses the 
item at the current position, or otherwise continues search­
ing (eventually perhaps not choosing any item). Thus, in 
contrast to our setting, the explicit order of the arms within 
a subset (or list) is a relevant aspect. Further, the resulting 
learning task boils down to finding the l most attractive 
items, as these provably constitute the optimal list in this 
scenario (which is not necessarily the case for our setting). 

3. Preliminaries 
3.1. Basic Setting and Notation 

We formalize our problem in the setting of preference-based 
multi-armed bandits (Busa-Fekete et al., 2018), which pro­
ceeds from a set of n arms, each of which is considered as a 
choice alternative (item, option). We identify the arms by 
the index set [n] ..= {1, . . . , n}, where n ∈ N is arbitrary 
but fixed. Moreover, we assume a total preference order >, 
where i > j means that the ith is preferred to the jth arm. 

.Let Al be the set of all l-sized subsets of [n] and Af ull .= 
∪n Al. Moreover, let Sn be the symmetric group on [n],l=1 
the elements of which we refer to as rankings: each r ∈ Sn 

defines a ranking in the form of a total order of the arms 
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[n], with r(i) the position of arm i. We assume that Sn is 
equipped with a probability distribution P : Sn → [0, 1]. 
For an integer l > 1 and a set of arms {i1, i2, . . . , il} ⊆ [n], 
the probability that i1 is the most preferred among this set 
is given by  

.qi1,...,il 

.= P(r) . (1) 
r∈Sn:r(i1)=min(r(i1),...,r(il)) 

3.2. The Plackett-Luce Model 

The Plackett-Luce (PL) model (Plackett, 1975; Luce, 1959) 
is a parametric distribution on the symmetric group Sn with 
parameter θ = )T ∈ Rn(θ1, . . . , θn +, where each compo­
nent θk corresponds to the strength of an arm k, which we 
will refer to as score parameter. The probability of a ranking 
r ∈ Sn under the PL model is  n θr−1(i)Pθ(r) = , (2)

i=1 θr−1(i) + . . . + θr−1 (n) 

where r−1(i) denotes the index of the arm on position i. 
According to (2), PL models a stage-wise construction of 
a ranking, where in each round, the item to be put on the 
next position is chosen with a probability proportional to its 
strength. As a model of discrete choice, the PL distribution 
has a strong theoretical motivation. For example, it is the 
only model that satisfies the Luce axiom of choice (Luce, 
1959), including independence from irrelevant alternatives 
(ILA property, see (Alvo & Yu, 2014)). Besides, it has a 
number of appealing mathematical properties. For instance, 
there is a simple expression for the l-wise marginals in (1): 

θi1 qi1,...,il = (3)
θi1 + θi2 + . . . + θil 

This probability is identical to the popular Multinomial 
Logit (MNL) model, which is a discrete choice probability 
model considered in various frameworks (Train, 2009). For 
our purposes, the use of the relative scores 

θi.Oi,j .= , i, j ∈ [n], (4)
θj 

will turn out to be advantageous, as they are directly affected 
by the ILA property of the PL model. Indeed, for i, j ∈ 
[n], let Si,j ∈ Al be such that i, j ∈ Si,j . Furthermore, 

. .define S−i,j .= Si,j \{i} and similarly Si,−j .= Si,j \{j}
for i, j ∈ [n]. Then, for any such a set Si,j , (3) and (4) imply  

θtθi θi t∈Si,j qi,S−i,jOi,j = = ·  = . 
θj θj θt qj,Si,−jt∈Si,j 

Without restricting the parameter space Θ = {θ ∈ Rn },+ 
the PL model in (2) is not (statistically) identifiable, as 
θ ∈ Rn and θ̃ = C θ for any constant C > 0 lead to the + 
same models, i.e. Pθ = Pθ̃. Restricting the parameter space 

by assuming some normalization condition on the score 
parameters fixes this issue. Thus, we consider as parameter 
space the (restricted) unit square w.r.t. the infinity norm,  
Θ = θ = (θ1, . . . , θn)

T ∈[θmin, 1]
n | θmin ∈ (0, 1),  

.θmax .= max θi = 1 , 
i 

which leads to an identifiable statistical model (Pθ)θ∈Θ and 
naturally yields a normalization of each individual score 
parameter easing the fast grading of an arm’s utility. 

For technical reasons, we additionally exclude models that 
allow scores below a certain threshold θmin (which will 
be a small constant), as the relative scores in (4) are then 
well-defined for any pair (i, j) ∈ [n]2 . 

3.3. Degree of Preciseness 

In our setting, we model the score parameter θ as 

γθi = vi , ∀i ∈ [n], (5) 

where vi ∈ R+ represents the (latent) utility of arm i, while 
γ ∈ (0, ∞) represents the degree of preciseness of the user’s 
selections: The higher γ , the more (2) resembles a point-
mass distribution on the ranking modeling a precise selector 
that is always able to identify the best arm, while the lower 
γ, the more (2) resembles a uniform distribution modeling 
a selector acting purely at random. The effect of γ on the 
l-marginals in (3) is quite similar. 

Note that v1, . . . , vn, γ are not separately identifiable (c.f. 
Section 3.2 in (Train, 2009)), but θ1, . . . , θn are identifiable 
under our assumptions on the parameter space Θ above. 
Hence, by fixing γ, the latent utilities v1, . . . , vn are guar­
anteed to be identifiable. 

4. The Pre-Bandit Problem 
The considered online learning problem proceeds over a 
finite time horizon T . For each time instance t ∈ [T ], the 
agent (i.e., the learner) suggests a subset St ∈ A, where A 
is the action space. The agent’s action St is based on its ob­
servations so far. As a new piece of information, it observes 
the selector’s choice (i.e., the user or the environment) of 
an arm it among the offered subset St (with probability 
qit,St\{it} given by (3)). 

Suppose r : A → R+ is a suitable regret function (to 
be defined in the next section below). The goal of the 
learner resp. the agent is to preselect the available arms by 
means of subsets St in every time instance t such that the 
expected cumulative regret over the time horizon, that is  TEθ t=1 r(St) with θ ∈ Θ, is minimized. The problem is 
analyzed for two possible characteristics of the action space: 
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•	 (Restricted Preselection) A = Al, i.e., a preselection 
consists of exactly l many arms, where l is a fixed 
integer strictly greater than one. 

•	 (Flexible Preselection) A = Af ull , i.e., a preselection 
can be any non-empty subset of [n]. 

In the following, we introduce sensible notions of regret for 
the considered problem setting. The key question we then 
address is the following: What is a good preselection to 
present the selector? Moreover, we provide a lower bound 
on the related expected cumulative regret. 

4.1. Regret Definition 

Assuming the selector to behave according to the PL model 
with score parameter (5), the expected utility of suggesting 
S is given by 

U(S) := U(S; v, γ) = vi · qi,S\{i}
i∈S 

(6)1+γ 
i∈S vi = .γ 
i∈S vi 

Indeed, if it ∈ [n] is the chosen arm at time t, then 

E(vit | S) = i∈S vi · P(i is chosen | S) = U(S). 

Hence, the corresponding optimal preselection is  
arg maxS⊆[n], |S|=l U(S), if A = Al,

S ∗ ∈	 (7) 
arg maxi θi, if A = Af ull . 

The (instantaneous) regret suffered by the selector is antici­
pated by the agent through 

r(S) := U(S ∗ ) − U(S), S ∈ A. (8) 

Thus, if S1, . . . , ST are suggested for times 1 to T , respec­
tively, the corresponding cumulative regret over T is 

T T   
R(T ) := r(St) = U(S ∗ ) − U(St) . (9) 

t=1 t=1

Remark 1 (Relations to dueling bandits and battling bandits). 
Note that the optimal subset for A = Af ull , i.e., for the flex­
ible Pre-Bandit problem, always consists of the items whose 
score parameters equal the overall highest score θmax. Thus, 
like for the dueling bandits and battling bandits problem, 
the goal is to find the best arm(s). However, whilst in the 
latter settings only pairwise resp. fixed l-wise comparisons 
of arms are observed, we allow to draw comparisons of 
arbitrary size. In addition, the restricted Pre-Bandit problem 
can be interpreted as a dueling resp. battling bandit problem. 
Compared to the latter, however, the notion of regret has 
a more natural meaning in our setting. This is due to the 

different semantics of a selection of a pair (or any subset) 
of arms, which is a preselection that eventually leads to a 
concrete choice. In other words, the regret in (8) focuses on 
the perceived preference of a subset by regarding the “value” 
of a subset in its entirety. 
Remark 2 (No-choice option). In the related branches of 
literature (cf. Section 2), it is common to assume an ad­
ditional choice alternative which represents the possibility 
of the user choosing none of the alternatives in the prese­
lection. Formally, this can be expressed in our setting by 
extending the n-dimensional parameter space Θ to n + 1 
dimensions by augmenting it with a dummy score parameter 
θ0 ∈ (θmin, 1] representative for this no-choice option. As 
this option is always available, this dummy item is part of 
every preselection, and consequently its latent utility affects 
only the choice probabilities in (6). However, although we 
refrain from incorporating the no-choice alternative in this 
paper, it is straightforward to show similar lower bounds as 
below for this problem and to modify the suggested algo­
rithms to this scenario. 

4.2. Most preferred Subsets 

One tempting question is how the most preferred subsets 
look like, given our definition of regret. As already men­
tioned, the optimal preselection S∗ for the flexible Pre-
Bandit variant consists of the items with the same highest 
score parameter. However, in the restricted Pre-Bandit vari­
ant, the optimal preselection does not necessarily consist 
of the l items with the highest scores in general, as the 
following examples demonstrate. 
Example 1. In Table 1, we provide three problem instances 
with fixed degree of preciseness γ = 1 for n = 5 and 
the corresponding expected scores of (the relevant) 3-sized 
subsets of [n]. In the first instance, where one arm has a 
much higher utility than the remaining ones, it is favorable 
to suggest this high utility arm together with the arms having 
smallest utility. This is due to the large differences between 
the utilities, so that the selector will take the best arm with 
a sufficiently high probability. Roughly speaking, the best 
strategy for the agent is to make the problem for the selector 
as easy as possible. The second instance is different, as 

Table 1. Problem instances with different optimal subsets (indi­
cated in bold font) for the regret in (8) with n = 5 and l = 3 
(omitted subsets had smaller utilities throughout). 

S {1, 2, 3} {1, 2, 5} {1, 3, 5} {1, 4, 5} {2, 3, 4} 
v = (1 , 0.122 , 0.044 , 0.037 , 0.017), γ = 1 

U(S) 0.872 0.891 0.945 0.951 0.0896 
v = (1 , 0.681 , 0.572 , 0.543 , 0.399), γ = 1 

U(S) 0.795 0.780 0.754 0.749 0.604 
v = (1 , 0.681 , 0.572 , 0.543 , 0.171), γ = 1 

U(S) 0.795 0.806 0.778 0.773 0.604 

the optimal preselection for the agent now consists of the 
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top-3 arms with the highest scores. This comes with a non-
negligible probability of missing the optimal arm, however, 
since the runner-up arms are sufficiently strong, the regret 
can be tolerated. On the other hand, adding a poor arm 
would be suboptimal, as one cannot be certain enough 
that it will not be taken. But by reducing the score for the 
worst arm notably as in the third instance, the worst arm 
substitutes the third best, as then the best item can again 
be better distinguished from the suboptimal ones inside the 
optimal subset. 

As suggested by this example, a reasonable strategy is to 
compose the preselection of subsets of best and worst arms, 
respectively. In fact, we show in the supplementary material 
(Section D) that the optimal subsets for the restricted Pre-
Bandit problem are always composed of best and worst arms 
with the overall best arm(s) mandatory inside the optimal 
subset. 

The obvious rationale of adding a strong arm is to guaran­
tee a reasonably high utility, whereas a poor arm merely 
serves as a decoy to increase the probability of choosing 
the best arm. Such effects are known in the literature on 
decision theory as the attraction effect or the decoy effect, 
see (Dimara et al., 2017) and references therein. In particu­
lar, our definition of regret is able to capture this effect and 
consequently emphasizes that our regret aims at penalizing 
difficult decisions for the selector in the restricted case. 

However, the manifestation of the decoy effect and con­
sequently its demand for the application at hand, can be 
steered by the learner through fixing the degree of precise­
ness γ as illustrated by the next example. 

Example 2. In Table 2, we investigate the effect of the de­
gree of preciseness γ for the third instance of Example 1. In 
the first instance, where the degree of preciseness is moder­
ate, i.e., γ = 1, the attraction effect is still present. But by 
increasing the degree of preciseness to γ = 20 as in the sec­
ond instance, the (rounded) utilities of all subsets containing 
the best item are the same. For such a problem instance, it 
is enough to provide the best item in the preselection, as the 
user’s probability of choosing the best item is sufficiently 
high in these cases and the best arm will not be missed. In 
the last instance, the utility monotonically decreases with 
the sum of scores of the subset S if the degree of preciseness 
is reduced to γ = 0.05. This is due to a throughout non-
negligible probability for choosing the worst item inside the 
preselected subset S. Thus, in order to dampen this effect 
and the resulting regret, it is best to preselect the top arms. 

In view of this example, the learner can interpolate between 
the two extreme cases of users by varying γ : Taking a 
sufficiently large γ, the learner can model a very precise 
user for whom it suffices to preselect a subset that just 
entails the best item. Using a sufficiently small γ instead, 

Table 2. Problem instances with different optimal subsets (indi­
cated in bold font) for the regret in (8) with n = 5 and l = 3 
(omitted subsets had smaller utilities throughout). 

S {1, 2, 3} {1, 2, 4} {1, 2, 5} {1, 3, 5} {2, 3, 4} 
v = (1 , 0.681 , 0.572 , 0.543 , 0.171), γ = 1 

U(S) 0.795 0.791 0.806 0.778 0.605 
v = (1 , 0.681 , 0.572 , 0.543 , 0.171), γ = 20 

U(S) 1.000 1.000 1.000 1.000 0.676 
v = (1 , 0.681 , 0.572 , 0.543 , 0.171), γ = 0.05 

U(S) 0.753 0.744 0.630 0.593 0.599 

the learner is able to reproduce a random user for whom it 
is best to compose the preselection of the best items. 
Remark 3. Note that, in terms of regret, the case of a very 
precise user is related to the weak regret of the dueling ban­
dits problem (Yue et al., 2012; Chen & Frazier, 2017), where 
no regret occurs whenever the best arm is participating in 
the duel. Similarly, the semantics of the regret in the case 
of a random user corresponds to the strong regret of the 
dueling bandits problem, where the regret is zero only when 
the best arm is duelled with itself. 

4.3. Lower Bounds 

In this section, we prove lower bounds on the expected regret 
defined in (9) for the two types of Pre-Bandit problems. 
Theorem 4.1. [Restricted Preselection Bandits] Let n ∈ N, 
l ≤ n/4, and T ≥ n be integers. Then, for any algorithm ϕ 

ϕsuggesting an l-sized subset S at time t,t 

T ϕEθ R(T ) = Eθ U(S ∗ ) − U(S )t 
t=1 √ 

≥ min{1, 1/γ} C nT 

holds for any θ ∈ Θ and any γ ∈ (0, ∞), where C > 0 is 
some constant independent of n, l, and T . 

Remark 4. The order of the lower bound in Theorem 4.1 
coincides with the lower bound on the expected regret de­
rived by Chen & Wang (2018) for the DAS problem under 
the MNL model with capacity constraints. In particular, the 
preselection size l does not affect the order, at least if it is 
smaller than n/4. Although the lower bounds are theoret­
ically of the same order, it is not directly possible to use 
the lower bound results of Agrawal et al. (2016) or Chen 
& Wang (2018), as in both proofs the probability of the 
no-choice option is assumed to be strictly positive, and the 
revenues all equal 1. Moreover, the results for the stochastic 
click model are quite different from ours (cf. Theorem 2 by 
Lattimore et al. (2018)), as there the size of the subset l is 
present in the lower bound. Therefore, we provide a proof 
in the supplementary material (Section A). 
Theorem 4.2. [Flexible Preselection Bandits] Let n ∈ N 
and T ≥ n be integers. Then, for any algorithm ϕ suggest­

ϕing subset S ∈ Af ull at time t, the following holds for any t 
γ ∈ (0, ∞): 
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(i) [Gap-independent version] There exists a constant C > 0 
independent of n and T , such that 

√ 
supθ∈Θ Eθ R(T ) ≥ C min{1, 1/γ} T . 

(ii) [Gap-dependent version] If ϕ is a no-regret algorithm 
(cf. Definition 2 in (Saha & Gopalan, 2019b)), there exists a 
constant C > 0 independent of n and T , such that   

supθ∈Θ min (θmax − θi) · Eθ R(T )

i /∈S∗
 

≥ C min{1, 1/γ} (n − 1) log(T ) . 

Remark 5. Note that the gap-independent lower bound is 
independent of the number of arms n. This is in line with 
the enhancement for the DAS problem for the uncapacitated 
compared to the capacitated MNL model (Wang et al., 2018). 
On the other hand, the gap-dependent lower bound depends 
on the number of arms n, and is of the same order as in the 
dueling bandit setting. In particular, compared to the dueling 
bandits setting, there is (theoretically) no improvement by 
offering subsets larger than two. This is in accordance with 
the observations made by Saha & Gopalan (2018; 2019b). 

5. Algorithms 
In this section, we propose the Thresholding-Random­
Confidence-Bound (TRCB) algorithm stated in Algorithm 1. 
This algorithm returns subsets S1, . . . , ST for the restricted 
Pre-Bandit problem. As will be shown, it has a satisfac­
tory upper bound for the expected cumulative regret in (9). 
For the flexible Pre-Bandit problem, we further suggest the 
Confidence-Bound-Racing (CBR) algorithm as stated in Al­
gorithm 2. It is inspired by the idea of racing algorithms, 
initially introduced by Maron & Moore (1997) to find the 
best model in the framework of model selection. 

5.1. The TRCB Algorithm 

First of all, note that an estimation of the score parameter θ 
is not necessary for the goal of regret minimization. Instead, 
a proper estimation of the relative scores in (4) is sufficient. 
Indeed, maximizing the expected utility (6) is equivalent 
to maximizing the expected utility with respect to some 
reference arm J, that is

(1+γ)/γ 

i∈S i,J U(S) =  .= 
O

(10)U(S; OJ , γ) . ,
Oi,Ji∈S 

where OJ = U(S)(O1,J , . . . , On,J ), simply because  = 
−1 · U(S).J 

Thanks to Lemma 1 by Saha & Gopalan (2019a), one can 
derive appropriate confidence region bounds based on a sim­
ilar exponential inequality for the relative score estimates, so 
that one might be tempted to use a UCB-like policy for the 

Algorithm 1 TRCB algorithm 
input Set of arms [n], preselection size l ∈ [2, n] ∩ N, 

lower bound for score parameters θmin, magnitude of 
uncertainty consideration Cshrink ∈ (0, 1/2), degree 
of preciseness γ 

1: initialization: W = [wi,j ]i,j ← (0)n×n 

2: Ô = [ Ôi,j ]i,j ← (1)n×n 

3: repeat 
4: t ← t + 1 
5: J ← arg maxi∈[n] #{wi,j ≥ wj,i | j = i}
6: {Break ties arbitrarily}
7: for i ∈ {1, . . . , n}\{J}ddo 

32 log(lt3/2)8: Sample βi ∼ Unif[± 
θ4 ]

(wi,J +wJ,i )min 

ÔT RC B θ−1 ˆ9: ← min min, max +i,J Oi,J 

Cshrink βi, θmin 

10: end for 
OT RC B 11: Compute Ŝ ← arg maxS∈Al

U( S; ˆ , γ )J 

12: Suggest St = Ŝ and obtain choice it ∈ St 

13: Update wit,j ← wit,j + 1, j ∈ St\{it}
and for i, j ∈ St
 

Ôi,j ← 
wi,j/wj,i , = 0 ,
wj,i

θmin, else. 
14: until t == T 

restricted Pre-Bandit problem. However, the main problem 
of such an approach is UCB’s principle of “optimism in the 
face of uncertainty”, which tends to exclude arms with low 
score from a preselection. As we have seen in Example 1, 
such arms could indeed be part of the optimal subset S∗ 

depending on the specific value of γ . 

The core idea of the TRCB algorithm is to solve this issue 
with a certain portion of pessimism. Instead of using the 
upper confidence bound estimates for the relative scores, 
a random value inside the confidence region of the rela­
tive score estimate is drawn (lines 7–8), so that pessimistic 
guesses for the relative scores are considered as well, which 
in turn ensures sufficient exploration of the algorithm. This 
sampling idea can be interpreted as a frequentist statistical 
version of Thompson Sampling. To exclude inconsisten­
cies with the score parameter space (cf. Section 3.2), these 
random confidence values are appropriately thresholded. 

Until the a priori unknown time horizon is reached (lines 3, 
4, 13), the TRCB algorithm repeatedly does the following. 
Primarily, the arm with the highest total number of wins for 
the pairwise comparisons is determined as the reference arm 
J (line 5). Next, for every other arm, a random value inside 
its confidence region for its relative score with respect to 
the reference arm J is drawn with uniform distribution and 
appropriately thresholded (lines 7–10). These thresholded 
random values correspond to the current belief on the actual 
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relative scores with respect to J and are used to determine 
the preselection with the highest utility in (10) (line 11). 
After offering this preselection to the selector and observing 
its choice (line 12), the pairwise winning counts are updated 
(by breaking down the l-wise comparison into pairwise 
comparisons) as well as the estimates for the relative scores 
(line 13). 

The following theorem shows that the upper bound for the 
worst-case cumulative regret of the proposed TRCB algo­
rithm matches the information-theoretic lower bound on the 
cumulative regret in Theorem 4.1 with regard to n and T up 
to a logarithmic term of T (the proof is given in Section B 
of the supplement). 

Theorem 5.1. If Cshrink ∈ (0, 1/2), then for any γ ∈ 
(0, ∞) and any T > n, 

ETRCB supθ∈Θ R(T )θ 

(γ−1)/(γ) (1−γ)/(γ)  max{θ , θ }min min≤ C	 nT log(T ),
2(3+γ)

γ θmin

where C > 0 is some constant independent of n, l, T as 
well as θmin and γ . 

Remark 6. The maximization over Al in Algorithm 1 (line 
11) can be realized by Algorithm 3 provided in the supple­
mentary material. It keeps the computational cost low by 
exploiting structural properties of the utility function U and 
the most preferred subsets (see Section 4.2). 

5.2. The CBR Algorithm 

The CBR algorithm is structurally similar to the TRCB al­
gorithm. However, it uses estimates of the pairwise winning 
probabilities and the corresponding confidence intervals 
instead of the relative scores. 

In particular, the CBR algorithm maintains a pool of can­
didates A ∈ [n] and admits an arm i ∈ A to be part of 
the preselection with a certain probability determined by 
the rate of uncertainty that i could beat the current arm 
J with the most winning counts. This uncertainty is ex­
pressed through the ratio between the length of the con­
fidence interval for qi,J (cf. the definition in (1)) exceed­
ing 1/2 and the overall confidence interval’s length. More 
specifically, if [li(t), ui(t)] is the confidence interval for 
qi,J in time instance t, then arm i is included into the pres­
election with probability σ (ui(t)−1/2)/(ui(t)−li(t)) , where 
σ : R → [0, 1] is a sigmoidal function, i.e., a surjective 
monotone function with σ(1/2) = 1/2 and σ(x) > 0 iff 
x > 0. Note that the degree of preciseness γ can be taken 
into account by the learner through the shape of σ. 

Hence, if the confidence interval lies mostly above 1/2, that 
is li(t) ≈ 1/2, the chance is high that this particular arm 
could possibly beat the current best arm and consequently 

Algorithm 2 CBR-algorithm 
input	 Set of arms [n], sigmoidal function σ : R → [0, 1] 

1: Initialization: W = [wi,j ] ← (0)n×n 

2: Q̂ = [ ̂qi,j ] ← (1/2)n×n, A ← [n] 
3: repeat 
4: t ← t + 1 
5: J ← arg maxi∈[n]#{wi,j ≥ wj,i | j = i}
6: {Break ties arbitrarily}
7: S ← {J}
8: for i ∈ A dod 

3/29: ci ← 2 log(nt )/(wi,J +wJ,i ) 

10: t̂i,J ← σ ( ̂qi,J +ci−1/2)/2ci 

S ∪ {i}, with probability t̂i,J11: S ← 
S, with probability 1 − t̂i,J 

12: if t̂i,J = 0 then 
13: A ← A\{i}
14: end if 
15:	 end for 
16:	 Suggest St = S and obtain choice it ∈ St 

17:	 Update wit,j ← wit,j + 1, j ∈ St\{it}
and q̂i,j ← wi,j/(wi,j +wj,i ) for i, j ∈ St 

18: until t == T 

has a large probability of being included in the preselection. 
In contrast, if the upper bound of the confidence interval is 
beneath 1/2, that is ui(t) ≤ 1/2, the arm is discarded from 
the pool of candidates (lines 12–14), as one can be sure that 
this arm is already beaten by another. 

At the beginning, the major part of the arms have a high 
chance to be part of the preselection, which however de­
creases over the course of time until finally the preselection 
consists of only the best arm(s). In the repetition phase, the 
preselection is successively built starting from the current 
arm with the most total number of wins for the pairwise com­
parisons and adding arms from the active set depending on 
the outcome of a Bernoulli experiment (lines 5–11), whose 
success probability depends on the length of the confidence 
interval (of the arm’s pairwise winning probability against 
J) above 1/2. After offering this preselection to the selector 
and observing its choice (line 16), the pairwise winning 
counts and estimates on the pairwise winning probabilities 
are updated (line 17). 

We have the following theorem for the upper bound on the 
cumulative regret for CBR, which matches the information-
theoretic gap-dependent lower bound on the cumulative 
regret in Theorem 4.2 (the proof is given in Section C of the 
supplement). 

Theorem 5.2. There are universal constants C0, C1 > 0, 
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Figure 1. Left: Mean cumulative regret for 1000 runs of randomly 
generated restricted Pre-Bandit instances. Right: Mean cumulative 
regret for 1000 runs of randomly generated flexible Pre-Bandit 
instances. 

which do not dependent on T or n, such that 

ECBR supθ∈Θ R(T ) ≤ C0 nθ 

(γ−1)/(γ) (1−γ)/(γ)
max{θmin , θ }

+ C1 
min × 

γ 
log(T ) 

θmax − θi
i∈[n]\S∗ 

for any T > n, γ ∈ (0, ∞). 

6. Experiments 
In this section, we investigate the performance of TRCB 
(Algorithm 1) as well as CBR (Algorithm 2) on synthetic 
data for some specific scenarios, while providing further 
scenarios in the supplementary material. 

6.1. Restricted Pre-Bandit Problem 

First, we analyze the empirical regret growth with vary­
ing time horizon T for the restricted Pre-Bandit problem. 
We consider the case n = 10, l = 3, and time horizons 
T ∈ {i · 2000}i5 

=1. The degree of preciseness is γ = 1 
throughout, and the score parameters θ = (θi)i∈[n] are 
drawn uniformly at random from the n-simplex, i.e., without 
a restriction on their minimal value and thus allowing θmin 

to be infinitesimal. The left plot in Figure 1 provides the per­
formance of our algorithms together with some algorithms 
for the DAS problem (see Section E in the supplement for 
more information on these). 

For the algorithms of the DAS problem, the best arm is set 
to be the no-choice option, thereby putting (most of) them in 
the advantageous position of knowing a priori one element 
of the optimal subset. Nevertheless, only TS-Oracle, with 
the advantage of knowing the best arm a priori, is able to 
slightly outperform TRCB in this scenario, whereas all other 
algorithms are distinctly outperformed by TRCB. 

To explain this observation, recall our remark on UCB-
like strategies in Section 5.1. The UCB-based algorithms 
UCB-Oracle resp. UCB-Sampling as well as the UCB-like 
approximation of the variance of TS-Oracle-Corr tend to ex­
clude arms with a low score from the suggested subset, even 
though they are contained in the optimal preselection. TS-
Oracle and TS-Sampling, which do not use upper confidence 
bounds and include low score arms in the suggested subsets, 
are performing much better. The gap between these two 
TS algorithms shows how heavily the algorithms depend on 
the assumption that the no-choice option corresponds to the 
highest scored arm, since we designed TS-Sampling such 
that, in each run, it samples once the best-arm from the top 
three arms according to an MNL model. 

In summary, this simulation confirms that the introduced 
(restricted) Pre-Bandit problem is indeed a new framework 
that differs from the DAS problem. A naı̈ve application of 
existing methods for the DAS problem is not suitable for 
this kind of problem. 

6.2. Flexible Pre-Bandit Problem 

Next, we investigate the empirical regret growth with vary­
ing time horizon T and varying numbers of arms n for 
the flexible Pre-Bandit problem. In addition, we compared 
our algorithms with the Double Thompson Sampling (DTS) 
algorithm by Wu & Liu (2016), which is considered state-of­
the-art for the dueling bandits problem with a small numbers 
of arms Sui et al. (2017). 

In the right picture of Figure 1, the results are displayed 
for the CBR resp. DTS algorithm on 1000 repetitions, re­
spectively, with n ∈ {5, 10, 15}, T ∈ {i · 2000}5 , and i=1 
σ(x) = (1 ∧ x)1[0,∞)(x). The score parameters are gener­
ated randomly as before. It is clearly recognizable that CBR 
distinctly outperforms DTS in all scenarios, indicating that 
offering larger subsets is at least experimentally beneficial 
to find the best arm more quickly. 

7. Conclusion 
In this paper, we have introduced the Pre-Bandit problem as 
a practically motivated and theoretically challenging variant 
of preference-based multi-armed bandits in a regret mini­
mization setting. More specifically, we proposed two scenar­
ios, one in which preselections are of fixed size and another 
one in which the size is under the control of the agent. For 
both scenarios, we derived lower bounds on the regret of 
algorithms solving these problems. Moreover, we proposed 
concrete algorithms and analyzed their performance theoret­
ically and experimentally. 

Our new framework suggests a multitude of conceivable 
paths for future work. Most naturally, it would be inter­
esting to analyze the Pre-Bandit problem under different 
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assumptions on the user’s choice behavior—despite being 
natural and theoretically justified (McFadden, 2001; Train, 
2009), the assumption of the PL model is relatively strong, 
and the question is to what extent it could be relaxed. The 
main challenge surely lies in defining a sensible notion of 
regret, but an extension to the nested logit-model (Chen 
et al., 2018c) or considering contextual information (Chen 
et al., 2018b) seems to be possible. However, it is worth 
noting that our derived lower bounds on the regret based 
on expected utilities in the spirit of (6) even hold for more 
general choice models, such as generalized random utility 
models (Walker & Ben-Akiva, 2002; Train, 2009), which 
encompass the PL model. 

Last but not least, like the related dynamic assortment selec­
tion problem studied in operational research, the motivation 
of our new framework stems from practical applications. 
Therefore, we are also interested in applying our algorithms 
to real-world problems, such as algorithm (pre-)selection 
already mentioned in the introduction. In particular, the 
realm of algorithm selection seems to be a canonical candi­
date for our setting, as the decisions made are based on the 
noisy performance values of the algorithms, which justify a 
stochastic modeling of the process. 
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