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Abstract. Due to the steadily increasing relevance of machine learn-
ing for practical applications, many of which are coming with safety
requirements, the notion of uncertainty has received increasing attention
in machine learning research in the last couple of years. In particular,
the idea of distinguishing between two important types of uncertainty,
often refereed to as aleatoric and epistemic, has recently been studied in
the setting of supervised learning. In this paper, we propose to quantify
these uncertainties, referring, respectively, to inherent randomness and a
lack of knowledge, with random forests. More specifically, we show how
two general approaches for measuring the learner’s aleatoric and epis-
temic uncertainty in a prediction can be instantiated with decision trees
and random forests as learning algorithms in a classification setting. In
this regard, we also compare random forests with deep neural networks,
which have been used for a similar purpose.
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1 Introduction

The notion of uncertainty has received increasing attention in machine learn-
ing research in the last couple of years, especially due to the steadily increas-
ing relevance of machine learning for practical applications. In fact, a trustwor-
thy representation of uncertainty should be considered as a key feature of any
machine learning method, all the more in safety-critical application domains
such as medicine [9,22] or socio-technical systems [19,20].

In the general literature on uncertainty, a distinction is made between two
inherently different sources of uncertainty, which are often referred to as aleatoric
and epistemic [4]. Roughly speaking, aleatoric (aka statistical) uncertainty refers
to the notion of randomness, that is, the variability in the outcome of an exper-
iment which is due to inherently random effects. The prototypical example of
aleatoric uncertainty is coin flipping. As opposed to this, epistemic (aka sys-
tematic) uncertainty refers to uncertainty caused by a lack of knowledge, i.e.,
it relates to the epistemic state of an agent or decision maker. This uncertainty
can in principle be reduced on the basis of additional information. In other
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words, epistemic uncertainty refers to the reducible part of the (total) uncer-
tainty, whereas aleatoric uncertainty refers to the non-reducible part.

More recently, this distinction has also received attention in machine learn-
ing, where the “agent” is a learning algorithm [18]. In particular, a distinction
between aleatoric and epistemic uncertainty has been advocated in the literature
on deep learning [6], where the limited awareness of neural networks of their own
competence has been demonstrated quite nicely. For example, experiments on
image classification have shown that a trained model does often fail on specific
instances, despite being very confident in its prediction. Moreover, such models
are often lacking robustness and can easily be fooled by “adversarial examples”
[14]: Drastic changes of a prediction may already be provoked by minor, actually
unimportant changes of an object. This problem has not only been observed for
images but also for other types of data, such as natural language text [17].

In this paper, we advocate the use of decision trees and random forests, not
only as a powerful machine learning method with state-of-the-art predictive per-
formance, but also for measuring and quantifying predictive uncertainty. More
specifically, we show how two general approaches for measuring the learner’s
aleatoric and epistemic uncertainty in a prediction (recalled in Sect. 2) can be
instantiated with decision trees and random forests as learning algorithms in a
classification setting (Sect. 3). In an experimental study on uncertainty-based
abstention (Sect. 4), we compare random forests with deep neural networks,
which have been used for a similar purpose.

2 Epistemic and Aleatoric Uncertainty

We consider a standard setting of supervised learning, in which a learner is given
access to a set of (i.i.d.) training data D ..= {(xi, yi)}N

i=1 ⊂ X ×Y, where X is an
instance space and Y the set of outcomes that can be associated with an instance.
In particular, we focus on the classification scenario, where Y = {y1, . . . , yK}
consists of a finite set of class labels, with binary classification (Y = {0, 1}) as
an important special case.

Suppose a hypothesis space H to be given, where a hypothesis h ∈ H is a
mapping X −→ P(Y), i.e., a hypothesis maps instances x ∈ X to probability
distributions on outcomes. The goal of the learner is to induce a hypothesis
h∗ ∈ H with low risk (expected loss)

R(h) ..=
∫

X×Y
�(h(x), y) dP (x, y), (1)

where P is the (unknown) data-generating process (a probability distribution
on X × Y), and � : Y × Y −→ R a loss function. This choice of a hypothesis is
commonly guided by the empirical risk

Remp(h) ..=
1
N

N∑
i=1

�(h(x), y), (2)
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i.e., the performance of a hypothesis on the training data. However, since
Remp(h) is only an estimation of the true risk R(h), the empirical risk mini-
mizer (or any other predictor)

ĥ ..= argmin
h∈H

Remp(h) (3)

favored by the learner will normally not coincide with the true risk minimizer
(Bayes predictor)

h∗ ..= argmin
h∈H

R(h). (4)

Correspondingly, there remains uncertainty regarding h∗ as well as the approx-
imation quality of ĥ (in the sense of its proximity to h∗) and its true risk R(ĥ).

Eventually, one is often interested in the predictive uncertainty, i.e., the uncer-
tainty related to the prediction ŷq for a concrete query instance xq ∈ X . In other
words, given a partial observation (xq, ·), we are wondering what can be said
about the missing outcome, especially about the uncertainty related to a pre-
diction of that outcome. Indeed, estimating and quantifying uncertainty in a
transductive way, in the sense of tailoring it to individual instances, is arguably
important and practically more relevant than a kind of average accuracy or
confidence, which is often reported in machine learning.

Fig. 1. Different types of uncertainties related to different types of discrepancies and
approximation errors: f∗ is the pointwise Bayes predictor, h∗ is the best predictor
within the hypothesis space, and ̂h the predictor produced by the learning algorithm.

As the prediction ŷq constitutes the end of a process that consists of different
learning and approximation steps, all errors and uncertainties related to these
steps may also contribute to the uncertainty about ŷq (cf. Fig. 1):

– Since the dependency between X and Y is typically non-deterministic, the
description of a new prediction problem in the form of an instance xq gives
rise to a conditional probability distribution

p(y |xq) =
p(xq, y)
p(xq)

(5)
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on Y, but it does normally not identify a single outcome y in a unique way.
Thus, even given full information in the form of the measure P (and its
density p), uncertainty about the actual outcome y remains. This uncertainty
is of an aleatoric nature. In some cases, the distribution (5) itself (called the
predictive posterior distribution in Bayesian inference) might be delivered
as a prediction. Yet, when having to commit to a point estimate, the best
prediction (in the sense of minimizing the expected loss) is prescribed by the
pointwise Bayes predictor f∗, which is defined by

f∗(x) ..= argmin
ŷ∈Y

∫
Y

�(y, ŷ) dP (y |x) (6)

for each x ∈ X .
– The Bayes predictor (4) does not necessarily coincide with the pointwise

Bayes predictor (6). This discrepancy between h∗ and f∗ is connected to the
uncertainty regarding the right type of model to be fit, and hence the choice
of the hypothesis space H. We refer to this uncertainty as model uncertainty.
Thus, due to this uncertainty, one can not guarantee that h∗(x) = f∗(x), or,
in case the hypothesis h∗ delivers probabilistic predictions p(y |h∗,x) instead
of point predictions, that p(· |h∗,x) = p(· |x).

– The hypothesis ĥ produced by the learning algorithm, for example the empir-
ical risk minimizer (3), is only an estimate of h∗, and the quality of this esti-
mate strongly depends on the quality and the amount of training data. We
refer to the discrepancy between ĥ and h∗, i.e., the uncertainty about how
well the former approximates the latter, as approximation uncertainty.

As already said, aleatoric uncertainty is typically understood as uncertainty that
is due to influences on the data-generating process that are inherently random,
that is, due to the non-deterministic nature of the sought input/output depen-
dency. This part of the uncertainty is irreducible, in the sense that the learner
cannot get rid of it. Model uncertainty and approximation uncertainty, on the
other hand, are subsumed under the notion of epistemic uncertainty, that is,
uncertainty due to a lack of knowledge about the perfect predictor (6). Obvi-
ously, this lack of knowledge will strongly depend on the underlying hypothesis
space H as well as the amount of data seen so far: The larger the number N = |D|
of observations, the less ignorant the learner will be when having to make a new
prediction. In the limit, when N → ∞, a consistent learner will be able to iden-
tify h∗. Moreover, the “larger” the hypothesis pace H, i.e., the weaker the prior
knowledge about the sought dependency, the higher the epistemic uncertainty
will be, and the more data will be needed to resolve this uncertainty.

How to capture these intuitive notions of aleatoric and epistemic uncertainty
in terms of quantitative measures? In the following, we briefly recall two pro-
posals that have recently been made in the literature.

2.1 Entropy Measures

An attempt at measuring and separating aleatoric and epistemic uncertainty on
the basis of classical information-theoretic measures of entropy is made in [2].
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This approach is developed in the context of neural networks for regression, but
the idea as such is more general and can also be applied to other settings. A
similar approach was recently adopted in [10].

Given a query instance x, the idea is to measure the total uncertainty in a
prediction in terms of the (Shannon) entropy of the predictive posterior distri-
bution, which, in the case of discrete Y, is given as

H
[
p(y |x)

]
= Ep(y |x)

{ − log2 p(y |x)
}

= −
∑
y∈Y

p(y |x) log2 p(y |x). (7)

Moreover, the epistemic uncertainty is measured in terms of the mutual infor-
mation between hypotheses and outcomes (i.e., the Kullback-Leibler divergence
between the joint distribution of outcomes and hypotheses and the product of
their marginals):

I(y, h) = Ep(y,h)

{
log2

(
p(y, h)

p(y)p(h)

)}
, (8)

Finally, the aleatoric uncertainty is specified in terms of the difference between
(7) and (8), which is given by

Ep(h | D)H
[
p(y |h,x)

]
= −

∫
H

p(h | D)

⎛
⎝∑

y∈Y
p(y |h,x) log2 p(y |h,x)

⎞
⎠ d h (9)

The idea underlying (9) is as follows: By fixing a hypothesis h ∈ H, the epis-
temic uncertainty is essentially removed. Thus, the entropy H[p(y |h,x)], i.e.,
the entropy of the conditional distribution on Y predicted by h for the query
instance x, is a natural measure of the aleatoric uncertainty. However, since h
is not precisely known, aleatoric uncertainty is measured in terms of the expec-
tation of this entropy with regard to the posterior probability p(h | D).

The epistemic uncertainty (8) captures the dependency between the prob-
ability distribution on Y and the hypothesis h. Roughly speaking, (8) is high
if the distribution p(y |h,x) varies a lot for different hypotheses h with high
probability. This is plausible, because the existence of different hypotheses, all
considered (more or less) probable but leading to quite different predictions, can
indeed be seen as a sign for high epistemic uncertainty.

Obviously, (8) and (9) cannot be computed efficiently, because they involve
an integration over the hypothesis space H. One idea, therefore, is to approx-
imate these measures by means of ensemble techniques [10], that is, to rep-
resent the posterior distribution p(h | D) by a finite ensemble of hypotheses
H = {h1, . . . , hM}. An approximation of (9) can then be obtained by

ua(x) ..= − 1
M

M∑
i=1

∑
y∈Y

p(y |hi,x) log2 p(y |hi,x), (10)
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an approximation of (7) by

ut(x) ..= −
∑
y∈Y

(
1
M

M∑
i=1

p(y |hi,x)

)
log2

(
1
M

M∑
i=1

p(y |hi,x)

)
, (11)

and finally and approximation of (8) by ue(x) ..= ut(x) − ua(x).

2.2 Measures Based on Relative Likelihood

Another approach, put forward in [18], is based on the use of relative likelihoods,
historically proposed by [1] and then justified in other settings such as possibility
theory [21]. Here, we briefly recall this approach for the case of binary classifica-
tion, i.e., where Y = {0, 1}; see [13] for an extension to the case of multinomial
classification.

Given training data D = {(xi, yi)}N
i=1 ⊂ X × Y, the normalized likelihood of

h ∈ H is defined as

πH(h) ..=
L(h)

L(hml)
=

L(h)
maxh′∈H L(h′)

, (12)

where L(h) =
∏N

i=1 p(yi |h,xi) is the likelihood of h, and hml ∈ H the maximum
likelihood estimation. For a given instance x, the degrees of support (plausibility)
of the two classes are defined as follows:

π(1 |x) = sup
h∈H

min
[
πH(h), p(1 |h,x) − p(0 |h,x)

]
, (13)

π(0 |x) = sup
h∈H

min
[
πH(h), p(0 |h,x) − p(1 |h,x)

]
. (14)

So, π(1 |x) is high if and only if a highly plausible hypothesis supports the
positive class much stronger (in terms of the assigned probability) than the
negative class (and π(0 |x) can be interpreted analogously). Given the above
degrees of support, the degrees of epistemic and aleatoric uncertainty are defined
as follows:

ue(x) = min
[
π(1 |x), π(0 |x)

]
, (15)

ua(x) = 1 − max
[
π(1 |x), π(0 |x)

]
. (16)

Thus, epistemic uncertainty refers to the case where both the positive and the
negative class appear to be plausible, while the degree of aleatoric uncertainty
(16) is the degree to which none of the classes is supported. More specifically,
the above measures have the following properties:

– ue(x) will be high if class probabilities strongly vary within the set of plau-
sible hypotheses, i.e., if we are unsure how to compare these probabilities. In
particular, it will be 1 if and only if we have h(x) = 1 and h′(x) = 0 for two
totally plausible hypotheses h and h′;
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– ua(x) will be high if class probabilities are similar for all plausible hypotheses,
i.e., if there is strong evidence that h(x) ≈ 0.5. In particular, it will be close to
1 if all plausible hypotheses allocate their probability mass around h(x) = 0.5.

As can be seen, the measures (15) and (16) are actually quite similar in spirit
to the measures (8) and (9).

3 Random Forests

Our basic idea is to instantiate the (generic) uncertainty measures presented in
the previous section by means of decision trees [15,16], that is, with decision
trees as an underlying hypothesis space H. This idea is motivated by the fact
that, firstly, decision trees can naturally be seen as probabilistic predictors [7],
and secondly, they can easily be used as an ensemble in the form of a random
forest—recall that ensembling is needed for the (approximate) computation of
the entropy-based measures in Sect. 2.1.

3.1 Entropy Measures

The approach in Sect. 2.1 can be realized with decision forests in a quite straight-
forward way. Let H = {h1, . . . , hM} be a classifier ensemble in the form of a
random forest consisting of decision trees hi. Moreover, recall that a decision
tree hi partitions the instance space X into (rectangular) regions Ri,1, . . . , Ri,Li

(i.e.,
⋃Li

l=1 Ri,l = X and Ri,k ∩ Ri,l = ∅ for k 	= l) associated with corresponding
leafs of the tree (each leaf node defines a region R). Given a query instance x,
the probabilistic prediction produced by the tree hi is specified by the Laplace-
corrected relative frequencies of the classes y ∈ Y in the region Ri,j 
 x:

p(y |hi,x) =
ni,j(y) + 1
ni,j + |Y| ,

where ni,j is the number of training instances in the leaf node Ri,j , and ni,j(y)
the number of instances with class y. With probabilities estimated in this way,
the uncertainty degrees (10) and (11) can directly be derived.

3.2 Measures Based on Relative Likelihood

Instantiating the approach in Sect. 2.2 essentially means computing the degrees
of support (13–14), from which everything else can easily be derived.

As already said, a decision tree partitions the instance space into several
regions, each of which can be associated with a constant predictor. More specif-
ically, in the case of binary classification, the predictor is of the form hθ,
θ ∈ Θ = [0, 1], where hθ(x) ≡ θ is the (predicted) probability p(1 |x ∈ R)
of the positive class in the region. If we restrict inference to a local region, the
underlying hypothesis space is hence given by H = {hθ | 0 ≤ θ ≤ 1}.
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With p and n the number of positive and negative instances, respectively,
within a region R, the likelihood and the maximum likelihood estimate of θ are
respectively given by

L(θ) =
(

n + p
n

)
θn(1 − θ)p and θml =

n

n + p
. (17)

Therefore, the degrees of support for the positive and negative classes are

π(1 |x) = sup
θ∈[0,1]

min

(
θp(1 − θ)n(
p

n+p

)p( n
n+p

)n , 2θ − 1

)
, (18)

π(0 |x) = sup
θ∈[0,1]

min

(
θp(1 − θ)n(
p

n+p

)p( n
n+p

)n , 1 − 2θ

)
. (19)

Solving (18) and (19) comes down to maximizing a scalar function over a
bounded domain, for which standard solvers can be used. From (18–19), the
epistemic and aleatoric uncertainty associated with the region R can be derived
according to (15) and (16), respectively. For different combinations of n and p,
these uncertainty degrees can be pre-computed.

Note that, for this approach, the uncertainty degrees (15) and (16) can be
obtained for a single tree. To leverage the ensemble H, we average both uncer-
tainties over all trees in the random forest.

4 Experiments

The empirical evaluation of methods for quantifying uncertainty is a non-trivial
problem. In fact, unlike for the prediction of a target variable, the data does
normally not contain information about any sort of “ground truth” uncertainty.
What is often done, therefore, is to evaluate predicted uncertainties indirectly,
that is, by assessing their usefulness for improved prediction and decision mak-
ing. Adopting an approach of that kind, we produced accuracy-rejection curves,
which depict the accuracy of a predictor as a function of the percentage of rejec-
tions [5]: A classifier, which is allowed to abstain on a certain percentage p of
predictions, will predict on those (1 − p)% on which it feels most certain. Being
able to quantify its own uncertainty well, it should improve its accuracy with
increasing p, hence the accuracy-rejection curve should be monotone increasing
(unlike a flat curve obtained for random abstention).

4.1 Implementation Details

For this work, we used the Random Forest Classifier from SKlearn. The number
of trees within the forest is set to 50, with the maximum level of tree grows set
to 10. We use bootstrapping to create diversity between the trees of the forest.

As a baseline to compare with, we used the DropConnect model for deep
neural networks as introduced in [10]. The idea of DropConnect is similar to
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Dropout, but here, instead of randomly deleting neurons, we randomly delete the
connections between neurons. In this model, the act of dropping the connections
is also active in the test phase. In this way, the data passes through a different
network on each iteration, and therefore we can compute Monte Carlo samples
for each query instance. The DropConnect model is a feed forward neural network
consisting of two DropConnect layers with 32 neurons and a final softmax layer
for the output. The model is trained for 20 epochs with mini batch size of 32.
After the training is done, we take 50 Monte Carlo samples to create an ensemble,
from which the uncertainty values can be calculated.

4.2 Results

Due to space limitations, we show results in the form of accuracy-rejection curves
for only two exemplary data sets from the UCI repository1, spect and diabetes—
yet, very similar results were obtained for other data sets. The data is randomly
split into 70% for training and 30% for testing, and accuracy-rejection curves
are computed on the latter (the curves shown are averages over 100 repetitions).
In the following, we abbreviate the aleatoric and epistemic uncertainty degrees
produced by the entropy-based approach (Sect. 2.1) and the approach based on
relative likelihood (Sect. 2.2) by AU-ent, EU-ent, AU-rl, and EU-rl, respectively.

Fig. 2. Accuracy-rejection curves for aleatoric (above) and epistemic (below) uncer-
tainty using random forests. The curve for random rejection is included as a baseline.

1 https://archive.ics.uci.edu/ml/datasets/.

https://archive.ics.uci.edu/ml/datasets/
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As can be seen from Figs. 1, 2, 3 and 4, both approaches to measuring uncer-
tainty are effective in the sense of producing monotone increasing accuracy-
rejection curves, and on the data sets we analyzed so far, we could not detect
any systematic differences in performance. Besides, rejection seems to work well
on the basis of both criteria, aleatoric as well as epistemic uncertainty. This is
plausible, since both provide reasonable reasons for a learner to abstain from
a prediction. Likewise, there are no big differences between random forests and
neural networks, showing that the former are indeed a viable alternative to the
latter—this was actually a major concern of our study.

Fig. 3. Scatter plot for test set on diabetes data, showing the relationship between the
uncertainty degrees (aleatoric left, epistemic right) estimated by the two approaches.

Fig. 4. Comparison between random forests and neural networks (DropConnect) for
aleatoric (above) and epistemic (below) in the entropy-based uncertainty approach.
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5 Conclusion

The distinction between aleatoric and epistemic uncertainty has recently received
a lot of attention in machine learning, especially in the deep learning community
[6]. Roughly speaking, the approaches in deep learning are either based on the
idea of equipping networks with a probabilistic component, like in Bayesian deep
learning [11], or on using ensemble techniques [8], which can be implemented
(indirectly) through techniques such as Dropout [3] or DropConnect. The main
purpose of this paper was to show that the use of decision trees and random
forests is an interesting alternative to neural networks.

Indeed, as we have shown, the basic ideas underlying the estimation of
aleatoric and epistemic uncertainty can be realized with random forests in a
very natural way. In a sense, they even appear to be simpler and more flexi-
ble than neural networks. For example, while the approach based on relative
likelihood (Sect. 2.2) could be realized efficiently for random forests, a neural
network implementation is far from obvious (and was therefore not included in
the experiments).

There are various directions for future work. For example, since the hyper-
parameters of random forests have an influence on the hypothesis space we
are (indirectly) working with, they also influence the estimation of uncertainty
degrees. This relationship calls for a thorough investigation. Besides, going
beyond a proof of principle with statistics such as accuracy-rejection curves,
it would be interesting to make use of uncertainty quantification with random
forests in applications such as active learning, as recently proposed in [12].
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