
Vol.:(0123456789)

Automated Software Engineering (2020) 27:153–186
https://doi.org/10.1007/s10515-020-00270-x

1 3

MANUSCRIPT

Algorithm selection for software validation based on graph
kernels

Cedric Richter1 · Eyke Hüllermeier1 · Marie‑Christine Jakobs2 · Heike Wehrheim1

Received: 19 March 2019 / Accepted: 20 March 2020 / Published online: 18 April 2020
© The Author(s) 2020

Abstract
Algorithm selection is the task of choosing an algorithm from a given set of candi-
date algorithms when faced with a particular problem instance. Algorithm selection
via machine learning (ML) has recently been successfully applied for various prob-
lem classes, including computationally hard problems such as SAT. In this paper, we
study algorithm selection for software validation, i.e., the task of choosing a soft-
ware validation tool for a given validation instance. A validation instance consists of
a program plus properties to be checked on it. The application of machine learning
techniques to this task first of all requires an appropriate representation of software.
To this end, we propose a dedicated kernel function, which compares two programs
in terms of their similarity, thus making the algorithm selection task amenable to
kernel-based machine learning methods. Our kernel operates on a graph represen-
tation of source code mixing elements of control-flow and program-dependence
graphs with abstract syntax trees. Thus, given two such representations as input, the
kernel function yields a real-valued score that can be interpreted as a degree of simi-
larity. We experimentally evaluate our kernel in two learning scenarios, namely a
classification and a ranking problem: (1) selecting between a verification and a test-
ing tool for bug finding (i.e., property violation), and (2) ranking several verification
tools, from presumably best to worst, for property proving. The evaluation, which
is based on data sets from the annual software verification competition SV-COMP,
demonstrates our kernel to generalize well and to achieve rather high prediction
accuracy, both for the classification and the ranking task.

Keywords Algorithm selection · Software validation · Machine learning · Graph
kernels · Verification · Testing

This work was partially supported by the German Research Foundation (DFG) within the
Collaborative Research Centre “On-The-Fly Computing” (SFB 901).

 * Heike Wehrheim
 wehrheim@upb.de

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s10515-020-00270-x&domain=pdf

154 Automated Software Engineering (2020) 27:153–186

1 3

1 Introduction

Algorithm selection (Rice 1976) is concerned with choosing a specific algorithm
from a set of algorithms for a given instance of a problem class. Algorithm selec-
tion is helpful, especially for hard computational problems, because different algo-
rithms exhibit different performance characteristics, and there is normally no single
best algorithm that outperforms all others on all problem instances. With the recent
advances in machine learning (ML), algorithm selection has been successfully
applied in various fields (such as SAT solving, planning and constraint satisfaction,
see e.g. Bischl et al. 2016). Algorithm selection is especially beneficial for building
portfolio solvers, i.e., solvers in which the (likely) best algorithm is chosen first and
then executed on the problem instance. For SAT solving, portfolio solvers often beat
standard solvers in competitions (Xu et al. 2008).

Software validation, i.e., the problem of determining whether certain properties
are valid for a given software, is another computationally hard (and in general unde-
cidable) problem. Despite this fact, there has recently been enormous progress in
software validation, employing diverse techniques ranging from static and dynamic
analyses and automata-based methods to abstract interpretations. The annual hold-
ing of software verification competitions has furthermore stimulated the develop-
ment of tools, in particular the tuning of tools towards performance and precision.
This offers a software developer faced with the task of showing that her software
satisfies a certain property a rather large set of tools (algorithms) to choose from.
However, not all tools are equally good at showing a specific property. Due to dif-
ferent validation technologies employed by the tools, they may vary in performance
on different programs and properties. To give some examples, there are specialized
tools for showing program termination or verifying program properties depending
on pointer structures. While competitions like the annual Competition on Software
Verification SV-COMP (Beyer 2017) with its rankings provide some a posteriori
insight into the particular usefulness of a tool on a validation instance, the software
developer rather needs an a priori advice for which tool to choose.

To this end, we propose an approach and present a framework for algorithm
selection in software validation. Our framework predicts the (likely) best tool (or
even a ranking of tools) for solving a particular validation instance. We assume that
validation instances consist of a source code together with properties to be verified.
This fits well to the validation instances considered by SV-COMP, and allows us to
use the data of the competition for training and evaluation purposes.

Our method builds upon kernel-based machine learning techniques, more spe-
cifically support vector machines (Boser et al. 1992). Given a suitable kernel func-
tion (Shawe-Taylor and Cristianini 2004), these techniques can be applied in a
relatively generic way. Thus, the key challenge in our setting is an appropriate repre-
sentation of the validation instances, together with the definition of a kernel function
that acts as a similarity measure on such instances (viz. programs). On the one side,
the representation has to be expressive enough to allow the ML algorithm to identify
ways of distinguishing software. On the other side, it should try to avoid confusing
the learner by unnecessary details.

155

1 3

Automated Software Engineering (2020) 27:153–186

So far, two other machine learning methods for selecting tools or algorithms for
validation have been proposed (Tulsian et al. 2014; Demyanova et al. 2015, 2017),
both of them being based on an explicit feature representation of programs: while
Tulsian et al. (2014) only employ structural features of programs (like the number
of arrays, loops, recursive functions), Demyanova et al. (2015, 2017) use a num-
ber of data-flow analyses to also determine more sophisticated features (e.g., cer-
tain loop patterns). Thus, both approaches try to explicitly capture aspects of source
code that make validation hard (for some or all tools). With our kernels, we take a
different approach, in which we supply the learning algorithm with a more generic
representation of source code. Based on this representation, the learner itself should
be able to identify the distinguishing patterns. We believe that our kernels are thus
more readily usable for other program analysis tasks, for which a machine learning
method might be considered (e.g., bad smell or security violation detection).

More specifically, our kernel is constructed on a graph representation of source
code. Our graphs are combinations of control-flow graphs (CFGs), program-depend-
ence graphs (PDGs), and abstract syntax trees (ASTs). In these, concrete inscrip-
tions on nodes (like x := y+1) are first of all replaced by abstract labels (e.g.,
Assign). Such labelled graphs are then used within our specific adaptation of the
Weisfeiler–Lehman test for graph isomorphism (Weisfeiler and Lehman 1968).
It compares graphs not only according to their labels (and how often they occur)
but also according to associations between labels (via edges in the graph). This is
achieved by iteratively comparing larger and larger subtrees of nodes, where the
maximum depth of subtrees to be considered is a parameter of the framework. The
choice of a Weisfeiler–Lehman based kernel is motivated by its better scalability
compared to other graph kernels, such as random walk or shortest path kernels
(see Shervashidze et al. 2011). However, contrary to Shervashidze et al. (2011), we
do not build a linear kernel based on the Weisfeiler–Lehman idea, but employ a gen-
eralized Jaccard similarity.

We implemented this technique and carried out experimental studies using data
from SV-COMP 2018 and from Beyer and Lemberger’s work on testing versus
model checking (Beyer and Lemberger 2017). For the experiments, we considered
two settings in which algorithm selection is applied. The first setting uses the ker-
nels for classification of validation instances according to two classes: the first class
contains the instances for which a testing tool is better at bug finding, the second
class those instances for which a verification tool is better. The second setting con-
siders rank prediction of verification tools, i.e., the prediction of rankings of tools
according to their performance on specific problem instances.

The experiments show that our technique can predict rankings with a rather high
accuracy, using Spearman’s rank correlation (Spearman 1904) to compare predicted
with true rankings. The classifier’s prediction is similarly high. The experiments fur-
thermore show that the overhead associated with prediction is tolerable for practical
applications.

Summarizing, this paper makes the following contributions:

– We propose an expressive representation of source code ready for use in machine
learning approaches;

156 Automated Software Engineering (2020) 27:153–186

1 3

– we develop two algorithm selection techniques for software validation based on
this representation, one for classification and one for ranking;

– we present an implementation of our approach and extensively evaluate it;
– we experimentally demonstrate our technique—despite being more general and

more widely applicable—to compare favorably with existing approaches to the
selection of validation tools.

A short description of a first version of our kernel and some ranking experiments
have appeared in Czech et al. (2017). This first version is a workshop paper. Here,
we give a full account of the learning approach, including the necessary background
in machine learning, and present a more thorough evaluation. More concretely, we
in addition performed experiments evaluating the learning approach for binary clas-
sification (testing vs. verification) and we evaluated the runtime of the approach
(both for classification and rank prediction). Apart from that, the data sets have been
extended covering an additional category of SV-COMP and taking the data of SV-
COMP 2018 instead of 2017 as Czech et al. (2017) did. All data and software are
publicly available1.

2 Algorithm selection task

Our objective is to carry out algorithm selection in software validation. We start
with describing what a validation instance is and how we compare tools with respect
to their performance on validation instances.

Definition 1 A validation instance (or short, an instance) (P,�) consists of a pro-
gram P (in our experiments, we consider C programs) and a property � . The latter
is also called specification and is typically either given externally or written as an
assertion into the program.

We denote by I the set of all validation instances. We assume that the property
to be validated is either part of the program or otherwise fixed, and hence often omit
� . Figure 1 shows our running example PSUM of an instance (a program computing

Fig. 1 The validation instance
P
SUM

1 int i;
2 int n;
3 int sn;
4 n = input();
5 sn = 0;
6 i = 0;
7 while (i <= n) {
8 sn = sn + 2;
9 i = i + 1; }

10 assert (sn == n*2 || sn == 0);

1 https ://githu b.com/cedri crupb /pySVR anker

https://github.com/cedricrupb/pySVRanker

157

1 3

Automated Software Engineering (2020) 27:153–186

n times 2 via addition). In line 10, we find the specification written as an assertion,
which is obviously valid. During validation, we expect some validation tool to be
run on an instance in order to determine whether the program fulfills the specifica-
tion. As outcome of such a validation run we consider pairs (a, t), where t ∈ ℝ+ is
the time in seconds from the start of the validation run to its end, and a is of the fol-
lowing form:

– TRUE, when the tool has concluded that P satisfies �,
– FALSE, when the tool has concluded that P violates � , and
– UNKNOWN, when no conclusive result was achieved.

We let A = {TRUE, FALSE, UNKNOWN} be the set of all answers. A validation
tool can thus be seen as a function

providing an answer on an instance within some time. The case where the tool does
not terminate is covered by the answer UNKNOWN. We let V be the set of all tools
and use V ,V1,V2 ∈ V to refer to specific elements of this set.

Assuming that we know the correct answer (i.e., the ground truth TRUE or
FALSE), we can judge the tool answer by comparing it to the correct answer.
Table 1 provides an overview of the result of such a comparison (Correct, Wrong or
Unknown). For comparing tools on validation instances, we define a lexicographic
order on pairs of results and runtimes as follows:

where two results r and r′ are compared according to the obvious preference order
Correct ≻ Unknown ≻ Wrong . In the case where tools do not terminate on a vali-
dation instance (i.e., get a timeout), they all share the same result and runtime.

The objective of our learning approach is to provide an algorithm selector, i.e., to
learn a model which predicts on a given validation instance a tool likely performing
well under this ordering. In the following, we present two such selectors. The first
one is a simple binary classifier that chooses between a testing tool and a verifica-
tion tool, whereas the second one chooses among a larger set of verification tools.
For the latter, instead of merely predicting the best tool, we propose an approach
that predicts a ranking of all tools. In practice, a prediction of that kind is often more
useful, especially as it identifies alternatives in cases where the presumably best can-
didate fails, is not available, or could not be applied for whatever reason. Also, for
practical reasons or criteria that have not been considered as training information

tool ∶ I → A ×ℝ

(1)(r, t) ≻ (r�, t�) if (r ≻ r�) or (r = r�) ∧ (t < t�),

Table 1 Comparison of
outcomes of validation runs

Correct answer Tool answer

TRUE FALSE UNKNOWN

TRUE Correct Wrong Unknown
FALSE Wrong Correct Unknown

158 Automated Software Engineering (2020) 27:153–186

1 3

(e.g., cost), one of the runner-up alternatives might be preferred to the one that is
actually predicted the best.

3 Learning algorithms for classification and ranking

The task of choosing a software validation tool for a given validation instance, or
of ranking a set of tools according to their appropriateness for a validation prob-
lem at hand, requires answering questions like the following: Given a tool and a
validation instance, will the former yield a correct result when being applied to the
latter? Given two tools, which of them is more appropriate for a specific validation
instance?

The idea of algorithm selection via machine learning is to train predictive mod-
els that are able to “guess” the answers to these questions. Since all questions are
binary in the sense of calling for a simple yes/no answer, the type of machine learn-
ing problem that is relevant here is binary classification. As will be seen later on, the
problem of ranking can be reduced to binary classification, too (essentially because
ranking can be reduced to pairwise comparison).

This section starts with a short description of the necessary background in
machine learning. More specifically, we explain the problems of binary classifica-
tion and label ranking as well as the method of ranking by pairwise comparison for
tackling the latter. We also recall support vector machines as a concrete kernel-based
machine learning method for binary classification. Although “kernelized” versions
of other classification methods exist as well, support vector machines are most com-
monly used and proved to achieve state-of-the-art performance in many practical
domains.

3.1 Binary classification

In the setting of binary classification, we proceed from training data

consisting of labeled instances xi . Here, an instance is a formal representation (e.g.,
a vector, graph, sequence, etc.) of an object of interest, and X is the set of all rep-
resentations conceivable, called the instance space. In our concrete application, an
instance can be thought of as (the representation of) a validation instance in I , i.e., a
program plus properties to be checked. Likewise, Y = {−1,+1} is the output space,
which in binary classification only comprises two elements representing the positive
(answer “yes”) and negative (answer “no”) class, respectively.

Given training data (2), which is typically assumed to be independent and identi-
cally distributed according to an underlying probability measure � on X × Y , the
task in binary classification is to induce a classifier that generalizes well beyond this
data, that is, which is able to assign new instances x ∈ X to the correct class. For
example, for a given validation tool, we may have seen positive examples (xi,+1) of
validation instances xi it solved correctly, and negative examples (xj,−1) of instances

(2)� = {(xi, yi)}
N
i=1

⊂ X × Y

159

1 3

Automated Software Engineering (2020) 27:153–186

it solved incorrectly. For any new query instance x, a classifier trained on this data
should then be able to anticipate whether or not the tool will be correct on x.

Formally, a classifier is a mapping h ∶ X → Y taken from a given hypothe-
sis space H ⊂ Y

X . A classifier h ∈ H is typically evaluated in terms of its risk or
expected loss

where L is a loss function Y2
→ ℝ+ that specifies a penalty for a prediction ŷ = h(x)

if the ground truth is y. The simplest loss function of this kind is the 0/1 loss given
by L(y, ŷ) = 0 if y = ŷ and = 1 otherwise, though more general losses are often used
in practice. Sometimes, for example, a false positive (e.g., the classifier suggests that
a tool will be correct on a validation instance, although it fails) and a false nega-
tive (classifier predicts failure, although the tool is correct) cause different costs,
which can be modeled by an asymmetric loss function. Regardless of how the loss
is defined, the goal of binary classification can be defined as finding a risk-minizing
hypothesis

3.2 Support vector machines

A support vector machine (SVM) is a specific type of binary classifier. More spe-
cifically, SVMs are so-called “large margin” classifiers that belong to the class of
kernel-based machine learning methods (Schölkopf and Smola 2001). They sepa-
rate positive from negative training instances in X = ℝ

m by means of a linear hyper-
plane that maximizes the minimum distance of any of the training instances from
the hyperplane (decision boundary). Formally, a hyperplane {x |w⊤x + b = 0} in
ℝ

m is characterized by the normal vector w ∈ ℝ
m and the bias term b ∈ ℝ . Then,

encoding the two classes by ±1 (as we did above), the margin of a training example
(xi, yi) ∈ ℝ

m × {−1,+1} is given by yi(w⊤xi + b) ; thus, a positive margin indicates
that xi is on the right side of the decision boundary, and hence classified correctly,
whereas a negative margin corresponds to a mistake on the training data.

The “soft margin” version allows for adding a slack variable �i ≥ 0 and defines
the margin as yi(w⊤xi + b) + 𝜉i for each instance xi ; this is necessary in the case of
data that is not linearly separable. Obviously, the values of the slack variables should
be kept small, i.e., the problem comes down to finding a reasonable balance between
a large (soft) margin and a small amount of slack. This problem can be formalized in
terms of a constrained quadratic optimization problem:

R(h) = ∫
X×Y

L(y, h(x)) d �(x, y) ,

h∗ ∈ argmin
h∈H

R(h) .

(3)(w∗, b∗) = argmin
w,b,�

�
1

2
‖w‖2 + C

N�
i=1

�i

�

160 Automated Software Engineering (2020) 27:153–186

1 3

subject to the constraints

where C is a parameter that controls the penalization of errors on the training data
(indicated by a non-zero �i). At prediction time, a new instance x0 ∈ ℝ

m is classi-
fied positive or negative depending on whether it lies above or below the hyper-
plane (w∗, b∗) . Instead of only returning a binary decision, the distance from the
hyperplane is often reported as a kind of measure of certainty (with the idea that the
closer an instance to the decision boundary, the less certain the prediction).

As a disadvantage of this measure, note that the distance is not normalized and
therefore difficult to interpret and compare. So-called Platt scaling is a post-process-
ing step, in which distances are mapped to [0, 1] via a logistic transformation; thus,
each instance is assigned a (pseudo-)probability of belonging to the positive class
(Platt 1999).

Instead of solving the problem (3) directly, it is often more convenient to solve
its dual. In the dual formulation, training instances xi, xj never occur in isolation but
always in the form of inner products ⟨xi, xj⟩ . This allows for the “kernelization” of
SVMs, simply be replacing such inner products by values k(xi, xj) of a so-called ker-
nel function k.

Definition 2 A function k ∶ X × X → ℝ is a positive semi-definite kernel iff k is
symmetric, i.e., k(x, x�) = k(x�, x) , and

for arbitrary N, arbitrary instances x1,… , xN ∈ X and arbitrary c1,… , cN ∈ ℝ.

If k(⋅) is a proper kernel function, one can guarantee the existence of an induced
feature space F (which is a Hilbert space) and a feature map � ∶ X → F such that
⟨�(x),�(x�)⟩ = k(xi, xj) . Thus, the computation of inner products in the (typically
very high-dimensional) space F can be replaced by the evaluations of the kernel,
which in turn allows a linear model to be fit in F without ever accessing that space
or computing the image �(xi) of a training instance xi—this is called the “kernel
trick”. As long as a learning algorithm, which is run in the feature space F , only
requires the computation of inner products ⟨�(x),�(x�)⟩ , but never individual feature
vectors �(xi) , it only needs access to the Gram matrix, i.e., the value of the kernel
for each pair of training instances:

Note that the instance space X , on which the kernel is defined, is not necessar-
ily a Euclidean space any more. Instead, X can be any space or set of objects. In

(4)yi(w
⊤xi + b) ≥ 1 − 𝜉i , 𝜉i ≥ 0 ,

N∑
i=1

N∑
j=1

cicjk(xi, xj) ≥ 0

G =

⎛⎜⎜⎜⎝

k(x1, x1) k(x1, x2) … k(x1, xN)

k(x2, x1) k(x2, x2) … k(x2, xN)

⋮ ⋮ ⋱ ⋮

k(xN , x1) k(xN , x2) … k(xN , xN)

⎞⎟⎟⎟⎠

161

1 3

Automated Software Engineering (2020) 27:153–186

particular, this allows SVMs to be trained on structured (non-vectorial) objects—
in our case, these objects are programs to be validated. In general, a kernel func-
tion can be interpreted as a kind of similarity measure on X , i.e., the more similar
instances xi, xj , the larger k(xi, xj) . We will come back to this point in Sect. 5 further
below, where we address the question of how to define appropriate kernel functions
on validation instances.

3.3 Label ranking

In addition to the problem of classifying, we are interested in the (more complex)
problem of ranking. More specifically, the task we would like to tackle is the fol-
lowing: Given a context specified in terms of a representation x (e.g., a validation
instance), sort a set of choice alternatives (e.g., a set of validation tools) in descend-
ing order of preference. In the machine learning literature, this problem has been
studied under the notion of label ranking (Vembu and Gärtner 2010).

More formally, consider a finite set of K alternatives identified by class labels
Y = {y1,… , yK} . In our case, Y is the set of validation tools V . We are interested
in total order relations ≻ on Y , that is, complete, transitive, and antisymmetric rela-
tions, where yi ≻ yj indicates that yi precedes yj in the order. In our case, the alterna-
tives (labels) correspond to the validation tools, and label preferences are defined in
terms of the lexicographic preferences (1) on tools. Formally, a total order ≻ can be
identified with a permutation � of the set [K] = {1,… ,K} , such that �(i) is the posi-
tion of yi in the order. We denote the class of permutations of [K] (the symmetric
group of order K) by �K . By abuse of terminology, though justified in light of the
above one-to-one correspondence, we refer to elements � ∈ �K as both permuta-
tions and rankings.

In the setting of label ranking, preferences on Y are “contextualized” by instances
x ∈ X , where X is an underlying instance space; in our case, instances are programs
(plus properties) to be validated. Thus, each instance x is associated with a rank-
ing ≻x of the label set Y or, equivalently, a permutation �x ∈ �K . More specifically,
since label rankings do not necessarily depend on instances in a deterministic way,
each instance x is associated with a probability distribution �(⋅ | x) on �K . Thus, for
each � ∈ �K , �(� | x) denotes the probability to observe the ranking � in the context
specified by x.

Just like the goal in binary classification is to learn a classifier, the goal in label
ranking is to learn a “label ranker”, i.e., a mapping M ∶ X → �K that predicts a
ranking �̂� for each instance x given as an input. More specifically, seeking a model
with optimal prediction performance, the goal is to find a risk (expected loss)
minimizer

where � is the underlying model class, � is the joint measure �(x,�) = �(x)�(� | x)
on X × �K and L is a loss function on �K . A common example of such a loss is

M∗ ∈ argmin
M∈� ∫

X×�K

L(M(x),�) d �,

162 Automated Software Engineering (2020) 27:153–186

1 3

L(𝜋, �̂�) = 1 − S(𝜋, �̂�) , where S(𝜋, �̂�) is the Spearman rank correlation (Spearman
1904):2

As can be seen, for each alternative yi , this measure penalizes deviations of the esti-
mated rank �̂�(i) from its true rank �(i) ; these penalties are added together and nor-
malized so that S(𝜋, �̂�) = +1 if �̂� = 𝜋 and S(𝜋, �̂�) = −1 if �̂� is the complete reversal
of �.

As training data � , a label ranker uses a set {(xi,�i)}Ni=1 of instances xi (i ∈ [N]),
together with information about the associated rankings �i.

3.4 Ranking by pairwise comparison

How can a label ranker be represented and trained on a suitable set of data? In this
paper, we make use of an established approach to label ranking called ranking by
pairwise comparison (RPC), a meta-learning technique that reduces a label rank-
ing task to a set of binary classification problems (Hüllermeier et al. 2008). More
specifically, the idea is to train a separate model (base learner) Mi,j for each pair

(5)S(𝜋, �̂�) = 1 −
6
∑K

i=1
(𝜋(i) − �̂�(i))2

K(K2 − 1)
∈ [−1, 1]

Fig. 2 Illustration of the RPC approach (for K = 4). At training time (left), the original data � is split
into K(K − 1)∕2 smaller data sets, one for each pair of labels, and a binary classifier is trained on each
of these data sets. If a prediction for a new instance is sought (right), this instance is submitted to each
of the binary models, and the pairwise preferences obtained as predictions are combined into a complete
ranking � via a ranking procedure P

2 According to (1), there is no strict preference between tools with a timeout, hence the true ranking �
may contain ties. In such cases, to compute (5), we break the ties according to the order suggested by �̂� .
This “optimistic” extension avoids on unjustified penalization of the ranker, which is forced to predict a
strict order (Amerise and Tarsitano 2015).

163

1 3

Automated Software Engineering (2020) 27:153–186

of labels (yi, yj) ∈ Y , 1 ≤ i < j ≤ K ; thus, a total number of K(K − 1)∕2 models is
needed (see Fig. 2 for an illustration). In our case, Mi,j is supposed to compare the
ith and jth validation tool.

For training, the original data � is first turned into binary classification data sets
�i,j , 1 ≤ i < j ≤ K . To this end, each preference information of the form yi ≻x yj
(extracted from full or partial information about a ranking �x) is turned into a
positive (classification) example (x,+1) for the learner Mi,j ; likewise, each prefer-
ence yj ≻x yi is turned into a negative example (x,−1) . Thus, Mi,j trained on �i,j
is intended to learn the mapping that outputs +1 if yi ≻x yj (the ith tool was better
on verification task x than the jth tool) and −1 if yj ≻x yi (the ith tool was worse
than the jth tool). This mapping can be realized by any binary classifier (of course,
like in binary classification, one can also employ a probabilistic classifier that pre-
dicts a probability of the preference yi ≻x yj). In our approach, we use support vector
machines as introduced above as base learners for RPC.

At classification time, a query x0 ∈ X is submitted to the complete ensemble of
binary learners. Thus, a collection of predicted pairwise preference degrees Mi,j(x) ,
1 ≤ i, j ≤ K , is obtained. The problem, then, is to turn these pairwise preferences
into a ranking of the label set Y . To this end, different ranking procedures can be
used. The simplest approach is to extend the (weighted) voting procedure that is
often applied in pairwise classification (Fürnkranz 2002): For each label yi , a score
si =

∑
1≤j≠i≤K Mi,j(x0) is obtained, which represents the total preference in favor of

that label (the sum of all preferences over all other labels), and then the labels are
sorted according to these scores. Despite its simplicity, this ranking procedure has
several appealing properties. Apart from its computational efficiency, it turned out
to be relatively robust in practice and, moreover, it possesses provable optimality
properties3 in the case where Spearman’s rank correlation is used as an underlying
accuracy measure (Hüllermeier and Fürnkranz 2010).

4 Representing validation instances

Our approach to algorithm selection involves the use of machine learning methods
for inducing binary classifiers. As said before, this requires a suitable representa-
tion of the validation instances, both for the training and prediction phase. A core
requirement on this representation is its ability to represent various structural rela-
tionships between program entities, and to distinguish programs which differ in these
structures. The key contribution of our work is the proposal of such a representation.

A common solution is a vectorial representation in the form of a feature vector, as
it is supported by a wide range of learning algorithms. Nonetheless, finding suitable
features that capture the main characteristics of an instance is often very challenging.
In the two approaches existing so far (Tulsian et al. 2014; Demyanova et al. 2015),
corresponding features of programs such as the number of loops, conditionals,

3 It maximizes the expected Spearman rank correlation for any probability distribution on rankings
whose pairwise marginals are given by Mi,j(x0).

164 Automated Software Engineering (2020) 27:153–186

1 3

pointer variables, or arrays in a program are defined in an explicit way. Obviously,
this approach requires sufficient domain knowledge (in our case about software vali-
dation) to identify features that are important for the prediction problem at hand.
Our approach essentially differs in that features are specified in a more indirect way,
namely by systematically extracting (a typically large number of) generic features
from a suitable representation of the validation instance. Selecting the useful fea-
tures and combining them appropriately is then basically left to the learner.

But how to represent the validation instances in a more generic way? Pure source
code (i.e., strings) is not suitable for this purpose as it does not provide enough
structure. The source code of two programs might look very different although the
underlying program is actually the same (different variable names, while instead
of for loops, etc.). What we need is a representation that abstracts from issues like
variable names but still represents the structure of programs, in particular depend-
encies between elements of the program. These considerations (and some experi-
ments comparing different representations, see Czech et al. 2017) have led to a
graph representation of programs combining concepts of three existing program
representations:

Control-flow graphs CFGs record the control flow in programs and
thus the overall structure with loops, conditionals
etc.; these are needed, for example, to see loops in
programs.

Program-dependence graphs PDGs (Horwitz and Reps 1992) represent depend-
encies between elements in programs. We dis-
tinguish control and data dependencies. This
information is important, for example, to detect
whether a loop boundary depends on an input vari-
able (as is the case in program PSUM).

Abstract syntax trees ASTs reflect the syntactical structure of programs
according to a given grammar. We only include
an abstract syntax tree representation of state-
ments. This can help to reveal the complexity of
expressions, in particular the arithmetic operations
occuring in expressions.

Unlike CFGs and PDGs but (partly) alike ASTs, we abstract from concrete names
occuring in programs. Nodes in the graph will thus not be labeled with statements
or variables as occuring in the program, but with abstract identifiers. We let � be the
set of all such labels. Table 2 lists some identifiers and their meaning; the appendix
gives the complete list.

The following definition formalizes this graph representation, assuming standard
definitions of control-flow and program dependence graphs.

165

1 3

Automated Software Engineering (2020) 27:153–186

Definition 3 Let P be a validation instance. The graph representation of P is a graph
G = (N,E, s, t, �, �, �) with

– N a set of nodes (basically, we build an AST for every statement in P, and use the
nodes of these ASTs),

– E a set of edges, with s ∶ E → N describing the node an edge starts in and
t ∶ E → N the node an edge terminates in,

– � ∶ N → � a labeling function for nodes,
– � ∶ E → {CD,DD, SD,CF} a labeling function for edges reflecting the type

of dependence: CD (control dependency) and DD (data dependency) origin in
PDGs, SD (syntactical dependence) is the “consists-of” relationship of ASTs and
CF (control flow) the usual control flow in programs, and

– � ∶ N → 2E the incoming edge function derived from t by letting

 for n ∈ N.
We let GV denote the set of all validation instance graphs.

Figure 3 depicts the graph representation of the validation instance PSUM . The
rectangle nodes represent the statements in the program and act as root nodes of
small ASTs. For instance, the rectangle labeled Assert at the bottom, middle
represents the assertion in line 10. The gray ovals represent the AST parts below
statements. We define the depth of nodes n, d(n), as the distance of a node to its
root node, i.e. to the statement node it is part of. As an example, the depth of the
Assert-node itself is 0, the depth of both ==-nodes is 2.

This graph representation allows us to see the key structural properties of a vali-
dation instance, e.g., that the loop (condition) in our example program depends on
an assignment where the right-hand side is an input (which makes validation more
complicated since it can take arbitrary values). With respect to semantical proper-
ties, our graph representation (as well as all feature-based approaches relying on
static analyses of programs) is less adequate. To see this, consider the two programs
in Fig. 4. They only differ in the assertion at line 5, which from its basic syntax is

�(n) = {e ∈ E ∣ t(e) = n}

Table 2 Some node identifiers and their meaning

If Conditional Ref Variable reference
Loop Loop Pointer_Ref Pointer dereference
Goto Jump to another location Assign Variable assignment
Blank Skip this statement Incr Variable increment
Function_Call Function call Char Single character
Return Function return Int 16Bit integer
Assert Assertion Long_Long 64Bit integer
ID Identifier Double 64Bit floating-point
== Equality comparison Pointer_Type Pointer type
<= Lesser comparison Int_Literal Integer literal
Decl Variable declaration Volatile_Int Volatile integer

166 Automated Software Engineering (2020) 27:153–186

1 3

the same on both sides: a simple boolean expression on two variables of exactly the
same type and dependencies. However, validation of the left program is difficult for
tools which cannot generate loop invariants. Validation of the program on the right,
however, is easy as it is incorrect (which can e.g. be detected by a bounded unroll-
ing of the loop). Here, we clearly see the limits of any learning approach basing its
prediction on structural properties of programs.

Since validation instances are now represented by specific graphs, our approach
needs to identify meaningful features in graphs. The key idea is that two instances
which share common structures should share features and, more importantly, the
representation of isomorphic graphs should be identical. With this observation in
mind, we have chosen to select our features based on the Weisfeiler–Lehman (WL)
test of isomorphism between two discretely labeled, undirected graphs (Weisfeiler
and Lehman 1968). Because of its linear runtime (Shervashidze et al. 2011), the

Control Dependence

Data Dependence

Syntactic Dependence

Decl

Int

Decl

Int

Decl

Int

Assign

Ref

Assign

Ref input()

Assign

Ref

Loop

<=

Ref Ref

Incr

Ref

Assign

+Ref

Ref

Assert

||

Control-Flow

==
==

Ref
Ref

*

Ref

Int_Literal
 Int_Literal

 Int_Literal

 Int_LiteralInt_Literal

Fig. 3 Graph representation of P
SUM

 eliding labeling �

1 int i = 0; 1 int i = 0;
2 int n = abs(input()); 2 int n = abs(input());
3 while (i < n) 3 while (i < n)
4 i++; 4 i++;
5 assert (i == n); 5 assert (i != n);

Fig. 4 Two programs which are difficult to distinguish by our kernel

167

1 3

Automated Software Engineering (2020) 27:153–186

WL test is known to scale well to large instances and hence can be applied to pro-
grams with several thousands lines of code. Moreover, in our prior work we have
already successfully applied a modified Weisfeiler–Lehman subtree kernel (Czech
et al. 2017), which is an extension of the WL test.

The Weisfeiler–Lehman test checks isomorphism of two graphs via the follow-
ing incremental procedure. First, it inspects for every node label � whether the two
graphs have the same number of nodes labelled � . For instance, if one graph has
three nodes labelled Loop, but the other only two, they cannot be isomorphic. The
test then extends this check to subgraphs of consecutively larger size. Again as an
example, if one graph contains two nodes labelled Loop which are connected via an
edge to a node labelled Assign, but the other graphs contains four such shapes, the
graphs cannot be isomorphic.

Algorithm 1 relabel (Graph relabelling)
Input:

G = (N,E, s, t, ρ, τ, ν) graph
z : Σ∗ → Σ injective compression function
m iteration bound

Output:
relabelled graph G (with changed node labelling ρ)

1: for i = 1 to m do
2: for n ∈ N do
3: Aug(n) :=

〈
z ρ(s(e))⊕ τ(e)

)
| e ∈ ν(n)

〉
� Collecting in-edges + neighbours

4: Aug(n) := sort(Aug(n)) � Sorting
5: str(n) := concat(Aug(n)) � Concatenation of labels
6: str(n) := ρ(n)⊕ str(n) � Concatenation with node label
7: ρ(n) := z(str(n)) � Compression
8: return G

We apply this idea now to single graphs, i.e., our features are specific subgraph
shapes and we count for a given graph how often these features occur. Every sub-
graph is uniquely identified by a label (which for simplicity will be a number), and
in order to get the same label for the same subgraph during feature computation, this
labeling follows a fixed scheme. We start with node labels and extend these with
information about neighboring nodes in three further steps:

Augmentation Concatenate the label of node n with labels of its incoming edges
and neighbouring nodes.

Sorting Sort this sequence according to a predefined order on labels.
Compression Compress the sequences thus obtained into new labels.

These steps are repeated until a predefined bound on the number of iterations is
exhausted. This bound is used to regulate the depth of subgraphs considered.

For allowing this WL test to act on validation instances, we made two adaptations
to the graph relabeling, giving rise to Algorithm 1:

(1) Extension to directed multigraphs (to see the direction of relationships betwen
nodes), and

168 Automated Software Engineering (2020) 27:153–186

1 3

(2) Integration of edge labels (to see the type of relationships between nodes).

In Algorithm 1, we use the notation ⟨… ∣ …⟩ for list comprehensions, defining a
sequence of values, and ⊕ for string concatenation. Moreover, z is the compression
function compressing sequences of labels into new labels (which for the purpose
of unique identification should be injective). In our case, we use integers as labels,
i.e., � = ℤ with the usual ordering ≤ . To this end, we first map all node identifiers
and edge labels to ℤ . Every newly arising sequence then simply gets a new num-
ber assigned. The functions sort and concat sort sequences of labels (in ascending
order) and concatenate sequences, respectively. In Algorithm 1, line 3 represents the
augmentation step, line 4 sorting and lines 5 and 6 first concatenate all labels in
Aug(n) and then prepend the current node label to this string. Line 7 finally com-
presses the thus obtained string according to function z.

Figure 5 illustrates these steps on a small subgraph of program PSUM (also show-
ing z as a function application in order to see the labels being augmented). Figure 5a
just depicts the subgraph whereas Fig. 5b shows the graph where every node identi-
fier is replaced by a number and all edge types are replaced by numbers. Note that
all three Assign nodes (obviously) have to get the same number. We now specifi-
cally look at the two outermost Assign nodes. In the first iteration (result depicted
in Fig. 5c), we take the numbers of their predecessor and of the connecting edges,
concatenate them, compress them, (sort and concatenate again, which we ignore

Loop

Incr

Assign Assign Assign

(a) Subgraph of PSUM representation

1

2

0 0 0

0

0

0

0

1

2

1
1

(b) Before relabel iteration (simplified)

4

5

3 0 3

0

0

0

0

1

2

1
1

z(0_z(0_0)) z(0_z(0_0))

(c) After one relabel iteration

8

9

7 0 6

0

0

0

0

1

2

1
1

z(3_z(3_0)) z(3_z(0_0))

(d) After two relabel iterations

Fig. 5 Example of two relabel iterations

169

1 3

Automated Software Engineering (2020) 27:153–186

here), add the node’s own label and compress again. Thereby, both nodes get the
label computed by z(0_z(0_0)) which we assume to be mapped to 3. Here, _
is concatenation. The next iteration repeats the same steps for all nodes. In this step
(result in Fig. 5d), the leftmost Assign node now is labelled with z(3_z(3_0))
(chosen to be 7) whereas the rightmost Assign node gets z(3_z(0_0)) (chosen
to be 6). This is because the predecessors (neighbors with edges going in to this
node) of the nodes in the graph have different labels: 3 for the leftmost and 0 for the
rightmost node. After this iteration, we can detect the structural difference in the
nodes: the node labeled 7 has as a predecessor an Assign node which itself has an
Assign node as a predecessor whereas the node labeled 6 has as a predecessor an
Assign node which itself has no predecessors.

The relabel algorithm can be used to define our feature representation for valida-
tion instances. It is important to notice that every compressed label �(n) (after the ith
iteration) refers to a subtree pattern of height i rooted at n (Shervashidze et al. 2011).
Therefore it is possible to represent a validation instance (graph) by multiple Bags of
Subgraphs (BoSs).

Definition 4 Let G = (N,E, s, t, �, �, �) , be the graph representations of a validation
instance, z ∶ �∗

→ � a compression function, m ∈ ℕ an iteration bound and d ∈ ℕ
a depth for subtrees. Let Gi = relabel(G, z, i) and �i its node labeling function.

The feature representation Bm
G

 of G consists of a sequence of m feature multisets
defined by:

with

Here, we describe bags (or multisets) as pairs of element and its multiplicity. For-
mally, a multiset B over a set of elements � is a mapping � ∶ � → ℕ , and in the
following we will use both notations. Intuitively, each bag of subgraphs counts the
number of subgraphs occurring in the graph for a particular iteration value, where
this value steers to what extend subgraphs are considered, and the depth d fixes
whether an AST node is considered at all. By incorporating the depth, we have the
option to consider or ignore details of expressions.

The BoS model is similar to a bag-of-words model (McTear et al. 2016), well
known from information retrieval, just that we have subgraphs instead of words. The
further difference between these models is that our model in addition stores the iter-
ation in which a subgraph occurs.

5 Graph kernels for verification tasks

As outlined in the previous sections, our idea is to make use of support vector
machines as learning algorithms, either directly for binary classification (Sect. 3.1)
or as a base learner in the context of learning by pairwise comparison for label

B
m
G
= ⟨B0

G
,B1

G
,… ,Bm

G
⟩

Bi
G
∶= {(�, k) ∣ � ∈ �, k = |{n ∈ N ∣ d(n) ≤ d, �i(n) = �}| }

170 Automated Software Engineering (2020) 27:153–186

1 3

ranking (Sect. 3.4). In this regard, the main prerequisite is the definition of a suitable
kernel function.

Recalling Definition 4, a validation instance is represented by bags of subgraphs
⟨B0

G
,B1

G
,… ,Bm

G
⟩ . To compare such representations G1 and G2 for two validation

instances in terms of similarity, our idea is to compare bags Bi
G1

 and Bi
G2

 first and to
average over these comparisons afterward. Since a bag is a specific type of set, we
make use of Jaccard as an established measure of similarity. For sets A and B, it is
defined by |A ∩ B|∕|A ∪ B| , i.e., by the cardinality of the intersection over the cardi-
nality of the union. Obviously, it assumes values in the unit interval, with the
extremes of 1 for identical and 0 for disjoint sets. Compared to other measures, Jac-
card has a number of advantages. In contrast to distance measures on feature vectors
(with one entry per subgraph), for example, the simultaneous absence of a subgraph
in both G1 and G2 does not contribute to their similarity, which is clearly a desirable
property.

We have to keep in mind, however, that the Bi
G

 are not standard sets but bags that
assign multiplicities to the labels � in the graphs. Therefore, the generalized Jaccard
similarity, also known as Ruzicka similarity (Pielou 1984), appears to be a natural
choice for a kernel in our case.

Definition 5 (Generalized Jaccard similarity) Let X, Y be bags over some set �
with the multiplicities given by occurrence functions �X ∶ � ↦ ℕ and �Y ∶ � ↦ ℕ ,
respectively. Then the generalized Jaccard similarity is defined by

The generalized Jaccard similarity compares the size of the (generalized) inter-
section of the bags X and Y with their (generalized) union. Ralaivola et al. (2005)
have proven that the measure is both symmetric and positive semi-definite, so that it
can indeed be used as a kernel for bags. Thus, we formally define our kernel func-
tion on the representation of validation instances as follows.

Definition 6 Let G1 and G2 be graph representations for validation instances, m ∈ ℕ
an iteration bound, and Bm

G1
,Bm

G2
 the matching validation feature representation. The

verification graph kernel km ∶ GV × GV → ℝ is defined by

The kernels are designed with respect to the Weisfeiler Lehmann (WL) test of
isomorphism (see Sect. 4). However, instead of testing on uncommon subgraphs in
each iteration, we measure the similarity of individual test sets and average over all
iterations. In other words, we expect that particular similarity observations may not
be representative, while a good estimation can still be achieved on average. Fur-
thermore, the validation graph kernel is positive semi-definite by construction,

GJac(X, Y) ∶=

∑
�∈� min(�X(�),�Y (�))∑
�∈� max(�X(�),�Y (�))

km(G1,G2) ∶=
1

m + 1

m∑
i=0

GJac(Bi
G1
,Bi

G2
)

171

1 3

Automated Software Engineering (2020) 27:153–186

since kernel functions are closed under addition and multiplication with a positive
constant.

6 Implementation

Our approach consists of five major steps: (1) construction of the graph representa-
tion of validation instances, (2) bag-of-subgraph computation, (3) kernel computa-
tion, (4) learning, and finally (5) prediction.

Construction of graphs To generate the graphs, we employed the configurable
software analysis framework CPAchecker (Beyer and Keremoglu 2011). This
directly gives us the control-flow graph and AST information by using the integrated
C parser of CPAchecker. We implemented the construction of program dependence
graphs ourselves, using the technique detailed in Horwitz and Reps (1992). For the
sake of simplicity, we ignored complex dependencies introduced by pointers. We
furthermore built an extension of CPAchecker which combines all the collected
information into one graph.

Computation of bag-of-subgraphs To produce our bag-of-subgraph representa-
tion, we further process the graph using NetworkX4 2.1 and our relabeling algorithm
as described in Sect. 4. NetworkX is a graph library that makes our program repre-
sentation accessible. Especially, the support of efficient neighborhood aggregation
on large graphs is a convenient property of NetworkX for our use case. During the
relabeling process, we make use of MurmurHash35 for our compression function.
MurmurHash3 is clearly not injective as we map all possible subgraphs to an ele-
ment of 0–2128 . Here, we trade off seldom collisions against a major computational
speedup.

Computation of kernel For kernel computation, a large sparse matrix is con-
structed by collecting information from all bag-of-subgraph models. To store and
efficiently process this matrix, we utilize SciPy6. SciPy includes a large collection
of algorithms for scientific computing. The support of highly efficient sparse matrix
operations and compatibility with the linear algebra package NumPy7 makes SciPy
suitable for calculating our final kernel.

Learning During the learning phase, we need to learn models which—for a pair
of tools and a given validation instance—predict the tool performing better on the
validation instance according to the ordering defined in Sect. 2. Note that such mod-
els are employed both in the binary classification case and for the rankings, as we
employ ranking by pairwise comparison (RPC). We integrated the RPC approach
and our kernel framework into the scikit-learn library8. For learning, we employed
the implementation of support vector machines offered by scikit-learn. To select the

4 https://networkx.github.io
5 https://pypi.org/project/mmh3/
6 http://scipy.org
7 http://numpy.org
8 http://scikit-learn.org

172 Automated Software Engineering (2020) 27:153–186

1 3

penalization parameter C of the SVM (see Sect. 3), we tried a standard range of val-
ues (0.01, 0.1, 1, 100 and 1000) using internal cross-validation and selected the one
with the highest estimated accuracy. We performed this parameter search for each
base learner individually.

Prediction For the prediction, we utilized the trained model offered by scikit-
learn. Our RPC implementation enables us to infer a ranking from the set of binary
predictions. To achieve comparable result for prediction time, the RPC approach is
also implemented as an extension to CPAchecker. Our extension allows the utiliza-
tion of the trained model obtained by and exported from scikit-learn.

All the code is available via GitHub9.

7 Experimental evaluation

With the implementation at hand, we extensively evaluated our approach and com-
pared it to existing methods.

7.1 Research questions

For the evaluation, we were interested in the following research questions.

RQ1 Which parameter choices for the kernels achieve the most accurate predic-
tion? Available options or parameters are the depth d in the AST representa-
tion of statements and the iteration bound m in the kernel computation.

RQ2 What is the relation between the prediction and the validation time? For the
binary classifier we—in particular—wanted to find out whether prediction
plus consecutive validation with the selected tool can outperform a valida-
tion using the testing and the verification tool in sequence.

RQ3 How does our approach compare to similar existing approaches? Again, for
the comparsion we were interested in the accuracy of the prediction.

Table 3 Dataset description of Ranking (Rank18)

Overall Safety Termination MemSafety Overflow

Rank18 #Instances 8456 5686 1986 361 423
Maximum #Nodes 6095,912 6095,912 1129,395 147,950 147,950
Average #Nodes 129,762 152,289 46,929 4462 3628
Maximum #Edges 6502,313 6502,313 1221,241 154,336 154,336
Average #Edges 142,614 167,380 52,891 4954 3995
Max. in-degree 6095,911 6095,911 1129,394 147,949 147,949

9 https://github.com/cedricrupb/pySVRanker

173

1 3

Automated Software Engineering (2020) 27:153–186

To study these research questions, we designed a suitable set of experiments.
First of all, our general setting with training data and tools was the following. We
constructed two data sets: Testing vs. Verification (T/V) for binary classification and
Ranking (Rank18) for rank prediction. Tables 3 and 4 provide statistics for both data
sets (number of validation instances plus information about the constructed graphs).
We used Testing versus Verification as the task for the binary classifier because test-
ing and verification techniques are often complementary, and we wanted to find out
whether our prediction can carry out some appropriate classification of programs
into ones for which testing and for which verification works better. The choice for
employing ranking on verification tools is motivated by the existence of an appropri-
ate data set.

For T/V, we employed results of a recent study by Beyer and Lemberger (2017)
about testing and formal verification tools10 for bug finding. To utilize this data for
binary classification, we had to select one testing and one verification tool. In the
study by Lemberger and Beyer, the model checker ESBMC-incr (Gadelha et al.
2018) outperforms the competitors in terms of bug finding. The same holds true for
the testing tool KLEE (Cadar et al. 2008) compared to other testers. Interestingly,
both tools seem to complement each other such that we can expect an improvement
by summarizing their findings. Therefore, we chose to evaluate the performance of
our base learner for classification on this tool pair.

For Rank18, we used the results of SV-COMP 201811. SV-COMP is the annual
competition on software verification. In the 2018 instance, 21 verification tools par-
ticipated and were evaluated on 9523 validation instances (written in C) in 5 catego-
ries (plus some meta categories). The ground truth for these validation instances is
fixed; its computation is a community effort of the SV-COMP participants over the
years. The results of SV-COMP are rankings of tools (per category and overall).

For our data set, we excluded concurrent programs (since a large number of veri-
fication tools operate on sequential programs only) which left us with 4 categories,
namely Safety (reachability properties), MemSafety (memory safety), Termi-
nation and Overflow (no overflows). The categories contain programs on which
specific properties are to be verified. All categories are summarized into a meta cat-
egory Overall. We both trained the SVMs on data from individual categories and

Table 4 Dataset description of
Testing vs. Verification (T/V) T/V #Instances 4270

Maximum #Nodes 7202,257
Average #Nodes 191,654
Maximum #Edges 8531,571
Average #Edges 211,011
Max. in-degree 7202,256

10 The authors of Beyer and Lemberger (2017) tested six fuzzing and four verification tools.
11 https ://sv-comp.sosy-lab.org/2018/

https://sv-comp.sosy-lab.org/2018/

174 Automated Software Engineering (2020) 27:153–186

1 3

from Overall to see whether some knowledge about the property to be verified
(i.e., the category of the validation instance) might improve the prediction.

With respect to tools, we chose the 10 verification tools participating in all the
4 categories. In this case, these are the tools 2ls (Schrammel and Kroening 2016),
CBMC (Kroening and Tautschnig 2014), CPA-Seq (Wendler 2013), DepthK (Rocha
et al. 2017), ESBMC-incr (Gadelha et al. 2018), ESBMC-kind (Gadelha et al. 2018),
UAutomizer (Heizmann et al. 2013), Symbiotic (Chalupa et al. 2017), Ukojak (Nutz
et al. 2015) and UTaipan (Greitschus et al. 2017). Since the prediction for a tool pair
(V1,V2) is the inverse of (V2,V1) , we considered only 45 tool pairs12 during learning.
All together, we created 275 datasets for learning based on category and tool combi-
nation. To address the research questions, we then set up the following experiments.

For RQ1, we varied the depth of considered ASTs from 1 to 5 (5 because the
mean maximum AST depth is 5.16 and we wanted to get close to that). For the itera-
tion bound in the kernel we considered 0, 1 and 2. As criterion for being the “best”
parameter choice, we employed the accuracy of the prediction. To this end, we per-
formed a 10-fold cross validation.

We split the experiments into those studying the binary classifier and the rank
predictor. In the following, we refer to these as RQ1a and RQ1b, respectively. For
RQ1a, the accuracy is the classification rate, i.e. the proportion of correct in all clas-
sifications. For RQ1b, we used the Spearman rank correlation to compare observed
and predicted rankings.

For both predictions, we furthermore computed the accuracy of a default predic-
tor as a baseline. In the case of binary classification, the default is the majority clas-
sifier, which always predicts the same tool, namely the one providing better results
in the majority of cases in the training data. Likewise, the default predictor for RQ1b
always predicts the same ranking �̂� which sorts tools Vi according to the well-known
Borda rule (de Borda 1781), i.e., according to the number of tools Vj outperformed
by Vi , summed over all rankings �k in the training data:

By always predicting �̂� , regardless of the validation instance x , the default predic-
tor generalizes the majority voting scheme of the binary case. Among all constant
predictors of that kind, the Borda rule yields the one that is provably optimal in
terms of the Spearman rank correlation as a performance measure (Hüllermeier and
Fürnkranz 2010).

For RQ2, we trained the classifier and the rank predictor on our data sets, and
then measured the time for prediction for all data instances of T/V and Rank18. The
validation times of tools on programs could directly be taken from SV-COMP18 and
the study of Beyer and Lemberger (2017).

For RQ3, we searched for approaches carrying out a similar form of prediction on
validation tools. To the best of our knowledge, there are just two such approaches:

vc(Vi) =

N∑
k=1

|{Vj ∣ Vi ≻𝜋k
Vj}|

12 (V
1
,V

2
), (V

1
,V

3
), ..., (V

1
,V

10
), (V

2
,V

3
), ..., (V

9
,V

10
)

175

1 3

Automated Software Engineering (2020) 27:153–186

MUX (Tulsian et al. 2014) and Verifolio (Demyanova et al. 2015). As the imple-
mentation of MUX is not publicly available, we compared our approach to Verifolio
only. The criterion for comparison is again accuracy. We employed the feature com-
putation within Verifolio and used it to train models for binary classification and
for ranking by pairwise comparison. We used two kernels in this case: the Jaccard
kernel which our own approach employs (in order to have a comparison on equal
grounds) and a radial basis function which Verifolio originally used for the support
vector machine. These two approaches are denoted by“Verifolio (J)” and “Verifolio
(RBF)”.

There are furthermore some tools which employ heuristics to internally decide on
which validation technique to run on a given validation instance. For instance, Beyer
and Dangl (2018) choose different configurations for the tool CPAchecker based on
a simple heuristic. We did not include such tools in the comparison since they can-
not make decisions on arbitrary other verification tools.

7.2 Setup

Our experiments were performed on an Intel x86 machine with 4x3.4 GHz CPUs,
8 GB main memory and running openSUSE Leap 42.3. We installed Python 3.6
and Java 8 as our runtime environment. In our second research question we com-
pared the runtime of our prediction against those of the SV-COMP tools. As the
exact time behaviour depends on the execution environment, we evaluated our
approach on the machines used for the competition. These experiments were

Table 5 T/V—accuracy for
classification (mean ± standard
deviation)

WLJ(0,1) .873 ± .019

WLJ(0,2) .879 ± .018

WLJ(0,3) .877 ± .017

WLJ(0,4) .877 ± .017

WLJ(0,5) .875 ± .015

WLJ(1,1) .879 ± .017

WLJ(1,2) .878 ± .016

WLJ(1,3) .882 ± .019

WLJ(1,4) .877 ± .015

WLJ(1,5) .876 ± .016

WLJ(2,1) .878 ± .018

WLJ(2,2) .��� ± .���

WLJ(2,3) .880 ± .016

WLJ(2,4) .877 ± .015

WLJ(2,5) .877 ± .015

Verifolio (J) .850 ± .024

Verifolio (RBF) .851 ± .021

Default .647 ± .014

176 Automated Software Engineering (2020) 27:153–186

1 3

performed on an Intel x86 machine with 4x3.4 GHz CPUs, 15 GB main memory
running Ubuntu 18.04. More importantly, our approach was executed by the bench-
marking tool BenchExec (Beyer et al. 2017).

7.3 Results

In the following we describe the results for all research questions.
RQ1a Table 5 lists the accuracies of binary classification on data set T/V for dif-

ferent kernel parametrizations. The final three rows (Verifolio and Default) can be
ignored for now. The performance of a classifier using iteration bound m and AST
depth bound d can be found at WLJ(m,d) . First of all, we see that the accuracies do
not differ a lot and are all relatively high. The best accuracy can be achieved with
m = 2 and d = 2 . When working with lower values of m and d (for performance rea-
sons), the accuracy will only decrease slightly.

RQ1b Table 6 lists the accuracies of predicted rankings according to Spearman
rank correlation. Again, the three final rows can be ignored for the moment. We give
the accuracy per category and for Overall and highlight the largest accuracy per
(meta-)category in bold. Looking at the different parameters and categories, no clear
“winner” can be seen. Within a category, the accuracy values–like for classifica-
tion–do not differ much. For the category Overall, there is even no iteration of the
relabel algorithm necessary in order to achieve the best accuracy.

Table 6 Rank18 – Spearman correlation for rank prediction (mean ± standard deviation)

OVERALL SAFETY TERMINATION MEMSAFETY OVERFLOW

WLJ(0,1) .636 ± .014 .699 ± .024 .863 ± .018 .640 ± .058 .687 ± .057

WLJ(0,2) .649 ± .012 .703 ± .021 .864 ± .019 .643 ± .054 .715 ± .051

WLJ(0,3) .650 ± .011 .706 ± .024 .869 ± .020 .645 ± .054 .744 ± .047

WLJ(0,4) 650 ± .012 .706 ± .021 .866 ± .019 .644 ± .055 .745 ± .049

WLJ(0,5) .��� ± .��� .709 ± .023 .867 ± .018 .642 ± .055 .746 ± .045

WLJ(1,1) .631 ± .014 .704 ± .027 .876 ± .018 .642 ± .057 .710 ± .058

WLJ(1,2) .648 ± .013 .709 ± .021 .877 ± .020 .639 ± .057 .731 ± .042

WLJ(1,3) .650 ± .014 .708 ± .025 .876 ± .021 .647 ± .056 .772 ± .038

WLJ(1,4) .650 ± .016 .714 ± .025 .877 ± .020 .646 ± .051 .773 ± .042

WLJ(1,5) .650 ± .015 .715 ± .021 .877 ± .019 .��� ± .��� .769 ± .042

WLJ(2,1) .633 ± .013 .698 ± .024 .876 ± .020 .646 ± .055 .707 ± .058

WLJ(2,2) .643 ± .014 .711 ± .020 .879 ± .021 .643 ± .055 .736 ± .045

WLJ(2,3) .645 ± .015 .713 ± .021 .879 ± .021 .640 ± .055 .777 ± .040

WLJ(2,4) .647 ± .016 .717 ± .020 .��� ± .��� .644 ± .054 .��� ± .���

WLJ(2,5) .648 ± .016 .��� ± .��� .879 ± .021 .647 ± .057 .777 ± .046

Verifolio (J) .582 ± .121 .713 ± .075 .792 ± .029 .560 ± .091 .623 ± .091

Verifolio (RBF) .568 ± .109 .695 ± .070 .778 ± .034 .560 ± .092 .628 ± .075

Default .196 ± .036 .214 ± .014 .235 ± .022 .304 ± .059 .407 ± .057

177

1 3

Automated Software Engineering (2020) 27:153–186

The table also reveals that category-specific training often pays off. For instance,
if our interest is in finding a verification tool for termination checking, then we
should train our predictor on the termination examples only.

RQ2 The comparison between prediction and validation time is shown in two fig-
ures. For this, we employed the kernel WLJ(1,5) (which is a compromise between the

Fig. 6 Testing vs. Verification: Improvement of prediction + execution time over sequential execution. A
value above zero represents an instance that can be processed faster by prediction + execution

Fig. 7 Rank18: Execution time of the 10 tools and the prediction

178 Automated Software Engineering (2020) 27:153–186

1 3

best kernel for binary classification and the best kernel for ranking). First, Fig. 6 depicts
the difference between the runtime of prediction plus execution (of the predicted tool)
and the sequential execution of both tools. This difference is shown on the y-axis. The
x-axis lists the 4270 validation instances of the dataset T/V, ordered with respect to the
difference (left to right from smallest to largest). We see that in the majority of cases
prediction plus execution outperforms execution of both tools. Moreover, in the cases
where the execution of both tools is faster, the difference is usually small.

Second, Fig. 7 compares the runtimes of the 10 tools of our rankings and the predic-
tion time given in a quantile plot. It shows the number of validation instances n (x-axis)
for which a validation or prediction, respectively, can be achieved in t seconds (y-axis).
Or slightly rephrased, the figure shows how many instances can be processed if we
apply a time limit. We see that prediction has got some base overhead which is above
that of the verification tools (left side, line of prediction above tool lines). However,
when we increase the time limit the number of instances processable in this limit is
(mostly) above that of the verification tools (right side, prediction line below tool lines).

This shows that prediction in general does not take so much time that it would
be impracticable to employ it. With this observation in mind, we participated in the
2019 edition of SV-COMP with our tool PeSCo (Richter and Wehrheim 2019) to see
whether prediction can improve on pure verification. The results can be found at the
SV-COMP 2019 website13; PeSCo ranked second in the category Overall.

RQ3 Finally, for the comparison with related approaches we studied the accuracy
achieved by Verifolio and the majority (default) predictors. The results can again be
found in Tables 5 (for classification) and 6 (for ranking), now considering the final
rows as well. In terms of rank correlation, our technique is able to outperform the hand-
crafted features of Verifolio with both kernels on all the datasets. For overflow prob-
lems (category OVERFLOW), our best predictor WLJ(2,4) improves the prediction for
more than 0.1. We even have an improvement on category TERMINATION which is
particularly surprising since Verifolio has specific hand-crafted features describing dif-
ferent sorts of loops in order to be able to detect termination. Since our generic feature
vectors are very high-dimensional, we had furthermore expected that larger training
sets would be needed for a support vector machine to generalize well. Still, we are able
to outperform Verifolio on the smaller training sets in the categories MemSafety and
Overflow. Finally, we see that the default predictor is completely useless for ranking.

For classification (Table 5), our approach again outperforms Verifolio. The com-
parison with the default majority predictors furthermore shows that learning is
always better than taking majority votes, though the default predictor is better here
than in the ranking case.

7.4 Threats to validity

There are a number of threats to the validity of the results. First of all, our imple-
mentation might contain bugs. In general, machine learning applications are difficult
to debug since it is unclear what exactly the outcome of a learning phase should be.

13 https://sv-comp.sosy-lab.org/2019/results/results-verified/

179

1 3

Automated Software Engineering (2020) 27:153–186

To nevertheless find bugs, we carried out a number of sanity checks, like the kernels
returning 1 when called with the two arguments being the graphs of the same program.

For the Weisfeiler–Lehman kernel, our implementation uses a non-injective com-
pression function (namely, a hash function). The use of a hash function is motivated
by performance reasons. This might—if at all—only have a negative effect on the
accuracy of the prediction as this leads to not being able to distinguish (some of) the
different label sequences in the graphs anymore.

Our results might furthermore be influenced by the choice of training data. Our pre-
diction might perform worse on other training data, in particular when the programs
are written in a language other than C. For training, we however needed validation
instances with a known ground truth, and it was beyond the scope of this paper to
generate such data ourselves (the SV-COMP community has spent several years for
building its benchmark set). Hence our evaluation was restricted to existing data sets.

8 Related work

Our approach applies the idea of algorithm selection to software analysis tools. Algo-
rithm selection is a well-known problem in computer science. Software developers can
apply the strategy design pattern (Gamma et al. 1995) to support algorithm selection in
their software. In the context of software analysis, algorithm selection is often done man-
ually or heuristically. For example, users can select different solvers (Beyer and Keremo-
glu 2011; Gurfinkel et al. 2015; Günther and Weissenbacher 2014; Gadelha et al. 2018)
or verification approaches (Beyer and Keremoglu 2011; Rakamaric and Emmi 2014;
Albarghouthi et al. 2012). Apel et al. (2013) select the domain to use for a variable based
on its domain type. Refinement selection (Beyer et al. 2015) uses heuristics to decide
which component to refine and which refinement to apply. Recently, a manually created
decision model based on boolean program features has been suggested to select the most
promising analysis combination (Beyer and Dangl 2018). In contrast, our approach uses
machine learning to select an analysis tool for a verification task.

Similar approaches, which also apply machine learning for analysis tool selec-
tion, have already been pursued by two other groups of authors, namely by Demy-
anova et al. (2015) and Tulsian et al. (2014). Both have chosen verification-specific
features of source code: while the latter mainly contains features counting program
entities (e.g., lines of code, number of array variables, number of recursive func-
tions), the first approach has defined different variable roles (e.g., variable being
used as index to array) and loop patterns (e.g., syntactically bounded) as features
and employs a light-weight static analysis to extract these features. In contrast to
their work, our approach does not require an explicit feature selection, but uses the
Weisfeiler–Lehman test of isomorphism as a way to encode structural relationships
in programs in our features. An experimental comparison with the approach of
Demyanova et al. is contained in Sect. 7; we could not compare to the approach of
Tulsian et al., because the authors’ implementation is not publicly available.

Other approaches to algorithm selection via machine learning include approaches
for constraint solving and SAT solving (Xu et al. 2008) or planning (Helmert et al.
2011). Kotthoff et al. (2012) have evaluated different machine learning algorithms

180 Automated Software Engineering (2020) 27:153–186

1 3

from the WEKA machine learning library with respect to the purpose of algorithm
selection for SAT solving.

The approach most closely connected to ours is that of Habib and Pradel (2018),
who use Weisfeiler–Lehman graph kernels for learning the thread-safety of Java
classes. Contrary to our approach, they build graphs tailored towards their learn-
ing task. The graphs focus on fields of classes, their access in methods and con-
structors, and concurrency related modifiers like volatile or synchronized.
Li et al. (2016) use Weisfeiler–Lehman kernels to detect code similarities. Their
graphs mainly reflect call graph structures and interprocedural control flow. Weis-
feiler–Lehman subtree kernels (on CFGs only) are also employed for malware detec-
tion in Android apps (Wagner et al. 2009; Sahs and Khan 2012).

Allamanis and others (Allamanis et al. 2017) use a graph representation of source
code to detect faulty variable usages. Their graphs are built from ASTs with special
edges for different sorts of data usage (like “computed from”, “last read” or “last
written”). Instead of using these graphs in kernels (like we do) or for extraction of
feature vectors, they directly give these graphs as inputs to the learning algorithm (in
their case, a neural network).

The work of Alon et al. (2018) and the newly proposed code2vec tech-
nique (Alon et al. 2019) also employ an AST representation of programs. These
approaches aim at applications like the prediction of names for given method bodies.
The technique code2vec first extracts paths of ASTs and then employs a neural net-
work to learn both the representation of paths and their aggregation. The technique
is however very sensitive to names used in programs (e.g., variables names). The
authors of code2vec have also realized this and have thus proposed a fix to it (Yefet
et al. 2019). As we directly replace names by node identifiers in our graph representa-
tion, our technique is not vulnerable to adversarial attacks changing variable names.

While the use of kernel functions in software engineering is relatively recent, graph
kernels have been applied in other domains much earlier. Indeed, motivated by applica-
tions in domains such as bioinformatics, web mining, social networks, etc., where the
use of graphs for modeling data is very natural, various types of graph kernels have been
proposed in machine learning in the last two decades, for example the random walk and
shortest path kernel (Borgwardt and Kriegel 2005). Generally, a distinction can be made
between kernels on graphs, which seek to capture the similarity of different nodes in a
single graph (Kondor and Lafferty 2002), and kernels between graphs, which compare
two graphs with each other (Gärtner et al. 2003; Gärtner 2008). Besides, other types of
kernels have been proposed, such as marginalized kernels (Kashima et al. 2003).

Other applications of machine learning to software engineering tasks include the
learning of programs from examples ((Raychev et al. 2016; Lau 2001)) and the pre-
diction of properties of programs (e.g., types of program variables (Raychev et al.
2015), fault locations (Le et al. 2016) or bugs (Pradel and Sen 2018)). A survey of
different approaches of ML in the area of programming language and software engi-
neering is given in Allamanis et al. (2018). A machine learning approach to software
verification itself has recently been proposed in Chen et al. (2016).

181

1 3

Automated Software Engineering (2020) 27:153–186

9 Conclusion

In this paper, we proposed a novel technique for algorithm selection in the area of
software validation. It builds on a graph representation of software and the con-
struction of a kernel function for machine learning, which is based on the Weis-
feiler–Lehman test of graph isomorphism and a generalization of the Jaccard meas-
ure for determining the similarity between multi-sets (bags) of subgraphs. Thus,
data in the form of validation instances (programs plus properties to be checked)
becomes amenable to a wide spectrum of kernel-based machine learning methods,
including support vector machines as used in this paper.

Despite our concrete application, we like to emphasize that our graphs provide a
completely generic representation of software, not specifically tailored to the domain
of software validation. As suggested by our extensive experimental studies, our
approach can nevertheless outperform custom-build techniques that are fine-tuned
to software validation—a result that was not necessarily expected. Our explanation
follows a pattern that is commonly observed in practical machine learning applica-
tions: Incorporating domain knowledge via hand-crafted features is helpful for the
learner, especially if training data is sparse, but comes with the danger of introduc-
ing a bias if the features are not sufficiently well chosen or important features are
missing. On the other side, offering a large set of generic features to choose from
complicates the task of the learner and naturally requires more data (to separate use-
ful from irrelevant features), but reduces the problem of bias. Therefore, a generic
approach often outperforms an approach based on hand-crafted features provided
enough training data is available.

Since our machine learning approach is readily usable in other applications, we
plan to explore its performance for other software engineering problems in future
work. Besides, there is of course scope for further improvements on a technical and
implementational level, for example by incorporating an alias analysis into the com-
putation of program dependence graphs, by enhancing the kernel function or using
learning methods other than support vector machines. We in particular plan to elab-
orate on a general drawback of standard kernel-based learning methods, namely the
difficultly to interpret the predictions: In addition to getting a useful recommenda-
tion, it would also be desirable to understand, for example, why one tool is preferred
to another one on a specific validation instance. One direction we intend to pursue
for this is using graph convolutional networks (Wu et al. 2019; Hamilton et al. 2017;
Xu et al. 2019) and representation learning to let a neural network learn appropriate
feature vectors for programs.

Acknowledgements Open Access funding provided by Projekt DEAL.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

http://creativecommons.org/licenses/by/4.0/

182 Automated Software Engineering (2020) 27:153–186

1 3

Node identifiers

Table 7 contains the complete list of node identifiers.

Table 7 All node identifiers and their meaning
Start Start of program Enum_Type Enumeration type
If Conditional Struct_Type Structure type
Loop Loop Union_Type Union type
Decl Local variable declara-

tion
Const_* Constant types

Decl_Global Global variable declara-
tion

Volatile_* Volatile types

Assign Variable assignment Elaborated_* Elaborated types
Incr Variable increment Cast Casting of variables
Decr Variable decrement Type_Decl Custom type declaration
Label Label jump target Int_Literal Integer literal
Goto Jump to another location Float_Literal Floating-point literal
Blank Skip this statement Char_Literal Character literal
End End of program String_Literal Text
Func_Decl Function declaration ID Variable identifier
Func_Call Function call + Addition
Func_Start Function start − Substraction
Return Function return ∗ Multiply
Func_End Function end / Divide
Func_Decl_Assert Assert function declara-

tion
% Modulo

Func_Call_Assert Assert function call < Lesser
Func_Decl_Error Error function declara-

tion
<= Lesser equal

Func_Call_Error Error function call == Equal
Func_Decl_Input User input function ! = Unequal
Func_Call_Input Request user input >= Greater equal
Func_Decl_Malloc Memory allocation

function
> Greater

Func_Call_Malloc Allocate memory & Bit-wise and
Func_Decl_Free Memory free function | Bit-wise or
Func_Call_Free Free memory ̂ Bit-wise xor
Func_Decl_
Atomic_Begin

Atomic start function ∼ Bit-wise negation

Func_Call_
Atomic_Begin

Atomic block start << Shift left

Func_Decl_
Atomic_End

Atomic end function >> Shift right

Func_Call_
Atomic_End

Atomic block end Pointer_Ref Pointer deref

Bool Boolean type Pointer_& Address operation
Short 16Bit Integer Array_Expression Array definition

183

1 3

Automated Software Engineering (2020) 27:153–186

References

Albarghouthi, A., Li, Y., Gurfinkel, A., Chechik, M.: Ufo: a framework for abstraction- and interpolation-
based software verification. In: CAV, LNCS, vol. 7358, pp. 672–678. Springer (2012)

Allamanis, M., Brockschmidt, M., Khademi, M.: Learning to represent programs with graphs. CoRR
arXiv :1711.00740 (2017)

Allamanis, M., Barr, E.T., Devanbu, P.T., Sutton, C.A.: A survey of machine learning for big code and
naturalness. ACM Comput. Surv. 51(4), 81:1–81:37 (2018)

Alon, U., Zilberstein, M., Levy, O., Yahav, E.: A general path-based representation for predicting pro-
gram properties. In: Proc. PLDI, pp. 404–419. ACM (2018)

Alon, U., Zilberstein, M., Levy, O., Yahav, E.: code2vec: learning distributed representations of code.
PACMPL 3(POPL), 40:1–40:29 (2019)

Amerise, I.L., Tarsitano, A.: Correction methods for ties in rank correlations. J. Appl. Stat. 42(12), 2584–
2596 (2015)

Apel, S., Beyer, D., Friedberger, K., Raimondi, F., von Rhein, A.: Domain types: abstract-domain selec-
tion based on variable usage. In: HVC, LNCS, vol. 8244, pp. 262–278. Springer (2013)

Beyer, D., Dangl, M.: Strategy selection for software verification based on boolean features—a simple
but effective approach. In: ISoLA, LNCS, vol. 11245, pp. 144–159. Springer (2018)

Beyer, D., Keremoglu, M.E.: CPAchecker: A Tool for Configurable Software Verification. In: CAV,
LNCS, vol. 6806, pp. 184–190. Springer (2011)

Beyer, D., Lemberger, T.: Software verification: testing versus model checking—a comparative evalua-
tion of the state of the art. In: HVC, LNCS, vol. 10629, pp. 99–114. Springer (2017)

Beyer, D., Löwe, S., Wendler, P.: Refinement selection. In: SPIN, LNCS, vol. 9232, pp. 20–38. Springer
(2015)

Beyer, D., Löwe, S., Wendler, P.: Reliable benchmarking: requirements and solutions. Int. J. Softw Tools
Technol. Transf. 1–29 (2017)

Beyer, D.: Software verification with validation of results—(report on SV-COMP 2017). In: TACAS,
LNCS, vol. 10206, pp. 331–349 (2017)

Bischl, B., Kerschke, P., Kotthoff, L., Lindauer, M.T., Malitsky, Y., Fréchette, A., Hoos, H.H., Hutter, F.,
Leyton-Brown, K., Tierney, K., Vanschoren, J.: ASlib: a benchmark library for algorithm selection.
Artif. Intell. 237, 41–58 (2016)

Borgwardt, K., Kriegel, H.: Shortest-path kernels on graphs. In: ICDM, pp. 74–81. IEEE Computer Soci-
ety (2005)

Boser, B.E., Guyon, I., Vapnik, V.: A training algorithm for optimal margin classifiers. In: COLT, pp.
144–152. ACM (1992)

Table 7 (continued)

Int 16Bit Integer Array_Subscrip-
tion

Access to array element

Long 32Bit Integer Length Array length
Long_Long 64Bit Integer Func_Type Function type
Float 32Bit floating-point Param_Types Parameter types
Double 64Bit floating-point Return_Type Return type
Complex complex numbers Cast_Type Cast type
Char Single character Params Function call parameter
Array Array type Operand Function operand
Unsigned_* Unsigned types Field_Ref Field reference
Pointer_Type Pointer type Field_Pointer_

Deref
Field pointer reference

Void_Type Void return type Initializer Initialization expression

http://arxiv.org/abs/1711.00740

184 Automated Software Engineering (2020) 27:153–186

1 3

Cadar, C., Dunbar, D., Engler, D.R.: KLEE: unassisted and automatic generation of high-coverage tests
for complex systems programs. In: USENIX, pp. 209–224. USENIX Association (2008)

Chalupa, M., Vitovská, M., Jonás, M., Slaby, J., Strejcek, J.: Symbiotic 4: Beyond reachability—(compe-
tition contribution). In: TACAS, LNCS, vol. 10206, pp. 385–389. Springer (2017)

Chen, Y., Hsieh, C., Lengál, O., Lii, T., Tsai, M., Wang, B., Wang, F.: PAC learning-based verification
and model synthesis. In: ICSE, pp. 714–724. ACM (2016)

Czech, M., Hüllermeier, E., Jakobs, M.-C., Wehrheim, H.: Predicting rankings of software verification
tools. In: SWAN@ESEC/SIGSOFT FSE, pp. 23–26. ACM (2017)

de Borda, J.C.: Mémoire sur les élections au scrutin, Mémoire de l’Académie Royale. Histoire de lÁcad-
emie Royale des Sciences, Paris, pp. 657–665 (1781)

Demyanova, Y., Pani, T., Veith, H., Zuleger, F.: Empirical software metrics for benchmarking of verifica-
tion tools. In: CAV, LNCS, vol. 9206, pp. 561–579. Springer (2015)

Demyanova, Y., Pani, T., Veith, H., Zuleger, F.: Empirical software metrics for benchmarking of verifica-
tion tools. Formal Methods Syst. Des. 50(2–3), 289–316 (2017)

Fürnkranz, J.: Round robin classification. J. Mach. Learn. Res. 2, 721–747 (2002)
Gadelha, M.Y.R., Monteiro, F.R., Morse, J., Cordeiro, L.C., Fischer, B., Nicole, D.A.: ESBMC 5.0: an

industrial-strength C model checker. In: ASE, pp. 888–891. ACM (2018)
Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: elements of reusable object-oriented

software. Addison-Wesley, Boston (1995)
Gärtner, T., Flach, P.A., Wrobel, S.: On graph kernels: Hardness results and efficient alternatives. In:

COLT/Kernel, LNCS, vol. 2777, pp. 129–143. Springer (2003)
Gärtner, T.: Kernels for structured data. World Scientific, Singapore (2008)
Greitschus, M., Dietsch, D., Heizmann, M., Nutz, A., Schätzle, C., Schilling, C., Schüssele, F., Podelski,

A.: Ultimate Taipan: trace abstraction and abstract interpretation. In: TACAS, LNCS, vol. 10206,
pp. 399–403. Springer (2017)

Günther, H., Weissenbacher, G.: Incremental bounded software model checking. In: SPIN, pp. 40–47.
ACM (2014)

Gurfinkel, A., Kahsai, T., Komuravelli, A., Navas, J.A.: The SeaHorn verification framework. In: CAV,
LNCS, vol. 9206, pp. 343–361. Springer (2015)

Habib, A., Pradel, M.: Is this class thread-safe? Inferring documentation using graph-based learning. In:
ASE, pp. 41–52. ACM (2018)

Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: NIPS, pp.
1024–1034. Curran Associates, Inc. (2017)

Heizmann, M., Hoenicke, J., Podelski, A.: Software model checking for people who love automata. In:
CAV, LNCS, vol. 8044, pp. 36–52. Springer (2013)

Helmert, M., Röger, G., Seipp, J., Karpas, E., Hoffmann, J., Keyder, E., Nissim, R., Richter, S., Westphal,
M.: Fast downward stone soup. In: PAL, pp. 28–35 (2011)

Horwitz, S., Reps, T.W.: The use of program dependence graphs in software engineering. In: ICSE, pp.
392–411. ACM Press (1992)

Hüllermeier, E., Fürnkranz, J.: On predictive accuracy and risk minimization in pairwise label ranking. J.
Comput. Syst. Sci. 76(1), 49–62 (2010)

Hüllermeier, E., Fürnkranz, J., Cheng, W., Brinker, K.: Label ranking by learning pairwise preferences.
Artif. Intell. 172, 1897–1917 (2008)

Kashima, H., Tsuda, K., Inokuchi, A.: Marginalized kernels between labeled graphs. In: ICML, pp. 321–
328. AAAI Press (2003)

Kondor, R., Lafferty, J.D.: Diffusion kernels on graphs and other discrete structures. In: ICML, pp. 315–
322. Morgan Kaufmann Publishers Inc. (2002)

Kotthoff, L., Gent, I.P., Miguel, I.: An evaluation of machine learning in algorithm selection for search
problems. AI Commun. 25(3), 257–270 (2012)

Kroening, D., Tautschnig, M.: CBMC–C bounded model checker. In: TACAS, LNCS, vol. 8413, pp.
389–391. Springer (2014)

Lau, T.: Programming by demonstration: a machine learning approach. Ph.D. thesis, University of Wash-
ington (2001)

Le, T.B., Lo, D., Le Goues, C., Grunske, L.: A learning-to-rank based fault localization approach using
likely invariants. In: ISSTA, pp. 177–188. ACM (2016)

Li, W., Saidi, H., Sanchez, H., Schäf, M., Schweitzer, P.: Detecting similar programs via the Weisfeiler-
Leman graph kernel. In: ICSR, LNCS, vol. 9679, pp. 315–330. Springer (2016)

185

1 3

Automated Software Engineering (2020) 27:153–186

McTear, M., Callejas, Z., Griol, D.: The conversational interface, vol. 6(94), p. 102. Springer, Berlin
(2016)

Nutz, A., Dietsch, D., Mohamed, M.M., Podelski, A.: ULTIMATE KOJAK with memory safety checks.
In: TACAS, LNCS, vol. 9035, pp. 458–460. Springer (2015)

Pielou, E.C.: The interpretation of ecological data: a primer on classification and ordination. Wiley, New
York (1984)

Platt, J.: Probabilistic outputs for support vector machines and comparisons to regularized likelihood
methods. In: Advances in Large Margin Classifiers, pp. 6–74. MIT Press (1999)

Pradel, M., Sen, K.: DeepBugs: a learning approach to name-based bug detection. Proc. ACM Program.
Lang. 2(OOPSLA), 147:1–147:25 (2018)

Rakamaric, Z., Emmi, M.: SMACK: Decoupling source language details from verifier implementations.
In: CAV, LNCS, vol. 8559, pp. 106–113. Springer (2014)

Ralaivola, L., Swamidass, S.J., Saigo, H., Baldi, P.: Graph kernels for chemical informatics. Neural Netw.
18(8), 1093–1110 (2005)

Raychev, V., Bielik, P., Vechev, M.T., Krause, A.: Learning programs from noisy data. In: POPL, pp.
761–774. ACM (2016)

Raychev, V., Vechev, M.T., Krause, A.: Predicting program properties from big code. In: POPL, pp. 111–
124. ACM (2015)

Rice, J.: The algorithm selection problem. Adv. Comput. 15, 65–118 (1976)
Richter, C., Wehrheim, H.: PeSCo: predicting sequential combinations of verifiers (competition contribu-

tion). In: TACAS, LNCS, vol. 11429, pp. 229–233. Springer (2019)
Rocha, W., Rocha, H., Ismail, H., Cordeiro, L., Fischer, B.: DepthK: A k-induction verifier based on

invariant inference for C programs. In: TACAS, LNCS, vol. 10206, pp. 360–364. Springer (2017)
Sahs, J., Khan, L.: A machine learning approach to android malware detection. In: EISIC, pp. 141–147.

IEEE Computer Society (2012)
Schölkopf, B., Smola, A.: Learning with Kernels: support vector machines, regularization, optimization,

and beyond. MIT Press, Cambridge (2001)
Schrammel, P., Kroening, D.: 2LS for program analysis. In: TACAS, LNCS, vol. 9636, pp. 905–907.

Springer (2016)
Shawe-Taylor, J., Cristianini, N.: Kernel methods for pattern analysis. Cambridge University Press, Cam-

bridge (2004)
Shervashidze, N., Schweitzer, P., van Leeuwen, E.J., Mehlhorn, K., Borgwardt, K.M.: Weisfeiler–Lehman

graph kernels. J. Mach. Learn. Res. 12, 2539–2561 (2011)
Spearman, C.: The proof and measurement of association between two things. Am. J. Psychol. 15,

72–101 (1904)
Tulsian, V., Kanade, A., Kumar, R., Lal, A., Nori, A.V.: MUX: algorithm selection for software model

checkers. In: MSR, pp. 132–141. ACM (2014)
Vembu, S., Gärtner, T.: Label ranking algorithms: A survey. In: Preference Learning., pp. 45–64.

Springer (2010)
Wagner, C., Wagener, G., State, R., Engel, T.: Malware analysis with graph kernels and support vector

machines. In: MALWARE, pp. 63–68. IEEE Computer Society (2009)
Weisfeiler, B., Lehman, A.: A reduction of a graph to a canonical form and an algebra arising during this

reduction. Nauchno Technicheskaya Informatsia 2(9), 12–19 (1968)
Wendler, P.: CPAchecker with sequential combination of explicit-state analysis and predicate analysis—

(Competition Contribution). In: TACAS, LNCS, vol. 7795, pp. 613–615. Springer (2013)
Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Yu, P.S.: A comprehensive survey on graph neural net-

works. CoRR arXiv :1901.00596 (2019)
Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks? In: ICLR 2019.

OpenReview.net. (2019)
Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Satzilla: Portfolio-based algorithm selection for SAT.

J. Artif. Intell. Res. 32, 565–606 (2008)
Yefet, N., Alon, U., Yahav, E.: Adversarial examples for models of code. CoRR arXiv :1910.07517 (2019)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

http://arxiv.org/abs/1901.00596
http://arxiv.org/abs/1910.07517

186 Automated Software Engineering (2020) 27:153–186

1 3

Affiliations

Cedric Richter1 · Eyke Hüllermeier1 · Marie‑Christine Jakobs2 · Heike Wehrheim1

 Cedric Richter
 cedricr@mail.uni-paderborn.de

 Eyke Hüllermeier
 eyke@upb.de

 Marie-Christine Jakobs
 jakobs@cs.tu-darmstadt.de

1 Paderborn University, Paderborn, Germany
2 Department of Computer Science, Technical University of Darmstadt, Darmstadt, Germany

	Algorithm selection for software validation based on graph kernels
	Abstract
	1 Introduction
	2 Algorithm selection task
	3 Learning algorithms for classification and ranking
	3.1 Binary classification
	3.2 Support vector machines
	3.3 Label ranking
	3.4 Ranking by pairwise comparison

	4 Representing validation instances
	5 Graph kernels for verification tasks
	6 Implementation
	7 Experimental evaluation
	7.1 Research questions
	7.2 Setup
	7.3 Results
	7.4 Threats to validity

	8 Related work
	9 Conclusion
	Acknowledgements
	References

