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Abstract
Algorithm selection is the task of choosing an algorithm from a given set of candi-
date algorithms when faced with a particular problem instance. Algorithm selection 
via machine learning (ML) has recently been successfully applied for various prob-
lem classes, including computationally hard problems such as SAT. In this paper, we 
study algorithm selection for software validation, i.e., the task of choosing a soft-
ware validation tool for a given validation instance. A validation instance consists of 
a program plus properties to be checked on it. The application of machine learning 
techniques to this task first of all requires an appropriate representation of software. 
To this end, we propose a dedicated kernel function, which compares two programs 
in terms of their similarity, thus making the algorithm selection task amenable to 
kernel-based machine learning methods. Our kernel operates on a graph represen-
tation of source code mixing elements of control-flow and program-dependence 
graphs with abstract syntax trees. Thus, given two such representations as input, the 
kernel function yields a real-valued score that can be interpreted as a degree of simi-
larity. We experimentally evaluate our kernel in two learning scenarios, namely a 
classification and a ranking problem: (1) selecting between a verification and a test-
ing tool for bug finding (i.e., property violation), and (2) ranking several verification 
tools, from presumably best to worst, for property proving. The evaluation, which 
is based on data sets from the annual software verification competition SV-COMP, 
demonstrates our kernel to generalize well and to achieve rather high prediction 
accuracy, both for the classification and the ranking task.
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1 Introduction

Algorithm selection  (Rice 1976) is concerned with choosing a specific algorithm 
from a set of algorithms for a given instance of a problem class. Algorithm selec-
tion is helpful, especially for hard computational problems, because different algo-
rithms exhibit different performance characteristics, and there is normally no single 
best algorithm that outperforms all others on all problem instances. With the recent 
advances in machine learning (ML), algorithm selection has been successfully 
applied in various fields (such as SAT solving, planning and constraint satisfaction, 
see e.g. Bischl et al. 2016). Algorithm selection is especially beneficial for building 
portfolio solvers, i.e., solvers in which the (likely) best algorithm is chosen first and 
then executed on the problem instance. For SAT solving, portfolio solvers often beat 
standard solvers in competitions (Xu et al. 2008).

Software validation, i.e., the problem of determining whether certain properties 
are valid for a given software, is another computationally hard (and in general unde-
cidable) problem. Despite this fact, there has recently been enormous progress in 
software validation, employing diverse techniques ranging from static and dynamic 
analyses and automata-based methods to abstract interpretations. The annual hold-
ing of software verification competitions has furthermore stimulated the develop-
ment of tools, in particular the tuning of tools towards performance and precision. 
This offers a software developer faced with the task of showing that her software 
satisfies a certain property a rather large set of tools (algorithms) to choose from. 
However, not all tools are equally good at showing a specific property. Due to dif-
ferent validation technologies employed by the tools, they may vary in performance 
on different programs and properties. To give some examples, there are specialized 
tools for showing program termination or verifying program properties depending 
on pointer structures. While competitions like the annual Competition on Software 
Verification SV-COMP  (Beyer 2017) with its rankings provide some a posteriori 
insight into the particular usefulness of a tool on a validation instance, the software 
developer rather needs an a priori advice for which tool to choose.

To this end, we propose an approach and present a framework for algorithm 
selection in software validation. Our framework predicts the (likely) best tool (or 
even a ranking of tools) for solving a particular validation instance. We assume that 
validation instances consist of a source code together with properties to be verified. 
This fits well to the validation instances considered by SV-COMP, and allows us to 
use the data of the competition for training and evaluation purposes.

Our method builds upon kernel-based machine learning techniques, more spe-
cifically support vector machines (Boser et al. 1992). Given a suitable kernel func-
tion  (Shawe-Taylor and Cristianini 2004), these techniques can be applied in a 
relatively generic way. Thus, the key challenge in our setting is an appropriate repre-
sentation of the validation instances, together with the definition of a kernel function 
that acts as a similarity measure on such instances (viz. programs). On the one side, 
the representation has to be expressive enough to allow the ML algorithm to identify 
ways of distinguishing software. On the other side, it should try to avoid confusing 
the learner by unnecessary details.
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So far, two other machine learning methods for selecting tools or algorithms for 
validation have been proposed (Tulsian et al. 2014; Demyanova et al. 2015, 2017), 
both of them being based on an explicit feature representation of programs: while 
Tulsian et al. (2014) only employ structural features of programs (like the number 
of arrays, loops, recursive functions), Demyanova et  al. (2015, 2017) use a num-
ber of data-flow analyses to also determine more sophisticated features (e.g., cer-
tain loop patterns). Thus, both approaches try to explicitly capture aspects of source 
code that make validation hard (for some or all tools). With our kernels, we take a 
different approach, in which we supply the learning algorithm with a more generic 
representation of source code. Based on this representation, the learner itself should 
be able to identify the distinguishing patterns. We believe that our kernels are thus 
more readily usable for other program analysis tasks, for which a machine learning 
method might be considered (e.g., bad smell or security violation detection).

More specifically, our kernel is constructed on a graph representation of source 
code. Our graphs are combinations of control-flow graphs (CFGs), program-depend-
ence graphs (PDGs), and abstract syntax trees (ASTs). In these, concrete inscrip-
tions on nodes (like x := y+1) are first of all replaced by abstract labels (e.g., 
Assign). Such labelled graphs are then used within our specific adaptation of the 
Weisfeiler–Lehman test for graph isomorphism  (Weisfeiler and Lehman 1968). 
It compares graphs not only according to their labels (and how often they occur) 
but also according to associations between labels (via edges in the graph). This is 
achieved by iteratively comparing larger and larger subtrees of nodes, where the 
maximum depth of subtrees to be considered is a parameter of the framework. The 
choice of a Weisfeiler–Lehman based kernel is motivated by its better scalability 
compared to other graph kernels, such as random walk or shortest path kernels 
(see Shervashidze et al. 2011). However, contrary to Shervashidze et al. (2011), we 
do not build a linear kernel based on the Weisfeiler–Lehman idea, but employ a gen-
eralized Jaccard similarity.

We implemented this technique and carried out experimental studies using data 
from SV-COMP 2018 and from Beyer and Lemberger’s work on testing versus 
model checking (Beyer and Lemberger 2017). For the experiments, we considered 
two settings in which algorithm selection is applied. The first setting uses the ker-
nels for classification of validation instances according to two classes: the first class 
contains the instances for which a testing tool is better at bug finding, the second 
class those instances for which a verification tool is better. The second setting con-
siders rank prediction of verification tools, i.e., the prediction of rankings of tools 
according to their performance on specific problem instances.

The experiments show that our technique can predict rankings with a rather high 
accuracy, using Spearman’s rank correlation (Spearman 1904) to compare predicted 
with true rankings. The classifier’s prediction is similarly high. The experiments fur-
thermore show that the overhead associated with prediction is tolerable for practical 
applications.

Summarizing, this paper makes the following contributions:

– We propose an expressive representation of source code ready for use in machine 
learning approaches;
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– we develop two algorithm selection techniques for software validation based on 
this representation, one for classification and one for ranking;

– we present an implementation of our approach and extensively evaluate it;
– we experimentally demonstrate our technique—despite being more general and 

more widely applicable—to compare favorably with existing approaches to the 
selection of validation tools.

A short description of a first version of our kernel and some ranking experiments 
have appeared in Czech et al. (2017). This first version is a workshop paper. Here, 
we give a full account of the learning approach, including the necessary background 
in machine learning, and present a more thorough evaluation. More concretely, we 
in addition performed experiments evaluating the learning approach for binary clas-
sification (testing vs.  verification) and we evaluated the runtime of the approach 
(both for classification and rank prediction). Apart from that, the data sets have been 
extended covering an additional category of SV-COMP and taking the data of SV-
COMP 2018 instead of 2017 as  Czech et al. (2017) did. All data and software are 
publicly available1.

2  Algorithm selection task

Our objective is to carry out algorithm selection in software validation. We start 
with describing what a validation instance is and how we compare tools with respect 
to their performance on validation instances.

Definition 1 A validation instance (or short, an instance) (P,�) consists of a pro-
gram P (in our experiments, we consider C programs) and a property � . The latter 
is also called specification and is typically either given externally or written as an 
assertion into the program.

We denote by I  the set of all validation instances. We assume that the property 
to be validated is either part of the program or otherwise fixed, and hence often omit 
� . Figure 1 shows our running example PSUM of an instance (a program computing 

Fig. 1  The validation instance 
P
SUM

1 int i;
2 int n;
3 int sn;
4 n = input();
5 sn = 0;
6 i = 0;
7 while (i <= n) {
8 sn = sn + 2;
9 i = i + 1; }

10 assert (sn == n*2 || sn == 0);

1 https ://githu b.com/cedri crupb /pySVR anker 

https://github.com/cedricrupb/pySVRanker
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n times 2 via addition). In line 10, we find the specification written as an assertion, 
which is obviously valid. During validation, we expect some validation tool to be 
run on an instance in order to determine whether the program fulfills the specifica-
tion. As outcome of such a validation run we consider pairs (a, t), where t ∈ ℝ+ is 
the time in seconds from the start of the validation run to its end, and a is of the fol-
lowing form:

– TRUE, when the tool has concluded that P satisfies �,
– FALSE, when the tool has concluded that P violates � , and
– UNKNOWN, when no conclusive result was achieved.

We let A = {TRUE, FALSE, UNKNOWN} be the set of all answers. A validation 
tool can thus be seen as a function

providing an answer on an instance within some time. The case where the tool does 
not terminate is covered by the answer UNKNOWN. We let V be the set of all tools 
and use V ,V1,V2 ∈ V to refer to specific elements of this set.

Assuming that we know the correct answer (i.e., the ground truth TRUE or 
FALSE), we can judge the tool answer by comparing it to the correct answer. 
Table 1 provides an overview of the result of such a comparison (Correct, Wrong or 
Unknown). For comparing tools on validation instances, we define a lexicographic 
order on pairs of results and runtimes as follows:

where two results r and r′ are compared according to the obvious preference order 
Correct ≻ Unknown ≻ Wrong . In the case where tools do not terminate on a vali-
dation instance (i.e., get a timeout), they all share the same result and runtime.

The objective of our learning approach is to provide an algorithm selector, i.e., to 
learn a model which predicts on a given validation instance a tool likely performing 
well under this ordering. In the following, we present two such selectors. The first 
one is a simple binary classifier that chooses between a testing tool and a verifica-
tion tool, whereas the second one chooses among a larger set of verification tools. 
For the latter, instead of merely predicting the best tool, we propose an approach 
that predicts a ranking of all tools. In practice, a prediction of that kind is often more 
useful, especially as it identifies alternatives in cases where the presumably best can-
didate fails, is not available, or could not be applied for whatever reason. Also, for 
practical reasons or criteria that have not been considered as training information 

tool ∶ I → A ×ℝ

(1)(r, t) ≻ (r�, t�) if (r ≻ r�) or (r = r�) ∧ (t < t�),

Table 1  Comparison of 
outcomes of validation runs

Correct answer Tool answer

TRUE FALSE UNKNOWN

TRUE Correct Wrong Unknown
FALSE Wrong Correct Unknown
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(e.g., cost), one of the runner-up alternatives might be preferred to the one that is 
actually predicted the best.

3  Learning algorithms for classification and ranking

The task of choosing a software validation tool for a given validation instance, or 
of ranking a set of tools according to their appropriateness for a validation prob-
lem at hand, requires answering questions like the following: Given a tool and a 
validation instance, will the former yield a correct result when being applied to the 
latter? Given two tools, which of them is more appropriate for a specific validation 
instance?

The idea of algorithm selection via machine learning is to train predictive mod-
els that are able to “guess” the answers to these questions. Since all questions are 
binary in the sense of calling for a simple yes/no answer, the type of machine learn-
ing problem that is relevant here is binary classification. As will be seen later on, the 
problem of ranking can be reduced to binary classification, too (essentially because 
ranking can be reduced to pairwise comparison).

This section starts with a short description of the necessary background in 
machine learning. More specifically, we explain the problems of binary classifica-
tion and label ranking as well as the method of ranking by pairwise comparison for 
tackling the latter. We also recall support vector machines as a concrete kernel-based 
machine learning method for binary classification. Although “kernelized” versions 
of other classification methods exist as well, support vector machines are most com-
monly used and proved to achieve state-of-the-art performance in many practical 
domains.

3.1  Binary classification

In the setting of binary classification, we proceed from training data

consisting of labeled instances xi . Here, an instance is a formal representation (e.g., 
a vector, graph, sequence, etc.) of an object of interest, and X  is the set of all rep-
resentations conceivable, called the instance space. In our concrete application, an 
instance can be thought of as (the representation of) a validation instance in I  , i.e., a 
program plus properties to be checked. Likewise, Y = {−1,+1} is the output space, 
which in binary classification only comprises two elements representing the positive 
(answer “yes”) and negative (answer “no”) class, respectively.

Given training data (2), which is typically assumed to be independent and identi-
cally distributed according to an underlying probability measure � on X × Y , the 
task in binary classification is to induce a classifier that generalizes well beyond this 
data, that is, which is able to assign new instances x ∈ X  to the correct class. For 
example, for a given validation tool, we may have seen positive examples (xi,+1) of 
validation instances xi it solved correctly, and negative examples (xj,−1) of instances 

(2)� = {(xi, yi)}
N
i=1

⊂ X × Y
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it solved incorrectly. For any new query instance x, a classifier trained on this data 
should then be able to anticipate whether or not the tool will be correct on x.

Formally, a classifier is a mapping h ∶ X → Y taken from a given hypothe-
sis space H ⊂ Y

X . A classifier h ∈ H is typically evaluated in terms of its risk or 
expected loss

where L is a loss function Y2
→ ℝ+ that specifies a penalty for a prediction ŷ = h(x) 

if the ground truth is y. The simplest loss function of this kind is the 0/1 loss given 
by L(y, ŷ) = 0 if y = ŷ and = 1 otherwise, though more general losses are often used 
in practice. Sometimes, for example, a false positive (e.g., the classifier suggests that 
a tool will be correct on a validation instance, although it fails) and a false nega-
tive (classifier predicts failure, although the tool is correct) cause different costs, 
which can be modeled by an asymmetric loss function. Regardless of how the loss 
is defined, the goal of binary classification can be defined as finding a risk-minizing 
hypothesis

3.2  Support vector machines

A support vector machine (SVM) is a specific type of binary classifier. More spe-
cifically, SVMs are so-called “large margin” classifiers that belong to the class of 
kernel-based machine learning methods (Schölkopf and Smola 2001). They sepa-
rate positive from negative training instances in X = ℝ

m by means of a linear hyper-
plane that maximizes the minimum distance of any of the training instances from 
the hyperplane (decision boundary). Formally, a hyperplane {x |w⊤x + b = 0} in 
ℝ

m is characterized by the normal vector w ∈ ℝ
m and the bias term b ∈ ℝ . Then, 

encoding the two classes by ±1 (as we did above), the margin of a training example 
(xi, yi) ∈ ℝ

m × {−1,+1} is given by yi(w⊤xi + b) ; thus, a positive margin indicates 
that xi is on the right side of the decision boundary, and hence classified correctly, 
whereas a negative margin corresponds to a mistake on the training data.

The “soft margin” version allows for adding a slack variable �i ≥ 0 and defines 
the margin as yi(w⊤xi + b) + 𝜉i for each instance xi ; this is necessary in the case of 
data that is not linearly separable. Obviously, the values of the slack variables should 
be kept small, i.e., the problem comes down to finding a reasonable balance between 
a large (soft) margin and a small amount of slack. This problem can be formalized in 
terms of a constrained quadratic optimization problem:

R(h) = ∫
X×Y

L(y, h(x)) d �(x, y) ,

h∗ ∈ argmin
h∈H

R(h) .

(3)(w∗, b∗) = argmin
w,b,�

�
1

2
‖w‖2 + C

N�
i=1

�i

�
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subject to the constraints

where C is a parameter that controls the penalization of errors on the training data 
(indicated by a non-zero �i ). At prediction time, a new instance x0 ∈ ℝ

m is classi-
fied positive or negative depending on whether it lies above or below the hyper-
plane (w∗, b∗) . Instead of only returning a binary decision, the distance from the 
hyperplane is often reported as a kind of measure of certainty (with the idea that the 
closer an instance to the decision boundary, the less certain the prediction).

As a disadvantage of this measure, note that the distance is not normalized and 
therefore difficult to interpret and compare. So-called Platt scaling is a post-process-
ing step, in which distances are mapped to [0, 1] via a logistic transformation; thus, 
each instance is assigned a (pseudo-)probability of belonging to the positive class 
(Platt 1999).

Instead of solving the problem (3) directly, it is often more convenient to solve 
its dual. In the dual formulation, training instances xi, xj never occur in isolation but 
always in the form of inner products ⟨xi, xj⟩ . This allows for the “kernelization” of 
SVMs, simply be replacing such inner products by values k(xi, xj) of a so-called ker-
nel function k.

Definition 2 A function k ∶ X × X → ℝ is a positive semi-definite kernel iff k is 
symmetric, i.e., k(x, x�) = k(x�, x) , and

for arbitrary N, arbitrary instances x1,… , xN ∈ X  and arbitrary c1,… , cN ∈ ℝ.

If k(⋅) is a proper kernel function, one can guarantee the existence of an induced 
feature space F  (which is a Hilbert space) and a feature map � ∶ X → F  such that 
⟨�(x),�(x�)⟩ = k(xi, xj) . Thus, the computation of inner products in the (typically 
very high-dimensional) space F  can be replaced by the evaluations of the kernel, 
which in turn allows a linear model to be fit in F  without ever accessing that space 
or computing the image �(xi) of a training instance xi—this is called the “kernel 
trick”. As long as a learning algorithm, which is run in the feature space F  , only 
requires the computation of inner products ⟨�(x),�(x�)⟩ , but never individual feature 
vectors �(xi) , it only needs access to the Gram matrix, i.e., the value of the kernel 
for each pair of training instances:

Note that the instance space X  , on which the kernel is defined, is not necessar-
ily a Euclidean space any more. Instead, X  can be any space or set of objects. In 

(4)yi(w
⊤xi + b) ≥ 1 − 𝜉i , 𝜉i ≥ 0 ,

N∑
i=1

N∑
j=1

cicjk(xi, xj) ≥ 0

G =

⎛⎜⎜⎜⎝

k(x1, x1) k(x1, x2) … k(x1, xN)

k(x2, x1) k(x2, x2) … k(x2, xN)

⋮ ⋮ ⋱ ⋮

k(xN , x1) k(xN , x2) … k(xN , xN)

⎞⎟⎟⎟⎠
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particular, this allows SVMs to be trained on structured (non-vectorial) objects—
in our case, these objects are programs to be validated. In general, a kernel func-
tion can be interpreted as a kind of similarity measure on X  , i.e., the more similar 
instances xi, xj , the larger k(xi, xj) . We will come back to this point in Sect. 5 further 
below, where we address the question of how to define appropriate kernel functions 
on validation instances.

3.3  Label ranking

In addition to the problem of classifying, we are interested in the (more complex) 
problem of ranking. More specifically, the task we would like to tackle is the fol-
lowing: Given a context specified in terms of a representation x (e.g., a validation 
instance), sort a set of choice alternatives (e.g., a set of validation tools) in descend-
ing order of preference. In the machine learning literature, this problem has been 
studied under the notion of label ranking (Vembu and Gärtner 2010).

More formally, consider a finite set of K alternatives identified by class labels 
Y = {y1,… , yK} . In our case, Y is the set of validation tools V . We are interested 
in total order relations ≻ on Y , that is, complete, transitive, and antisymmetric rela-
tions, where yi ≻ yj indicates that yi precedes yj in the order. In our case, the alterna-
tives (labels) correspond to the validation tools, and label preferences are defined in 
terms of the lexicographic preferences (1) on tools. Formally, a total order ≻ can be 
identified with a permutation � of the set [K] = {1,… ,K} , such that �(i) is the posi-
tion of yi in the order. We denote the class of permutations of [K] (the symmetric 
group of order K) by �K . By abuse of terminology, though justified in light of the 
above one-to-one correspondence, we refer to elements � ∈ �K as both permuta-
tions and rankings.

In the setting of label ranking, preferences on Y are “contextualized” by instances 
x ∈ X  , where X  is an underlying instance space; in our case, instances are programs 
(plus properties) to be validated. Thus, each instance x is associated with a rank-
ing ≻x of the label set Y or, equivalently, a permutation �x ∈ �K . More specifically, 
since label rankings do not necessarily depend on instances in a deterministic way, 
each instance x is associated with a probability distribution �(⋅ | x) on �K . Thus, for 
each � ∈ �K , �(� | x) denotes the probability to observe the ranking � in the context 
specified by x.

Just like the goal in binary classification is to learn a classifier, the goal in label 
ranking is to learn a “label ranker”, i.e., a mapping M ∶ X → �K that predicts a 
ranking �̂� for each instance x given as an input. More specifically, seeking a model 
with optimal prediction performance, the goal is to find a risk (expected loss) 
minimizer

where � is the underlying model class, � is the joint measure �(x,�) = �(x)�(� | x) 
on X × �K and L is a loss function on �K . A common example of such a loss is 

M∗ ∈ argmin
M∈� ∫

X×�K

L(M(x),�) d �,
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L(𝜋, �̂�) = 1 − S(𝜋, �̂�) , where S(𝜋, �̂�) is the Spearman rank correlation (Spearman 
1904):2

As can be seen, for each alternative yi , this measure penalizes deviations of the esti-
mated rank �̂�(i) from its true rank �(i) ; these penalties are added together and nor-
malized so that S(𝜋, �̂�) = +1 if �̂� = 𝜋 and S(𝜋, �̂�) = −1 if �̂� is the complete reversal 
of �.

As training data � , a label ranker uses a set {(xi,�i)}Ni=1 of instances xi ( i ∈ [N] ), 
together with information about the associated rankings �i.

3.4  Ranking by pairwise comparison

How can a label ranker be represented and trained on a suitable set of data? In this 
paper, we make use of an established approach to label ranking called ranking by 
pairwise comparison (RPC), a meta-learning technique that reduces a label rank-
ing task to a set of binary classification problems (Hüllermeier et al. 2008). More 
specifically, the idea is to train a separate model (base learner) Mi,j for each pair 

(5)S(𝜋, �̂�) = 1 −
6
∑K

i=1
(𝜋(i) − �̂�(i))2

K(K2 − 1)
∈ [−1, 1]

Fig. 2  Illustration of the RPC approach (for K = 4 ). At training time (left), the original data � is split 
into K(K − 1)∕2 smaller data sets, one for each pair of labels, and a binary classifier is trained on each 
of these data sets. If a prediction for a new instance is sought (right), this instance is submitted to each 
of the binary models, and the pairwise preferences obtained as predictions are combined into a complete 
ranking � via a ranking procedure P

2 According to (1), there is no strict preference between tools with a timeout, hence the true ranking � 
may contain ties. In such cases, to compute (5), we break the ties according to the order suggested by �̂� . 
This “optimistic” extension avoids on unjustified penalization of the ranker, which is forced to predict a 
strict order (Amerise and Tarsitano 2015).
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of labels (yi, yj) ∈ Y , 1 ≤ i < j ≤ K ; thus, a total number of K(K − 1)∕2 models is 
needed (see Fig. 2 for an illustration). In our case, Mi,j is supposed to compare the 
ith and jth validation tool.

For training, the original data � is first turned into binary classification data sets 
�i,j , 1 ≤ i < j ≤ K . To this end, each preference information of the form yi ≻x yj 
(extracted from full or partial information about a ranking �x ) is turned into a 
positive (classification) example (x,+1) for the learner Mi,j ; likewise, each prefer-
ence yj ≻x yi is turned into a negative example (x,−1) . Thus, Mi,j trained on �i,j 
is intended to learn the mapping that outputs +1 if yi ≻x yj (the ith tool was better 
on verification task x than the jth tool) and −1 if yj ≻x yi (the ith tool was worse 
than the jth tool). This mapping can be realized by any binary classifier (of course, 
like in binary classification, one can also employ a probabilistic classifier that pre-
dicts a probability of the preference yi ≻x yj ). In our approach, we use support vector 
machines as introduced above as base learners for RPC.

At classification time, a query x0 ∈ X  is submitted to the complete ensemble of 
binary learners. Thus, a collection of predicted pairwise preference degrees Mi,j(x) , 
1 ≤ i, j ≤ K , is obtained. The problem, then, is to turn these pairwise preferences 
into a ranking of the label set Y . To this end, different ranking procedures can be 
used. The simplest approach is to extend the (weighted) voting procedure that is 
often applied in pairwise classification (Fürnkranz 2002): For each label yi , a score 
si =

∑
1≤j≠i≤K Mi,j(x0) is obtained, which represents the total preference in favor of 

that label (the sum of all preferences over all other labels), and then the labels are 
sorted according to these scores. Despite its simplicity, this ranking procedure has 
several appealing properties. Apart from its computational efficiency, it turned out 
to be relatively robust in practice and, moreover, it possesses provable optimality 
properties3 in the case where Spearman’s rank correlation is used as an underlying 
accuracy measure (Hüllermeier and Fürnkranz 2010).

4  Representing validation instances

Our approach to algorithm selection involves the use of machine learning methods 
for inducing binary classifiers. As said before, this requires a suitable representa-
tion of the validation instances, both for the training and prediction phase. A core 
requirement on this representation is its ability to represent various structural rela-
tionships between program entities, and to distinguish programs which differ in these 
structures. The key contribution of our work is the proposal of such a representation.

A common solution is a vectorial representation in the form of a feature vector, as 
it is supported by a wide range of learning algorithms. Nonetheless, finding suitable 
features that capture the main characteristics of an instance is often very challenging. 
In the two approaches existing so far (Tulsian et al. 2014; Demyanova et al. 2015), 
corresponding features of programs such as the number of loops, conditionals, 

3 It maximizes the expected Spearman rank correlation for any probability distribution on rankings 
whose pairwise marginals are given by Mi,j(x0).
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pointer variables, or arrays in a program are defined in an explicit way. Obviously, 
this approach requires sufficient domain knowledge (in our case about software vali-
dation) to identify features that are important for the prediction problem at hand. 
Our approach essentially differs in that features are specified in a more indirect way, 
namely by systematically extracting (a typically large number of) generic features 
from a suitable representation of the validation instance. Selecting the useful fea-
tures and combining them appropriately is then basically left to the learner.

But how to represent the validation instances in a more generic way? Pure source 
code (i.e., strings) is not suitable for this purpose as it does not provide enough 
structure. The source code of two programs might look very different although the 
underlying program is actually the same (different variable names, while instead 
of for loops, etc.). What we need is a representation that abstracts from issues like 
variable names but still represents the structure of programs, in particular depend-
encies between elements of the program. These considerations (and some experi-
ments comparing different representations, see  Czech et  al. 2017) have led to a 
graph representation of programs combining concepts of three existing program 
representations: 

Control-flow graphs  CFGs record the control flow in programs and 
thus the overall structure with loops, conditionals 
etc.; these are needed, for example, to see loops in 
programs.

Program-dependence graphs  PDGs (Horwitz and Reps 1992) represent depend-
encies between elements in programs. We dis-
tinguish control and data dependencies. This 
information is important, for example, to detect 
whether a loop boundary depends on an input vari-
able (as is the case in program PSUM).

Abstract syntax trees  ASTs reflect the syntactical structure of programs 
according to a given grammar. We only include 
an abstract syntax tree representation of state-
ments. This can help to reveal the complexity of 
expressions, in particular the arithmetic operations 
occuring in expressions.

Unlike CFGs and PDGs but (partly) alike ASTs, we abstract from concrete names 
occuring in programs. Nodes in the graph will thus not be labeled with statements 
or variables as occuring in the program, but with abstract identifiers. We let � be the 
set of all such labels. Table 2 lists some identifiers and their meaning; the appendix 
gives the complete list.

The following definition formalizes this graph representation, assuming standard 
definitions of control-flow and program dependence graphs.
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Definition 3 Let P be a validation instance. The graph representation of P is a graph 
G = (N,E, s, t, �, �, �) with

– N a set of nodes (basically, we build an AST for every statement in P, and use the 
nodes of these ASTs),

– E a set of edges, with s ∶ E → N describing the node an edge starts in and 
t ∶ E → N the node an edge terminates in,

– � ∶ N → � a labeling function for nodes,
– � ∶ E → {CD,DD, SD,CF} a labeling function for edges reflecting the type 

of dependence: CD (control dependency) and DD (data dependency) origin in 
PDGs, SD (syntactical dependence) is the “consists-of” relationship of ASTs and 
CF (control flow) the usual control flow in programs, and

– � ∶ N → 2E the incoming edge function derived from t by letting 

 for n ∈ N.
We let GV denote the set of all validation instance graphs.

Figure  3 depicts the graph representation of the validation instance PSUM . The 
rectangle nodes represent the statements in the program and act as root nodes of 
small ASTs. For instance, the rectangle labeled Assert at the bottom, middle 
represents the assertion in line 10. The gray ovals represent the AST parts below 
statements. We define the depth of nodes n, d(n), as the distance of a node to its 
root node, i.e.  to the statement node it is part of. As an example, the depth of the 
Assert-node itself is 0, the depth of both ==-nodes is 2.

This graph representation allows us to see the key structural properties of a vali-
dation instance, e.g., that the loop (condition) in our example program depends on 
an assignment where the right-hand side is an input (which makes validation more 
complicated since it can take arbitrary values). With respect to semantical proper-
ties, our graph representation (as well as all feature-based approaches relying on 
static analyses of programs) is less adequate. To see this, consider the two programs 
in Fig. 4. They only differ in the assertion at line 5, which from its basic syntax is 

�(n) = {e ∈ E ∣ t(e) = n}

Table 2  Some node identifiers and their meaning

If Conditional Ref Variable reference
Loop Loop Pointer_Ref Pointer dereference
Goto Jump to another location Assign Variable assignment
Blank Skip this statement Incr Variable increment
Function_Call Function call Char Single character
Return Function return Int 16Bit integer
Assert Assertion Long_Long 64Bit integer
ID Identifier Double 64Bit floating-point
== Equality comparison Pointer_Type Pointer type
<= Lesser comparison Int_Literal Integer literal
Decl Variable declaration Volatile_Int Volatile integer
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the same on both sides: a simple boolean expression on two variables of exactly the 
same type and dependencies. However, validation of the left program is difficult for 
tools which cannot generate loop invariants. Validation of the program on the right, 
however, is easy as it is incorrect (which can e.g. be detected by a bounded unroll-
ing of the loop). Here, we clearly see the limits of any learning approach basing its 
prediction on structural properties of programs.

Since validation instances are now represented by specific graphs, our approach 
needs to identify meaningful features in graphs. The key idea is that two instances 
which share common structures should share features and, more importantly, the 
representation of isomorphic graphs should be identical. With this observation in 
mind, we have chosen to select our features based on the Weisfeiler–Lehman (WL) 
test of isomorphism between two discretely labeled, undirected graphs (Weisfeiler 
and Lehman 1968). Because of its linear runtime (Shervashidze et  al. 2011), the 
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Fig. 3  Graph representation of P
SUM

 eliding labeling �

1 int i = 0; 1 int i = 0;
2 int n = abs(input()); 2 int n = abs(input());
3 while (i < n) 3 while (i < n)
4 i++; 4 i++;
5 assert (i == n); 5 assert (i != n);

Fig. 4  Two programs which are difficult to distinguish by our kernel
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WL test is known to scale well to large instances and hence can be applied to pro-
grams with several thousands lines of code. Moreover, in our prior work we have 
already successfully applied a modified Weisfeiler–Lehman subtree kernel (Czech 
et al. 2017), which is an extension of the WL test.

The Weisfeiler–Lehman test checks isomorphism of two graphs via the follow-
ing incremental procedure. First, it inspects for every node label � whether the two 
graphs have the same number of nodes labelled � . For instance, if one graph has 
three nodes labelled Loop, but the other only two, they cannot be isomorphic. The 
test then extends this check to subgraphs of consecutively larger size. Again as an 
example, if one graph contains two nodes labelled Loop which are connected via an 
edge to a node labelled Assign, but the other graphs contains four such shapes, the 
graphs cannot be isomorphic.

Algorithm 1 relabel (Graph relabelling)
Input:

G = (N,E, s, t, ρ, τ, ν) graph
z : Σ∗ → Σ injective compression function
m iteration bound

Output:
relabelled graph G (with changed node labelling ρ)

1: for i = 1 to m do
2: for n ∈ N do
3: Aug(n) :=

〈
z ρ(s(e))⊕ τ(e)

)
| e ∈ ν(n)

〉
� Collecting in-edges + neighbours

4: Aug(n) := sort(Aug(n)) � Sorting
5: str(n) := concat(Aug(n)) � Concatenation of labels
6: str(n) := ρ(n)⊕ str(n) � Concatenation with node label
7: ρ(n) := z(str(n)) � Compression
8: return G

We apply this idea now to single graphs, i.e., our features are specific subgraph 
shapes and we count for a given graph how often these features occur. Every sub-
graph is uniquely identified by a label (which for simplicity will be a number), and 
in order to get the same label for the same subgraph during feature computation, this 
labeling follows a fixed scheme. We start with node labels and extend these with 
information about neighboring nodes in three further steps: 

Augmentation  Concatenate the label of node n with labels of its incoming edges 
and neighbouring nodes.

Sorting  Sort this sequence according to a predefined order on labels.
Compression  Compress the sequences thus obtained into new labels.

These steps are repeated until a predefined bound on the number of iterations is 
exhausted. This bound is used to regulate the depth of subgraphs considered.

For allowing this WL test to act on validation instances, we made two adaptations 
to the graph relabeling, giving rise to Algorithm 1: 

(1) Extension to directed multigraphs (to see the direction of relationships betwen 
nodes), and
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(2) Integration of edge labels (to see the type of relationships between nodes).

In Algorithm  1, we use the notation ⟨… ∣ …⟩ for list comprehensions, defining a 
sequence of values, and ⊕ for string concatenation. Moreover, z is the compression 
function compressing sequences of labels into new labels (which for the purpose 
of unique identification should be injective). In our case, we use integers as labels, 
i.e., � = ℤ with the usual ordering ≤ . To this end, we first map all node identifiers 
and edge labels to ℤ . Every newly arising sequence then simply gets a new num-
ber assigned. The functions sort and concat sort sequences of labels (in ascending 
order) and concatenate sequences, respectively. In Algorithm 1, line 3 represents the 
augmentation step, line 4 sorting and lines 5 and 6 first concatenate all labels in 
Aug(n) and then prepend the current node label to this string. Line 7 finally com-
presses the thus obtained string according to function z.

Figure 5 illustrates these steps on a small subgraph of program PSUM (also show-
ing z as a function application in order to see the labels being augmented). Figure 5a 
just depicts the subgraph whereas Fig. 5b shows the graph where every node identi-
fier is replaced by a number and all edge types are replaced by numbers. Note that 
all three Assign nodes (obviously) have to get the same number. We now specifi-
cally look at the two outermost Assign nodes. In the first iteration (result depicted 
in Fig. 5c), we take the numbers of their predecessor and of the connecting edges, 
concatenate them, compress them, (sort and concatenate again, which we ignore 
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here), add the node’s own label and compress again. Thereby, both nodes get the 
label computed by z(0_z(0_0)) which we assume to be mapped to 3. Here, _ 
is concatenation. The next iteration repeats the same steps for all nodes. In this step 
(result in Fig. 5d), the leftmost Assign node now is labelled with z(3_z(3_0)) 
(chosen to be 7) whereas the rightmost Assign node gets z(3_z(0_0)) (chosen 
to be 6). This is because the predecessors (neighbors with edges going in to this 
node) of the nodes in the graph have different labels: 3 for the leftmost and 0 for the 
rightmost node. After this iteration, we can detect the structural difference in the 
nodes: the node labeled 7 has as a predecessor an Assign node which itself has an 
Assign node as a predecessor whereas the node labeled 6 has as a predecessor an 
Assign node which itself has no predecessors.

The relabel algorithm can be used to define our feature representation for valida-
tion instances. It is important to notice that every compressed label �(n) (after the ith 
iteration) refers to a subtree pattern of height i rooted at n (Shervashidze et al. 2011). 
Therefore it is possible to represent a validation instance (graph) by multiple Bags of 
Subgraphs (BoSs).

Definition 4 Let G = (N,E, s, t, �, �, �) , be the graph representations of a validation 
instance, z ∶ �∗

→ � a compression function, m ∈ ℕ an iteration bound and d ∈ ℕ 
a depth for subtrees. Let Gi = relabel(G, z, i) and �i its node labeling function.

The feature representation Bm
G

 of G consists of a sequence of m feature multisets 
defined by:

with

Here, we describe bags (or multisets) as pairs of element and its multiplicity. For-
mally, a multiset B over a set of elements � is a mapping � ∶ � → ℕ , and in the 
following we will use both notations. Intuitively, each bag of subgraphs counts the 
number of subgraphs occurring in the graph for a particular iteration value, where 
this value steers to what extend subgraphs are considered, and the depth d fixes 
whether an AST node is considered at all. By incorporating the depth, we have the 
option to consider or ignore details of expressions.

The BoS model is similar to a bag-of-words model (McTear et  al. 2016), well 
known from information retrieval, just that we have subgraphs instead of words. The 
further difference between these models is that our model in addition stores the iter-
ation in which a subgraph occurs.

5  Graph kernels for verification tasks

As outlined in the previous sections, our idea is to make use of support vector 
machines as learning algorithms, either directly for binary classification (Sect. 3.1) 
or as a base learner in the context of learning by pairwise comparison for label 

B
m
G
= ⟨B0

G
,B1

G
,… ,Bm

G
⟩

Bi
G
∶= {(�, k) ∣ � ∈ �, k = |{n ∈ N ∣ d(n) ≤ d, �i(n) = �}| }
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ranking (Sect. 3.4). In this regard, the main prerequisite is the definition of a suitable 
kernel function.

Recalling Definition 4, a validation instance is represented by bags of subgraphs 
⟨B0

G
,B1

G
,… ,Bm

G
⟩ . To compare such representations G1 and G2 for two validation 

instances in terms of similarity, our idea is to compare bags Bi
G1

 and Bi
G2

 first and to 
average over these comparisons afterward. Since a bag is a specific type of set, we 
make use of Jaccard as an established measure of similarity. For sets A and B, it is 
defined by |A ∩ B|∕|A ∪ B| , i.e., by the cardinality of the intersection over the cardi-
nality of the union. Obviously, it assumes values in the unit interval, with the 
extremes of 1 for identical and 0 for disjoint sets. Compared to other measures, Jac-
card has a number of advantages. In contrast to distance measures on feature vectors 
(with one entry per subgraph), for example, the simultaneous absence of a subgraph 
in both G1 and G2 does not contribute to their similarity, which is clearly a desirable 
property.

We have to keep in mind, however, that the Bi
G

 are not standard sets but bags that 
assign multiplicities to the labels � in the graphs. Therefore, the generalized Jaccard 
similarity, also known as Ruzicka similarity (Pielou 1984), appears to be a natural 
choice for a kernel in our case.

Definition 5 (Generalized Jaccard similarity) Let X,  Y be bags over some set � 
with the multiplicities given by occurrence functions �X ∶ � ↦ ℕ and �Y ∶ � ↦ ℕ , 
respectively. Then the generalized Jaccard similarity is defined by

The generalized Jaccard similarity compares the size of the (generalized) inter-
section of the bags X and Y with their (generalized) union. Ralaivola et al. (2005) 
have proven that the measure is both symmetric and positive semi-definite, so that it 
can indeed be used as a kernel for bags. Thus, we formally define our kernel func-
tion on the representation of validation instances as follows.

Definition 6 Let G1 and G2 be graph representations for validation instances, m ∈ ℕ 
an iteration bound, and Bm

G1
,Bm

G2
 the matching validation feature representation. The 

verification graph kernel km ∶ GV × GV → ℝ is defined by

The kernels are designed with respect to the Weisfeiler Lehmann (WL) test of 
isomorphism (see Sect. 4). However, instead of testing on uncommon subgraphs in 
each iteration, we measure the similarity of individual test sets and average over all 
iterations. In other words, we expect that particular similarity observations may not 
be representative, while a good estimation can still be achieved on average. Fur-
thermore, the validation graph kernel is positive semi-definite by construction, 

GJac(X, Y) ∶=

∑
�∈� min(�X(�),�Y (�))∑
�∈� max(�X(�),�Y (�))

km(G1,G2) ∶=
1

m + 1

m∑
i=0

GJac(Bi
G1
,Bi

G2
)
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since kernel functions are closed under addition and multiplication with a positive 
constant.

6  Implementation

Our approach consists of five major steps: (1) construction of the graph representa-
tion of validation instances, (2) bag-of-subgraph computation, (3) kernel computa-
tion, (4) learning, and finally (5) prediction.

Construction of graphs To generate the graphs, we employed the configurable 
software analysis framework CPAchecker  (Beyer and Keremoglu 2011). This 
directly gives us the control-flow graph and AST information by using the integrated 
C parser of CPAchecker. We implemented the construction of program dependence 
graphs ourselves, using the technique detailed in Horwitz and Reps (1992). For the 
sake of simplicity, we ignored complex dependencies introduced by pointers. We 
furthermore built an extension of CPAchecker which combines all the collected 
information into one graph.

Computation of bag-of-subgraphs To produce our bag-of-subgraph representa-
tion, we further process the graph using NetworkX4 2.1 and our relabeling algorithm 
as described in Sect. 4. NetworkX is a graph library that makes our program repre-
sentation accessible. Especially, the support of efficient neighborhood aggregation 
on large graphs is a convenient property of NetworkX for our use case. During the 
relabeling process, we make use of MurmurHash35 for our compression function. 
MurmurHash3 is clearly not injective as we map all possible subgraphs to an ele-
ment of 0–2128 . Here, we trade off seldom collisions against a major computational 
speedup.

Computation of kernel For kernel computation, a large sparse matrix is con-
structed by collecting information from all bag-of-subgraph models. To store and 
efficiently process this matrix, we utilize SciPy6. SciPy includes a large collection 
of algorithms for scientific computing. The support of highly efficient sparse matrix 
operations and compatibility with the linear algebra package NumPy7 makes SciPy 
suitable for calculating our final kernel.

Learning During the learning phase, we need to learn models which—for a pair 
of tools and a given validation instance—predict the tool performing better on the 
validation instance according to the ordering defined in Sect. 2. Note that such mod-
els are employed both in the binary classification case and for the rankings, as we 
employ ranking by pairwise comparison (RPC). We integrated the RPC approach 
and our kernel framework into the scikit-learn library8. For learning, we employed 
the implementation of support vector machines offered by scikit-learn. To select the 

4 https://networkx.github.io
5 https://pypi.org/project/mmh3/
6 http://scipy.org
7 http://numpy.org
8 http://scikit-learn.org
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penalization parameter C of the SVM (see Sect. 3), we tried a standard range of val-
ues (0.01, 0.1, 1, 100 and 1000) using internal cross-validation and selected the one 
with the highest estimated accuracy. We performed this parameter search for each 
base learner individually.

Prediction For the prediction, we utilized the trained model offered by scikit-
learn. Our RPC implementation enables us to infer a ranking from the set of binary 
predictions. To achieve comparable result for prediction time, the RPC approach is 
also implemented as an extension to CPAchecker. Our extension allows the utiliza-
tion of the trained model obtained by and exported from scikit-learn.

All the code is available via GitHub9.

7  Experimental evaluation

With the implementation at hand, we extensively evaluated our approach and com-
pared it to existing methods.

7.1  Research questions

For the evaluation, we were interested in the following research questions. 

RQ1  Which parameter choices for the kernels achieve the most accurate predic-
tion? Available options or parameters are the depth d in the AST representa-
tion of statements and the iteration bound m in the kernel computation.

RQ2  What is the relation between the prediction and the validation time? For the 
binary classifier we—in particular—wanted to find out whether prediction 
plus consecutive validation with the selected tool can outperform a valida-
tion using the testing and the verification tool in sequence.

RQ3  How does our approach compare to similar existing approaches? Again, for 
the comparsion we were interested in the accuracy of the prediction.

Table 3  Dataset description of Ranking (Rank18)

Overall Safety Termination MemSafety Overflow

Rank18 #Instances 8456 5686 1986 361 423
Maximum #Nodes 6095,912 6095,912 1129,395 147,950 147,950
Average #Nodes 129,762 152,289 46,929 4462 3628
Maximum #Edges 6502,313 6502,313 1221,241 154,336 154,336
Average #Edges 142,614 167,380 52,891 4954 3995
Max. in-degree 6095,911 6095,911 1129,394 147,949 147,949

9 https://github.com/cedricrupb/pySVRanker
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To study these research questions, we designed a suitable set of experiments. 
First of all, our general setting with training data and tools was the following. We 
constructed two data sets: Testing vs. Verification (T/V) for binary classification and 
Ranking (Rank18) for rank prediction. Tables 3 and 4 provide statistics for both data 
sets (number of validation instances plus information about the constructed graphs). 
We used Testing versus Verification as the task for the binary classifier because test-
ing and verification techniques are often complementary, and we wanted to find out 
whether our prediction can carry out some appropriate classification of programs 
into ones for which testing and for which verification works better. The choice for 
employing ranking on verification tools is motivated by the existence of an appropri-
ate data set.

For T/V, we employed results of a recent study by Beyer and Lemberger (2017) 
about testing and formal verification tools10 for bug finding. To utilize this data for 
binary classification, we had to select one testing and one verification tool. In the 
study by Lemberger and Beyer, the model checker ESBMC-incr  (Gadelha et  al. 
2018) outperforms the competitors in terms of bug finding. The same holds true for 
the testing tool KLEE (Cadar et al. 2008) compared to other testers. Interestingly, 
both tools seem to complement each other such that we can expect an improvement 
by summarizing their findings. Therefore, we chose to evaluate the performance of 
our base learner for classification on this tool pair.

For Rank18, we used the results of SV-COMP 201811. SV-COMP is the annual 
competition on software verification. In the 2018 instance, 21 verification tools par-
ticipated and were evaluated on 9523 validation instances (written in C) in 5 catego-
ries (plus some meta categories). The ground truth for these validation instances is 
fixed; its computation is a community effort of the SV-COMP participants over the 
years. The results of SV-COMP are rankings of tools (per category and overall).

For our data set, we excluded concurrent programs (since a large number of veri-
fication tools operate on sequential programs only) which left us with 4 categories, 
namely Safety (reachability properties), MemSafety (memory safety), Termi-
nation and Overflow (no overflows). The categories contain programs on which 
specific properties are to be verified. All categories are summarized into a meta cat-
egory Overall. We both trained the SVMs on data from individual categories and 

Table 4  Dataset description of 
Testing vs. Verification (T/V) T/V #Instances 4270

Maximum #Nodes 7202,257
Average #Nodes 191,654
Maximum #Edges 8531,571
Average #Edges 211,011
Max. in-degree 7202,256

10 The authors of Beyer and Lemberger (2017) tested six fuzzing and four verification tools.
11 https ://sv-comp.sosy-lab.org/2018/

https://sv-comp.sosy-lab.org/2018/
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from Overall to see whether some knowledge about the property to be verified 
(i.e., the category of the validation instance) might improve the prediction.

With respect to tools, we chose the 10 verification tools participating in all the 
4 categories. In this case, these are the tools 2ls (Schrammel and Kroening 2016), 
CBMC (Kroening and Tautschnig 2014), CPA-Seq (Wendler 2013), DepthK (Rocha 
et al. 2017), ESBMC-incr (Gadelha et al. 2018), ESBMC-kind (Gadelha et al. 2018), 
UAutomizer (Heizmann et al. 2013), Symbiotic (Chalupa et al. 2017), Ukojak (Nutz 
et al. 2015) and UTaipan (Greitschus et al. 2017). Since the prediction for a tool pair 
(V1,V2) is the inverse of (V2,V1) , we considered only 45 tool pairs12 during learning. 
All together, we created 275 datasets for learning based on category and tool combi-
nation. To address the research questions, we then set up the following experiments.

For RQ1, we varied the depth of considered ASTs from 1 to 5 (5 because the 
mean maximum AST depth is 5.16 and we wanted to get close to that). For the itera-
tion bound in the kernel we considered 0, 1 and 2. As criterion for being the “best” 
parameter choice, we employed the accuracy of the prediction. To this end, we per-
formed a 10-fold cross validation.

We split the experiments into those studying the binary classifier and the rank 
predictor. In the following, we refer to these as RQ1a and RQ1b, respectively. For 
RQ1a, the accuracy is the classification rate, i.e. the proportion of correct in all clas-
sifications. For RQ1b, we used the Spearman rank correlation to compare observed 
and predicted rankings.

For both predictions, we furthermore computed the accuracy of a default predic-
tor as a baseline. In the case of binary classification, the default is the majority clas-
sifier, which always predicts the same tool, namely the one providing better results 
in the majority of cases in the training data. Likewise, the default predictor for RQ1b 
always predicts the same ranking �̂� which sorts tools Vi according to the well-known 
Borda rule (de Borda 1781), i.e., according to the number of tools Vj outperformed 
by Vi , summed over all rankings �k in the training data:

By always predicting �̂� , regardless of the validation instance x , the default predic-
tor generalizes the majority voting scheme of the binary case. Among all constant 
predictors of that kind, the Borda rule yields the one that is provably optimal in 
terms of the Spearman rank correlation as a performance measure (Hüllermeier and 
Fürnkranz 2010).

For RQ2, we trained the classifier and the rank predictor on our data sets, and 
then measured the time for prediction for all data instances of T/V and Rank18. The 
validation times of tools on programs could directly be taken from SV-COMP18 and 
the study of Beyer and Lemberger (2017).

For RQ3, we searched for approaches carrying out a similar form of prediction on 
validation tools. To the best of our knowledge, there are just two such approaches: 
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MUX (Tulsian et  al. 2014) and Verifolio  (Demyanova et  al. 2015). As the imple-
mentation of MUX is not publicly available, we compared our approach to Verifolio 
only. The criterion for comparison is again accuracy. We employed the feature com-
putation within Verifolio and used it to train models for binary classification and 
for ranking by pairwise comparison. We used two kernels in this case: the Jaccard 
kernel which our own approach employs (in order to have a comparison on equal 
grounds) and a radial basis function which Verifolio originally used for the support 
vector machine. These two approaches are denoted by“Verifolio (J)” and “Verifolio 
(RBF)”.

There are furthermore some tools which employ heuristics to internally decide on 
which validation technique to run on a given validation instance. For instance, Beyer 
and Dangl (2018) choose different configurations for the tool CPAchecker based on 
a simple heuristic. We did not include such tools in the comparison since they can-
not make decisions on arbitrary other verification tools.

7.2  Setup

Our experiments were performed on an Intel x86 machine with 4x3.4 GHz CPUs, 
8 GB main memory and running openSUSE Leap 42.3. We installed Python 3.6 
and Java 8 as our runtime environment. In our second research question we com-
pared the runtime of our prediction against those of the SV-COMP tools. As the 
exact time behaviour depends on the execution environment, we evaluated our 
approach on the machines used for the competition. These experiments were 

Table 5  T/V—accuracy for 
classification (mean ± standard 
deviation)

WLJ(0,1) .873 ± .019

WLJ(0,2) .879 ± .018

WLJ(0,3) .877 ± .017

WLJ(0,4) .877 ± .017

WLJ(0,5) .875 ± .015

WLJ(1,1) .879 ± .017

WLJ(1,2) .878 ± .016

WLJ(1,3) .882 ± .019

WLJ(1,4) .877 ± .015

WLJ(1,5) .876 ± .016

WLJ(2,1) .878 ± .018

WLJ(2,2) .��� ± .���

WLJ(2,3) .880 ± .016

WLJ(2,4) .877 ± .015

WLJ(2,5) .877 ± .015

Verifolio (J) .850 ± .024

Verifolio (RBF) .851 ± .021

Default .647 ± .014
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performed on an Intel x86 machine with 4x3.4 GHz CPUs, 15 GB main memory 
running Ubuntu 18.04. More importantly, our approach was executed by the bench-
marking tool BenchExec (Beyer et al. 2017).

7.3  Results

In the following we describe the results for all research questions.
RQ1a Table 5 lists the accuracies of binary classification on data set T/V for dif-

ferent kernel parametrizations. The final three rows (Verifolio and Default) can be 
ignored for now. The performance of a classifier using iteration bound m and AST 
depth bound d can be found at WLJ(m,d) . First of all, we see that the accuracies do 
not differ a lot and are all relatively high. The best accuracy can be achieved with 
m = 2 and d = 2 . When working with lower values of m and d (for performance rea-
sons), the accuracy will only decrease slightly.

RQ1b Table 6 lists the accuracies of predicted rankings according to Spearman 
rank correlation. Again, the three final rows can be ignored for the moment. We give 
the accuracy per category and for Overall and highlight the largest accuracy per 
(meta-)category in bold. Looking at the different parameters and categories, no clear 
“winner” can be seen. Within a category, the accuracy values–like for classifica-
tion–do not differ much. For the category Overall, there is even no iteration of the 
relabel algorithm necessary in order to achieve the best accuracy.

Table 6  Rank18 – Spearman correlation for rank prediction (mean ± standard deviation)

OVERALL SAFETY TERMINATION MEMSAFETY OVERFLOW

WLJ(0,1) .636 ± .014 .699 ± .024 .863 ± .018 .640 ± .058 .687 ± .057

WLJ(0,2) .649 ± .012 .703 ± .021 .864 ± .019 .643 ± .054 .715 ± .051

WLJ(0,3) .650 ± .011 .706 ± .024 .869 ± .020 .645 ± .054 .744 ± .047

WLJ(0,4) 650 ± .012 .706 ± .021 .866 ± .019 .644 ± .055 .745 ± .049

WLJ(0,5) .��� ± .��� .709 ± .023 .867 ± .018 .642 ± .055 .746 ± .045

WLJ(1,1) .631 ± .014 .704 ± .027 .876 ± .018 .642 ± .057 .710 ± .058

WLJ(1,2) .648 ± .013 .709 ± .021 .877 ± .020 .639 ± .057 .731 ± .042

WLJ(1,3) .650 ± .014 .708 ± .025 .876 ± .021 .647 ± .056 .772 ± .038

WLJ(1,4) .650 ± .016 .714 ± .025 .877 ± .020 .646 ± .051 .773 ± .042

WLJ(1,5) .650 ± .015 .715 ± .021 .877 ± .019 .��� ± .��� .769 ± .042

WLJ(2,1) .633 ± .013 .698 ± .024 .876 ± .020 .646 ± .055 .707 ± .058

WLJ(2,2) .643 ± .014 .711 ± .020 .879 ± .021 .643 ± .055 .736 ± .045

WLJ(2,3) .645 ± .015 .713 ± .021 .879 ± .021 .640 ± .055 .777 ± .040

WLJ(2,4) .647 ± .016 .717 ± .020 .��� ± .��� .644 ± .054 .��� ± .���

WLJ(2,5) .648 ± .016 .��� ± .��� .879 ± .021 .647 ± .057 .777 ± .046

Verifolio (J) .582 ± .121 .713 ± .075 .792 ± .029 .560 ± .091 .623 ± .091

Verifolio (RBF) .568 ± .109 .695 ± .070 .778 ± .034 .560 ± .092 .628 ± .075

Default .196 ± .036 .214 ± .014 .235 ± .022 .304 ± .059 .407 ± .057
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The table also reveals that category-specific training often pays off. For instance, 
if our interest is in finding a verification tool for termination checking, then we 
should train our predictor on the termination examples only.

RQ2 The comparison between prediction and validation time is shown in two fig-
ures. For this, we employed the kernel WLJ(1,5) (which is a compromise between the 

Fig. 6  Testing vs. Verification: Improvement of prediction + execution time over sequential execution. A 
value above zero represents an instance that can be processed faster by prediction + execution

Fig. 7  Rank18: Execution time of the 10 tools and the prediction



178 Automated Software Engineering (2020) 27:153–186

1 3

best kernel for binary classification and the best kernel for ranking). First, Fig. 6 depicts 
the difference between the runtime of prediction plus execution (of the predicted tool) 
and the sequential execution of both tools. This difference is shown on the y-axis. The 
x-axis lists the 4270 validation instances of the dataset T/V, ordered with respect to the 
difference (left to right from smallest to largest). We see that in the majority of cases 
prediction plus execution outperforms execution of both tools. Moreover, in the cases 
where the execution of both tools is faster, the difference is usually small.

Second, Fig. 7 compares the runtimes of the 10 tools of our rankings and the predic-
tion time given in a quantile plot. It shows the number of validation instances n (x-axis) 
for which a validation or prediction, respectively, can be achieved in t seconds (y-axis). 
Or slightly rephrased, the figure shows how many instances can be processed if we 
apply a time limit. We see that prediction has got some base overhead which is above 
that of the verification tools (left side, line of prediction above tool lines). However, 
when we increase the time limit the number of instances processable in this limit is 
(mostly) above that of the verification tools (right side, prediction line below tool lines).

This shows that prediction in general does not take so much time that it would 
be impracticable to employ it. With this observation in mind, we participated in the 
2019 edition of SV-COMP with our tool PeSCo (Richter and Wehrheim 2019) to see 
whether prediction can improve on pure verification. The results can be found at the 
SV-COMP 2019 website13; PeSCo ranked second in the category Overall.

RQ3 Finally, for the comparison with related approaches we studied the accuracy 
achieved by Verifolio and the majority (default) predictors. The results can again be 
found in Tables  5 (for classification) and 6 (for ranking), now considering the final 
rows as well. In terms of rank correlation, our technique is able to outperform the hand-
crafted features of Verifolio with both kernels on all the datasets. For overflow prob-
lems (category OVERFLOW), our best predictor WLJ(2,4) improves the prediction for 
more than 0.1. We even have an improvement on category TERMINATION which is 
particularly surprising since Verifolio has specific hand-crafted features describing dif-
ferent sorts of loops in order to be able to detect termination. Since our generic feature 
vectors are very high-dimensional, we had furthermore expected that larger training 
sets would be needed for a support vector machine to generalize well. Still, we are able 
to outperform Verifolio on the smaller training sets in the categories MemSafety and 
Overflow. Finally, we see that the default predictor is completely useless for ranking.

For classification (Table 5), our approach again outperforms Verifolio. The com-
parison with the default majority predictors furthermore shows that learning is 
always better than taking majority votes, though the default predictor is better here 
than in the ranking case.

7.4  Threats to validity

There are a number of threats to the validity of the results. First of all, our imple-
mentation might contain bugs. In general, machine learning applications are difficult 
to debug since it is unclear what exactly the outcome of a learning phase should be. 

13 https://sv-comp.sosy-lab.org/2019/results/results-verified/
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To nevertheless find bugs, we carried out a number of sanity checks, like the kernels 
returning 1 when called with the two arguments being the graphs of the same program.

For the Weisfeiler–Lehman kernel, our implementation uses a non-injective com-
pression function (namely, a hash function). The use of a hash function is motivated 
by performance reasons. This might—if at all—only have a negative effect on the 
accuracy of the prediction as this leads to not being able to distinguish (some of) the 
different label sequences in the graphs anymore.

Our results might furthermore be influenced by the choice of training data. Our pre-
diction might perform worse on other training data, in particular when the programs 
are written in a language other than C. For training, we however needed validation 
instances with a known ground truth, and it was beyond the scope of this paper to 
generate such data ourselves (the SV-COMP community has spent several years for 
building its benchmark set). Hence our evaluation was restricted to existing data sets.

8  Related work

Our approach applies the idea of algorithm selection to software analysis tools. Algo-
rithm selection is a well-known problem in computer science. Software developers can 
apply the strategy design pattern (Gamma et al. 1995) to support algorithm selection in 
their software. In the context of software analysis, algorithm selection is often done man-
ually or heuristically. For example, users can select different solvers (Beyer and Keremo-
glu 2011; Gurfinkel et al. 2015; Günther and Weissenbacher 2014; Gadelha et al. 2018) 
or verification approaches  (Beyer and Keremoglu 2011; Rakamaric and Emmi 2014; 
Albarghouthi et al. 2012). Apel et al. (2013) select the domain to use for a variable based 
on its domain type. Refinement selection (Beyer et al. 2015) uses heuristics to decide 
which component to refine and which refinement to apply. Recently, a manually created 
decision model based on boolean program features has been suggested to select the most 
promising analysis combination (Beyer and Dangl 2018). In contrast, our approach uses 
machine learning to select an analysis tool for a verification task.

Similar approaches, which also apply machine learning for analysis tool selec-
tion, have already been pursued by two other groups of authors, namely by Demy-
anova et al. (2015) and Tulsian et al. (2014). Both have chosen verification-specific 
features of source code: while the latter mainly contains features counting program 
entities (e.g., lines of code, number of array variables, number of recursive func-
tions), the first approach has defined different variable roles (e.g., variable being 
used as index to array) and loop patterns (e.g., syntactically bounded) as features 
and employs a light-weight static analysis to extract these features. In contrast to 
their work, our approach does not require an explicit feature selection, but uses the 
Weisfeiler–Lehman test of isomorphism as a way to encode structural relationships 
in programs in our features. An experimental comparison with the approach of 
Demyanova et al. is contained in Sect. 7; we could not compare to the approach of 
Tulsian et al., because the authors’ implementation is not publicly available.

Other approaches to algorithm selection via machine learning include approaches 
for constraint solving and SAT solving (Xu et al. 2008) or planning (Helmert et al. 
2011). Kotthoff et al. (2012) have evaluated different machine learning algorithms 
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from the WEKA machine learning library with respect to the purpose of algorithm 
selection for SAT solving.

The approach most closely connected to ours is that of Habib and Pradel (2018), 
who use Weisfeiler–Lehman graph kernels for learning the thread-safety of Java 
classes. Contrary to our approach, they build graphs tailored towards their learn-
ing task. The graphs focus on fields of classes, their access in methods and con-
structors, and concurrency related modifiers like volatile or synchronized. 
Li et  al. (2016) use Weisfeiler–Lehman kernels to detect code similarities. Their 
graphs mainly reflect call graph structures and interprocedural control flow. Weis-
feiler–Lehman subtree kernels (on CFGs only) are also employed for malware detec-
tion in Android apps (Wagner et al. 2009; Sahs and Khan 2012).

Allamanis and others (Allamanis et al. 2017) use a graph representation of source 
code to detect faulty variable usages. Their graphs are built from ASTs with special 
edges for different sorts of data usage (like “computed from”, “last read” or “last 
written”). Instead of using these graphs in kernels (like we do) or for extraction of 
feature vectors, they directly give these graphs as inputs to the learning algorithm (in 
their case, a neural network).

The work of Alon et  al. (2018) and the newly proposed code2vec tech-
nique  (Alon et  al. 2019) also employ an AST representation of programs. These 
approaches aim at applications like the prediction of names for given method bodies. 
The technique code2vec first extracts paths of ASTs and then employs a neural net-
work to learn both the representation of paths and their aggregation. The technique 
is however very sensitive to names used in programs (e.g., variables names). The 
authors of code2vec have also realized this and have thus proposed a fix to it (Yefet 
et al. 2019). As we directly replace names by node identifiers in our graph representa-
tion, our technique is not vulnerable to adversarial attacks changing variable names.

While the use of kernel functions in software engineering is relatively recent, graph 
kernels have been applied in other domains much earlier. Indeed, motivated by applica-
tions in domains such as bioinformatics, web mining, social networks, etc., where the 
use of graphs for modeling data is very natural, various types of graph kernels have been 
proposed in machine learning in the last two decades, for example the random walk and 
shortest path kernel (Borgwardt and Kriegel 2005). Generally, a distinction can be made 
between kernels on graphs, which seek to capture the similarity of different nodes in a 
single graph (Kondor and Lafferty 2002), and kernels between graphs, which compare 
two graphs with each other (Gärtner et al. 2003; Gärtner 2008). Besides, other types of 
kernels have been proposed, such as marginalized kernels (Kashima et al. 2003).

Other applications of machine learning to software engineering tasks include the 
learning of programs from examples ((Raychev et al. 2016; Lau 2001)) and the pre-
diction of properties of programs (e.g., types of program variables (Raychev et al. 
2015), fault locations (Le et al. 2016) or bugs (Pradel and Sen 2018)). A survey of 
different approaches of ML in the area of programming language and software engi-
neering is given in Allamanis et al. (2018). A machine learning approach to software 
verification itself has recently been proposed in Chen et al. (2016).
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9  Conclusion

In this paper, we proposed a novel technique for algorithm selection in the area of 
software validation. It builds on a graph representation of software and the con-
struction of a kernel function for machine learning, which is based on the Weis-
feiler–Lehman test of graph isomorphism and a generalization of the Jaccard meas-
ure for determining the similarity between multi-sets (bags) of subgraphs. Thus, 
data in the form of validation instances (programs plus properties to be checked) 
becomes amenable to a wide spectrum of kernel-based machine learning methods, 
including support vector machines as used in this paper.

Despite our concrete application, we like to emphasize that our graphs provide a 
completely generic representation of software, not specifically tailored to the domain 
of software validation. As suggested by our extensive experimental studies, our 
approach can nevertheless outperform custom-build techniques that are fine-tuned 
to software validation—a result that was not necessarily expected. Our explanation 
follows a pattern that is commonly observed in practical machine learning applica-
tions: Incorporating domain knowledge via hand-crafted features is helpful for the 
learner, especially if training data is sparse, but comes with the danger of introduc-
ing a bias if the features are not sufficiently well chosen or important features are 
missing. On the other side, offering a large set of generic features to choose from 
complicates the task of the learner and naturally requires more data (to separate use-
ful from irrelevant features), but reduces the problem of bias. Therefore, a generic 
approach often outperforms an approach based on hand-crafted features provided 
enough training data is available.

Since our machine learning approach is readily usable in other applications, we 
plan to explore its performance for other software engineering problems in future 
work. Besides, there is of course scope for further improvements on a technical and 
implementational level, for example by incorporating an alias analysis into the com-
putation of program dependence graphs, by enhancing the kernel function or using 
learning methods other than support vector machines. We in particular plan to elab-
orate on a general drawback of standard kernel-based learning methods, namely the 
difficultly to interpret the predictions: In addition to getting a useful recommenda-
tion, it would also be desirable to understand, for example, why one tool is preferred 
to another one on a specific validation instance. One direction we intend to pursue 
for this is using graph convolutional networks (Wu et al. 2019; Hamilton et al. 2017; 
Xu et al. 2019) and representation learning to let a neural network learn appropriate 
feature vectors for programs.
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Node identifiers

Table 7 contains the complete list of node identifiers.

Table 7  All node identifiers and their meaning
Start Start of program Enum_Type Enumeration type
If Conditional Struct_Type Structure type
Loop Loop Union_Type Union type
Decl Local variable declara-

tion
Const_* Constant types

Decl_Global Global variable declara-
tion

Volatile_* Volatile types

Assign Variable assignment Elaborated_* Elaborated types
Incr Variable increment Cast Casting of variables
Decr Variable decrement Type_Decl Custom type declaration
Label Label jump target Int_Literal Integer literal
Goto Jump to another location Float_Literal Floating-point literal
Blank Skip this statement Char_Literal Character literal
End End of program String_Literal Text
Func_Decl Function declaration ID Variable identifier
Func_Call Function call + Addition
Func_Start Function start − Substraction
Return Function return ∗ Multiply
Func_End Function end / Divide
Func_Decl_Assert Assert function declara-

tion
% Modulo

Func_Call_Assert Assert function call < Lesser
Func_Decl_Error Error function declara-

tion
<= Lesser equal

Func_Call_Error Error function call == Equal
Func_Decl_Input User input function ! = Unequal
Func_Call_Input Request user input >= Greater equal
Func_Decl_Malloc Memory allocation 

function
> Greater

Func_Call_Malloc Allocate memory & Bit-wise and
Func_Decl_Free Memory free function | Bit-wise or
Func_Call_Free Free memory ̂ Bit-wise xor
Func_Decl_
Atomic_Begin

Atomic start function ∼ Bit-wise negation

Func_Call_
Atomic_Begin

Atomic block start << Shift left

Func_Decl_
Atomic_End

Atomic end function >> Shift right

Func_Call_
Atomic_End

Atomic block end Pointer_Ref Pointer deref

Bool Boolean type Pointer_& Address operation
Short 16Bit Integer Array_Expression Array definition
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