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Automated machine learning (AutoML) is the task of automatically selecting and parametriz-
ing machine learning algorithms, as well as combining them into an overall solution (a
Şmachine learning pipelineŤ) speciĄcally tailored for a task at hand (typically speciĄed
by a dataset). Existing approaches to AutoML are based on Bayesian optimization (e.g.
auto-sklearn [Fe15]) or genetic algorithms (e.g. TPOT [Ol16]).

We recently complemented the repertoire of state-of-the-art AutoML tools by ML-Plan
[MWH18b, WMH18, We19]. ML-Plan leverages techniques from hierarchical task network
(HTN) planning to arrange the more than 1040 different candidate pipelines in a tree-shaped
search space. In an extensive series of experiments, we showed that ML-Plan is highly
competitive and often outperforms existing approaches.

Building on ML-Plan, our current work is devoted to the vision of what we call ŞOn-the-Fly
Machine LearningŤ (OTF-ML) Ů an instantiation of the On-the-Fly (OTF) computing
paradigm [Ha13] for the case of machine learning, and, as such, an extension of AutoML.
OTF computing aims at the provision of individually conĄgured IT services in a dynamic,
distributed market environment, which comprises different types of agents and allows
customers to request services speciĄcally tailored for their needs (cf. Fig. 1a).

In OTF-ML, we distinguish three types of services a customer may request (cf. Fig. 1b).
In the Transduction scenario, the customer is interested in automatically labeling data.
To this end, he provides a task description, along with training data and the data to be
labeled. Internally, the OTF provider conĄgures an ML service with the help of the provided
training data and returns the labels for the unlabeled data obtained by the ML service.
In the Induction scenario, the request only speciĄes the task and the training data. The
customer is then provided access to the conĄgured ML service, which can be queried to
make predictions for new data points. Lastly, in the Learner scenario, the customer only
describes the type of ML problem to be solved. He then obtains an ML service speciĄcally
tailored for such problems, which can be used for learning on whatsoever training data.
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a) Process of OTF provision of customized services
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b) On-the-Ćy ML scenarios

Fig. 1: OTF-ML: the on-the-Ćy selection, conĄguration, provision, and execution of machine
learning and data analytics functionality as requested by an end-user.

Realizing automated machine learning in an OTF environment offers various opportunities,
including better computational resources, high parallelization and the combination of
algorithms implemented for different platforms. In [Mo18, MWH18a], we extended ML-
Plan to work on a service level combining implementations across plattforms. We consider
these as important Ąrst steps paving the way for OTF-ML.
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