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Eyke Hüllermeier eyke@upb.de
Heinz Nixdorf Institut, Paderborn University, Paderborn, Germany

Abstract

Existing tools for automated machine learning, such as Auto-WEKA, TPOT, auto-sklearn,
and more recently ML-Plan, have shown impressive results for the tasks of single-label
classification and regression. Yet, there is only little work on other types of machine learning
problems so far. In particular, there is almost no work on automating the engineering of
machine learning solutions for multi-label classification (MLC). We show how the scope
of ML-Plan, an AutoML-tool for multi-class classification, can be extended towards MLC
using MEKA, which is a multi-label extension of the well-known Java library WEKA. The
resulting approach recursively refines MEKA’s multi-label classifiers, nesting other multi-
label classifiers for meta algorithms and single-label classifiers provided by WEKA as base
learners. In our evaluation, we find that the proposed approach yields strong results and
performs significantly better than a set of baselines we compare with.

1. Introduction

In recent years, the field of AutoML has made significant progress in developing techniques
for automating the task of model selection and hyperparameter tuning. State-of-the-art
AutoML tools (Thornton et al., 2013; Komer et al., 2014; Feurer et al., 2015; Mohr et al.,
2018b) have shown impressive results for binary and multinomial classification problems.
We refer to this type of problems as single-label classification (SLC) in the following.

However, other learning problems, including multi-label classification (MLC), have re-
ceived much less attention so far. In MLC, instead of predicting only a single class label
for an instance, an entire subset of “relevant” labels is predicted. Learning algorithms for
MLC have been designed by either adapting the learning algorithm itself or by reducing
the original MLC problem to (multiple instances of) the SLC setting. The latter can be
considered as a meta-learning technique with a single-label classifier as a base learner.

From an AutoML perspective, automating the configuration of a multi-label classifier
is especially challenging, as these reduction techniques introduce deeper hierarchical struc-
tures. More specifically, while the configuration of a multi-label classifier’s base learner is
equivalent to the previous AutoML task for SLC, the meta-strategies for the multi-label
classifiers themselves create another level of the hierarchy. The effect on the complexity of
the search space is especially strong, because the evaluations are even more expensive.

In this paper, we propose the AutoML tool ML2-Plan (Multi-Label ML-Plan) to con-
figure multi-label classifiers based on ML-Plan. The latter provides a suitable basis to start
from, especially due to its ability to model hierarchical dependencies by means of techniques
from hierarchical task network (HTN) planning (Georgievski and Aiello, 2015). Besides,
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ML-Plan has already been applied to deeper recursive structures in previous work (Wever
et al., 2018b). Apart from the work by de Sá et al. (2017, 2018), which uses evolutionary
algorithms, we are not aware of previous work on automated multi-label classification.

We compare ML2-Plan to a random search, a genetic algorithm (de Sá et al., 2017), and
a grammar-based genetic programming approach (de Sá et al., 2018). Empirically, we show
that our approach performs particularly well and significantly outperforms the baselines.

2. Multi-Label Classification

In contrast to conventional (single-label) classification, the setting of multi-label classifi-
cation (MLC) allows an instance to belong to several classes simultaneously, i.e., to be
assigned several labels at the same time. For example, a single image could be tagged
simultaneously with labels Sun and Beach and Sea.

More formally, let X denote an instance space, and let L = {λ1, . . . , λm} be a finite
set of class labels. We assume that an instance x ∈ X is (non-deterministically) associated
with a subset of labels L ∈ 2L; this subset is often called the set of relevant labels, while the
complement L \ L is considered as irrelevant for x. We identify a set L of relevant labels
with a binary vector y = (y1, . . . , ym), in which yi = 1 iff λi ∈ L. By Y = {0, 1}m we denote
the set of possible labelings.

In general, a multi-label classifier h is a mapping X → Y. For a given instance x ∈ X ,
it returns a prediction in the form of a vector h(x) =

(
h1(x), h2(x), . . . , hm(x)

)
. The

problem of MLC can be stated as follows: Given training data in the form of a finite set

of observations
{

(xi,yi)
}N
i=1
⊂ X × Y , the goal is to learn a classifier h : X → Y that

generalizes well beyond these observations in the sense of minimizing the risk with respect
to a specific loss function. Various loss functions are commonly used in MLC. Let Dtest =
(Xtest,Ytest) ⊂ X S×YS be a test set of size S, where the ith entry yi = (yi1, . . . , yim) ∈ Ytest

represents the labeling of the ith instance xi ∈ Xtest. Further, let H ⊂ YS with the ith
entry given by h(xi). Then, the subset 0/1 loss (exact match) is defined as1

L0/1(Ytest, H) =
1

S

S∑
i=1

Jyi 6= h(xi)K ,

and the Hamming loss as

LH(Ytest, H) =
1

S

S∑
i=1

1

m

m∑
j=1

Jyij 6= hj(xi))K .

In slightly different tasks, such as ranking and probability estimation, the prediction of a
classifier is not restricted to binary vectors. Instead, a hypothesis h is a mapping X → Rm,
which assigns scores to labels. Corresponding predictions also require other loss functions.
An example is the rank loss, which compares a ground-truth labeling with a predicted
ranking of the labels and counts the number of incorrectly ordered label pairs:

LR(Ytest, H) =
1

S

S∑
i=1

∑
(j,j′):yij>yij′

(
Jhj(xi) < hj′(xi)K
|{(j, j′) | yij > yij′}|

)
, 1 ≤ j, j′ ≤ m

1. J·K is the indicator function.
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Complementary to instance-wise losses, which are defined for (and averaged over) instances,
losses are sometimes considered label-wise. An example is the macro-F1 measure:

F(Ytest, H) =
1

m

m∑
j=1

2
∑S

i=1 yijhj(xi)∑S
i=1 yij +

∑S
i=1 hj(xi)

(1)

A linear combination of the four measures defined above is proposed by de Sá et al. (2017,
2018), who use it as an “objective function” in the respective AutoML tools:

LFit(Ytest, H) =
1

4

(
L0/1(Ytest, H) + LH(Ytest, H) + (1− F (Ytest, H)) + LR(Ytest, H)

)
.

As it combines different types of losses with different interpretations, this metric is debatable
and difficult to interpret. Yet, in spite of our reservations, we will use it under the notion of
“fitness loss” in our experimental study as well, mainly to reduce confounding factors and
to ensure a fair comparison.

At first sight, MLC problems can be solved in a quite straightforward way, namely
through decomposition into several binary classification problems: One binary classifier is
trained for each label and used to predict whether, for a given query instance, this label is
relevant or not. This approach is known as binary relevance (BR) learning. However, BR
has been criticized for ignoring important information hidden in the label space, namely
information about the interdependencies between the labels. Since the presence or absence
of the different class labels has to be predicted simultaneously, it is arguably important to
exploit any such dependencies. Correspondingly, a large repertoire of methods for MLC
beyond BR has been proposed in the recent years. Most of these methods seek to improve
predictive accuracy by exploiting label dependencies in one way or the other. We refer to
Zhang and Zhou (2014) for an up-to-date survey on MLC algorithms.

3. A Multi-Label Extension of ML-Plan

As illustrated in Fig. 1 (left), multi-label classifiers may nest several classifiers in a recur-
sive manner. Additionally, each of the classifiers has a set of parameters that need to be
configured. While flattening these recursive structures to a single vector comprised of deci-
sion variables for the algorithm choices and a variable for each parameter that may occur
for a specific layer, as done by Auto-WEKA and auto-sklearn, may work in principle, this
approach would require many constraints to make sure that only relevant variables are con-
sidered. An arguably more natural way of representing these hierarchical dependencies is
hierarchical task network (HTN) planning (Ghallab et al., 2004), or more specifically pro-
grammatic task network (PTN) planning (Mohr et al., 2018a) as incorporated in ML-Plan
(Mohr et al., 2018b). Via HTN resp. PTN planning, the search space of possible algorithm
choices and respective hyperparameters to be tuned is structured into complex tasks (blue),
which are refined by methods to one or multiple complex tasks or primitive tasks (green).
Intuitively, this formalism mimics a human expert who is tackling a (complex) problem
by decomposing the original task into several sub-tasks until the resulting sub-tasks are
(simple) primitive tasks.

Translated to AutoML for MLC, the initial task could be, for example, to do multi-label
classification as shown on the right-hand side of Fig. 1. With the help of methods that are
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Figure 1: Visualization of the hierarchical structure of a machine learning pipeline (left)
and an excerpt of the hierarchical planning search graph (right).

displayed in the form of arcs, this task can be refined by choosing a multi-label classifier.
This can be either a meta multi-label classifier, e.g., Expectation Maximization (EM), or
a basic one, e.g., Binary Relevance (BR). Depending on the decision, new decision-specific
tasks arise, namely to choose base learners and to set the parameter values of the respective
algorithm. Modeling the search space in this fashion yields a tree that can be used as
a search graph for standard search algorithms. ML-Plan incorporates a Best-First search
with random completions to complete partial specifications (decisions already made until a
certain point) to fully specified classifiers that can be evaluated (using cross-validation or
a holdout set). For more details on ML-Plan, we refer to (Mohr et al., 2018b) and (Wever
et al., 2018a).

To derive ML2-Plan from ML-Plan, we use the default configuration of ML-Plan and
extend it in the following three ways:

• We extend the search space from SLC (WEKA) to MLC (MEKA+WEKA) but dis-
carding preprocessors. This extension increases the size of the search space dramat-
ically and yields in roughly 76,000 possible algorithm combinations (choice of main
model and recursive base learner selections) to setup a multi-label classifier, compared
to 234 as in the case of SLC. A breadth-first search to spawn all possible algorithm
combinations, as it is done in ML-Plan, is thus unfeasible. Therefore, we adapt ML-
Plan also to spawn only the first layer of algorithm choices, i.e., each multi-label
classifier (basic and meta) is considered at least once as a main model. In contrast to
(Wever et al., 2018a) we consider hyperparameter optimization as well. Hyperparam-
eter optimization is done via a single decision for categorical and boolean parameters
and by iteratively splitting the domain of numeric parameters into sub-intervals and
refining those step-by-step until an interval size is reached that is considered atomic.

• Compared to evaluating single-label classifiers, the evaluations are much more ex-
pensive. Therefore, we introduced an early stopping criterion for the Monte Carlo
cross-validation. After each iteration, we perform a significance test to check whether
the currently considered candidate might be added to the pool of candidates for the
selection phase, i.e., the difference of its performance and the best hitherto solution
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Dataset Auto-MEKAGGP GA-Auto-MLC Random Search ML2-Plan

arts1 51.96±0.68 (1) 55.09±0.52 (3) 55.27±13.01 (4) • 55.08±3.81 (2)
bibtex - (3) - (3) 58.22±2.46 (2) • 49.1±4.58 (1)
birds 32.59±2.11 (3) • 32.39±2.51 (2) • 32.77±3.59 (4) • 29.62±2.76 (1)
business1 47.11±0.16 (3) • - (4) 40.34±12.6 (2) • 34.52±1.12 (1)
emotions 36.43±1.72 (4) • 33.56±1.94 (3) • 28.58±1.57 (1) ◦ 29.44±2.12 (2)
enron-f 47.5±0.37 (3) • 47.93±0.61 (4) • 45.4±3.29 (2) • 39.97±1.57 (1)
flags 44.07±3.42 (3) • 44.27±3.32 (4) • 36.13±3.70 (2) • 33.03±1.76 (1)
genbase 7.01±1.56 (2) • 10.44±1.91 (3) • 15.11±14.65 (4) • 6.84±1.09 (1)
health1 51.53±0.13 (4) • 44.99±0.69 (1) ◦ 51.41±6.64 (3) • 45.64±3.18 (2)
llog-f 50.54±1.20 (3) • 49.81±0.60 (2) • 51.83±2.48 (4) • 47.92±2.02 (1)
medical 27.7±5.34 (3) • 26.48±0.99 (2) • 31.67±9.59 (4) • 24.25±1.28 (1)
scene 19.98±2.21 (2) • 26.14±2.72 (4) • 20.03±3.71 (3) • 17.46±1.46 (1)
science1 54.95±0.10 (3) • 53.18±0.41 (1) 60.52±3.83 (4) • 54.62±2.09 (2)
yeast 44.95±1.35 (3) • 47.73±1.02 (4) • 39.35±5.14 (2) • 36.32±1.17 (1)

average-rank 2.86 2.86 2.93 1.29
#best 1 2 1 10
sig (i/t/d) 12 / 1 / 0 9 / 2 / 1 13 / 0 / 1 - / - / -

Table 1: LFit (mean ± standard deviation) for the test data of 20 runs per dataset. The
rank per dataset of the respective approach is enclosed in parentheses.

is not more than 3%. If case the hypothesis test fails, we abort the evaluation of the
classifier and return the mean of the evaluated iterations so far.

• We adapt the internal evaluations part of ML-Plan to the MLC setting, incorporating
LFit as the objective function instead of error rate for SLC, and creating train and
test splits at random instead of class-stratified splits.

4. Experimental Evaluation

We evaluate ML2-Plan as introduced in the previous section on various datasets and com-
pare it to three baselines: a random search, GA-AutoMLC (de Sá et al., 2017), and
Auto-MEKAGGP (de Sá et al., 2018). The random search evaluates candidates that are
picked uniformly at random from the set of 76,000 possible nested classifiers and chooses
values of the resulting parameters at random as well. Note that while ML2-Plan, random
search and Auto-MEKAGGP operate on the same search space, GA-Auto-MLC is based on
a much simpler space (see (de Sá et al., 2017)). All approaches underly the same timeout
and resource limitations and use the implementations of the basic loss functions provided
by MEKA. The implementation of ML2-Plan is publicly available2.

Results were obtained by carrying out 20 runs on 14 datasets with a timeout of 1 hour for
each run and a timeout of 10 minutes for evaluating a single candidate. The datasets stem
from the MULAN project website3. In each run, we used 70% of a randomized split of the
data for learning (search) and 30% for testing. We used the same splits for all candidates,

2. Implementation of ML2-Plan: https://github.com/fmohr/AILIbs,
Dataset splits, seed project, and ReadMe: https://github.com/mwever/ML2PlanAtAutoML2019

3. http://mulan.sourceforge.net/datasets-mlc.html
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i.e., for each split, we ran ML2-Plan as well as each baseline exactly once. The significance
of an improvement (marked by •) resp. degradation (◦) per dataset was determined using
a Wilcoxon signed-rank test (Wilcoxon, 1945) with a threshold for the p-value of 0.05.

The experiments were run on up to 220 Linux machines in parallel, each of which with
a resource limitation of 8 cores (Intel Xeon E5-2670, 2.6Ghz) and 32GB RAM. Runs that
did not adhere to the time or resource limitations (plus a tolerance threshold of 10%) were
canceled without considering their results for the respective approach.

A summary of the results is given in Table 1. While the upper part of the table describes
the observed values for Lfit on the test data, the bottom part gives a summary regarding
the average rank and statistics about number of times an approach has been the best solver.
On the last row of the table, it is counted how many times ML2-Plan achieved significantly
improved, significantly degraded or equally performing results compared to a baseline.

The general impression is that ML2-Plan performs clearly superior to the baselines and
for the majority of datasets manages to return significantly better solutions compared to
the competitor tools and the random search. Nevertheless, ML2-Plan does not win in every
case and it must admit defeat on arts against Auto-MEKAGGP, on emotions against the
random search, and on health1 and science1 against GA-Auto-MLC.

Furthermore, it was surprising to see that, according to the average rank statistic,
Auto-MEKAGGP and GA-Auto-MLC perform only slightly better than the random search
baseline. This might be due to the relatively small timeout of 1 hour we gave each tool
for a single run but note that on the contrary ML2-Plan already manages to outperform
the random search. Moreover, Auto-MEKAGGP did not return any result for the dataset
bibtex and GA-Auto-MLCfor the datasets bibtex and business1 which may also be due
to the low time budget. Nevertheless, we will consider larger timeouts in future work to
investigate the long-term behavior of the different approaches as well.

5. Conclusion

In this paper, we presented an AutoML approach to multi-label classification. ML2-Plan
builds on ML-Plan and combines hierarchical task network planning with a global best-
first search as proposed by Mohr et al. (2018b). Compared with previous AutoML tools for
single-label classification, ML2-Plan has to deal with more deeply nested structures to auto-
matically select and configure multi-label classifiers for a given dataset. In an experimental
study, we showed that ML2-Plan outperforms the baselines, including the only existing ap-
proaches to AutoML for multi-label classification (de Sá et al., 2018, 2017). Future work
will be dedicated to improving scalability, e.g., by moving to a service-oriented architecture
(Mohr et al., 2018d,c) or incorporating meta-learning techniques for warmstarting (Feurer
et al., 2015), and to improving efficiency during search, e.g., by biasing the random com-
pletion towards in general more promising solutions. Finally, the wide spectrum of loss
functions in MLC motivates a multi-objective optimization process that seeks for trade-offs
between different (and potentially conflicting) performance metrics.
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