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Abstract. Supervised learning is an important branch of machine learn-
ing (ML), which requires a complete annotation (labeling) of the involved
training data. This assumption, which may constitute a severe bottle-
neck in the practical use of ML, is relaxed in weakly supervised learning.
In this ML paradigm, training instances are not necessarily precisely
labeled. Instead, annotations are allowed to be imprecise or partial. In
the setting of superset learning, instances are assumed to be labeled
with a set of possible annotations, which is assumed to contain the cor-
rect one. In this article, we study the application of rough set theory in
the setting of superset learning. In particular, we consider the problem of
feature reduction as a mean for data disambiguation, i.e., for the purpose
of figuring out the most plausible precise instantiation of the imprecise
training data. To this end, we define appropriate generalizations of deci-
sion tables and reducts, using information-theoretic techniques based on
evidence theory. Moreover, we analyze the complexity of the associated
computational problems.

Keywords: Feature selection · Superset learning · Rough sets ·
Evidence theory

1 Introduction

In recent years, the increased availability of data has fostered the interest in
machine learning (ML) and knowledge discovery, in particular in supervised
learning methodologies. These require each training instance to be annotated
with a target value (a discrete label in classification, or a real number in regres-
sion). The annotation task is a fundamental component of the ML pipeline, and
often a bottleneck in terms of cost. Indeed, the high costs caused by the stan-
dard annotation process, which may require the involvement of domain experts,
have triggered the development of alternative annotation protocols, such as those
based on crowdsourcing [4] or (semi-)automated annotation [12].

A different approach, which has attracted increasing attention in the recent
years, is the combination of supervised and unsupervised learning techniques,
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sometimes referred to as weakly supervised learning [30]. In this setting, training
instances are not necessarily labeled precisely. Instead, annotations are allowed
to be imprecise or partial.

A specific variant of weakly supervised learning is the setting of superset
learning [9,16,18], where an instance x is annotated with a set S of (precise)
candidate labels that are deemed possible. In other words, the label of x cannot
be determined precisely, but is known to be an element of S. For example, an
image could be tagged with {horse,pony, zebra}, suggesting that the animal
shown on the picture is one of these three, though it is not exactly known which
of them. Superset learning has been widely investigated under the classification
perspective [10,15], that is, with the goal of training a predictive model that is
able to correctly classify new instances, despite the weak training information.
Nevertheless, the task of feature selection [6], which is of critical importance for
machine learning in general, has not received much attention so far.

In this article, we study the application of rough set theory in the setting of
superset learning. In particular, we consider the problem of feature reduction as
a mean for data disambiguation, i.e., for the purpose of figuring out the most
plausible precise instantiation of the imprecise training data. Broadly speaking,
the idea is as follows: An instantiation that can be explained with a simple model,
i.e., a model that uses only a small subset of features, is more plausible than an
instantiation that requires a complex model. To this end, we will define appro-
priate generalizations of decision tables and reducts, using information-theoretic
techniques based on evidence theory. Moreover, we analyze the complexity of
the associated computational problems.

2 Background

In this section, we recall basic notions of rough set theory (RST) and evidence
theory, which will be used in the main part of the article.

2.1 Rough Set Theory

Rough set theory has been proposed by Pawlak [19] as a framework for rep-
resenting and managing uncertain data, and has since been widely applied for
various problems in the ML domain (see [2] for a recent overview and survey).
We briefly recall the main notions of RST, especially regarding its applications
to feature reduction.

A decision table (DT) is a triple DT = 〈U,Att, t〉 such that U is a universe
of objects and Att is a set of attributes employed to represent objects in U .
Formally, each attribute a ∈ Att is a function a : U → Va, where Va is the
domain of values of a. Moreover, t /∈ Att is a distinguished decision attribute,
which represents the target decision (also labeling or annotation) associated with
each object in the universe. We say that DT is inconsistent if the following holds:
∃x1, x2 ∈ U,∀a ∈ Att, a(x1) = a(x2) and t(x1) �= t(x2).
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Given B ⊆ Att we can define the indiscernibility partition with respect to B
as πB = {[x]B ⊂ U | ∀x′ ∈ [x]B ,∀a ∈ B, a(x′) = a(x)}. We say that B ⊆ Att is
a decision reduct for DT if πB ≤ πt (where the order ≤ is the refinement order
for partitions, that is, πt is a coarsening of πB) and there is no C � B such
that πC ≤ πt. Then, evidently, a reduct of a decision table DT represents a set
of non-redundant and necessary features to represent the information in DT .
We say that a reduct R is minimal if it is among the smallest (with respect to
cardinality) reducts.

Given B ⊆ Att and a set S ⊆ U , a rough approximation of S (with respect to
B) is defined as the pair B(S) = 〈lB(S), uB(S)〉, where lB(S) =

⋃{[x]B | [x]B ⊆
S} is the lower approximation of S, and uB(s) =

⋃{[x]B | [x]B ∩ S �= ∅} is the
corresponding upper approximation.

Finally, given B ⊆ Att, the generalized decision with respect to B for an
object x ∈ U is defined as δB(x) = {t(x′) |x′ ∈ [x]B}. Notably, if DT is not
inconsistent and B is a reduct, then δB(x) = t(x) for all x ∈ U .

We notice that in the RST literature, there exist several definitions of reduct.
We refer the reader to [25] for an overview of such a list and a study of their
dependencies. We further notice that, given a decision table, the problem of find-
ing the minimal reduct is in general ΣP

2 -complete (by reduction to the Shortest
Implicant problem [28]), while the problem of finding a reduct is in general NP -
complete [23]. We recall that ΣP

2 is the complexity class defined by problems that
can be verified in polynomial time given access to an oracle for an NP-complete
problem [1].

2.2 Evidence Theory

Evidence theory (ET), also known as Dempster-Shafer theory or belief function
theory, has originally been introduced by Dempster in [5] and subsequently for-
malized by Shafer in [21] as a generalization of probability theory (although this
interpretation has been disputed [20]). The starting point is a frame of discern-
ment X, which represents all possible states of a system under study, together
with a basic belief assignment (bba) m : 2X → [0, 1], such that m(∅) = 0 and∑

A∈2X m(A) = 1. From this bba, a pair of functions, called respectively belief
and plausibility, can be defined as follows:

Belm(A) =
∑

B:B⊆A

m(B) (1)

Plm(A) =
∑

B:B∩A �=∅
m(B) (2)

As can be seen from these definitions, there is a clear correspondence between
belief functions (resp., plausibility functions) and lower approximations (resp.,
upper approximations) in RST; we refer the reader to [29] for further connections
between the two theories.
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Starting from a bba, a probability distribution, called pignistic probability,
can be obtained [26]:

Pm
Bet(x) =

∑

A:x∈A

m(A)
|A| (3)

Finally, we recall that appropriate generalizations of information-theoretic
concepts [22], specifically the concept of entropy (which was also proposed to
generalize the definition of reducts in RST [24]), have been defined for evidence
theory. Most relevantly, we recall the definition of aggregate uncertainty [7]

AU(m) = max
p∈P(m)

H(p), (4)

where H(p) = −∑
x∈X p(x)log2p(x) is the Shannon entropy of p and P(m) the

set of probability distributions p such that Belm ≤ p ≤ Plm; and the definition
of normalized pignistic entropy (see [13] for the un-normalized definition)

HBet(m) =
H(Pm

Bet)
H(p̂m)

, (5)

where p̂m is the probability distribution that is uniform on the support of
Pm
Bet(x), i.e., on the set of elements {x |Pm

Bet(x) > 0}.

3 Superset Decision Tables and Reducts

In this section, we extend some key concepts of rough set theory to the setting
of superset learning.

3.1 Superset Decision Tables

In superset learning, each object x ∈ U is not associated with a single annotation
t(x) ∈ Vt, but with a set S of candidate annotations, one of which is assumed to
be the true annotation associated with x. In order to model this idea in terms
of RST, we generalize the definition of a decision table.

Definition 1. A superset decision table (SDT) is a tuple SDT = 〈U,Att, t, d〉,
where 〈U,Att, t〉 is a decision table, i.e.:

– U is a universe of objects of interest;
– Att is a set of attributes (or features);
– t is the decision attribute (whose value, in general, is not known);

and d, with {d} ∩ Att = ∅, is a set-valued decision attribute, that is, d : U →
P(Vt) such that the superset property holds: For all x ∈ U , the real decision
t(x) associated with x is in d(x).

The intuitive meaning of the set-valued information d is that, if |d(x)| > 1 for
some x ∈ U , then the real decision associated with x (i.e. t(x)) is not known
precisely, but is known to be in d(x). Notice that Definition 1 is a proper gener-
alization of decision tables: if |d(x)| = 1 for all x ∈ U , then we have a standard
decision table.
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Remark 1. In Definition 1, a set-valued decision attribute is modelled as a func-
tion d : U → P(Vt). While this mapping is formally well-defined for a concrete
decision table, let us mention that, strictly speaking, there is no functional depen-
dency between x and d(x). In fact, d(x) is not considered as a property of x,
but rather represents information about a property of x, namely the underlying
decision attribute t(x). As such, it reflects the epistemic state of the decision
maker.

Definition 2. An instantiation of an SDT 〈U,Att, t, d〉 is a standard DT
〈U,Att, t′〉 such that t′(x) ∈ d(x) for all x ∈ U . The set of instantiations of
SDT is denoted I(SDT ).

Based on the notion of SDT, we can generalize the notion of inconsistency.

Definition 3. Let B ⊂ Att, then SDT is B-inconsistent if

∃x1, x2 ∈ U,∀a ∈ B, a(x1) = a(x2) and d(x1) ∩ d(x2) = ∅. (6)

We call such a pair x1, x2 inconsistent, otherwise it is consistent.

Thus, inconsistency implies the existence of (at least) two indiscernible objects
with non-overlapping superset decisions. We say that an instantiation I is con-
sistent with a SDT S (short, is consistent) if the following holds for all x1, x2: if
x1, x2 are consistent in S, then they are also consistent in I.

3.2 Superset Reducts

Learning from superset data is closely connected to the idea of data disam-
biguation in the sense of figuring out the most plausible instantiation of the
set-valued training data [8,11]. But what makes one instantiation more plau-
sible than another one? One approach originally proposed in [9] refers to the
principle of simplicity in the spirit of Occam’s razor (which can be given a the-
oretical justification in terms of Kolmogorov complexity [14]): An instantiation
that can be explained by a simple model is more plausible than an instantiation
that requires a complex model. In the context of RST-based data analysis, a
natural measure of model complexity is the size of the reduct. This leads us to
the following definition.

Definition 4. A set of attributes R ⊆ Att is a superset reduct if there exists a
consistent instantiation I = 〈U,Att, t〉 such that R is a reduct for I. We denote
with REDsuper the set of superset reducts. The minimum description length
(MDL) instantiation is one of the consistent instantiations of SDT that admit
a reduct of minimum size compared to all the reducts of all possible consistent
instantiations. We will call the corresponding reduct MDL reduct.

First of all, we briefly comment on the fact that the definition of MDL reduct
generalizes the standard definition of (minimal) reduct. Indeed, in a classical
decision table, there is only one possible instantiation, hence the MDL reduct is
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Algorithm 1. The brute force algorithm for finding MDL reducts of a superset
decision table S.

procedure Brute-Force-MDL-Reduct(S: superset decision table)
reds ← ∅
l ← ∞
ists ← enumerate-instantiations(S)
for all i ∈ ists do

tmp-reds ← find-shortest-reducts(i)
len ← |red| where red ∈ tmp-reds
if len < l then

reds ← tmp-reds
l ← len

else if len = l then
reds ← reds ∪ tmp-reds

end if
end for
return reds � The MDL reducts for S

end procedure

exactly (one of) the minimal reducts of the decision table. Further, if we denote
by REDMDL the set of MDL reducts, then evidently REDMDL � REDsuper.

An algorithmic solution to the problem of finding the MDL reduct for an SDT
can be given as a brute force algorithm, which computes the reducts of all the
possible instantiations, see Algorithm 1. It is easy to see that the worst case run-
time complexity of this algorithm is exponential in the size of the input. Unfor-
tunately, it is unlikely that an asymptotically more efficient algorithm exists.
Indeed, if we consider the problem of finding any MDL reduct, then the number
of instantiations of S is, in the general case, exponential in the number of objects,
and for each such instantiation one should find the shortest reduct for the cor-
responding decision table, which is known to be in ΣP

2 . Interestingly, we can
prove that the decisional problem MDL-reduct related to finding MDL-Reducts
is also in ΣP

2 . That is, finding an MDL-Reduct is no more complex than finding
a minimal reduct in standard decision tables.

Theorem 1. MDL-Reduct is ΣP
2 -complete.

Proof. We need to show that there is an algorithm for verifying instances of
MDL-Reduct whose runtime is polynomial given access to an oracle for an
NP -complete problem. Indeed, a certificate can be given by an instantiation I
(whose size is clearly polynomial in the size of the input SDT) together with
a reduct R for I, which is an MDL-reduct. Verifying whether R is a minimal
reduct for I can then be done in polynomial time with an oracle for NP , hence
the result. Further, as finding the minimal reduct for classical decision tables is
ΣP

2 -complete (by reduction to the Shortest Implicant problem), MDL-Reduct
is also complete.

While heuristics could be applied to speed up the computation of reducts [27]
(specifically, to reduce the complexity of the find-shortest-reducts step in



Superset Learning Using Rough Sets 477

Algorithm 1) the approach described in Algorithm1 still requires enumerating
all the possible instantiations. Thus, in the following section we propose two
alternative definitions of reduct in order to reduce the computational costs.

4 Methods

In this section, we present the main results concerning the application of rough
set and evidence theory towards feature reduction in the superset learning
setting.

4.1 Entropy Reducts

We begin with an alternative definition of reduct, based on the notion of
entropy [24], which simplifies the complexity of finding a reduct in SDT. Given
a decision d, we can associate with it a pair of belief and plausibility functions.
Let v ∈ Vt and [x]B for B ⊆ Att an equivalence class, then:

BelS(v|[x]B) =
|{x′ ∈ [x]B : d(x′) = {v}}|

|[x]B |
PlS(v|[x]B) =

|{x′ ∈ [x]B : v ∈ d(x′)}|
|[x]B |

For each W ⊆ Vt, the corresponding basic belief assignment is defined as

m(W |[x]B) =
|{x′ ∈ [x]B : d(x′) = W}|

|[x]B | . (7)

Given this setting, we now consider two different entropies. The first one is the
pignistic entropy HBet(m) as defined in (5). As regards the second definition,
we will not directly employ the AU measure (see Eq. (4)). This measure, in fact,
corresponds to a quantification of the degree of conflict in the bba m, which is
not appropriate in our context, as it would imply finding an instantiation which
is maximally inconsistent. We thus define a modification of the AU measure
that we call Optimistic Aggregate Uncertainty (OAU). This measure, which has
already been studied in the context of superset decision tree learning [9] and soft
clustering [3], is defined as follows:

OAU(SDT ) = min
I∈I(SDT )

H(p(I)), (8)

where p(I) is the probability distribution over the decision attribute induced by
the instantiation I ∈ I.

Let B ⊆ Att be a set of attributes and denote by INDB = {[x]B} the
equivalence classes (granules) with respect to B. Let d[x]B be the restriction of d
on the equivalence class [x]B . The entropy of d, conditional on B, is defined as
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HBet(d|B) =
∑

[x]B∈INDB

|[x]B |
|U | HBet(d[x]B ) =

∑

[x]B∈INDB

|[x]B |
|U |

H(Pm
Bet(d[x]B ))

H(p̂m(d[x]B ))

(9)

OAU(d|B) =
∑

[x]B∈INDB

|[x]B |
|U | OAU(d[x]B ) (10)

Definition 5. We say that B ⊆ Att is

– an OAU super-reduct (resp., HBet super-reduct) if OAU(d |B) ≤
OAU(d |Att) (resp., HBet(d |B) ≤ HBet(d |Att));

– an OAU reduct (resp., HBet reduct) if no proper subset of B is also a super-
reduct.

Definition 6. We say that B ⊆ Att is

– an OAU ε-approximate super-reduct (resp., HBet ε-approximate super-
reduct), with ε ∈ [0, 1), if OAU(d |B) ≤ OAU(d |Att) − log2(1 − ε) (resp.,
HBet(d |B) ≤ HBet(d |Att) − log2(1 − ε));

– an OAU ε-approximate reduct (resp., HBet ε-approximate reduct) if no proper
subset of B is also an ε-approximate super-reduct.

Let [x]B be one of the granules with respect to an OAU-reduct. Then, the
OAU instantiation with respect to [x]B is given by

decOAU(B)([x]B) = arg max
v∈Vt

{
p(v) | p = arg min

p∈PBel

H(p)
}

, (11)

that is, the most probable among the classes under the probability distribu-
tion which corresponds to the minimum value of entropy. Similarly, the HBet

instantiation with respect to [x]B is given by

decHBet(B)([x]B) = arg max
v∈Vt

BetBel(v) (12)

The following example shows, for a simple SDT, the OAU reducts, MDL reducts,
and HBet reducts and their relationships.

Example 1. Consider the superset decision table SDT = 〈U = {x1, ..., x6}, A =
{w, x, v, z}, d〉 given in Table 1. We have OAU(d |A) = OAU(d |B) = 0 for
B = {x, v}. Thus, B is an OAU reduct of SDT, as OAU(d |x) = OAU(d | v) > 0.
Notice that {z} is also an OAU reduct. The OAU instantiation given by {x, v}
is decx,v({x1, x2}) = decx,v({x3, x4}) = 0, decx,v({x5, x6}) = 1, while the one
given by {z} is decz({x1, x3, x6}) = 0, decz({x2, x4, x5}) = 1.

On the other hand, HBet(d |A) = 1
2 , while HBet(d | {x, v}) = 0.81. Therefore,

{x, v} is not an HBet reduct. Notice that, in this case, there are no HBet reducts
(excluding A). However, it can easily be seen that {x, v} is an HBet approximate
reduct when ε ≥ 0.20.

The MDL instantiation is decMDL({x1, x3, x6}) = 0, decMDL({x2, x4, x5}) =
1, which corresponds to the MDL reduct {z}. Thus, in this case, the MDL reduct
is equivalent to one of the OAU reducts.
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Table 1. An example of superset decision table

w x v z d

x1 0 0 0 0 0

x2 0 0 0 1 {0, 1}
x3 0 1 1 0 0

x4 0 1 1 1 {0, 1}
x5 0 1 0 1 1

x6 0 1 0 0 {0, 1}

In Example 1, it is shown that the MDL reduct is one of the OAU reducts.
Indeed, we can prove that this holds in general.

Theorem 2. Let R be an MDL reduct whose MDL instantiation is consistent.
Then R is also an OAU reduct.

Proof. As the instantiation corresponding to R is consistent, OAU(d |R) = 0.
Thus R is an OAU reduct.

Concerning the computational complexity of finding the minimal OAU or
one OAU, we have the following results.

Proposition 1. Finding the minimal OAU reduct for a consistent SDT is
ΣP

2 -complete.

Proof. As any MDL reduct of a consistent SDT is also an OAU reduct and MDL
reducts are by definition minimal, the complexity of finding a minimal OAU
reduct is equivalent to that of finding MDL reducts, hence is ΣP

2 -complete.

On the other hand, as both OAU [3,9] and HBet can be computed in poly-
nomial time, the following result holds for finding OAU (resp. HBet) reducts.

Theorem 3. Finding an OAU (resp. HBet) reduct is NP -complete.

On the other hand, as shown in Example 1, the relationship between MDL
reducts (or OAU reducts) and HBet reducts is more complex as, in general,
an OAU reduct is not necessarily a HBet reduct. In particular, one could be
interested in whether an HBet exists and whether there exists an HBet reduct
which is able to disambiguate objects that are not disambiguated when taking
in consideration the full set of attributes Att. The following two results provide
a characterization in the binary (i.e., Vt = {0, 1}), consistent case.

Theorem 4. Let B ⊆ Att be a set of attributes, [x1]Att, [x2]Att be two distinct
equivalence classes (i.e., [x1]Att∩[x2]Att = ∅) that are merged by B (i.e., [x1]B =
[x1]Att ∪ [x2]Att), that are not inconsistent and such that |[x1]Att| = n1 + m1,
|[x2]Att| = n2 + m2, where the n1 (resp., n2) objects are such that |d(x)| = 1
and the m1 (resp., m2) objects are such that |d(x)| = 2. Then HBet(d |B) ≥
HBet(d |Att), with equality holding iff one of the following two holds:



480 A. Campagner et al.

1. m1 = m2 = 0 and n1, n2 > 0;
2. m1,m2 > 0 and n1 ≥ 0, n2 = m2n1

m1
(and, symmetrically when changing

n1, n2).

Proof. A sufficient and necessary condition for HBet(d |B) ≥ HBet(d |Att) is:

n1 + m1+m2
2 + n2

n1 + m1 + n2 + m2
≥ max

{
n1 + m1

2

n1 + m1
,
m2
2 + n2

n2 + m2

}

(13)

under the constraints n1, n2,m1,m2 ≥ 0, as the satisfaction of this inequality
implies that the probability is more peaked on a single alternative. The integer
solutions for this inequality provide the statement of the Theorem. Further, one
can see that the strict inequality is not achievable.

Corollary 1. A subset B ⊆ Att is an HBet reduct iff, whenever it merges a pair
of equivalence classes, the conditions expressed in Theorem 4 are satisfied.

Notably, these two results also provide an answer to the second question,
that is, whether an HBet reduct can disambiguate instances that are not dis-
ambiguated when considering the whole attribute set Att. Indeed, Theorem 4
provides sufficient conditions for this property and shows that, in the binary
case, disambiguation is possible only when at least one of the equivalence classes
(w.r.t. Att) that are merged w.r.t. the reduct is already disambiguated. On the
contrary, in the general n-ary case, disambiguation could happen also in more
general situations. This is shown by the following example.

Example 2. Let SDT = 〈U = {x1, ..., x10}, Att = {a, b}, d〉 such that ∀i ≤ 5,
d(xi) = {0, 1} and ∀i > 5, d(xi) = {1, 2}. Then, assuming the equivalence classes
are {x1, ..., x5}, {x6, ..., x10}, it holds that HBet(d |Att) = 1.

Suppose further that πa = {U}. Then HBet(d | a) < 0.95 < HBet(d |Att) and
hence a is a HBet reduct. Notice that Att is not able to disambiguate since

decHBet(Att)([x1]Att) = {0, 1}
decHBet(Att)([x6]Att) = {1, 2}.

On the other hand, decHBet(a)(xi) = 1 for all xi ∈ U . Notice that, in this case,
{a} would also be an OAU reduct (and hence a MDL reduct, as it is minimal).

A characterization of HBet reducts in the n-ary case is left as future work.
Finally, we notice that, while the complexity of finding OAU (resp. HBet)

reducts is still NP -complete, even in the approximate case, these definitions are
more amenable to optimization through heuristics, as they employ a quantitative
measure of quality for each attribute. Indeed, a simple greedy procedure can be
implemented, as shown in Algorithm 2, which obviously has polynomial time
complexity.
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Algorithm 2. An heuristic greedy algorithm for finding approximate entropy
reducts of a superset decision table S.

procedure Heuristic-Entropy-Reduct(S: superset decision table, ε: approxima-
tion level, E ∈ {OAU, HBet})

red ← Att
Ent ← E(d | red)
check ← True
while check do

Find a ∈ red s.t.

{
E(d | red \ {a}) ≤ E(d | Att) − log2(1 − ε)

E(d | red \ {a}) is minimal

if a exists then
red ← red \ {a}

else
check ← False

end if
end while
return red

end procedure

5 Conclusion

In this article we investigated strategies for the simultaneous solution of the
feature reduction and disambiguation problems in the superset learning setting
through the application of rough set theory and evidence theory. We first defined
a generalization of decision tables to this setting and then studied a purely com-
binatorial definition of reducts inspired by the Minimum Description Length
principle, which we called MDL reducts. After studying the computational com-
plexity of finding this type of reducts, which was shown to be NP -hard, harness-
ing the natural relationship between superset learning and evidence theory, we
proposed two alternative definitions of reducts, based on the notion of entropy.
We then provided a characterization for both these notions in terms of their
relationship with MDL reducts, their existence conditions and their disambigua-
tion power. Finally, after having illustrated the proposed notions by means of
examples, we suggested a simple heuristic algorithm for computing approximate
entropy reducts under the two proposed definitions.

While this paper provides a first investigation towards the application of RST
for feature reduction in the superset learning setting, it leaves several interesting
open problems to be investigated in future work:

– In Theorem 2, we proved that (in the consistent case) REDMDL ⊂ REDOAU ,
that is, every MDL reduct is also an OAU reduct. In particular, the MDL
reducts are the minimal OAU reducts. As REDMDL ⊆ REDsuper, the rela-
tionship between the OAU reducts and the superset reducts should be inves-
tigated in more depth. Specifically we conjecture the following:
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Conjecture 1. For each SDT, REDsuper = ROAU .

While the inclusion REDsuper ⊆ REDOAU is easy to prove in the consistent
case, the general case should also be considered.

– In Theorem 4, we provided a characterization of HBet reducts in the binary
consistent case, however, the behavior of this type of reducts should also
be investigated in the more general setting, specifically with respect to the
relationship between REDOAU and REDHBet

.
– Given the practical importance of the superset learning setting, an implemen-

tation of the presented ideas and algorithms should be developed, in order
to provide a computational framework for the application of the rough set
methodology also to these tasks, in particular with respect to the implemen-
tation of algorithms (both exact or heuristic) for finding MDL or entropy
reducts.

In closing, we would like to highlight an alternative motivation for the super-
set extension of decision tables in general and the search for reducts of such
tables in particular. In this paper, the superset extension was motivated by
the assumption of imprecise labeling: The value of the decision attribute is not
known precisely but only characterized in terms of a set of possible candidates.
Finding a reduct is then supposed to help disambiguate the data, i.e., figur-
ing out the most plausible among the candidates. Instead of this “don’t know”
interpretation, a superset S can also be given a “don’t care” interpretation: In
a certain context characterized by x, all decisions in S are sufficiently good, or
“satisficing” in the sense of March and Simon [17]. A reduct can then be consid-
ered as a maximally simple (least cognitively demanding) yet satisficing decision
rule. Thus, in spite of very different interpretations, the theoretical problems
that arise are essentially the same as those studied in this paper. Nevertheless,
elaborating on the idea of reduction as a means for specifically finding satisficing
decision rules from a more practical point of view is another interesting direction
for future work.
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