
Learning Tversky Similarity

Javad Rahnama and Eyke Hüllermeier(B)
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Abstract. In this paper, we advocate Tversky’s ratio model as an
appropriate basis for computational approaches to semantic similarity,
that is, the comparison of objects such as images in a semantically mean-
ingful way. We consider the problem of learning Tversky similarity mea-
sures from suitable training data indicating whether two objects tend
to be similar or dissimilar. Experimentally, we evaluate our approach to
similarity learning on two image datasets, showing that is performs very
well compared to existing methods.
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1 Introduction

Similarity is an important cognitive concept and a key notion in various branches
of artificial intelligence, including case-based reasoning [26], information retrieval
[5], machine learning [6], data analysis [30] and data mining [4], among others.
Specified as a numerical (real-valued) function on pairs of objects, it can be
applied in a rather generic way for various problems and purposes [21]. In par-
ticular, similarity is of great interest for structured objects such as text and
images. In such domains, similarity measures are normally not defined by hand
but learned from data, i.e., they are automatically extracted from sample data
in the form of objects along with information about their similarity.

In the image domain, numerous methods of that kind have been proposed,
based on different types of feature information, including visual [12,37] and
semantic features [24], and exploiting different types of measurements, such as
non-metric [5,15] and metric ones [19]. Most common is a geometrical model of
similarity that relies on an embedding of objects as points in a suitable (often
high-dimensional) vector space, in which similarity between objects is inversely
related to their distance. As popular examples of (dis-)similarity measures in
this field, let us mention the Euclidean and the Cosine distance [25].

Somewhat surprisingly, another concept of similarity, the one put forward by
Tversky [35], appears to be less recognized in this field, in spite of its popularity
in psychology and cognitive science. Tversky argued that the geometrical model
of similarity is not fully compatible with human perception, and empirically
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demonstrated that human similarity assessment does not obey all properties
implied by this model, such as minimality, symmetry, and triangle inequality
[36]. Due to its cognitive plausibility, we hypothesize that Tversky similarity
could provide a suitable basis for mimicking human similarity assessment in
domains such as art images [20]. For example, an art historian will probably
find the copy of a painting more similar to the original than the original to the
copy, thereby violating symmetry. Not less importantly, Tversky similarity is a
potentially interpretable measure, which does not merely produce a number, but
is also able to explain why two objects are deemed more or less similar. In other
words, it is able to fill the semantic gap between the extracted visual information
and a human’s interpretation of an image. This feature of explainability is of
critical importance in many applications [29]. Last but not least, the similarity
also exhibits interesting theoretical properties; for example, see [9] for a recent
analysis from the perspective of measurement theory.

In this paper, we elaborate on the potential of Tversky similarity as an alter-
native to existing measures, such as Euclidean and Cosine distance, with a spe-
cific focus on the image domain. In particular, we consider the problem of learn-
ing Tversky similarity from data, i.e., tuning its parameters on the basis of suit-
able training data, a problem that has not received much attention so far. As a
notable exception we mention [2], where the problem of learning the importance
of features (and feature combinations) for a generalized Jaccard measure (a spe-
cial case of the Tversky measures) on the basis of training data is addressed, so
as to achieve optimal performance in similarity-based (nearest neighbor) classi-
fication; to this end, the authors make use of stochastic optimization techniques
(particle swarm optimization and differential evolution). On the other side, it is
also worth noticing that the problem of learning Tversky similarity is in gen-
eral different from the use of the Tversky measure as a loss function in machine
learning [1,27]. Here, the measure serves as a means to accomplish a certain goal,
namely to learn a classification model (e.g., a neural network) that achieves a
good compromise between precision and recall, whereas is our case, the measure
corresponds to the sought model itself.

The paper is organized as follows. After a brief review of related work in the
next section, we recall Tversky’s notion of similarity based on the ratio model
in Sect. 3. In Sect. 4, we then propose a method for learning this similarity from
suitable training data. Finally, we present experimental results in Sect. 5, prior
to concluding the paper in Sect. 6.

2 Related Work

2.1 Image Similarity

Image similarity and its quantitative assessment in terms of similarity mea-
sures strongly depends on the image representation. Numerous approaches have
been presented to extract different types of representations based on visual and
semantic features of images [12,22]. Most of the state-of-the-art methods for
extracting visual features are based on deep neural networks, which produce a
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variety of features, ranging from low level features in the early layers to more
abstract features in the last layers [18,39]. In general, however, similarity is a
complex concept that can not be derived from visual features alone. Therefore,
some studies have exploited the use of prior knowledge as well as intermediate or
high-level representation of features to capture similarity in specific applications
[3,11,12].

The similarity or distance on individual features is commonly combined into
an overall assessment using measures such as weighted Euclidean or weighted
Cosine distance, whereas Tversky similarity is much less used in the image
domain in this regard. There are, however, a few notable exceptions. For exam-
ple, Tversky similarity is used in the context of image retrieval in [28] and for
measuring the similarity between satellite images in [33].

2.2 Metric Learning

As already said, the notion of similarity is closely connected to the notion of dis-
tance. Whether relationships between objects are expressed in terms of similarity
or distance is often a matter of taste, although small differences in the respec-
tive mathematical formalizations also exist. In the literature, distance seems to
be even a bit more common than similarity. In particular, there is large body
of literature on distance (metric) learning [19]. Most distance learning meth-
ods focus on tuning the weights of attributes in the Mahalanobis distance or
weighted Euclidean distance. As training information, these methods typically
use constraints on pairwise or relative relations among objects [7,16].

3 Tversky Similarity

Tversky suggested that humans perceive the similarity between objects based
on contrasting (the measure of) those features they have in common and those
on which they differ [35]. Moreover, he suggested that more attention is paid
to the shared than to the distinctive features. Thus, in his (feature-matching)
model, an object is represented as a set of meaningful features, and similarity is
defined based on suitable set operations.

3.1 Formal Definition

More formally, consider a set of objects X and a finite set of features F =
{f1, . . . , fm}. Each feature is considered as a binary predicate, i.e., a mapping
fi : X −→ {0, 1}, where fi(x) = 1 is interpreted as the presence of the ith

feature for the object x, and fi(x) = 0 as the absence. Thus, each object x ∈ X
can be represented by the subset of features it exhibits:

F (x) =
{
fi | fi(x) = 1, i ∈ {1, . . . ,m}} ⊆ F
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Tversky similarity, in the form of the so-called ratio model, is then defined as a
function Sα,β : X 2 −→ [0, 1] as follows:

Sα,β(x,y) =
g( |A ∩ B| )

g( |A ∩ B| ) + α g( |A \ B| ) + β g( |B \ A| ) , (1)

where A = F (x), B = F (y), and g is a non-negative, increasing function N0 −→
N0; in the simplest case, g is the identity measuring set cardinality. According
to (1), Tversky similarity puts the number of features that are shared by two
objects in relation to the number of relevant features, where relevance means that
a feature is present in at least one of the two objects—features that are absent
from both objects are completely ignored, which is an important property of
Tversky similarity, and distinguishes it from most other similarity measures.

The coefficients 0 ≤ α, β ≤ 1 in (1) control the impact of the distinctive
features as well as the asymmetry of the measure. The larger these coefficients,
the more important the distinctive feature are. For α = β, the similarity measure
is symmetric, i.e., Sα,β(x,y) = Sα,β(y,x) for all x,y ∈ X , for α �= β it is
asymmetric. Important special cases include the Jaccard coefficient (α = β = 1)
and the Dice similarity (α = β = 1/2).

3.2 Feature Weighting

The Tversky similarity (TS) measure (1) implicitly assumes that all features
have the same importance, which might not always be true. In fact, g is only a
function of the cardinality of feature subsets, but ignores the concrete elements of
these subsets. In other words, only the number of shared and distinctive features
is important, no matter what these features are.

A natural generalization of (1) is a weighted variant of Tversky similarity
(WTS), in which each feature fi is weighted by some wi ∈ [0, 1]:

Sα,β,w (x,y) =
∑m

i=1 wifi(x)fi(y)
∑m

i=1 wi

(
fi(x)fi(y) + αfi(x)f̄i(y) + βf̄i(x)fi(y)

) , (2)

with f̄i(·) = 1 − fi(·). Thus, in addition to α and β, this version of Tversky
similarity is now parametrized by a weight vector w = (w1, . . . , wm).

3.3 Semantic Similarity

As already said, we believe that Tversky similarity may offer a semantically
meaningful and cognitively plausible tool for object comparison, especially in
the image domain—provided the fi are “semantic features”, that is, features
with a meaningful semantic interpretation. In the image domain, such features
are normally not given right away. Instead, meaningful (high-level) features have
to be extracted from “low-level” feature information on the pixel level.

Thus, what we envision is an approach to image similarity based on a two-
level architecture, in which semantic features are extracted from images in the
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Fig. 1. Two-level architecture for semantic similarity.

first step, and these features are then used to specify similarity in the second
step (cf. Fig. 1). While the features could be predefined by a human domain
expert, the feature extraction itself should be accomplished automatically based
on suitable image processing techniques.

For example, a human expert may know that, in a certain context, the pres-
ence of water on an image is a relevant feature. Water might then be included
as a feature fi in F . The function fi itself is a mapping that assumes an image
(represented as a set of pixels) as an input and returns 0 or 1 as an output,
depending on whether water is visible on the image or not. It could be realized,
for example, by a neural network that has been trained to recognize water on
images. Obviously, feature descriptors obtained in this way are never perfect, so
that feature descriptions F (x) will be “noisy” in practice.

4 Learning Tversky Similarity

In this section, we address the problem of learning the Tversky similarity, that
is, tuning the parameters of the measure so as the optimally adapt it to a con-
crete application at hand. To this end, we assume suitable training data to be
given, which informs about the similarity or dissimilarity between objects. More
specifically, we assume training data of the following form:

D =
{
(F (xn), F (yn), sn)

}N

n=1
⊂ X × X × {0, 1} (3)

Each training example is a triplet (F (xn), F (yn), sn), where sn ∈ {0, 1} indicates
whether the two objects xn and yn are considered similar or not. Thus, instead
of precise numerical similarity degrees, the feedback is binary and only provides
a rough indication. Note that the objects in the training data are already rep-
resented in terms of a feature description, i.e., we disregard the step of feature
extraction here and completely focus on specifying the Tversky similarity.
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4.1 Contrastive Loss

A common approach to learning similarity or distance functions is to minimize a
suitable loss function on the training data D. Here, we make use of the contrastive
loss [7], which has been employed quite successfully in the image domain. This
loss function compares a “predicted” similarity ŝ = Sα,β,w (x,y) ∈ [0, 1] with
given feedback s ∈ {0, 1} as follows:

Lm(s, ŝ) = s(1 − ŝ) + (1 − s)max
(
m − 1 + ŝ, 0

)
, (4)

where m is a margin (and a parameter of the loss). Thus, if s = 1 (objects x
and y are considered similar), the loss is given by 1 − ŝ and increases linearly
with the distance from the ideal prediction ŝ = 1. If s = 0, the loss is specified
analogously, except that a loss of 0 only requires ŝ ≤ 1 − m (instead of ŝ = 0).
Thus, positive and negative examples are treated in a slightly different way: A
high (predicted) similarity on negative pairs is penalized less strongly than a
low similarity on positive pairs. This could be meaningful, for example, when
the feedback s is obtained from class membership in a classification or clustering
context (as will be the case in our experiments) with many classes, some of which
may (necessarily) overlap to a certain extent.

4.2 Loss Minimization

Training the weighted Tversky similarity (WTS) essentially consists of minimiz-
ing the total loss on the training data, i.e., finding

(α∗, β∗,w∗) = argmin
α,β,w

N∑

n=1

Lm(sn, Sα,β,w (xn,yn)) (5)

Besides, we consider two restricted variants of this problem: Learning the
(unweighted) TS measure comes down to omitting the weight vector w from
(5), and enforcing symmetry to optimizing a single parameter α instead of two
parameters α and β.

Our learning algorithm (see Algorithm 1) is quite simple and essentially based
on gradient descent optimization. Gradients for the parameter updates are com-
puted on mini-batches. To avoid overfitting of the training data, we take a part
of the data for validation and apply an early stopping technique. More specifi-
cally, we stop the training process as soon as the accuracy on the validation data
decreases by more than 0.01 in 20 consecutive iterations.

5 Experiments

In this section, we present the results of our experimental study. Before doing so,
we first describe the data we used for the experiments, the experimental setting,
and the baseline methods we compared with.
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Algorithm 1. Learning Algorithm
Input: maximum iteration MT , batch size B, margin m, training data D
Output: α, β,w

1: split D into training data Dtrain and validation data Dval

2: randomly initialize parameters α, β,w
3: while ( t < MT ) and (stopping criterion = false)
4: sample mini-batch uniformly at random from similar and dissimilar pairs
5: compute Sα,β,w according to (2)
6: update parameters by minimizing (5)
7: test stopping condition on Dval

8: end while

5.1 Data

Since the extraction of semantic features (cf. Sect. 3.3) is beyond the scope of
this paper, we collected two image datasets for which this information, or at
least information that can be interpreted as such, is already given.

The a-Pascal-VOC2008 data [14] consists a total of 4340 images, which
are split into 2113 training and 2227 test images. Each image is labeled with
one of 32 class categories, such as “horse”. Moreover, each image is described by
64 additional binary attributes, which we interpret as semantic features. Mostly,
these features characterize the presence of certain objects on the image, such as
saddle, tail, or snout.

The Sun attributes dataset [23] includes 14340 images equally distributed
over 717 categories, such as “forest road” or “mountain path”. Each image is
also described by 102 attributes, such as “snow”, “clouds”, “flowers”, etc., which
describe images in a semantically meaningful way. These features are attached
by 3 human annotators, and we assume the presence of each attribute in an
image if it is attached by at least one of them.

5.2 Experimental Setting

We split the Sun attribute dataset into training data, validation data, and test
data with a ratio of 70/10/20. The validation data is used to fine-tune parameters
like the margin m of the contrastive loss. After each iteration of the training
procedure (cf. Algorithm 1), the model is evaluated on validation data, and the
model with highest performance is stored. We consider the same setting for the
a-Pascal-VOC dataset, except for adopting the predefined train/test split. For
this data, we extract 10% of the training data for validation.

Training examples for similarity learning (i.e., triplets of the form (x,y, s))
are extracted from the set of images belonging to the training data as follows:
A pair of images x,y is considered as similar (s = 1) if both images have the
same class label, and otherwise as dissimilar (s = 0). To facilitate learning and
have balanced batches, similar and dissimilar pairs of images are sampled with



276 J. Rahnama and E. Hüllermeier

the same probability of 0.5 (and uniformly within the set of all similar pairs and
all dissimilar pairs, respectively).

Once a similarity measure S (or distance measure) has been learned, its per-
formance is evaluated on the test data. To this end, we generate data in the
form of triplets (x,y, s) in the same way as we did for training. The similarity
measure is then used as a threshold classifier (x,y) 	→ �S(x,y) > t� with a
threshold t tuned on the validation data, and evaluated in terms of its classifi-
cation rate (percentage of correct predictions) and F1 measure. Eventually, the
average performance is determined over a very large set of randomly selected
triplets (4M in the case of the a-Pascal-VOC2008 data and 6M in the case of
Sun attributes), so that the estimation error is essentially 0.

5.3 Methods

We train both variants of the Tversky similarity, the unweighted (TS) and the
weighted one (WTS). Since the “ground-truth” similarity in our data is sym-
metric by construction, we restrict to the respective symmetric versions (α = β).
We train unweighted Tversky similarity and weighted Tversky similarity using
stochastic gradient descent with Nestrov’s momentum [31] (learnin rate 0.01)
and Adagrad [13] (learning rate 0.01), respectively.

As baselines for comparison, we learn two common similarity/distance met-
rics, namely the weighted Euclidean distance and weighted Cosine distance. Both
distances are trained using Adam optimization [17] (with learning rate 0.001),
in very much the same ways as the Tversky similarity. To prevent overfitting,
the contrastive loss is combined with L1 and L2 regularization terms.

Moreover, we include LMNN [38] and a modified Siamese network (Siamese
Net Semantic) based on [15]. The modified Siamese network consists of two
blocks: two feature extraction blocks with shared weights for a pair of objects
and a non-metric similarity block. A feature extraction block maps the input
semantic feature vector into an embedding space, in which similar objects have
small and dissimilar objects a larger distance. The non-metric similarity block
predicts the similarity score that indicates the degree of similarity or dissimilarity
of the input pair.

Since the number of input (semantic) features for the feature extraction block
is relatively low in our experiments with the Sun attribute dataset, we only use
three fully connected layers of size [64, 32, 16] and activation functions [Relu,
Relu, Sigmoid], respectively. Correspondingly, the dimensions of two fully con-
nected layers are [32, 16] with [Relu, Sigmoid] as activation functions for the
a-Pascal-VOC2008 dataset. The non-metric network consists of an L1 distance
part and two fully connected layers. In the L1 distance part, we calculate the
L1 distance between features of the object pair, produced by the feature extrac-
tion blocks. The dimensions of two fully connected layers are [16, 1] with [Relu,
Sigmoid] as activation functions, respectively. The parameters of the modified
Siamese network are learned by minimizing a combination of two common loss
functions using back propagation and the Adam optimization method [17] with
learning rate 0.01. The contrastive loss is exploited to pull the representation
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of similar images closer and push the dissimilar ones apart. Moreover, since the
evaluation is eventually done on a binary classification task, we combine the con-
trastive loss with the cross-entropy loss to improve the classification accuracy.

To show the effectiveness of our method in obtaining semantic similarity
among images, we also train the modified Siamese network based on only visual
features (Siamese Net Visual). The inputs of this network are the original images,
and the output is a similarity prediction that indicates whether the two input
images are similar or not. In the feature extraction block, we extract high-level
features from the pre-trained Inception-V3 [32] followed by a flatten layer, batch
normalization, and two fully connected layers with dimensions [256, 128] and
activation functions [Relu, Sigmoid]. We also use the same non-metric similarity
block and optimization method as explained above with a learning rate 0.01.

5.4 Results

Table 1. Performance on the a-Pascal-VOC2008 dataset.

Method Classification rate F1 measure

Weighted Euclidean 0.65 0.74

Weighted Cosine 0.81 0.78

LMNN [38] 0.78 0.81

Siamese Net Semantic [15] 0.82 0.84

Tversky (TS) 0.82 0.82

Weighted Tversky (WTS) 0.83 0.84

Table 2. Performance on the Sun attribute dataset.

Method Classification rate F1 measure

Weighted Euclidean 0.76 0.77

Weighted Cosine 0.78 0.80

LMNN [38] 0.79 0.81

Siamese Net Semantic [15] 0.79 0.81

Siamese Net Visual [15] 0.74 0.78

Tversky (TS) 0.80 0.81

Weighted Tversky (WTS) 0.81 0.83

The results are summarized in Tables 1 and 2. As can be seen, Tversky sim-
ilarity performs very well and is highly competitive. Somewhat surprisingly, the
performance of the simple unweighted version of Tversky similarity is already
extremely strong. It can still be improved a bit by the weighted version, but not
very much.
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The Euclidean (and likewise the Cosine) distance performs quite poorly. As
a possible explanation, note that the Euclidean distance is not able to ignore
presumably irrelevant features that occur in none of the two objects (images)
at hand. Since the distance between the corresponding feature values is 0, such
features contribute to the similarity of the objects (e.g., the simultaneous absence
of, say, trees on two images contributes to their similarity). This is certainly a
strength of the Tversky similarity (and part of its motivation).

6 Conclusion

This paper presents first steps toward learning Tversky similarity, i.e., machine
learning methods for tuning the parameters of Tversky’s similarity model to
training data collected in a concrete application context. To the best of our
knowledge, such methods do not exist so far, in spite of the popularity of Tver-
sky’s model. The experimental results we obtained for image data so far, even if
preliminary, are quite promising.

There are various directions for extending the approach presented in this
paper, which ought to be addressed in future work:

– Our learning algorithm implements a rather plain solution and essentially
applies a general purpose learning technique (a gradient-based optimization)
to a specific loss function. More sophisticated methods, specifically tailored to
the Tversky similarity and exploiting properties thereof, promise to improve
efficiency and perhaps even boost performance. In this regard, we plan to
elaborate on different ideas, such as alternating optimization and correlation
analysis to judge feature importance.

– In practical applications, other types of training data may become relevant.
An interesting example is relative similarity information of the form “object
x is more similar to y than to z”. Devising methods for learning from data
of that kind is another important topic of future work.

– Likewise, other loss functions and performance metrics should be considered,
both for training and evaluation. Specifically relevant are ranking measures
from information retrieval, because similarity is often used for the purpose of
object retrieval (e.g., ranking images stored in a database in decreasing order
of their similarity to a query image).

– Further generalizations of the Tversky similarity itself could be considered as
well, for example using fuzzy instead of binary features [8,10,34].
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