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Abstract. In medical diagnosis, information about the health state of
a patient can often be obtained through different tests, which may per-
haps be combined into an overall decision rule. Practically, this leads to
several important questions. For example, which test or which subset of
tests should be selected, taking into account the effectiveness of individ-
ual tests, synergies and redundancies between them, as well as their cost.
How to produce an optimal decision rule on the basis of the data given,
which typically consists of test results for patients with or without con-
firmed health condition. To address questions of this kind, we develop
an approach that combines (semi-supervised) machine learning method-
ology with concepts from (cooperative) game theory. Roughly speaking,
while the former is responsible for optimally combining single tests into
decision rules, the latter is used to judge the influence and importance of
individual tests as well as the interaction between them. Our approach
is motivated and illustrated by a concrete case study in veterinary medi-
cine, namely the diagnosis of a disease in cats called feline infectious
peritonitis.

1 Introduction

Different types of tests, such as measuring serum antibody concentrations, are
commonly used in medical diagnostics in order to reveal the health condition of
an individual. The effectiveness of a single test is typically determined by cor-
relating the test outcome with the true condition. Moreover, classical statistical
hypothesis testing can be used to compare different test procedures in terms of
their effectiveness.

In this paper, we tackle the problem of evaluating or selecting a test pro-
cedure from a slightly different perspective using methods of (semi-)supervised
machine learning. Roughly speaking, the idea is that, by learning a model in
which various candidate tests play the role of predictor variables, information
about the usefulness of individual tests as well as their combination is provided
by properties of that model. An approach of that kind has at least two important
advantages:
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– First, it not only allows for judging the usefulness of single tests but also of
combined tests, i.e., the combination of different tests into one overall (diag-
nostic) decision rule. Thus, it informs about possible synergies (as well as
redundancies) between individual tests and the potential to improve diagnos-
tic accuracy thanks to a suitable combination of these tests.

– Second, going beyond the standard setting of supervised learning, a machine
learning approach suggests various ways of improving the selection of tests by
taking advantage of additional sources of information. An important special
case is the use of semi-supervised learning to exploit “unlabeled” data coming
from individuals for which tests have been made but the true health condition
is unknown. This situation is highly relevant in medical practice, because
tests can often be conducted quite easily, whereas determining the true health
condition is very difficult or expensive.

Our approach is motivated by a concrete case study in veterinary medicine,
namely the diagnosis of a disease in cats called feline infectious peritonitis (FIP).
Complete certainty about whether or not a cat is FIP-positive, and eventually
will die from the disease, requires a necropsy [1,10]; unfortunately, no test per-
formed in a cat while still alive has a 100 % sensitivity or 100 % specificity. Con-
sequently, while different tests can be applied to cats quite easily, “labeling” a
cat in the sense of supervised learning is expensive, difficult and time-consuming.

In addition to the use of (semi-supervised) machine learning methodology
in medical diagnosis, we propose a game-theoretical approach for measuring the
usefulness of individual tests as well as model-based combinations of such tests.
Roughly speaking, the idea is to consider a combination of tests as a “coalition”
in the sense of cooperative game theory, and the “payoff” of the coalition as
the diagnostic accuracy achieved by the test combination. This approach will be
detailed in the next section, prior to elaborating more closely on our case study
in Sect. 3, presenting experimental results in Sect. 4 and concluding the paper
in Sect. 5.

2 Evaluating Single and Combined Tests

Suppose a set of tests X1, . . . , XK to be available. We consider the outcome of
each test as a random variable Xk : Ω −→ R, where Ω is the population of
individuals to which the test can be applied. Jointly, the K tests thus define a
random vector

X = (X1, . . . , XK) ∈ X = R
K .

The health state is a dichotomous variable Y ∈ Y = {−1,+1}. Typically, each
test is a positive indicator in the sense that P(Y = +1 |Xk) increases with Xk,
i.e., the larger Xk, the larger the probability of the positive class. Using machine
learning terminology, each test corresponds to a feature or predictor variable.
Moreover, X is the instance space, each X ∈ X is an instance, and Y is the
(binary) output or response variable.
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2.1 Combined Tests

If a diagnostic decision ŷ ∈ {−1,+1} is not necessarily based on a single test Xk

alone, but possibly uses a combination of several tests, a first question concerns
the way in which such a combination is realized. From a machine learning point
of view, this question is related to the choice of an underlying models class
(hypothesis space)

H ⊂
K⋃

J=1

HJ =
K⋃

J=1

YR
J

,

where J ≤ K is the number of tests included in the decision rule. Formally, we
specify a combined test in terms of the subset A ⊆ [K] = {1, . . . , K} of indices,
i.e., test Xk is included if k ∈ A.

The model class H could be defined, for example, as the class of linear thresh-
old functions of the form

h :
(
xσ(1), . . . , xσ(J)

) �→
�
�

J∑

j=1

wj · xσ(j) > t

�
� , (1)

where w1, . . . , wJ , t ∈ R+ and �·� maps true predicates to +1 and false predicates
to −1; moreover, σ(j) is the j-th test included in the combination, i.e., σ(j) = k

if
∑k

i=1�i ∈ A� = j.

2.2 Optimal Decision Rules

Let L : {−1,+1}2 −→ R be a loss function, such that L(y, ŷ) denotes the
penalty for making the diagnostic decision ŷ if the true health state is y. For
each combined test, specified by a subset A ⊆ [K], there is an optimal decision
rule

h∗
A ∈ arg min

h∈H

∫
L

(
y, h(x)

)
dP(x, y),

i.e., a decision rule that minimizes the loss in expectation. We denote the expected
loss of this model, which corresponds to the Bayes predictors in H|A|, by

e∗(A) =
∫

L
(
y, h∗

A(x)
)
dP(x, y). (2)

2.3 Estimating Generalization Performance

In practice, of course, neither the Bayes predictor h∗
A nor the ideal generalization

performance e∗(A) are known. Instead, we only assume a data set D = DL ∪DU

to be given, which consists of a set of labeled instances

DL =
{
(xi, yi)

}L

i=1
⊂ X × Y
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and possibly another set of unlabeled instances (test results without ground
truth) DU = {xj}U

j=1 ⊂ X . From a machine learning point of view, it is then
natural to estimate the generalization performance on the basis of D for each
A ⊆ [K]. To this end, models (1) can be fitted and their generalization perfor-
mance can be estimated, for example, using cross-validation techniques or the
bootstrap. More specifically, what can be estimated in this way is the general-
ization performance of a model that is trained on a combination A and data in
the form of L labeled and U unlabeled examples. Therefore, we shall denote a
corresponding estimate by ê(A,L,U) or simply ê(A) (assuming the underlying
data to be given).

Needless to say, the estimates ê(A) thus obtained are not necessarily
monotone in the sense that ê(B) ≤ ê(A) for A ⊆ B. In fact, while e∗(A) is
the generalization performance of the Bayes predictor, i.e., the model that is
obtained in the limit of an infinite sample size (provided the underlying learner
is consistent), the estimates ê(A) are obtained from models trained on a finite
(and possibly small) data set. Therefore, practical problems such as overfit-
ting become an issue, i.e., including additional tests may deteriorate instead of
improve generalization performance.

2.4 Correcting Generalization Performance

How can the ideal generalization performances

{e∗(A) |A ∈ [K]} (3)

be estimated? Starting with the finite-sample estimates

{
ê(A) |A ⊆ [K]

}
, (4)

our proposal is to correct these estimates so as to assure monotonicity. In fact,
monotonicity is the main difference between the ideal and finite-sample scores.
Apart from that, the ideal scores (3) should not differ too much from the esti-
mates (4), i.e., e∗(A) ≈ ê(A), at least if the training data is not too small.

These considerations suggest the following estimation principle: Find a set of
values (3) that satisfy monotonicity while remaining as close as possible to the
corresponding scores (4). This principle can be formalized as an optimization
problem of the following kind:

minimize
∑

A⊆[K]

∣∣ê(A) − e∗(A)
∣∣

s.t.
e∗(B) ≤ e∗(A) for all A ⊆ B ⊆ [K]
0 ≤ e∗(A) ≤ 1 for all A ⊆ [K]

The above problem can be tackled by means of methods for isotonic regres-
sion. More specifically, since the inclusion relation on subsets induces a partial
order on 2[K], methods for isotonic regression on partially ordered structures are
needed [3,14].



454 K. Pfannschmidt et al.

2.5 Measuring the Usefulness of Tests

Consider the set function ν′ : 2[K] −→ [0, 1] defined by ν′(A) = 1− e∗(A). Obvi-
ously, ν′ is a monotone measure (of the usefulness of combined tests). Moreover,
this measure can be normalized by setting

ν∗(A) =
ν′(A) − ν′(∅)

ν′([K]) − ν′(∅)
,

where ν′(∅) is the performance of the best (default) decision rule that does not
use any test, i.e., which either always predicts ŷ = +1 or always ŷ = −1. The
measure ν∗(·) thus defined satisfies the following properties:

– ν∗(∅) = 0, ν∗([K]) = 1,
– ν∗(A) ≤ ν∗(B) for all A ⊆ B ⊆ [K].

Thus, ν∗ is a normalized, monotone (but not necessarily additive) set function,
referred to as fuzzy measure or capacity in the literature [5]. For each combined
test A, ν∗(A) is a reasonable measure of the usefulness of this test.

In a similar way, a measure v• can be defined on the basis of the finite-sample
scores (4), that is, by normalizing ν′(A) = 1 − ê(A):

v•(A) =
ν′(A) − ν′

min

ν′
max − ν′

min

,

where ν′
min = 1−maxB⊆[K] ê(B) and ν′

max = 1−minB⊆[K] ê(B). Note, however,
that this measure is not necessarily monotone.

Which of the two measures is more meaningful, ν∗ or ν•? The answer to this
question depends on practical considerations and what the measure is actually
supposed to capture. When being interested in the potential asymptotic useful-
ness of a test combination, then ν∗ is the right measure. Otherwise, if a model
induced from a concrete set of training data is supposed to be put into (medical)
practice, ν• is arguably more relevant.

2.6 Shapley Value and Interaction Index

From the point of view of (cooperative) game theory, each (test) combination
A ⊆ [K] can be seen as a coalition and ν ∈ {ν∗, ν•} as the characteristic function,
i.e., v(A) is the payoff achieved by the coalition A. Thanks to this view, we can
take advantage of various established game-theoretical concepts for analyzing
the importance of individual players, which correspond to tests in our case, as
well as the interaction between them. In particular, the Shapley value, also called
importance index, is defined as follows [17]:

ϕ(k) =
∑

A⊆[K]\{k}

1

K

(
K − 1

|A|
)

(
ν(A ∪ {k}) − ν(A)

)
. (5)
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The Shapley value of ν is the vector ϕ(ν) = (ϕ(1), . . . , ϕ(K)). For monotone
measures (such as ν = ν∗), one can show that 0 ≤ ϕ(k) ≤ 1 and

∑K
k=1 ϕ(k) = 1;

thus, ϕ(k) is a measure of the relative importance of the test Xk.
The interaction index, as proposed by [13], is defined as follows:

I(i, j) =
∑

A⊆[K]\{i,j}

(
ν(A ∪ {i, j}) − ν(A ∪ {i}) − ν(A ∪ {j}) + ν(A)

)

(K − 1)
(

K − 2
|A|

) .

This index ranges between −1 and +1 and indicates a positive (negative) inter-
action between the tests Xi and Xj if Ii,j > 0 (Ii,j < 0).

It is worth mentioning that the approach put forward in this section is quite
in line with the idea of Shapley value regression [11], which makes use of the
Shapley value in order to quantify the contribution of predictor variables in
(linear) regression analysis (quantifying the value of a set of variables in terms
of the R2 measure on the training data).

3 Feline Infectious Peritonitis in Cats

Feline infectious peritonitis (FIP) is a disease with an affinity to young cats, a
predisposition to involve cats living in larger groups. As it exhibits typical phys-
ical examination and clinical laboratory findings, it appears to be easy to diag-
nose. However, while a presumptive diagnosis is quickly established, a definite
diagnosis is difficult to impossible to obtain without gross and histopathological
evaluation including immunohistochemistry [1,10].

The seroprevalence is high, especially in catteries where up to 90 % of the
cats are positive [2], but also up to 50 % of cats living in single-cat households
have coronavirus-specific antibodies [4]. Of these, 5–10 % will develop the deadly
form of FIP. A characteristic symptom of FIP is body cavity effusion, which also
appears in other diseases [8]. Several treatment options exist for some of these
diseases while FIP is deadly and no reliable effective therapy is known so far [16].
Therefore, it is important to diagnose the correct disease early.

Several diagnostic tests are available that diagnose FIP, for which sensitivity,
specificity, positive and negative predictive value vary between different studies,
presumably because different forms of FIP (effusive and dry) were investigated
and because various clinical signs, geographic locations, years of investigation,
prevalence and combination of tests were used [4,6,7,9,15,18]. In studies so far,
no cat had all available tests performed.

The data underlying our study includes the following diagnostic tests:

– Albumin to Globulin ratio, plasma (X1) and effusion (X2)
– Rivalta test (X3)
– Presence of antibodies against feline coronavirus (FCoV, X4)
– Reverse transcriptase nested polymerase chain reaction (RT-nPCR) to detect

FCoV-RNA in EDTA-blood (X5) and in the effusion (X6)
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– Immunofluorescence staining (IFA) of FCoV antigen in macrophages in the
effusion (X7)

4 Empirical Study

Our dataset consists of 100 cats in total. For 29 of these cats, a necropsy was per-
formed to establish the gold standard diagnosis; 11 of the 29 cats were diagnosed
with feline infectious peritonitis (FIP). Additionally, the above 7 diagnostic tests
were performed on all cats (i.e., K = 7, L = 29 and U = 71).

To estimate the generalization accuracy (in terms of the simple 0/1 loss
function) of each of the 27 = 128 combined diagnostic tests, we employ a semi-
supervised classification technique called maximum contrastive pessimistic like-
lihood estimation (MCPL) [12]. Logistic regression with L2 penalization is used
as the base learner in MCPL, i.e., individual tests are combined using a linear
model of the form (1).

Estimates ê(A) of the (finite-sample) classification errors are obtained as fol-
lows: We resample the set of 29 labelled cats and split the resulting sample into
16 training and 13 test examples. The remaining 71 cats without label infor-
mation are added to the training set. This procedure is repeated 501 times for
each of the 128 combinations of tests, and the results are averaged. To obtain
estimates e∗(A) of the ideal generalization performances, the finite-sample esti-
mates are subsequently corrected using isotonic regression [3,14] as described
in Sect. 2.4.

4.1 Test Importance for Finite-Sample Performance Estimates

Figure 1 shows the Shapley values calculated for each test on the basis of the
finite-sample performances ê(A), i.e., the measure ν•. Note that, since this mea-
sure is not necessarily monotone, negative Shapley values are possible (as is the
case for the Rivalta test). The highest Shapley values are obtained for the two
RT-nPCR tests.

Fig. 1. Shapley values calculated for the finite-sample measure ν•.
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Fig. 2. Classification accuracy for all 128 test combinations (sorted by mean accuracy).
The vertical lines show the 80 % empirical percentiles of the bootstrap estimates. The
results for subsets including RT-nPCR (blood) are highlighted in blue. (Color figure
online)

To further illustrate the importance of the diagnostic test RT-nPCR, Fig. 2
shows the mean validated classification accuracy for all 128 test combinations.
The 80 % empirical percentiles are indicated by the vertical lines, and the subsets
are sorted in decreasing order of their mean validated accuracy. Moreover, the
results for those subsets including RT-nPCR (measured in blood) are highlighted
in blue. Evidently, the concentration of subsets containing RT-nPCR (blood) is
systematically higher to the left of the plot, which confirms that the inclusion
of the test improves diagnostic accuracy.

4.2 Test Importance for Ideal Performance Estimates

The effect of isotonic regression on the finite-sample estimates is shown in Fig. 3.
Here, each blue dot corresponds to an estimate ê(A) for a particular subset
A of diagnostic tests. Since partial monotonicity, which is assured by isotonic
regression, cannot be visualized in a two-dimensional plot, the data points are
sorted by their corrected classification accuracy (and ties are broken at random).
The green line shows the isotonic regression fit.

The corrected performance estimates ν∗(A) can subsequently be used to cal-
culate the Shapley values for each diagnostic test. The results are shown in
Fig. 4. Due to the monotonicity of ν∗, all values are now positive. Again, the RT-
nPCR tests achieve the highest Shapley values, but FCoV antibody titer and IFA
(effusion) obtain values > 0.15, too. Note that the relative order of the RT-nPCR
tests changed from the one in Fig. 1, probably due to their accuracy being very
similar and the random nature of the bootstrap validation.

Figure 5 shows the accuracy estimates for all subsets. The dots indicate the
corrected accuracies ν∗(A) and are used to sort subsets in decreasing order, while
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Fig. 3. Isotonic regression correction (green line) applied to the bootstrap validated
classification accuracies (blue dots). (Color figure online)

Fig. 4. Shapley values calculated using the corrected validation accuracies.

the vertical lines show the 80 % percentiles of the original bootstrap estimates.
Again, the results are highlighted in blue if RT-nPCR (blood) is included in
A. Like in the case of ν• (cf. Fig. 2), the subsets containing RT-nPCR (blood)
can mostly be found on the left side of the plot; this trend is now even more
pronounced.

4.3 Balancing Accuracy and Cost

An important question for a veterinary physician is which combination A of tests
to perform, taking into account both diagnostic accuracy and effort. Figure 6
shows the corrected accuracies ν∗(A) (green dots) of all subsets of tests and
their combined monetary cost in Euro. The Pareto set, consisting of those com-
binations that are not outperformed by any other combination in terms of both
accuracy and cost at the same time, is indicated as a blue line. From a prac-
tical point of view, the result suggests to use a single diagnostic test, namely
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Fig. 5. Corrected accuracy ν∗(A) for all 128 subsets (sorted by mean accuracy). The
vertical lines show the 80 % empirical percentiles of the original bootstrap estimates.
Subsets including RT-nPCR (blood) are shown in blue. (Color figure online)

Diagnostic test Cost

A/G ratio (plasma) 7.34
A/G ratio (effusion) 7.34
Rivalta test 1.00
Antibody titer 20.83
RT-nPCR (blood) 43.32
RT-nPCR (effusion) 43.32
IFA (effusion) 23.80

Fig. 6. Scatter plot of the monetary costs of the subsets in Euro in relation to the
corrected accuracies ν∗(A) shown as green dots. The blue line shows the Pareto front.
The red points highlight the subsets which contain exactly one test. The costs for each
individual test are shown in the table on the right. (Color figure online)

RT-nPCR (blood or effusion), because the inclusion of more tests yields only
minor improvements. This is confirmed by the pairwise interaction indices shown
for both measures ν• and ν∗ in Table 1. All these measures are negative, sug-
gesting that the tests are more redundant than complementary.

Note that, once a decision in favor of using a single test is made, the Shapley
value, as a measure of average improvement achieved by adding a test, is no
longer the best indicator of the usefulness of a test. Instead, a selection should
be made based on the tests’ individual performance. With a validated accuracy
of 87 %, RT-nPCR (effusion) appears to be the best choice in this regard.
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Table 1. Pairwise interaction indices for ν• (left) and ν∗ (right).

X1 X2 X3 X4 X5 X6 X7

X1 0.0 −0.02 −0.03 −0.05 −0.05 0.00 −0.02 −0.20 −.21 −0.15 −.21 −0.17 −.19

X2 0.0 −0.05 −0.05 −0.02 −0.03 −0.07 −0.05 −0.03 −0.04 −0.04 −0.04

X3 0.0 −0.02 −0.04 −0.10 −0.06 −0.04 −0.06 −0.07 −0.06

X4 0.0 −0.08 −0.05 −0.01 −0.04 −0.04 −0.03

X5 0.0 −0.30 −.33 −0.24 −.32

X6 0.0 −0.20 −.22

5 Summary and Conclusion

In this paper, we proposed a method for measuring the importance and useful-
ness of predictor variables in (semi-/supervised) machine learning, which makes
use of concepts from cooperative game theory: subsets of variables are consid-
ered as coalitions, and their predictive performance plays the role of the payoff.
Although our approach is motivated by a concrete application in veterinary medi-
cine, namely the diagnosis of feline infectious peritonitis in cats, it is completely
general and can obviously be used for other learning problems as well.

For the case study just mentioned, our method produces results that appear
to be plausible and agree with the medical experts’ experience. Roughly speak-
ing, there are two strong diagnostic tests that are significantly more accurate
than others; practically, it suffices to use one of them, since a combination with
other tests yields only minor improvements.

There are several directions for future work. For example, the principle we
proposed in Sect. 2.4 for inducing ideal generalization performances e∗(A) from
finite-sample estimates ê(A) is clearly plausible and, moreover, seems to be
indeed able to calibrate the original estimates thanks to an ensemble effect.
Nevertheless, it calls for a more thorough analysis and theoretical justification.
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10. Kipar, A., Köhler, K., Leukert, W., Reinacher, M.: A comparison of lymphatic
tissues from cats with spontaneous feline infectious peritonitis (FIP), cats with FIP
virus infection but no FIP, and cats with no infection. J. Comp. Pathol. 125(2),
182–191 (2001)

11. Lipovetsky, S., Conklin, M.: Analysis of regression in game theory approach. Appl.
Stochast. Models Bus. Ind. 17(4), 319–330 (2001)

12. Loog, M.: Contrastive pessimistic likelihood estimation for semi-supervised classi-
fication. IEEE Trans. Pattern Anal. Mach. Intell. 38(3), 462–475 (2016)

13. Murofushi, T., Soneda, S.: Techniques for reading fuzzy measures (iii): interaction
index. In: 9th Fuzzy System Symposium, Sapporo, Japan, pp. 693–696 (1993)

14. Pardalos, P., Xue, G.: Algorithms for a class of isotonic regression problems. Algo-
rithmica 23(3), 211–222 (1999)

15. Parodi, M.C., Cammarata, G., Paltrinieri, S., Lavazza, A., Ape, F.: Using direct
immunofluorescence to detect coronaviruses in peritoneal and pleural effusions. J.
Small Anim. Pract. 34(12), 609–613 (1993)

16. Ritz, S., Egberink, H., Hartmann, K.: Effect of feline interferon-omega on the
survival time and quality of life of cats with feline infectious peritonitis. J. Vet.
Intern. Med. 21(6), 1193–1197 (2007)

17. Shapley, L.: A value for n-person games. Ann. Math. Stud. 28, 307–317 (1953)
18. Soma, T., Wada, M., Taharaguchi, S., Tajima, T.: Detection of ascitic feline coron-

avirus RNA from cats with clinically suspected feline infectious peritonitis. J. Vet.
Med. Sci. 75(10), 1389–1392 (2013)


	Evaluating Tests in Medical Diagnosis: Combining Machine Learning with Game-Theoretical Concepts
	1 Introduction
	2 Evaluating Single and Combined Tests
	2.1 Combined Tests
	2.2 Optimal Decision Rules
	2.3 Estimating Generalization Performance
	2.4 Correcting Generalization Performance
	2.5 Measuring the Usefulness of Tests
	2.6 Shapley Value and Interaction Index

	3 Feline Infectious Peritonitis in Cats
	4 Empirical Study
	4.1 Test Importance for Finite-Sample Performance Estimates
	4.2 Test Importance for Ideal Performance Estimates
	4.3 Balancing Accuracy and Cost

	5 Summary and Conclusion
	References


