
Learning to Aggregate Using Uninorms

Vitalik Melnikov and Eyke Hüllermeier(B)
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Abstract. In this paper, we propose a framework for a class of learning
problems that we refer to as “learning to aggregate”. Roughly, learning-
to-aggregate problems are supervised machine learning problems, in
which instances are represented in the form of a composition of a (vari-
able) number on constituents; such compositions are associated with an
evaluation, score, or label, which is the target of the prediction task,
and which can presumably be modeled in the form of a suitable aggre-
gation of the properties of its constituents. Our learning-to-aggregate
framework establishes a close connection between machine learning and
a branch of mathematics devoted to the systematic study of aggregation
functions. We specifically focus on a class of functions called uninorms,
which combine conjunctive and disjunctive modes of aggregation. Experi-
mental results for a corresponding model are presented for a review data
set, for which the aggregation problem consists of combining different
reviewer opinions about a paper into an overall decision of acceptance or
rejection.

1 Introduction

In spite of certain generalizations that have been proposed in the recent past,
the bulk of methods for supervised machine learning still proceeds from a formal
setting in which data objects (instances) are represented in the form of feature
vectors. Thus, an instance x is described in terms of a vector (x1, . . . , xd) ∈
X = X1 × · · · × Xd, where Xi is the domain of the ith attribute or feature. The
corresponding view of instances as points in a space of fixed dimension d has
largely influenced the way in which learning problems are studied and methods
developed: Supervised learning is considered as embedding objects as data points
in the space X , and then separating these points (in the case of classification) or
fitting them (in the case of regression) using models that have a natural geometric
interpretation, such as hyperplanes or any other type of decision boundary or
manifold in the space X ; a prediction ŷ of the output y ∈ Y associated with an
instance x is then obtained by means of a corresponding function f : X −→ Y.
Alternatively, instead of modeling dependencies with a deterministic function, a
model may correspond to a probability distribution on X × Y.

While this approach to formalizing and tackling learning problems proved
to be highly successful, there are problems for which the production of predic-
tions ŷ by means of a (single) function f defined on the space X is arguably
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less appropriate. This paper is devoted to one such class of problems that we
refer to as aggregation problems. The view we promote is to consider data objects
as compositions of individual constituents; moreover, we assume that the output
associated with such a composition is obtained as an aggregation of the proper-
ties of the individual constituents, using a suitable type of aggregation function.
Thus, the learning-to-aggregate framework we envision establishes a close con-
nection between machine learning and a branch of mathematics devoted to the
systematic study of aggregation functions [10].

Needless to say, the idea of aggregation is not new to machine learning. On
the contrary, aggregation problems seem to abound in this field and appear in
various guises; for example, combining the information of the neighbors in nearest
neighbor estimation, the predictions of base learners in stacking, etc., can all be
seen as specific types of aggregation problems. Yet, to the best of our knowledge,
a common framework of learning-to-aggregate has not been proposed so far.
We believe that such a framework, and the specific view on learning problems
it comes along with, is useful for different reasons. In particular, it allows for
looking at different learning problems as specific instances of the same problem
class, thereby connecting and cross-fertilizing subfields that would otherwise
remain separated. Moreover, it may of course motivate new learning problems
and trigger the development of novel methods.

The remainder of the paper is organized as follows. In the next section, we
outline our learning-to-aggregate framework. The description of this framework
is completed in Sect. 3, which is devoted to a discussion of aggregation functions.
In Sect. 4, we propose a specific instance of the framework, namely a model
for learning to aggregate based on so-called uninorms. Related work is briefly
reviewed in Sect. 5. Finally, to illustrate our approach, some experiments on a
data set consisting of reviews on papers submitted the the ECML/PKDD 2014
conference are presented in Sect. 6, prior to concluding the paper in Sect. 7.

2 Learning to Aggregate

In this section, we introduce a formal framework of learning-to-aggregate and
elaborate on some of its properties. Prior to doing so, we give a simple example
that already highlights important aspects of aggregation problems as well as
limitations of standard vectorial (feature-based) representations in this context.

2.1 A Simple Example

Suppose compositions c are multisets (bags) of real numbers from the unit inter-
val, such as {0.8, 0.7} or {0.2, 0.6, 0.3}. Moreover, suppose the output y asso-
ciated with a composition c ⊂ [0, 1] is an aggregation of the constituents; to
be concrete, consider the product as an example. The goal of the learner is to
induce the dependency between inputs c and outputs y based on corresponding
training examples, such as (c, y) = ({0.8, 0.7}, 0.56).
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Although this toy example is actually very simple, tackling it with standard
machine learning methods is non-trivial. As one important reason, note that,
in contrast to a feature vector of fixed dimension, compositions are of variable
length. In fact, the sought dependency is a mapping of the form X −→ Y, with
the instance space

X =
⋃

n∈N

Yn (1)

and Y = [0, 1] in our case. This instance space is a union of spaces of finite
dimension but does not have a finite dimension itself; indeed, in our example,
we allow compositions c of any size. It is thus neither clear how to define a
suitable hypothesis space on X , i.e., a set of functions with domain X , nor how
to learn in this space.

To make the problem amenable to standard methods, it is of course possible
to map compositions c to feature vectors x = (x1, . . . , xd) = (f1(c), . . . , fd(c))
of finite length, on which a model of the form y = f(x) could then be learned; in
fact, this is a common approach to dealing with structured data objects, which
are given as bags in our case but could also be sequences or graphs, for example.
Like in learning on structured objects in general, the success of this approach
strongly hinges on the definition of the right features. In our example, features
would be needed that allow for reconstructing, for any bag of numbers, the
product of these numbers. Making sure that such features are available arguably
presumes that the dependency between c and y is already known.

2.2 Formal Setting and Notation

We proceed from a set of training data

D =
{
(c1, y1), . . . , (cN , yN )

} ⊂ C × Y, (2)

where C is the space of compositions and Y a set of possible (output) values
associated with a composition; since aggregation is often used for the purpose of
evaluating a composition, we also refer to the values yi as scores. A composition
ci ∈ C is a multiset (bag) of constituents

ci = {ci,1, . . . , ci,ni
},

where ni = |ci| is the size of the composition; scores yi are typically scalar values
(real numbers or values from an ordinal scale, such as 1 to 5 star ratings in rec-
ommender systems). Constituents ci,j can be of different type. In particular, the
description of a constituent may or may not contain the following information:

– A label specifying the role of the constituent in the composition. For example,
suppose a composition is a menu consisting of constituents in the form of
dishes; each dish could then be labeled with appetizer, main dish, or dessert,
thereby providing information about the part of the menu it belongs to (and
hence adding additional structure to the composition).
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– A description of properties of the constituent. For example, each dish could
be described in terms of certain nutritional values. Formally, we assume prop-
erties to be given in the form of a feature vector vi,j ∈ V, where V is a cor-
responding feature space. We note, however, that more complex descriptions
are conceivable; for example, the description could itself be a composition.

– A quantity qi,j ∈ R+ representing the amount of the constituent in the com-
position (instead of simply informing about the presence or absence of the
constituent).

– A local evaluation in the form of a score yi,j ∈ R+.

Finally, a composition can also be equipped with an additional structure in the
form of a (binary) relation on its constituents. In this case, a composition is not
simply an unordered set (or bag) of constituents but a more structured object,
such as a sequence or a graph.

Like in standard supervised learning, the goal in learning-to-aggregate is
to induce a model h : C −→ Y that predicts scores for compositions. More
specifically, given a hypothesis space H and a loss function L : Y2 −→ R+, the
goal is to find a risk-minimizing hypothesis

h∗ ∈ argmin
h∈H

∫

C×Y
L

(
y, h(c)

)
dP(c, y)

on the basis of the training data D (but without knowledge of the data-generating
process, i.e., the joint probability distribution P generating composition/score
tuples (c, y)).

2.3 Learning Aggregation Functions

Our simple example in Sect. 2.1 already illustrates one of the key problems in
learning-to-aggregate, namely the combination of a variable number of scores
yi,j , pertaining to evaluations of the constituents ci,j in a composition c, into
a single score yi. In Fig. 1, which provides an overview of our setting, this step
corresponds to the part marked by the dashed rectangle.

Now, suppose that we know, or can at least reasonably assume, that yi is
obtained from yi,1, . . . , yi,ni

through an aggregation process defined by a binary
aggregation function A : Y2 −→ Y:

yi = A
(

. . . A
(
A(yi,1, yi,2), yi,3

)
, . . . , yi,ni

)

In the simplest case, where the constituents do not have labels and hence cannot
be distinguished, the aggregation should be invariant against permutation of the
constituents in the bag. Thus, it is reasonable to assume A to be associative and
symmetric. Besides, one may of course restrict an underlying class of candidate
functions A by additional assumptions. In our example, for instance, we may
know that the aggregation is monotone decreasing.

Starting from a class A of aggregation functions, instead of a hypothesis space
H on the instance space (1) directly, has at least two important advantages.
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Fig. 1. Illustration of a basic version of the learning-to-aggregate model.

First, as just said, it allows for incorporating prior knowledge about the aggre-
gation, which may serve as a suitable inductive bias of the learning process.
Second, it naturally solves the problem that hypotheses h ∈ H must accept
inputs of any size. Indeed, under the assumption of associativity and symme-
try, a binary aggregation function A is naturally extended to any arity, and can
hence be used as a “generator” of a hypothesis h = hA:

h(y1, . . . , yn) = A(n)(y1, . . . , yn) = A
(
A(n−1)(y1, . . . , yn−1), yn

)

for all n ≥ 1, where h(y1) = A(1)(y1) = y1 by definition.
For these reasons, we consider the learning of (binary) aggregation functions,

and related to this the specification of a suitable class A of candidates, as an
integral part of learning-to-aggregate. In Sect. 3, such classes and different types
of aggregation functions will be discussed in more detail. Before doing so, we
elaborate on some extensions of our learning-to-aggregate setting.

2.4 Disaggregation

The aggregation we have been speaking about so far is an aggregation on the level
of scores. Thus, we actually assume that local scores yi,j of the constituents ci,j

are already given, and that we are interested in aggregating them into an overall
score yi of the composition ci. This is indeed the genuine purpose of aggregation
functions, which typically assume that all scores are elements of the same scale
Y. For example, we might be interested in how the scores on a conference paper
(strong reject, reject, ..., strong accept) coming from a (variable) number of
reviewers are aggregated into an overall rating by the program chairs.

Now, suppose that local scores yi,j are not part of the training data. Instead,
the constituents ci,j are only described in terms of properties in the form of
feature vectors vi,j ∈ V (and perhaps quantities qi,j , which we subsequently
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ignore for simplicity). A natural way to tackle the learning problem, then, is to
consider the local scores as latent variables, and to induce them as functions
f : V −→ Y of the properties.

In the following, we assume these functions to be parameterized by a para-
meter vector θ, and the aggregation function A by a parameter λ. The model is
then of the form

yi = Aλ(yi,1, . . . , yi,ni
) = Aλ

(
fθ(vi,1), . . . , fθ(vi,ni

)
)
,

and the problem consists of learning both the aggregation function A, i.e., the
parameter λ, and the mapping from features to local scores, i.e., the parameter
θ, simultaneously. Here, supervision only takes place on the level of the entire
composition, namely in the form of scores yi, whereas the “explanation” of these
scores via induction of local scores is part of the learning problem.

The decomposition of global scores into several local scores is sometimes
referred to as disaggregation (because it inverts the direction of aggregation,
which is from local scores to global ones). For example, suppose we observe a
user’s ratings of different playlists, each one considered as a collections of songs,
but not of the individual songs themselves. In order to predict the user’s rating
of new playlists, we could then try to learn how she rates individual songs and,
simultaneously, how she aggregates several (local) ratings into a global rating.

Obviously, there is a strong interaction between the local ratings and their
aggregation into a global score. For example, if we consistently observe low scores
for different playlists, this could be either because the user dislikes (almost) all
songs, or because she dislikes only a few but aggregates very strictly (i.e., a
playlist gets a low score as soon as is contains a single or a few poor songs). An
important question, therefore, concerns the identifiability of the model, i.e., the
question whether different parameterizations imply different models (or, more
formally, whether (λ, θ) �= (λ′, θ′) implies that the corresponding models assign
different scores yi �= y′

i for at least one composition).

2.5 Further Extensions

Sometimes, not even the (aggregate) scores yi can be observed directly, but only
certain response values ri ∈ R related to these scores, i.e., training data is of the
form

D =
{
(c1, r1), . . . , (cN , rN )

} ⊂ C × R, (3)

For example, in the case of the playlist, direct feedback of the user might not be
available. Instead, it might only be possible to observe a user’s behavior, e.g.,
how long she listens to the playlist, or whether or not she decides to buy it.
The response must then be modeled by another link function g (parameterized
by γ), for example a discrete choice model like logit, which assumes R = {0, 1}
and models the probability of a positive response according to P(ri = 1) =
(1+exp(−γ1(yi−γ2)))−1. The model discussed so far, including indirect feedback
in the form of a response, is summarized and illustrated graphically in Fig. 1.
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Instead of absolute feedback in the form of a (binary) response, one may also
assume relative feedback in the form of pairwise comparisons ci � cj between
compositions, suggesting that ci is preferred to cj (and hence that yi is larger
than yj). This type of feedback and corresponding training data

D =
{
ci(1) � cj(1), . . . , ci(N) � cj(N)

} ⊂ C × C, (4)

is especially interesting from the point of view of preference learning [9]. Model
induction could then be based, for example, on discrete choice models like
Bradley-Terrey [1].

Further extensions of the model are possible thanks to additional information
provided about the constituents or structural information about the composition
(cf. Sect. 2.2). In particular, the aggregation step can be generalized in the case
where a label is assigned to the constituents. For example, we may assume that a
user first rates the appetizer, main dish, and dessert (each of which may consist
of several dishes) separately, and then aggregates the corresponding scores into
an overall rating. Note that, since the intermediate scores are now associated
with roles, the last aggregation step does not necessarily need to be invariant
against permutation (for example, the user may give a higher weight to the
main dish and a lower one to the starter), so that a larger class of aggregation
functions could be used.

2.6 Learning Problems

Even in its basic form shown in Fig. 1, our learning-to-aggregate framework can
be instantiated in various ways and gives rise to a number of different learning
problems, in particular depending on the type of data that is observed and can be
used for training. In the most general case, compositions are of different size, and
training data consists of properties of constituents together with a corresponding
response. Then, the learning problem essentially comes down to estimating the
full set of parameters (γ, λ, θ).

Learning becomes simpler for various special cases. For example, if scores are
observed directly (i.e., ri = yi), the link from scores to responses, specified by gγ ,
does not need to be learned (or, stated differently, g can be taken as the identity).
The case where individual scores yi,j are observed, too, is often considered in
decision analysis and related fields [12,26], typically even with the assumption
that each individual score corresponds to a criterion (which, in our terminology,
means that it has a unique label, and that ni is given by the number of criteria
and hence the same for each composition). The main question, then, is how the
rating of an alternative on different criteria is aggregated into an overall rating.
For example, one might be interested in how reviewers combine their ratings on
criteria such as readability, novelty, etc. into an overall rating of a paper.

3 Aggregation Functions

Aggregation functions have been studied intensively as a branch of applied
mathematics; we refer to the monograph [10] for a comprehensive treatment
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conjuntive average disjuntive

min max

Fig. 2. Aggregation functions: conjunctive, disjunctive, and generalized averages.

of the topic. Roughly speaking, the purpose of an aggregation function operat-
ing on a scale Y is to combine values y1, . . . , yn ∈ Y into another value y on
the same scale. Typically, Y is taken as the unit interval [0, 1]; this is not a
strong restriction, since aggregation functions on other domains can be studied
via suitable transformations in the form of monotone bijections [11].

The study of aggregation functions is of axiomatic nature and proceeds from
specific properties such functions should obey. Natural requirements, for exam-
ple, include properties like symmetry (the result of the aggregation should not
depend on the order of the values) and monotonicity. Especially interesting
are binary aggregation functions A in the form of associative and commuta-
tive [0, 1]2 −→ [0, 1] mappings, because, as already said, these can be extended
to n-ary aggregation functions in a canonical way:

A(n)(y1, . . . , yn) = A
(
A(n−1)(y1, . . . , yn−1), yn

)
,

where A(1)(y1) = y1. One can then simply identify A with the family of functions
thus defined, and write A(y1, . . . , yn) for any number n of arguments.

A natural order on (binary) aggregation functions is defined as follows: A ≤ B
if A(y1, y2) ≤ B(y1, y2) for all y1, y2 ∈ [0, 1]. Based on this order relation, three
important classes of aggregation functions are often distinguished: conjunctive,
disjunctive, and generalized averaging operators. An aggregation A is called
conjunctive if A ≤ min and disjunctive if A ≥ max; all aggregations in-between
min and max are called (generalized) averaging operators (see Fig. 2).

3.1 Conjunctive and Disjunctive Aggregation

In this paper, we are specifically interested in conjunctive and disjunctive aggre-
gation, that is, aggregation functions that can be seen, respectively, as general-
izations of the classical logical conjunction and disjunction. Important classes of
such functions are given by the so-called t-norms and t-conorms [16].

Triangular norms (t-norms), which emerged in the context of probabilistic
metric spaces [21], play a central role is many-valued and fuzzy logic, where they
are used to generalize the logical conjunction [13]. A t-norm T is a monotone
increasing, associative and commutative [0, 1]2 −→ [0, 1] mapping with neu-
tral element 1 and absorbing element 0. Important examples include the mini-
mum, which is the largest among all t-norms, the product T (a, b) = ab, and the
Lukasiewicz t-norm T (a, b) = min(a + b, 1).

A t-conorm S is a monotone increasing, associative and commutative map-
ping [0, 1]2 −→ [0, 1] with neutral element 0 and absorbing element 1. These oper-
ators are dual to t-norms in the sense that, if T is a t-norm, then S defined
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by S(a, b) = 1 − T (1 − a, 1 − b) is a t-conorm. Important examples include
the maximum, which is the smallest among all t-conorms, the algebraic sum
S(a, b) = a + b − ab, and the Lukasiewicz t-conorm S(a, b) = max(a + b − 1, 0).

3.2 Uninorms

Generalized conjunctions and disjunctions share the properties of being
monotone, associative and commutative, and actually only differ in their neutral
element, which is 1 for the former and 0 for the latter. The location of the neu-
tral element in the unit interval is also reflected by the characteristics of these
two types of operators: For t-norms, the overall aggregation remains unchanged
only when adding the highest value 1, i.e., T (y1, . . . , yn) = T (y1, . . . , yn, yn+1)
only if yn+1 = 1; otherwise, the overall aggregation can only decrease. Thus,
t-norms aggregate very strictly and are fully non-compensatory: it is not pos-
sible to compensate for low evaluations by adding high ones. The dual class
of t-conorms behaves in exactly the opposite way: aggregation via t-conorms is
fully compensatory.

One may wonder whether a neutral behavior is only possible with respect to 0
and 1, or perhaps also some other value e ∈ (0, 1). Is there is a class of aggregation
functions that shares the properties of t-norms and t-conorms, except for having
an arbitrary value e as neutral element? This question is answered affirmatively
by the class of so-called uninorms [27]. A uninorm U is a monotone increasing,
associative and commutative [0, 1]2 −→ [0, 1] mapping with neutral element
e ∈ (0, 1), i.e., such that U(a, e) = U(e, a) = a for all a ∈ [0, 1].

1

e

0
0 e 1

Fig. 3. Structure of a uninorm.

Uninorms U can be shown to have a specific structure: For arguments
exceeding e, they behave like a t-conorm, i.e., there is a t-conorm S such
that U(a, b) = S(a, b) for all a, b ∈ [e, 1]2. Likewise, for arguments below e,
they behave like a t-norm: U(a, b) = T (a, b) for all (a, b) ∈ [0, e]. On the
remaining part of the unit square [0, 1]2, U can be completed in different ways,
though always remaining between the minimum and the maximum; see Fig. 3 for
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an illustration. A concrete family of uninorms called min-uninorms is constructed
from a t-norm T and a t-conorm S as follows:

Ue(a, b) =

⎧
⎪⎨

⎪⎩

e T
(

a
e , b

e

)
if a, b ∈ [0, e]

e + (1 − e)S
(

a−e
1−e , b−e

1−e

)
if a, b ∈ [e, 1]

min(a, b) otherwise
(5)

3.3 Complex Aggregation

Basic aggregation functions like those discussed above can be combined into
more complex ones, for example in a hierarchical way [22,23]. An example is
shown graphically in Fig. 4: The output produced by one aggregation serves as
an input of another one on a higher level. In the particular example shown, the
aggregation function is of the form

Aλt,λs
: [0, 1]4 −→ [0, 1], (y1, y2, y3, y4) 	→ Tλt

(
Sλs

(y1, y2), Sλs
(y3, y4)

)
, (6)

and thanks to the logical interpretation of t-norms and t-conorms, A itself can be
interpreted as a degree of truth of a generalized logical expression. For example,
if y1, y2, y3, y4 correspond, respectively, to the evaluation of a job candidate on
skills in math (M), programming (P ), French (F ), and Spanish (S), then A
evaluates the expression (M ∧ P ) ∨ (F ∧ S). In other words, a good candidate
needs to be strong in math or programming, and also have good language skills,
either in French or Spanish. Thus, there is no compensation between language
and analytical skills, but full compensation within each of the two categories.

y

Tλt

SλsSλs

y1 y2 y3 y4

Fig. 4. Example of a complex (hierarchical) aggregation functions.

As shown by (6), complex aggregation functions typically assign different
roles to different inputs. In our framework, this means that constituents must be
identified by a label (such as M or P above). In principle, of course, structures
more general than hierarchies (trees) could be used to design complex aggrega-
tion functions, for example directed acyclic graphs. Such structures appear to be
especially useful in the case where the constituents ci,j in a composition ci are
equipped with a structure (i.e., ci is not simply a bag). However, as extensions of
this kind are beyond the scope of this paper, we refrain from a deeper discussion.
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4 A Model Based on Uninorms

Suppose a component ci is a multiset of constituents ci,j described in terms of
feature vectors vi,j . We assume scores yi,j ∈ [0, 1] to be of the form

yi,j = fθ(vi,j) =
(
1 + exp

(−θ�vi,j

))−1
,

i.e., θ is a vector that assigns weights for the different entries in vi,j . The local
scores yi,j are then aggregated using a uninorm Uλ parameterized by λ:

yi = Uλ

({yi,j}ni
j=1

)
= Uλ

(
yi,1, . . . , yi,ni

)

Finally, the response ri is a binary decision, for which

P(ri = 1) =
(
1 + exp

( − γ1(yi − γ2)
))−1

.

Thus, the higher the score, the higher is the probability of a positive decision.
More specifically, the probability of a positive decision is controlled by two para-
meters γ = (γ1, γ2). The second parameter, γ2 ∈ [0, 1], is a kind of aspiration level
or ambition threshold, since P(ri = 1) > 1/2 for yi > γ2 and P(ri = 1) < 1/2
for yi < γ2. Moreover, γ1 ≥ 0 is a scaling parameter that models the precision
with which decisions are made: For γ1 → ∞, decisions become deterministic,
whereas for γ1 = 0, decisions are made completely at random (i.e., without
actually taking the score yi into account).

Overall, we thus end up with a probabilistic model of the following form:

P(ri = 1)=
(
1 + exp

(
−γ1

(
Uλ

({(
1 + exp

(−θ�vi,j

))−1
}ni

j=1

)
− γ2

)))−1

(7)

Learning this model can be done using maximum likelihood estimation. Thus,
given training data (4), the problem is to maximize the (regularized) log-
likelihood function

L(γ, λ, θ) =
N∑

i=1

log
(
P(ri | γ, λ, θ, ci)

) − αR(γ, λ, θ), (8)

where P(ri | γ, λ, θ, ci) is given by the expression on the right-hand side of (7) if
ri = 1 and by 1 minus this expression if ri = 0, and R(γ, λ, θ) is a regularization
term that is used to penalize large feature weights.

The above model simplifies in the case where the local scores yi,j are already
given, i.e., training data is of the form (4):

P(ri = 1) =
(
1 + exp

(
γ1

(
Uλ

(
{yi,j}ni

j=1

)
− γ2

)))−1

(9)
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5 Related Work

As our framework is quite general, it has connections to various other branches
of machine learning. These are either established by the non-standard represen-
tation of instances, or by the idea of using aggregation functions in one way or
the other. This section is meant to point to some of the related fields, although
space restrictions obviously prevent from a comprehensive discussion.

Compositions ci can of course be seen as a specific types of structured objects,
on which kernel functions can be defined; for example, kernel functions for “bags
of feature vectors” have been studied in image processing and other fields [5].
Then, given such a kernel function, the large arsenal of kernel-based machine
learning methods can be applied. Yet, an approach of that kind is not fully
in line with our idea of learning to aggregate. First, kernel methods eventually
produce a vectorial representation (in some feature space), which, for the reasons
already mentioned, might not be fully appropriate. More importantly, they do
not easily allow for incorporating knowledge about the process of aggregation,
which is a key idea of our approach, nor do they lead to well interpretable models.

In the special case where compositions ci are bags (i.e., multisets without
additional structure) of feature vectors vi,j , our framework is similar to multi-
instance learning (MIL) [2], especially with regard to the representation of data
objects. Yet, there are also some notable differences. In MIL, for example, a bag
is normally not viewed as a composition of constituents that belong together
and form a whole; in the simplest case, one proceeds from a binary setting with
positive and negative instances, and assumes a bag to be labeled positive as soon
as it contains at least one positive instance. Correspondingly, aggregation over
predictions for individual instances is done, either explicitly or implicitly, via the
maximum (or generalizations like the noisy OR [14]), whereas less attention has
been payed to a systematic study of the aggregation process.

Specific types of aggregation functions have attracted attention in machine
learning in recent years. For example, copulas can be seen as a specific type of
conjunctive aggregation that allows for combining marginal into joint probabil-
ity distributions [6]. In preference learning, the so-called Choquet integral has
been used as a generalization of the weighted average that is able to capture
interactions between different variables [24]. Yet, these approaches still proceed
from a feature representation of data objects.

There are other generalizations of supervised learning in which aggregation
plays an important role. For example, in learning from aggregate outputs [18], the
assumption is that output values cannot be observed for each training instance
individually; instead, only an aggregation of these values is observed for sets of
instances. Here, however, the aggregation function is supposed to be known.

As already mentioned, the scores assigned to a composition can often be
interpreted as a kind of evaluation. Thus, there is also an obvious connection to
the field of preference learning [9]. From the point of view of preference learning,
a composition can be seen as a bundle of goods, to which a user assigns a degree of
utility [25]. In comparison to learning preferences on items represented in terms
of feature vectors, work on preference learning on bundles is still very scarce.
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6 Illustration

As an illustration of our framework, we consider the problem of aggregating
reviewer recommendations into an overall decision about the acceptance or rejec-
tion of a conference submission. Or, stated differently, we adopt a data-driven
approach to modeling the way in which the program chairs of a conference aggre-
gate different reviews of a paper into an overall decision.

To this end, we collected data about the reviewing process of ECML/PKDD
2014. More concretely, our data set consists of 481 submitted papers with corre-
sponding reviews. While most papers have three reviews, there are also papers
with two or four reviews. Each review consists of a rating of the originality and
quality of the paper, an overall recommendation, and a level of confidence of
the reviewer. The underlying scale comprises five categories (strong reject, weak
reject, weak accept, accept, strong accept), which we embedded in the unit inter-
val by mapping them to {0, 0.25, 0.5, 0.75, 1}. Finally, the decision of acceptance
or rejection is known for each paper (with an acceptance rate of 23,9 %).

As already said, the problem we consider consists of learning to aggregate
reviewer recommendations into a final decision. Here, a paper is modeled as a
composition ci, the constituents of which consist of feature vectors vi,j with
values for originality, quality, and overall recommendation given by a reviewer,
as well as his or her confidence (and an intercept). Moreover, the final decision
is treated as a response (0 for rejection and 1 for acceptance).

We applied the model (7) introduced in Sect. 4 with two uninorms: The so-
called 3-Π uninorm [3], and the uninorm (5) with the product t-norm T (a, b) =
ab and the dual t-conorm S(a, b) = a + b − ab; in the latter case, the parameter
λ of Uλ is thus given by the neutral element e in (5). Note that a uninorm is a
quite plausible aggregation function for this application: The neutral element e
can be seen as kind of “borderline” recommendation. A recommendation better
than e expresses a positive reviewer option and can only increase the probability
of acceptance, whereas a recommendation worse than e has the opposite effect.
For comparison, we also present results for purely conjunctive (Uλ = min) and
purely disjunctive aggregation (Uλ = max).

To learn the parameters, we maximize the likelihood function (8) with L2

regularization (α = 0.01) using the L-BFGS-B algorithm [4]. To avoid local
optima, we did 10 random restarts, choosing initial parameters according to
Latin hypercube sampling [17] with 10 samples.

The problem considered in this study can in principle also be formalized in
the setting of multi-instance (MI) learning: papers are considered as bags and
the reviews as instances, represented in the form of feature vectors. Therefore,
we also compare our method with several state-of-the-art MI algorithms [2].

A standard approach based on a feature representation of submissions does
not appear meaningful. In fact, even if the number of reviewers would be the same
for each paper, the order of reviewers should not play any role, i.e., the aggre-
gation should be invariant against permutation (renumbering of the reviewers).
For example, it does not make sense to give a higher weight to the first reviewer
and a lower weight to the second one. Since all features are discrete, it is still
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Table 1. Mean ± standard deviation for classification rate, AUC and F-measure.

Approach Algorithm/Aggregation Accuracy AUC F1

Aggregation 3-Π uninorm .921 ± .035 .974 ± .025 .823 ± .091

min-uninorm .890 ± .029 .949 ± .021 .767 ± .059

minimum .885 ± .045 .923 ± .034 .756 ± .100

maximum .831 ± .064 .903 ± .064 .568 ± .179

MIL MILR [20] .916 ± .038 .973 ± .017 .811 ± .097

MIBoost [8] .911 ± .037 .960 ± .027 .807 ± .087

MISMO-PolyKernel [19] .906 ± .041 .858 ± .070 .791 ± .099

MISMO-RBFKernel [19] .909 ± .041 .870 ± .067 .804 ± .095

MIWrapper [7] .880 ± .040 .955 ± .031 .664 ± .146

Feature AdaBoostM1-Dec.Table .858 ± .045 .892 ± .052 .683 ± .112

Vector AdaBoostM1-Dec.Stumps .873 ± .043 .906 ± .048 .742 ± .091

Decision Table .855 ± .045 .900 ± .049 .687 ± .123

C4.5 (J48) .856 ± .038 .860 ± .073 .671 ± .101

KNN .862 ± .038 .904 ± .045 .667 ± .109

LBR .857 ± .041 .924 ± .038 .731 ± .079

RandomForest .838 ± .043 .891 ± .048 .633 ± .109

Logistic Regression .872 ± .042 .911 ± .046 .738 ± .097

SVM (SMO) .868 ± .042 .773 ± .073 .675 ± .122

possible to create a vector representation, simply by counting, for each feature
value, its total number of occurrences in all reviews. Obviously, this transforma-
tion comes with a loss of information, since the reviews are merged and cannot
be distinguished anymore. Nevertheless, we used it as another baseline (with
several standard learning methods implemented in WEKA [15]).

All performance measures were estimated using 10-fold cross validation
repeated 10 times. The mean values and standard deviations of classification
rate, AUC, and F-measure are reported in Table 1. As can be seen, our approach
compares quite favorably with the baselines. Moreover, the estimated model
appears to be quite plausible. For example, the parameter γ2, which plays the
role of an acceptance threshold, equals (on average) 0.687; moreover, γ1 ≈ 8,
which means that the reviewer recommendations determine decisions quite pre-
cisely. The vector θ has a plausible interpretation too: the overall recommenda-
tion has the highest influence, with a relative importance of about 0.78, followed
by originality and quality with around 0.11 and 0.09, respectively.

7 Summary and Conclusion

The learning-to-aggregate framework introduced in this paper is meant to pro-
vide a basis for learning (predictive) models in which aggregation plays an



770 V. Melnikov and E. Hüllermeier

integral role. We believe that, first, there are many applications of this kind
of modeling, and second, that machine learning can strongly benefit from the
large repertoire of existing work on aggregation functions in the mathematical
literature. More specifically, we argue that this field offers interesting mathemat-
ical tools for constructing model classes, thereby helping to learn models that
are not only accurate but also interpretable, as well as important theoretical
insights about aggregation functions and their properties, thereby supporting
the design of efficient learning algorithms.

We illustrated our framework by looking at one of its particular instances
and applying that instance on a review data set, where the aggregation problem
consists of combining a (variable) number of reviews of a paper submission into
a final decision of acceptance or rejection. While this is only a specific example,
we look forward to developing the learning-to-aggregate framework both more
broadly and more deeply in future work. As explained in Sect. 2, various learning
problems can be defined based on the representation of compositions, assump-
tions about the aggregation process, and the type of training data to learn from.
Developing and analyzing learning-to-rank methods for concrete, practically rel-
evant settings is a major goal of our future work.
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